1
|
Chen C, Ma Y, Gao Y, Ge H, Zhang X. Prognostic significance of neutrophil extracellular trap-related genes in childhood acute lymphoblastic leukemia: insights from multi-omics and in vitro experiment. Hematology 2025; 30:2452701. [PMID: 39829399 DOI: 10.1080/16078454.2025.2452701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND This study aimed to develop a prognostic model based on extracellular trap-related genes (NETRGs) for patients with cALL. METHODS Data from the TARGET-ALL-P2 and TARGET-ALL-P3 cohorts in the Genomic Data Commons database, the transcriptome dataset GSE26713, the single-cell transcriptome dataset GSE130116 from the Gene Expression Omnibus database and 306 NETRGs identified were analysed. Differentially expressed genes (DEGs) were identified from GSE26713 and differentially expressed NETRGs (DE-NETRGs) were obtained by overlapping DEGs with NETRGs. Functional analyses were conducted. Key feature genes were identified through univariate and least absolute shrinkage and selection operator (LASSO) regression. Prognostic genes were determined via multivariate Cox regression analysis, followed by the construction and validation of a risk model and nomogram. Additional analyses included immune profiling, drug sensitivity, functional differences, cell-type-specific expression, enrichment analysis and RT-qPCR. RESULTS A total of 1,270 DEGs were identified in GSE26713, of which 74 overlapped with NETRGs. Seven prognostic genes were identified using univariate, LASSO and multivariate Cox regression analyses. Survival analysis revealed lower survival rates in the high-risk group. Independent prognostic analysis identified risk scores and primary diagnosis as independent predictors of prognosis. Immune cell profiling showed significant differences in cell populations such as aDCs, eosinophils and Th2 cells between risk groups. Six cell subtypes were annotated, with prognostic genes predominantly expressed in myeloid cells. RT-qPCR revealed that PTAFR, FCGR2A, RETN and CAT were significantly downregulated, while TLR2 and S100A12 were upregulated in cALL. CONCLUSION TLR2, PTAFR, FCGR2A, RETN, S100A12 and CAT may serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Pediatrics, Peking University First Hospital Ningxia Women and Children's Hospital (Ningxia Hui Autonomous Region Maternal and Child Health Hospital), Yinchuan, People's Republic of China
| | - Yu Ma
- Department of Pediatrics, Peking University First Hospital Ningxia Women and Children's Hospital (Ningxia Hui Autonomous Region Maternal and Child Health Hospital), Yinchuan, People's Republic of China
| | - Yadai Gao
- Department of Pediatrics, Yinchuan Women and Children Healthcare Hospital, Yinchuan, People's Republic of China
| | - Huiqing Ge
- Department of Pediatrics, Peking University First Hospital Ningxia Women and Children's Hospital (Ningxia Hui Autonomous Region Maternal and Child Health Hospital), Yinchuan, People's Republic of China
| | - Xiaochun Zhang
- Department of Pediatrics, Peking University First Hospital Ningxia Women and Children's Hospital (Ningxia Hui Autonomous Region Maternal and Child Health Hospital), Yinchuan, People's Republic of China
| |
Collapse
|
2
|
Geng N, Yu Z, Zeng X, Chen Y, Sheng M, Xu D, Yan M, Yang M, Huang X. Pulse Activation of Retinoic Acid Receptor Enhances Hematopoietic Stem Cell Homing by Controlling CXCR4 Membrane Presentation. Stem Cell Rev Rep 2025; 21:68-79. [PMID: 39480614 DOI: 10.1007/s12015-024-10813-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
The interplay between metabolic signaling and stem cell biology has gained increasing attention, though the underlying molecular mechanisms remain incompletely elucidated. In this study, we identify and characterize the role of adapalene (ADA), a retinoic acid receptor (RAR) agonist, in modulating the migration behavior of hematopoietic stem cells (HSCs). Our initial findings reveal that ADA treatment suppresses hematopoietic stem and progenitor cell (HSPC) mobilization induced by AMD3100 and G-CSF. Furthermore, we demonstrate that ADA treatment upregulates the surface expression of CXCR4 on HSPCs, resulting in enhanced chemotaxis towards CXCL12. Mechanistically, our study suggests that ADA enhances CXCR4 surface presentation without increasing CXCR4 mRNA levels, pointing towards a non-canonical role of RAR signaling in regulating intracellular trafficking of CXCR4. In vivo experiments show that ADA administration significantly enhances HSC homing efficiency. Additionally, competitive transplantation assays indicate a marked increase in donor chimerism following ADA treatment. These findings highlight the critical role of retinoic acid signaling in regulating HSC homing and suggest its potential for advancing novel HSC-based therapeutic strategies.
Collapse
Affiliation(s)
- Nanxi Geng
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Ziqin Yu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Xingchao Zeng
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yuxuan Chen
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Mengyao Sheng
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Danhua Xu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Menghong Yan
- Pudong Medical Center, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Min Yang
- Department of Neonatology, Yangtze River Delta Integration Demonstration Zone (QingPu), Obstetrics & Gynecology Hospital of Fudan University, Shanghai, 201713, China.
| | - Xinxin Huang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and The Shanghai Key Laboratory of Medical Epigenetics, The International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
3
|
Mukherjee S, Mukherjee SB, Frenkel-Morgenstern M. Functional and regulatory impact of chimeric RNAs in human normal and cancer cells. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1777. [PMID: 36633099 DOI: 10.1002/wrna.1777] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/13/2023]
Abstract
Fusions of two genes can lead to the generation of chimeric RNAs, which may have a distinct functional role from their original molecules. Chimeric RNAs could encode novel functional proteins or serve as novel long noncoding RNAs (lncRNAs). The appearance of chimeric RNAs in a cell could help to generate new functionality and phenotypic diversity that might facilitate this cell to survive against new environmental stress. Several recent studies have demonstrated the functional roles of various chimeric RNAs in cancer progression and are considered as biomarkers for cancer diagnosis and sometimes even drug targets. Further, the growing evidence demonstrated the potential functional association of chimeric RNAs with cancer heterogeneity and drug resistance cancer evolution. Recent studies highlighted that chimeric RNAs also have functional potentiality in normal physiological processes. Several functionally potential chimeric RNAs were discovered in human cancer and normal cells in the last two decades. This could indicate that chimeric RNAs are the hidden layer of the human transcriptome that should be explored from the functional insights to better understand the functional evolution of the genome and disease development that could facilitate clinical practice improvements. This review summarizes the current knowledge of chimeric RNAs and highlights their functional, regulatory, and evolutionary impact on different cancers and normal physiological processes. Further, we will discuss the potential functional roles of a recently discovered novel class of chimeric RNAs named sense-antisense/cross-strand chimeric RNAs generated by the fusion of the bi-directional transcripts of the same gene. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- Sumit Mukherjee
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Department of Computer Science, Ben-Gurion University, Beer-Sheva, Israel
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Sunanda Biswas Mukherjee
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Milana Frenkel-Morgenstern
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
4
|
Arshad F, Ali A, Rehman G, Halim SA, Waqas M, Khalid A, Abdalla AN, Khan A, Al-Harrasi A. Comparative Expression Analysis of Breakpoint Cluster Region-Abelson Oncogene in Leukemia Patients. ACS OMEGA 2023; 8:5975-5982. [PMID: 36816652 PMCID: PMC9933183 DOI: 10.1021/acsomega.2c07885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Leukemia is a proliferative disorder of myeloid and lymphoid cells that may lead to death. Different types of leukemia have been reported, and several genetic and environmental factors are involved in their development. The Philadelphia chromosome causes the most common mutation known as breakpoint cluster region-Abelson oncogene (BCR-ABL1), which shows abnormal protein tyrosine kinase (PTK) activity. Basically, this activity is accountable for activating multiple pathways, including the inhibition of cell differentiation, controlled proliferation, and cell death. As a result of the absence of kinase activity, this mutation leads to the uncontrolled proliferation of leukocytes, causing chronic myeloid leukemia (CML), acute myeloid leukemia (AML), acute lymphoid leukemia (ALL), and chronic lymphocytic leukemia (CLL). This study aimed to evaluate the level of BCR-ABL1 expression in patients with these types of leukemias through qPCR. In brief, PBMCs were isolated from blood samples of patients, RNA was extracted from PBMCs, cDNA was synthesized, and the transcript levels of BCR-ABL1 in patients with each type of leukemia were determined by qPCR. The clinical, demographical, and experimental data were analyzed among CML, AML, and ALL patients. Results: The BCR-ABL1 expression levels are variable in all studied groups and are 90, 30-35, and 1-2.5% in CML, ALL, and AML, respectively. Demographic characteristics such as gender, BMI, age, family history, and clinical parameters along with CBC are also associated with the prevalence and diagnosis of leukemia. In a comparative expression analysis, the expression of BCR-ABL1 is onefold high in AML, but four- and sevenfold high in ALL and CML, respectively, as compared with normal levels. Conclusions: In this study, a significant difference was observed in the expression levels of BCR-ABL1 between CML (p = 0.0043) and ALL (p = 0.0006) and between CML and AML groups, and a high expression of BCR-ABL1 was noted in CML as compared with ALL and AML.
Collapse
Affiliation(s)
- Farah Arshad
- Molecular
Virology Laboratory Centre for Applied Molecular Biology (CAMB), University of the Punjab, 87-West Canal Bank Road Thokar Niaz Baig, Lahore54590, Pakistan
| | - Amjad Ali
- Molecular
Virology Laboratory Centre for Applied Molecular Biology (CAMB), University of the Punjab, 87-West Canal Bank Road Thokar Niaz Baig, Lahore54590, Pakistan
- Department
of Biotechnology and Genetic Engineering, Hazara University, Mansehra21120, Khyber Pakhtunkhwa, Pakistan
| | - Gauhar Rehman
- District
Medical Specialist Category-D Hospital Talash Dir Lower, Lower Dir23120, Khyber Pakhtunkhwa, Pakistan
| | - Sobia Ahsan Halim
- Natural
and Medical Sciences Research Center, University
of Nizwa, Birkat-Al-Mouz, 616, P.O. Box 33, Nizwa616, Sultanate of
Oman
| | - Muhammad Waqas
- Department
of Biotechnology and Genetic Engineering, Hazara University, Mansehra21120, Khyber Pakhtunkhwa, Pakistan
- Natural
and Medical Sciences Research Center, University
of Nizwa, Birkat-Al-Mouz, 616, P.O. Box 33, Nizwa616, Sultanate of
Oman
| | - Asaad Khalid
- Substance
Abuse and Toxicology Research Center, Jazan
University, P.O. Box 114, Jazan45142, Saudi Arabia
- Medicinal
and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P.O. Box 2404, Khartoum11111, Sudan
| | - Ashraf N. Abdalla
- Department
of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah21955, Saudi Arabia
| | - Ajmal Khan
- Natural
and Medical Sciences Research Center, University
of Nizwa, Birkat-Al-Mouz, 616, P.O. Box 33, Nizwa616, Sultanate of
Oman
| | - Ahmed Al-Harrasi
- Natural
and Medical Sciences Research Center, University
of Nizwa, Birkat-Al-Mouz, 616, P.O. Box 33, Nizwa616, Sultanate of
Oman
| |
Collapse
|
5
|
Oliveira RJ, da Silveira IOMF, das Neves SC, Mitsuyasu B, Martins AC, Berno C, Mohammad J, Raj H, de Araujo FHS, Hortelan CR, Machado L, da Silva Júnior EN, Vilela MLB, Nascimento VA, Beatriz A, da Silva Gomes R. ZIM, a Norbornene Derived from 4-Aminoantipyrine, Induces DNA Damage and Cell Death but in Association Reduces the Effect of Commercial Chemotherapeutics. Chem Res Toxicol 2023; 36:66-82. [PMID: 36548215 DOI: 10.1021/acs.chemrestox.2c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cancer incidence is increasing, and the drugs are not very selective. These drugs cause adverse effects, and the cells become resistant. Therefore, new drugs are needed. Here, we evaluated the effects of ZIM, a candidate for chemotherapy, and 4-AA alone and in association with commercial chemotherapeutic agents. Subsequently, the results of ZIM and 4-AA were compared. Male Swiss mice were treated with doses of 12, 24, or 48 mg/kg ZIM or 4-AA alone or in association with cisplatin (6 mg/kg), doxorubicin (16 mg/kg), and cyclophosphamide (100 mg/kg). Biometric parameters, DNA damage (comet and micronuclei), cell death, and splenic phagocytosis were evaluated. DNA docking was also performed to confirm the possible interactions of ZIM and 4-AA with DNA. 4-AA has been shown to have low genotoxic potential, increase the frequency of cell death, and activate phagocytosis. ZIM causes genomic and chromosomal damage in addition to causing cell death and activating phagocytosis. In association with chemotherapeutical agents, both 4-AA and ZIM have a chemopreventive effect and, therefore, reduce the frequency of DNA damage, cell death, and splenic phagocytosis. The association of 4-AA and ZIM with commercial chemotherapeutic agents increased the frequency of lymphocytes compared to chemotherapeutic agents alone. Molecular docking demonstrated that ZIM has more affinity for DNA than 4-AA and its precursors (1 and 2). This was confirmed by the lower interaction energy of the complex (-119.83 kcal/mol). ZIM can break the DNA molecule and, therefore, its chemotherapeutic effect can be related to DNA damage. It is considered that ZIM has chemotherapeutic potential. However, it should not be used in combination with cisplatin, doxorubicin, and cyclophosphamide as it reduces the effects of these drugs.
Collapse
Affiliation(s)
- Rodrigo Juliano Oliveira
- Stem Cell, Cell Therapy and Toxicological Genetics Research Centre (CeTroGen), Medical School, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul79080-190, Brazil.,Graduate Program in Health and Development in the Midwest Region, Medical School, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul79070-900, Brazil
| | - Ingridhy Ostaciana Maia Freitas da Silveira
- Institute of Chemistry, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul79070-900, Brazil.,Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota58102, United States
| | - Silvia C das Neves
- Stem Cell, Cell Therapy and Toxicological Genetics Research Centre (CeTroGen), Medical School, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul79080-190, Brazil.,Graduate Program in Health and Development in the Midwest Region, Medical School, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul79070-900, Brazil
| | - Barbara Mitsuyasu
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota58102, United States.,Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP18618-689, Brazil
| | - Allana C Martins
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota58102, United States
| | - Claudia Berno
- Stem Cell, Cell Therapy and Toxicological Genetics Research Centre (CeTroGen), Medical School, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul79080-190, Brazil
| | - Jiyan Mohammad
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota58102, United States
| | - Halie Raj
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota58102, United States
| | - Flavio H S de Araujo
- Stem Cell, Cell Therapy and Toxicological Genetics Research Centre (CeTroGen), Medical School, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul79080-190, Brazil
| | | | - Luana Machado
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, MGCEP 31270-901, Brazil.,Department of Chemistry, Fluminense Federal University, Niteroi, RJ24020-141, Brazil
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, MGCEP 31270-901, Brazil
| | - Marcelo L B Vilela
- Medical School, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul79070-900, Brazil
| | - Valter Aragão Nascimento
- Graduate Program in Health and Development in the Midwest Region, Medical School, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul79070-900, Brazil
| | - Adilson Beatriz
- Institute of Chemistry, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul79070-900, Brazil
| | - Roberto da Silva Gomes
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota58102, United States
| |
Collapse
|
6
|
Luo W, Xu Y, Liu R, Liao Y, Wang S, Zhang H, Li X, Wang H. Retinoic acid and RARγ maintain satellite cell quiescence through regulation of translation initiation. Cell Death Dis 2022; 13:838. [PMID: 36175396 PMCID: PMC9522790 DOI: 10.1038/s41419-022-05284-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 01/23/2023]
Abstract
In adult skeletal muscle, satellite cells are in a quiescent state, which is essential for the future activation of muscle homeostasis and regeneration. Multiple studies have investigated satellite cell proliferation and differentiation, but the molecular mechanisms that safeguard the quiescence of satellite cells remain largely unknown. In this study, we purposely activated dormant satellite cells by using various stimuli and captured the in vivo-preserved features from quiescence to activation transitions. We found that retinoic acid signaling was required for quiescence maintenance. Mechanistically, retinoic acid receptor gamma (RARγ) binds to and stimulates genes responsible for Akt dephosphorylation and subsequently inhibits overall protein translation initiation in satellite cells. Furthermore, the alleviation of retinoic acid signaling released the satellite cells from quiescence, but this restraint was lost in aged cells. Retinoic acid also preserves the quiescent state during satellite cell isolation, overcoming the cellular stress caused by the isolation process. We conclude that active retinoic acid signaling contributes to the maintenance of the quiescent state of satellite cells through regulation of the protein translation initiation process.
Collapse
Affiliation(s)
- Wenzhe Luo
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China ,grid.440622.60000 0000 9482 4676College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Yueyuan Xu
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ruige Liu
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yinlong Liao
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Sheng Wang
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Haoyuan Zhang
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xinyun Li
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Heng Wang
- grid.35155.370000 0004 1790 4137Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China ,grid.440622.60000 0000 9482 4676College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| |
Collapse
|
7
|
Ruan J, Yang C, Du Y, Chen M, Han B. Plasma lipidome acts as diagnostic marker and predictor for cyclosporin response in patients with aplastic anemia. Clin Exp Med 2022:10.1007/s10238-022-00826-z. [PMID: 35445952 DOI: 10.1007/s10238-022-00826-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/21/2022] [Indexed: 12/19/2022]
Abstract
The lipid metabolomic profile has been well defined in the pathogenesis and differential diagnosis in patients with different myeloid diseases. We assumed that the serum lipid metabolites could also help the diagnosis and prognostic prediction of aplastic anemia (AA). In this study, serum lipid profiles were explored in AA patients before and after cyclosporin (CsA) treatment. Meanwhile, hypocellular myelodysplastic syndrome (h-MDS) patients and the healthy volunteers were compared as controls. 15 AA patients, 11 h-MDS patients and 20 age and sex matched health controls were enrolled. All the AA patients were diagnosed to be non-severe aplastic anemia with transfusion dependency and were treated by CsA 3-5 mg/kg/d for at least 6 months. AA patients had decreased arachidonic acid pathway metabolites and retinol metabolism-related metabolites as compared with h-MDS and the health (P < 0.05), whereas h-MDS patients had increased metabolism of proline and threonine and abnormal sphingolipid metabolism compared with AA patients and the normal controls. After 6 month of CsA treatment, serum arachidonic acid, PGE2, PGJ2, 15(S)-HETE, leukotriene B4 and Protectin D1 decreased significantly. Patients who had response to CsA had higher levels of baseline protectin D1 (P = 0.011), leukotriene B4 (P = 0.011), 15(S)-HETE (P = 0.004) and all-trans-retinal (P = 0.000) than those who had no response.
Collapse
Affiliation(s)
- Jing Ruan
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Chen Yang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Yali Du
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Miao Chen
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Bing Han
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China.
| |
Collapse
|
8
|
The unfolding role of ceramide in coordinating retinoid-based cancer therapy. Biochem J 2021; 478:3621-3642. [PMID: 34648006 DOI: 10.1042/bcj20210368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/30/2022]
Abstract
Sphingolipid-mediated regulation in cancer development and treatment is largely ceramide-centered with the complex sphingolipid metabolic pathways unfolding as attractive targets for anticancer drug discovery. The dynamic interconversion of sphingolipids is tightly controlled at the level of enzymes and cellular compartments in response to endogenous or exogenous stimuli, such as anticancer drugs, including retinoids. Over the past two decades, evidence emerged that retinoids owe part of their potency in cancer therapy to modulation of sphingolipid metabolism and ceramide generation. Ceramide has been proposed as a 'tumor-suppressor lipid' that orchestrates cell growth, cell cycle arrest, cell death, senescence, autophagy, and metastasis. There is accumulating evidence that cancer development is promoted by the dysregulation of tumor-promoting sphingolipids whereas cancer treatments can kill tumor cells by inducing the accumulation of endogenous ceramide levels. Resistance to cancer therapy may develop due to a disrupted equilibrium between the opposing roles of tumor-suppressor and tumor-promoter sphingolipids. Despite the undulating effect and complexity of sphingolipid pathways, there are emerging opportunities for a plethora of enzyme-targeted therapeutic interventions that overcome resistance resulting from perturbed sphingolipid pathways. Here, we have revisited the interconnectivity of sphingolipid metabolism and the instrumental role of ceramide-biosynthetic and degradative enzymes, including bioactive sphingolipid products, how they closely relate to cancer treatment and pathogenesis, and the interplay with retinoid signaling in cancer. We focused on retinoid targeting, alone or in combination, of sphingolipid metabolism nodes in cancer to enhance ceramide-based therapeutics. Retinoid and ceramide-based cancer therapy using novel strategies such as combination treatments, synthetic retinoids, ceramide modulators, and delivery formulations hold promise in the battle against cancer.
Collapse
|
9
|
Mukherjee S, Heng HH, Frenkel-Morgenstern M. Emerging Role of Chimeric RNAs in Cell Plasticity and Adaptive Evolution of Cancer Cells. Cancers (Basel) 2021; 13:4328. [PMID: 34503137 PMCID: PMC8431553 DOI: 10.3390/cancers13174328] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Gene fusions can give rise to somatic alterations in cancers. Fusion genes have the potential to create chimeric RNAs, which can generate the phenotypic diversity of cancer cells, and could be associated with novel molecular functions related to cancer cell survival and proliferation. The expression of chimeric RNAs in cancer cells might impact diverse cancer-related functions, including loss of apoptosis and cancer cell plasticity, and promote oncogenesis. Due to their recurrence in cancers and functional association with oncogenic processes, chimeric RNAs are considered biomarkers for cancer diagnosis. Several recent studies demonstrated that chimeric RNAs could lead to the generation of new functionality for the resistance of cancer cells against drug therapy. Therefore, targeting chimeric RNAs in drug resistance cancer could be useful for developing precision medicine. So, understanding the functional impact of chimeric RNAs in cancer cells from an evolutionary perspective will be helpful to elucidate cancer evolution, which could provide a new insight to design more effective therapies for cancer patients in a personalized manner.
Collapse
Affiliation(s)
- Sumit Mukherjee
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel;
| | - Henry H. Heng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Milana Frenkel-Morgenstern
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel;
| |
Collapse
|
10
|
Di Martino O, Niu H, Hadwiger G, Kuusanmaki H, Ferris MA, Vu A, Beales J, Wagner C, Menéndez-Gutiérrez MP, Ricote M, Heckman C, Welch JS. Endogenous and combination retinoids are active in myelomonocytic leukemias. Haematologica 2021; 106:1008-1021. [PMID: 33241677 PMCID: PMC8017822 DOI: 10.3324/haematol.2020.264432] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Indexed: 12/17/2022] Open
Abstract
Retinoid therapy transformed response and survival outcomes in acute promyelocytic leukemia (APL) but has demonstrated only modest activity in non-APL forms of acute myeloid leukemia (AML). The presence of natural retinoids in vivo could influence the efficacy of pharmacologic agonists and antagonists. We found that natural RXRA ligands, but not RARA ligands, were present in murine MLL-AF9-derived myelomonocytic leukemias in vivo and that the concurrent presence of receptors and ligands acted as tumor suppressors. Pharmacologic retinoid responses could be optimized by concurrent targeting of RXR ligands (e.g., bexarotene) and RARA ligands (e.g., all-trans retinoic acid), which induced either leukemic maturation or apoptosis depending on cell culture conditions. Co-repressor release from the RARA:RXRA heterodimer occurred with RARA activation, but not RXRA activation, providing an explanation for the combination synergy. Combination synergy could be replicated in additional, but not all, AML cell lines and primary samples, and was associated with improved survival in vivo, although tolerability of bexarotene administration in mice remained an issue. These data provide insight into the basal presence of natural retinoids in leukemias in vivo and a potential strategy for clinical retinoid combination regimens in leukemias beyond APL.
Collapse
Affiliation(s)
- Orsola Di Martino
- Department of Internal Medicine, Washington University, St Louis, Missouri, 63110
| | - Haixia Niu
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 3333
| | - Gayla Hadwiger
- Department of Internal Medicine, Washington University, St Louis, Missouri, 63110
| | - Heikki Kuusanmaki
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, 00014
| | - Margaret A Ferris
- Department of Pediatrics, Washington University, St Louis, Missouri, 63110
| | - Anh Vu
- Department of Internal Medicine, Washington University, St Louis, Missouri, 63110
| | - Jeremy Beales
- Department of Internal Medicine, Washington University, St Louis, Missouri, 63110
| | - Carl Wagner
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona, 85281 USA
| | - María P Menéndez-Gutiérrez
- Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029
| | - Mercedes Ricote
- Myocardial Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029
| | - Caroline Heckman
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, 00014
| | - John S Welch
- Department of Internal Medicine, Washington University, St Louis, Missouri, 63110
| |
Collapse
|
11
|
Ambinder AJ, Norsworthy K, Hernandez D, Palau L, Paun B, Duffield A, Chandraratna R, Sanders M, Varadhan R, Jones RJ, Douglas Smith B, Ghiaur G. A Phase 1 Study of IRX195183, a RARα-Selective CYP26 Resistant Retinoid, in Patients With Relapsed or Refractory AML. Front Oncol 2020; 10:587062. [PMID: 33194741 PMCID: PMC7645224 DOI: 10.3389/fonc.2020.587062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/05/2020] [Indexed: 12/31/2022] Open
Abstract
Subsets of non-acute promyelocytic leukemia (APL) acute myelogenous leukemia (AML) exhibit aberrant retinoid signaling and demonstrate sensitivity to retinoids in vitro. We present the results of a phase 1 dose-escalation study that evaluated the safety, pharmacodynamics, and efficacy of IRX195183, a novel retinoic acid receptor α agonist, in patients with relapsed or refractory myelodysplastic syndrome (MDS) or AML. In this single center, single arm study, eleven patients with relapsed or refractory MDS/AML were enrolled and treated. Oral IRX195183 was administered at two dose levels: 50 mg daily or 75 mg daily for a total of two 28-day cycles. Patients with stable disease or better were allowed to continue on the drug for four additional 28-day cycles. Common adverse events included hypertriglyceridemia, fatigue, dyspnea, and edema. Three patients at the first dose level developed asymptomatic Grade 3 hypertriglyceridemia. The maximally tolerated dose was not reached. Four of the eleven patients had (36%) stable disease or better. One had a morphological complete remission with incomplete hematologic recovery while on the study drug. Two patients had evidence of in vivo leukemic blast maturation, as reflected by increased CD38 expression. In a pharmacodynamics study, plasma samples from four patients treated at the lowest dose level demonstrated the capacity to differentiate leukemic cells from the NB4 cell line in vitro. These results suggest that IRX195183 is safe, achieves biologically meaningful plasma concentrations and may be efficacious in a subset of patients with MDS/AML. Clinical Trial Registration: clinicaltrials.gov, identifier NCT02749708.
Collapse
Affiliation(s)
- Alexander J. Ambinder
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kelly Norsworthy
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Daniela Hernandez
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Laura Palau
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Bogdan Paun
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Amy Duffield
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | | | | - Ravi Varadhan
- Division of Biostatistics and Bioinformatics, Johns Hopkins/Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, United States
| | - Richard J. Jones
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - B. Douglas Smith
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Gabriel Ghiaur
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
12
|
Overexpression of WT1 and PRAME predicts poor outcomes of patients with myelodysplastic syndromes with thrombocytopenia. Blood Adv 2020; 3:3406-3418. [PMID: 31714962 DOI: 10.1182/bloodadvances.2019000564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/11/2019] [Indexed: 12/16/2022] Open
Abstract
Thrombocytopenia is associated with life-threatening bleeding and is common in myelodysplastic syndromes (MDS). Robust molecular prognostic biomarkers need to be developed to improve clinical decision making for patients with MDS with thrombocytopenia. Wilms tumor 1 (WT1) and preferentially expressed antigen in melanoma (PRAME) are promising immunogenic antigen candidates for immunotherapy, and their clinical effects on patients with MDS with thrombocytopenia are still not well understood. We performed a multicenter observational study of adult patients with MDS with thrombocytopenia from 7 different tertiary medical centers in China. We examined bone marrow samples collected at diagnosis for WT1 and PRAME transcript levels and then analyzed their prognostic effect for patients with MDS with thrombocytopenia. In total, we enrolled 1110 patients diagnosed with MDS with thrombocytopenia. Overexpression of WT1 and PRAME was associated with elevated blast percentage, worse cytogenetics, and higher Revised International Prognostic Scoring System (IPSS-R) risk. Further, both WT1 and PRAME overexpression were independent poor prognostic factors for acute myeloid leukemia evolution, overall survival, and progression-free survival. Together, the 2 genes overexpression identified a population of patients with MDS with substantially worse survival. On the basis of WT1 and PRAME transcript levels, patients with MDS with IPSS-R low risk were classified into 2 significantly divergent prognostic risk groups: a low-favorable group and a low-adverse group. The low-adverse group had survival similar to that of patients in the intermediate-risk group. Our study demonstrates that the evaluation of WT1/PRAME transcript analysis may improve the prognostication precision and better risk-stratify the patients.
Collapse
|
13
|
Orfali N, O'Donovan TR, Cahill MR, Benjamin D, Nanus DM, McKenna SL, Gudas LJ, Mongan NP. All-trans retinoic acid (ATRA)-induced TFEB expression is required for myeloid differentiation in acute promyelocytic leukemia (APL). Eur J Haematol 2020; 104:236-250. [PMID: 31811682 DOI: 10.1111/ejh.13367] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 02/03/2023]
Abstract
OBJECTIVE In acute promyelocytic leukemia (APL), normal retinoid signaling is disrupted by an abnormal PML-RARα fusion oncoprotein, leading to a block in cell differentiation. Therapeutic concentrations of all-trans-retinoic acid (ATRA) can restore retinoid-induced transcription and promote degradation of the PML-RARα protein. Autophagy is a catabolic pathway that utilizes lysosomal machinery to degrade intracellular material and facilitate cellular re-modeling. Recent studies have identified autophagy as an integral component of ATRA-induced myeloid differentiation. METHODS As the molecular communication between retinoid signaling and the autophagy pathway is not defined, we performed RNA sequencing of NB4 APL cells treated with ATRA and examined autophagy-related transcripts. RESULTS ATRA altered the expression of >80 known autophagy-related transcripts, including the key transcriptional regulator of autophagy and lysosomal biogenesis, TFEB (11.5-fold increase). Induction of TFEB and its transcriptional target, sequestosome 1 (SQSTM1, p62), is reduced in ATRA-resistant NB4R cells compared to NB4 cells. TFEB knockdown in NB4 cells alters the expression of transcriptional targets of TFEB and reduces CD11b transcript levels in response to ATRA. CONCLUSIONS We show for the first time that TFEB plays an important role in ATRA-induced autophagy during myeloid differentiation and that autophagy induction potentiates leukemic cell differentiation (Note: this study includes data obtained from NCT00195156, https://clinicaltrials.gov/show/NCT00195156).
Collapse
Affiliation(s)
- Nina Orfali
- Cork Cancer Research Centre & CancerResearch@UCC, Western Gateway Building, University College Cork, Cork, Ireland.,Department of Haematology, Cork University Hospital, Cork, Ireland.,Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.,Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Tracey R O'Donovan
- Cork Cancer Research Centre & CancerResearch@UCC, Western Gateway Building, University College Cork, Cork, Ireland
| | - Mary R Cahill
- Cork Cancer Research Centre & CancerResearch@UCC, Western Gateway Building, University College Cork, Cork, Ireland.,Department of Haematology, Cork University Hospital, Cork, Ireland
| | - Dalyia Benjamin
- Cork Cancer Research Centre & CancerResearch@UCC, Western Gateway Building, University College Cork, Cork, Ireland.,Department of Haematology, Cork University Hospital, Cork, Ireland.,Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - David M Nanus
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Sharon L McKenna
- Cork Cancer Research Centre & CancerResearch@UCC, Western Gateway Building, University College Cork, Cork, Ireland
| | - Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Nigel P Mongan
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.,University of Nottingham Biodiscovery Institute, Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| |
Collapse
|
14
|
Two Opposing Faces of Retinoic Acid: Induction of Stemness or Induction of Differentiation Depending on Cell-Type. Biomolecules 2019; 9:biom9100567. [PMID: 31590252 PMCID: PMC6843238 DOI: 10.3390/biom9100567] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022] Open
Abstract
Stem cells have the capacity of self-renewal and, through proliferation and differentiation, are responsible for the embryonic development, postnatal development, and the regeneration of tissues in the adult organism. Cancer stem cells, analogous to the physiological stem cells, have the capacity of self-renewal and may account for growth and recurrence of tumors. Development and regeneration of healthy tissues and tumors depend on the balance of different genomic and nongenomic signaling pathways that regulate stem cell quiescence, proliferation, and differentiation. During evolution, this balance became dependent on all-trans retinoic acid (RA), a molecule derived from the environmental factor vitamin A. Here we summarize some recent findings on the prominent role of RA on the proliferation of stem and progenitor cells, in addition to its well-known function as an inductor of cell differentiation. A better understanding of the regulatory mechanisms of stemness and cell differentiation by RA may improve the therapeutic options of this molecule in regenerative medicine and cancer.
Collapse
|
15
|
Abdel-Azim H, Sun W, Wu L. Strategies to generate functionally normal neutrophils to reduce infection and infection-related mortality in cancer chemotherapy. Pharmacol Ther 2019; 204:107403. [PMID: 31470030 DOI: 10.1016/j.pharmthera.2019.107403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/19/2019] [Indexed: 02/08/2023]
Abstract
Neutrophils form an essential part of innate immunity against infection. Cancer chemotherapy-induced neutropenia (CCIN) is a condition in which the number of neutrophils in a patient's bloodstream is decreased, leading to increased susceptibility to infection. Granulocyte colony-stimulating factor (GCSF) has been the only approved treatment for CCIN over two decades. To date, CCIN-related infection and mortality remain a significant concern, as neutrophils generated in response to administered GCSF are functionally immature and cannot effectively fight infection. This review summarizes the molecular regulatory mechanisms of neutrophil granulocytic differentiation and innate immunity development, dissects the biology of GCSF in myeloid expansion, highlights the shortcomings of GCSF in CCIN treatment, updates the recent advance of a selective retinoid agonist that promotes neutrophil granulocytic differentiation, and evaluates the benefits of developing GCSF biosimilars to increase access to GCSF biologics versus seeking a new mode to fundamentally advance GCSF therapy for treatment of CCIN.
Collapse
Affiliation(s)
- Hisham Abdel-Azim
- Pediatric Hematology-Oncology, Blood and Marrow Transplantation, Children's Hospital Los Angeles Saban Research Institute, University of Southern California Keck School of Medicine, 4650 Sunset Blvd, Los Angeles, CA 90027, USA
| | - Weili Sun
- Pediatric Hematology-Oncology, City of Hope National Medical Center, 1500 E. Duarte road, Duarte, CA 91010, USA
| | - Lingtao Wu
- Research and Development, Therapeutic Approaches, 2712 San Gabriel Boulevard, Rosemead, CA 91770, USA.
| |
Collapse
|
16
|
Vassalli G. Aldehyde Dehydrogenases: Not Just Markers, but Functional Regulators of Stem Cells. Stem Cells Int 2019; 2019:3904645. [PMID: 30733805 PMCID: PMC6348814 DOI: 10.1155/2019/3904645] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/25/2018] [Indexed: 12/26/2022] Open
Abstract
Aldehyde dehydrogenase (ALDH) is a superfamily of enzymes that detoxify a variety of endogenous and exogenous aldehydes and are required for the biosynthesis of retinoic acid (RA) and other molecular regulators of cellular function. Over the past decade, high ALDH activity has been increasingly used as a selectable marker for normal cell populations enriched in stem and progenitor cells, as well as for cell populations from cancer tissues enriched in tumor-initiating stem-like cells. Mounting evidence suggests that ALDH not only may be used as a marker for stem cells but also may well regulate cellular functions related to self-renewal, expansion, differentiation, and resistance to drugs and radiation. ALDH exerts its functional actions partly through RA biosynthesis, as all-trans RA reverses the functional effects of pharmacological inhibition or genetic suppression of ALDH activity in many cell types in vitro. There is substantial evidence to suggest that the role of ALDH as a stem cell marker comes down to the specific isoform(s) expressed in a particular tissue. Much emphasis has been placed on the ALDH1A1 and ALDH1A3 members of the ALDH1 family of cytosolic enzymes required for RA biosynthesis. ALDH1A1 and ALDH1A3 regulate cellular function in both normal stem cells and tumor-initiating stem-like cells, promoting tumor growth and resistance to drugs and radiation. An improved understanding of the molecular mechanisms by which ALDH regulates cellular function will likely open new avenues in many fields, especially in tissue regeneration and oncology.
Collapse
Affiliation(s)
- Giuseppe Vassalli
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland
- Center for Molecular Cardiology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
17
|
Puttini S, Plaisance I, Barile L, Cervio E, Milano G, Marcato P, Pedrazzini T, Vassalli G. ALDH1A3 Is the Key Isoform That Contributes to Aldehyde Dehydrogenase Activity and Affects in Vitro Proliferation in Cardiac Atrial Appendage Progenitor Cells. Front Cardiovasc Med 2018; 5:90. [PMID: 30087899 PMCID: PMC6066537 DOI: 10.3389/fcvm.2018.00090] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/25/2018] [Indexed: 12/23/2022] Open
Abstract
High aldehyde dehydrogenase (ALDHhi) activity has been reported in normal and cancer stem cells. We and others have shown previously that human ALDHhi cardiac atrial appendage cells are enriched with stem/progenitor cells. The role of ALDH in these cells is poorly understood but it may come down to the specific ALDH isoform(s) expressed. This study aimed to compare ALDHhi and ALDHlo atrial cells and to identify the isoform(s) that contribute to ALDH activity, and their functional role. Methods and Results: Cells were isolated from atrial appendage specimens from patients with ischemic and/or valvular heart disease undergoing heart surgery. ALDHhi activity assessed with the Aldefluor reagent coincided with primitive surface marker expression (CD34+). Depending on their ALDH activity, RT-PCR analysis of ALDHhi and ALDHlo cells demonstrated a differential pattern of pluripotency genes (Oct 4, Nanog) and genes for more established cardiac lineages (Nkx2.5, Tbx5, Mef2c, GATA4). ALDHhi cells, but not ALDHlo cells, formed clones and were culture-expanded. When cultured under cardiac differentiation conditions, ALDHhi cells gave rise to a higher number of cardiomyocytes compared with ALDHlo cells. Among 19 ALDH isoforms known in human, ALDH1A3 was most highly expressed in ALDHhi atrial cells. Knocking down ALDH1A3, but not ALDH1A1, ALDH1A2, ALDH2, ALDH4A1, or ALDH8A1 using siRNA decreased ALDH activity and cell proliferation in ALDHhi cells. Conversely, overexpressing ALDH1A3 with a retroviral vector increased proliferation in ALDHlo cells. Conclusions: ALDH1A3 is the key isoform responsible for ALDH activity in ALDHhi atrial appendage cells, which have a propensity to differentiate into cardiomyocytes. ALDH1A3 affects in vitro proliferation of these cells.
Collapse
Affiliation(s)
- Stefania Puttini
- Cardiovascular Department, CHUV University Hospital, Lausanne, Switzerland
| | - Isabelle Plaisance
- Cardiovascular Department, CHUV University Hospital, Lausanne, Switzerland
| | - Lucio Barile
- Cardiocentro Ticino Foundation and Swiss Institute for Regenerative Medicine, Lugano, Switzerland
| | - Elisabetta Cervio
- Cardiocentro Ticino Foundation and Swiss Institute for Regenerative Medicine, Lugano, Switzerland
| | - Giuseppina Milano
- Cardiovascular Department, CHUV University Hospital, Lausanne, Switzerland.,Cardiocentro Ticino Foundation and Swiss Institute for Regenerative Medicine, Lugano, Switzerland
| | - Paola Marcato
- Departments of Pathology, Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Thierry Pedrazzini
- Cardiovascular Department, CHUV University Hospital, Lausanne, Switzerland
| | - Giuseppe Vassalli
- Cardiovascular Department, CHUV University Hospital, Lausanne, Switzerland.,Cardiocentro Ticino Foundation and Swiss Institute for Regenerative Medicine, Lugano, Switzerland
| |
Collapse
|
18
|
Sarkar P, Basu K, Sarkar P, Chatterjee U, Mukhopadhyay M, Choudhuri MK, Srakar DK. Correlations of aldehyde dehydrogenase-1 (ALDH1) expression with traditional prognostic parameters and different molecular subtypes of breast carcinoma. ACTA ACUST UNITED AC 2018; 91:181-187. [PMID: 29785156 PMCID: PMC5958983 DOI: 10.15386/cjmed-925] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/25/2017] [Accepted: 01/09/2018] [Indexed: 12/30/2022]
Abstract
Background and aim Breast cancer, a heterogeneous disease, is the most common cause of cancer-related death in women worldwide. Despite considerable developments in treatment modalities, a subset of patients with advanced-stage breast carcinoma display poor prognosis. Breast cancer heterogeneity and risk of recurrence could be explained with the help of cancer stem cell hypothesis. Stem cells have the capacity to self-renew and differentiate into multiple cell types. Aldehyde dehydrogenase-1 (ALDH1), an enzyme responsible for the oxidation of intracellular aldehydes, contributes to normal and tumor stem cell differentiation. Invasion and metastasis in breast cancer are found to be mediated by a subpopulation of tumor cells which exhibit stem cell-like features and express ALDH1. The aim was to document ALDH1 expression in breast carcinoma and find its association with other clinico-pathologic prognostic parameters. Study design This was a cross-sectional observational study. Methods A total of 62 patients with breast carcinoma undergoing mastectomy were included in this study. The tumors were classified into molecular subtypes by assessing immunohistochemical (IHC) expression of ER, PgR, HER2 and Ki-67 according to St. Gallen Consensus Conference 2013. ALDH1 expression was studied by IHC and correlated with clinicoathological parameters. Statistical analysis Statistical analysis was done using Graph Pad software (Prism 5 version) for Windows 7. A p-value <0.05 was considered statistically significant. Results and analysis Out of 62 tumors, 35 tumors (56.4%) showed ALDH1 positivity. ALDH1 expression was significantly associated with larger size, lymph node involvement, higher grade, higher stage and HER2+ or triple negative tumors. Conclusion This study suggests that ALDH1 expression is associated with poor prognostic parameters and aggressive tumor behavior. Larger population-based prospective trials on Indian patients are required to validate these results.
Collapse
Affiliation(s)
- Piyabi Sarkar
- Department of Pathology, Nilratan Sircar Medical College and Hospital, India
| | - Keya Basu
- Department of Pathology, Institute of Post Graduate Medical Education and Research, India
| | - Pubali Sarkar
- Department of Public Health Dentistry, Haldia Institute of Dental Sciences and Research, India
| | - Uttara Chatterjee
- Department of Pathology, Institute of Post Graduate Medical Education and Research, India
| | - Madhumita Mukhopadhyay
- Department of Pathology, Institute of Post Graduate Medical Education and Research, India
| | - Manoj Kumar Choudhuri
- Department of Pathology, Institute of Post Graduate Medical Education and Research, India
| | - Diptendra Kumar Srakar
- Department of General Surgery, Institute of Post Graduate Medical Education and Research, India
| |
Collapse
|
19
|
Liu SB, Shen ZF, Guo YJ, Cao LX, Xu Y. PML silencing inhibits cell proliferation and induces DNA damage in cultured ovarian cancer cells. Biomed Rep 2017; 7:29-35. [PMID: 28685056 PMCID: PMC5492820 DOI: 10.3892/br.2017.919] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 05/17/2017] [Indexed: 01/03/2023] Open
Abstract
The promyelocytic leukemia (PML) gene is a tumor suppressor gene. It was first identified in acute promyelocytic leukemia, in which it is fused to retinoic acid receptor α by the (15;17) chromosomal translocation. The function of the PML protein is frequently lost or aberrant in human solid tumors. In human ovarian carcinoma tissue, PML detected by immunohistochemistry was highly expressed. A PML-silencing vector, pSRG-shPml, was constructed and used to transfect human ovarian cancer cells. Cells were cultured and selected with puromycin for 10–15 days, and then the PML mRNA expression levels were detected by RT-qPCR and immunofluorescence. Proliferation and clone number of PML-depleted cells were detected using MTT assay and colony-forming assay. The protein expression associated with DNA damage and apoptosis was assessed in PML-depleted cells using western blot analysis and immunofluorescence. The results showed that PML was highly expressed in human ovarian tissue. The proliferation and colony formation of ovarian cancer cells were significantly inhibited after PML was depleted. Western blot analysis and immunofluorescence revealed that p-H2AX and cleaved caspase-3 expression significantly increased after PML silencing. PML was located in the nucleus, and it formed foci after X-ray irradiation. PML foci increased significantly with increasing irradiation doses.
Collapse
Affiliation(s)
- Sheng-Bing Liu
- College of Medicine, Jiaxing University, Jiaxing, Zhejiang 314001, P.R. China
| | - Zhong-Fei Shen
- College of Medicine, Jiaxing University, Jiaxing, Zhejiang 314001, P.R. China
| | - Yan-Jun Guo
- College of Medicine, Jiaxing University, Jiaxing, Zhejiang 314001, P.R. China
| | - Li-Xian Cao
- College of Medicine, Jiaxing University, Jiaxing, Zhejiang 314001, P.R. China
| | - Ying Xu
- College of Medicine, Jiaxing University, Jiaxing, Zhejiang 314001, P.R. China
| |
Collapse
|
20
|
Cabezas-Wallscheid N, Buettner F, Sommerkamp P, Klimmeck D, Ladel L, Thalheimer FB, Pastor-Flores D, Roma LP, Renders S, Zeisberger P, Przybylla A, Schönberger K, Scognamiglio R, Altamura S, Florian CM, Fawaz M, Vonficht D, Tesio M, Collier P, Pavlinic D, Geiger H, Schroeder T, Benes V, Dick TP, Rieger MA, Stegle O, Trumpp A. Vitamin A-Retinoic Acid Signaling Regulates Hematopoietic Stem Cell Dormancy. Cell 2017; 169:807-823.e19. [PMID: 28479188 DOI: 10.1016/j.cell.2017.04.018] [Citation(s) in RCA: 324] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/06/2017] [Accepted: 04/12/2017] [Indexed: 02/07/2023]
Abstract
Dormant hematopoietic stem cells (dHSCs) are atop the hematopoietic hierarchy. The molecular identity of dHSCs and the mechanisms regulating their maintenance or exit from dormancy remain uncertain. Here, we use single-cell RNA sequencing (RNA-seq) analysis to show that the transition from dormancy toward cell-cycle entry is a continuous developmental path associated with upregulation of biosynthetic processes rather than a stepwise progression. In addition, low Myc levels and high expression of a retinoic acid program are characteristic for dHSCs. To follow the behavior of dHSCs in situ, a Gprc5c-controlled reporter mouse was established. Treatment with all-trans retinoic acid antagonizes stress-induced activation of dHSCs by restricting protein translation and levels of reactive oxygen species (ROS) and Myc. Mice maintained on a vitamin A-free diet lose HSCs and show a disrupted re-entry into dormancy after exposure to inflammatory stress stimuli. Our results highlight the impact of dietary vitamin A on the regulation of cell-cycle-mediated stem cell plasticity. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Nina Cabezas-Wallscheid
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany.
| | - Florian Buettner
- European Molecular Biology Laboratory, European Bioinformatics Institute (EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Pia Sommerkamp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Daniel Klimmeck
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Luisa Ladel
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Frederic B Thalheimer
- LOEWE Center for Cell and Gene Therapy and Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Daniel Pastor-Flores
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Leticia P Roma
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Simon Renders
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Petra Zeisberger
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Adriana Przybylla
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Katharina Schönberger
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Roberta Scognamiglio
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Sandro Altamura
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Carolina M Florian
- Institute for Molecular Medicine, Stem Cells and Aging, Ulm University, 89081 Ulm, Germany
| | - Malak Fawaz
- LOEWE Center for Cell and Gene Therapy and Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Dominik Vonficht
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Melania Tesio
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Paul Collier
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Dinko Pavlinic
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Hartmut Geiger
- Institute for Molecular Medicine, Stem Cells and Aging, Ulm University, 89081 Ulm, Germany
| | - Timm Schroeder
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, 4058 Basel, Switzerland
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Tobias P Dick
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Michael A Rieger
- LOEWE Center for Cell and Gene Therapy and Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Oliver Stegle
- European Molecular Biology Laboratory, European Bioinformatics Institute (EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany.
| |
Collapse
|
21
|
Shang Z, Xu Y, Liang W, Liang K, Hu X, Wang L, Zou Z, Ma Y. Isolation of cancer progenitor cells from cancer stem cells in gastric cancer. Mol Med Rep 2017; 15:3637-3643. [PMID: 28393208 PMCID: PMC5436238 DOI: 10.3892/mmr.2017.6423] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 11/29/2016] [Indexed: 12/14/2022] Open
Abstract
The success of cancer treatment may depend on the complete elimination of cancer stem cells (CSCs). However, data regarding the current characterization of CSCs in different types of tumor are inconsistent, possibly due to the mixture of CSCs with cancer progenitor cells (CPCs). Therefore, it is important to exclude CPCs for the characterization of CSCs. The present study aimed to characterize gastric cancer stem cells (GCSC) by separating GCPC from gastric progenitor cells (GCSC) with flow cytometry. In total, 615 murine gastric cancer (GC) cells were divided into aldehyde dehydrogenase (ALDH)high, ALDHlow and ALDHneg groups by flow cytometry according to their ALDH activity. With decreased ALDH activity, the expression levels of stemness-associated markers, CD133+, octamer-binding transcription factory-4 and sex determining region Y-box 2 decreased. The ALDHhigh and ALDHlow cells proliferated and formed tumor spheres in ultra-low adhesion medium without serum, however, the latter formed larger tumor spheres. In mice transplanted with 5,000 cells, the rate of tumor formation in the ALDHlow group was significantly higher, compared with that in the ALDHhigh group. Of note, an increased number of mice developed tumors in the ALDHhigh group 16 weeks following the injection of 500 cells, whereas tumors appeared at 8 weeks in the ALDHlow group. The mice in the ALDHneg group exhibited less tumor formation under these conditions. These results demonstrated that ALDHhigh cells had characteristics of GCSCs with a high level of self-renewal ability, but were in a relative resting stage. The ALDHlow cells had characteristics of GCPCs with limited self-renewal ability, but were in a rapid proliferation stage. These findings suggested that the separation of GCPCs from GCSCs is important for elucidating the biology of GCSCs and identifying strategies to eliminate GCSCs in GC.
Collapse
Affiliation(s)
- Zhiyang Shang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Yingxin Xu
- Institute of General Surgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Wentao Liang
- Institute of General Surgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Kai Liang
- Institute of General Surgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Xiang Hu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Lei Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Zhenyu Zou
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Yue Ma
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
22
|
Li L, Qi X, Sun W, Abdel-Azim H, Lou S, Zhu H, Prasadarao NV, Zhou A, Shimada H, Shudo K, Kim YM, Khazal S, He Q, Warburton D, Wu L. Am80-GCSF synergizes myeloid expansion and differentiation to generate functional neutrophils that reduce neutropenia-associated infection and mortality. EMBO Mol Med 2016; 8:1340-1359. [PMID: 27737899 PMCID: PMC5090663 DOI: 10.15252/emmm.201606434] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Neutrophils generated by granulocyte colony‐stimulating factor (GCSF) are functionally immature and, consequently, cannot effectively reduce infection and infection‐related mortality in cancer chemotherapy‐induced neutropenia (CCIN). Am80, a retinoic acid (RA) agonist that enhances granulocytic differentiation by selectively activating transcription factor RA receptor alpha (RARα), alternatively promotes RA‐target gene expression. We found that in normal and malignant primary human hematopoietic specimens, Am80‐GCSF combination coordinated proliferation with differentiation to develop complement receptor‐3 (CR3)‐dependent neutrophil innate immunity, through altering transcription of RA‐target genes RARβ2,C/EBPε, CD66,CD11b, and CD18. This led to generation of functional neutrophils capable of fighting infection, whereas neutralizing neutrophil innate immunity with anti‐CD18 antibody abolished neutrophil bactericidal activities induced by Am80‐GCSF. Further, Am80‐GCSF synergy was evaluated using six different dose‐schedule‐infection mouse CCIN models. The data demonstrated that during “emergency” granulopoiesis in CCIN mice undergoing transient systemic intravenous bacterial infection, Am80 effect on differentiating granulocytic precursors synergized with GCSF‐dependent myeloid expansion, resulting in large amounts of functional neutrophils that reduced infection. Importantly, extensive survival tests covering a full cycle of mouse CCIN with perpetual systemic intravenous bacterial infection proved that without causing myeloid overexpansion, Am80‐GCSF generated sufficient numbers of functional neutrophils that significantly reduced infection‐related mortality in CCIN mice. These findings reveal a differential mechanism for generating functional neutrophils to reduce CCIN‐associated infection and mortality, providing a rationale for future therapeutic approaches.
Collapse
Affiliation(s)
- Lin Li
- Department of Pathology, Children's Hospital Los Angeles Saban Research Institute, Los Angeles, CA, USA.,Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaotian Qi
- Developmental Biology and Regenerative Medicine Program, Children's Hospital Los Angeles Saban Research Institute, Los Angeles, CA, USA
| | - Weili Sun
- Pediatric Hematology-Oncology, Blood and Marrow Transplantation, Children's Hospital Los Angeles Saban Research Institute, Los Angeles, CA, USA.,University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Hisham Abdel-Azim
- Pediatric Hematology-Oncology, Blood and Marrow Transplantation, Children's Hospital Los Angeles Saban Research Institute, Los Angeles, CA, USA.,University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Siyue Lou
- Department of Pathology, Children's Hospital Los Angeles Saban Research Institute, Los Angeles, CA, USA
| | - Hong Zhu
- Department of Pathology, Children's Hospital Los Angeles Saban Research Institute, Los Angeles, CA, USA
| | - Nemani V Prasadarao
- University of Southern California Keck School of Medicine, Los Angeles, CA, USA.,Division of Infectious Diseases, Children's Hospital Los Angeles Saban Research Institute, Los Angeles, CA, USA
| | - Alice Zhou
- Department of Pathology, Children's Hospital Los Angeles Saban Research Institute, Los Angeles, CA, USA
| | - Hiroyuki Shimada
- Department of Pathology, Children's Hospital Los Angeles Saban Research Institute, Los Angeles, CA, USA.,University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Koichi Shudo
- Japan Pharmaceutical Information Center, Shibuya-ku, Tokyo, Japan
| | - Yong-Mi Kim
- Pediatric Hematology-Oncology, Blood and Marrow Transplantation, Children's Hospital Los Angeles Saban Research Institute, Los Angeles, CA, USA.,University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Sajad Khazal
- Pediatric Hematology-Oncology, Blood and Marrow Transplantation, Children's Hospital Los Angeles Saban Research Institute, Los Angeles, CA, USA
| | - Qiaojun He
- Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, Zhejiang, China
| | - David Warburton
- Developmental Biology and Regenerative Medicine Program, Children's Hospital Los Angeles Saban Research Institute, Los Angeles, CA, USA.,University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Lingtao Wu
- Department of Pathology, Children's Hospital Los Angeles Saban Research Institute, Los Angeles, CA, USA .,University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
23
|
Wu D, Mou YP, Chen K, Cai JQ, Zhou YC, Pan Y, Xu XW, Zhou W, Gao JQ, Chen DW, Zhang RC. Aldehyde dehydrogenase 3A1 is robustly upregulated in gastric cancer stem-like cells and associated with tumorigenesis. Int J Oncol 2016; 49:611-22. [DOI: 10.3892/ijo.2016.3551] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/16/2016] [Indexed: 11/05/2022] Open
|
24
|
Kharabi Masouleh B, Chevet E, Panse J, Jost E, O'Dwyer M, Bruemmendorf TH, Samali A. Drugging the unfolded protein response in acute leukemias. J Hematol Oncol 2015; 8:87. [PMID: 26179601 PMCID: PMC4504168 DOI: 10.1186/s13045-015-0184-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/08/2015] [Indexed: 12/15/2022] Open
Abstract
The unfolded protein response (UPR), an endoplasmic reticulum (ER) stress-induced signaling cascade, is mediated by three major stress sensors IRE-1α, PERK, and ATF6α. Studies described the UPR as a critical network in selection, adaptation, and survival of cancer cells. While previous reviews focused mainly on solid cancer cells, in this review, we summarize the recent findings focusing on acute leukemias. We take into account the impact of the underlying genetic alterations of acute leukemia cells, the leukemia stem cell pool, and provide an outline on the current genetic, clinical, and therapeutic findings. Furthermore, we shed light on the important oncogene-specific regulation of individual UPR signaling branches and the therapeutic relevance of this information to answer the question if the UPR could be an attractive novel target in acute leukemias.
Collapse
Affiliation(s)
- Behzad Kharabi Masouleh
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| | - Eric Chevet
- Université Rennes 1 - ER_440 "Oncogenesis, Stress & Signaling", Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Jens Panse
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Edgar Jost
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Michael O'Dwyer
- Apoptosis Research Centre (ARC), National University of Ireland, Galway, Ireland.,Department of Medicine, National University of Ireland, Galway, Ireland
| | - Tim H Bruemmendorf
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Afshin Samali
- Apoptosis Research Centre (ARC), National University of Ireland, Galway, Ireland.,Department of Biochemistry, National University of Ireland, Galway, Ireland
| |
Collapse
|
25
|
Cao Y, Wei W, Zhang N, Yu Q, Xu WB, Yu WJ, Chen GQ, Wu YL, Yan H. Oridonin stabilizes retinoic acid receptor alpha through ROS-activated NF-κB signaling. BMC Cancer 2015; 15:248. [PMID: 25886043 PMCID: PMC4403721 DOI: 10.1186/s12885-015-1219-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 03/19/2015] [Indexed: 12/22/2022] Open
Abstract
Background Retinoic acid receptor alpha (RARα) plays an essential role in the regulation of many biological processes, such as hematopoietic cell differentiation, while abnormal RARα function contributes to the pathogenesis of certain diseases including cancers, especially acute promyelocytic leukemia (APL). Recently, oridonin, a natural diterpenoid isolated from Rabdosia rubescens, was demonstrated to regulate RARα by increasing its protein level. However, the underlying molecular mechanism for this action has not been fully elucidated. Methods In the APL cell line, NB4, the effect of oridonin on RARα protein was analyzed by western blot and real-time quantitative RT-PCR analyses. Flow cytometry was performed to detect intracellular levels of reactive oxygen species (ROS). The association between nuclear factor-kappa B (NF-κB) signaling and the effect of oridonin was assessed using specific inhibitors, shRNA gene knockdown, and immunofluorescence assays. In addition, primary leukemia cells were treated with oridonin and analyzed by western blot in this study. Results RARα possesses transcriptional activity in the presence of its ligand, all-trans retinoic acid (ATRA). Oridonin remarkably stabilized the RARα protein, which retained transcriptional activity. Oridonin also moderately increased intracellular ROS levels, while pretreatment with the ROS scavenger, N-acetyl-l-cysteine (NAC), dramatically abrogated RARα stabilization by oridonin. More intriguingly, direct exposure to low concentrations of H2O2 also increased RARα protein but not mRNA levels, suggesting a role for ROS in oridonin stabilization of RARα protein. Further investigations showed that NAC antagonized oridonin-induced activation of NF-κB signaling, while the NF-κB signaling inhibitor, Bay 11–7082, effectively blocked the oridonin increase in RARα protein levels. In line with this, over-expression of IκΒα (A32/36), a super-repressor form of IκΒα, or NF-κB-p65 knockdown inhibited oridonin or H2O2-induced RARα stability. Finally, tumor necrosis factor alpha (TNFα), a classical activator of NF-κB signaling, modulated the stability of RARα protein. Conclusions Oridonin stabilizes RARα protein by increasing cellular ROS levels, which causes activation of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yang Cao
- Department of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.
| | - Wei Wei
- Department of Hematology, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.
| | - Nan Zhang
- Department of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.
| | - Qing Yu
- Department of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.
| | - Wen-Bin Xu
- Department of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.
| | - Wen-Jun Yu
- Department of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.
| | - Guo-Qiang Chen
- Department of Pathophysiology, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.
| | - Ying-Li Wu
- Department of Pathophysiology, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.
| | - Hua Yan
- Department of Hematology, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
26
|
di Masi A, Leboffe L, De Marinis E, Pagano F, Cicconi L, Rochette-Egly C, Lo-Coco F, Ascenzi P, Nervi C. Retinoic acid receptors: from molecular mechanisms to cancer therapy. Mol Aspects Med 2015; 41:1-115. [PMID: 25543955 DOI: 10.1016/j.mam.2014.12.003] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/15/2014] [Indexed: 02/07/2023]
Abstract
Retinoic acid (RA), the major bioactive metabolite of retinol or vitamin A, induces a spectrum of pleiotropic effects in cell growth and differentiation that are relevant for embryonic development and adult physiology. The RA activity is mediated primarily by members of the retinoic acid receptor (RAR) subfamily, namely RARα, RARβ and RARγ, which belong to the nuclear receptor (NR) superfamily of transcription factors. RARs form heterodimers with members of the retinoid X receptor (RXR) subfamily and act as ligand-regulated transcription factors through binding specific RA response elements (RAREs) located in target genes promoters. RARs also have non-genomic effects and activate kinase signaling pathways, which fine-tune the transcription of the RA target genes. The disruption of RA signaling pathways is thought to underlie the etiology of a number of hematological and non-hematological malignancies, including leukemias, skin cancer, head/neck cancer, lung cancer, breast cancer, ovarian cancer, prostate cancer, renal cell carcinoma, pancreatic cancer, liver cancer, glioblastoma and neuroblastoma. Of note, RA and its derivatives (retinoids) are employed as potential chemotherapeutic or chemopreventive agents because of their differentiation, anti-proliferative, pro-apoptotic, and anti-oxidant effects. In humans, retinoids reverse premalignant epithelial lesions, induce the differentiation of myeloid normal and leukemic cells, and prevent lung, liver, and breast cancer. Here, we provide an overview of the biochemical and molecular mechanisms that regulate the RA and retinoid signaling pathways. Moreover, mechanisms through which deregulation of RA signaling pathways ultimately impact on cancer are examined. Finally, the therapeutic effects of retinoids are reported.
Collapse
Affiliation(s)
- Alessandra di Masi
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy
| | - Loris Leboffe
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy
| | - Elisabetta De Marinis
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100
| | - Francesca Pagano
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100
| | - Laura Cicconi
- Department of Biomedicine and Prevention, University of Roma "Tor Vergata", Via Montpellier 1, Roma I-00133, Italy; Laboratory of Neuro-Oncohematology, Santa Lucia Foundation, Via Ardeatina, 306, Roma I-00142, Italy
| | - Cécile Rochette-Egly
- Department of Functional Genomics and Cancer, IGBMC, CNRS UMR 7104 - Inserm U 964, University of Strasbourg, 1 rue Laurent Fries, BP10142, Illkirch Cedex F-67404, France.
| | - Francesco Lo-Coco
- Department of Biomedicine and Prevention, University of Roma "Tor Vergata", Via Montpellier 1, Roma I-00133, Italy; Laboratory of Neuro-Oncohematology, Santa Lucia Foundation, Via Ardeatina, 306, Roma I-00142, Italy.
| | - Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Via della Vasca Navale 79, Roma I-00146, Italy.
| | - Clara Nervi
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100.
| |
Collapse
|
27
|
Marchwicka A, Cebrat M, Sampath P, Snieżewski L, Marcinkowska E. Perspectives of differentiation therapies of acute myeloid leukemia: the search for the molecular basis of patients' variable responses to 1,25-dihydroxyvitamin d and vitamin d analogs. Front Oncol 2014; 4:125. [PMID: 24904835 PMCID: PMC4034350 DOI: 10.3389/fonc.2014.00125] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/12/2014] [Indexed: 12/15/2022] Open
Abstract
The concept of differentiation therapy of cancer is ~40 years old. Despite many encouraging results obtained in laboratories, both in vitro and in vivo studies, the only really successful clinical application of differentiation therapy was all-trans-retinoic acid (ATRA)-based therapy of acute promyelocytic leukemia (APL). ATRA, which induces granulocytic differentiation of APL leukemic blasts, has revolutionized the therapy of this disease by converting it from a fatal to a curable one. However, ATRA does not work for other acute myeloid leukemias (AMLs). Since 1,25-dihydroxyvitamin D3 (1,25D) is capable of inducing monocytic differentiation of leukemic cells, the idea of treating other AMLs with vitamin D analogs (VDAs) was widely accepted. Also, some types of solid cancers responded to in vitro applied VDAs, and hence it was postulated that VDAs can be used in many clinical applications. However, early clinical trials in which cancer patients were treated either with 1,25D or with VDAs, did not lead to conclusive results. In order to search for a molecular basis of such unpredictable responses of AML patients toward VDAs, we performed ex vivo experiments using patient’s blast cells. Experiments were also performed using 1,25D-responsive and 1,25D-non-responsive cell lines, to study their mechanisms of resistance toward 1,25D-induced differentiation. We found that one of the possible reasons might be due to a very low expression level of vitamin D receptor (VDR) mRNA in resistant cells, which can be increased by exposing the cells to ATRA. Our considerations concerning the molecular mechanism behind the low VDR expression and its regulation by ATRA are reported in this paper.
Collapse
Affiliation(s)
| | - Małgorzata Cebrat
- Laboratory of Molecular and Cellular Immunology, Institute of Immunology and Experimental Therapy, Polish Academy of Science , Wroclaw , Poland
| | - Preetha Sampath
- Faculty of Biotechnology, University of Wroclaw , Wroclaw , Poland
| | - Lukasz Snieżewski
- Laboratory of Molecular and Cellular Immunology, Institute of Immunology and Experimental Therapy, Polish Academy of Science , Wroclaw , Poland
| | - Ewa Marcinkowska
- Faculty of Biotechnology, University of Wroclaw , Wroclaw , Poland
| |
Collapse
|
28
|
Lou S, Liu G, Shimada H, Yang X, He Q, Wu L. The lost intrinsic fragmentation of MAT1 protein during granulopoiesis promotes the growth and metastasis of leukemic myeloblasts. Stem Cells 2014; 31:1942-53. [PMID: 23765726 DOI: 10.1002/stem.1444] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/17/2013] [Accepted: 05/02/2013] [Indexed: 01/15/2023]
Abstract
MAT1, an assembly factor and targeting subunit of both cyclin-dependent kinase-activating kinase (CAK) and general transcription factor IIH (TFIIH) kinase, regulates cell cycle and transcription. Previous studies show that expression of intact MAT1 protein is associated with expansion of human hematopoietic stem cells (HSC), whereas intrinsically programmed or retinoic acid (RA)-induced MAT1 fragmentation accompanies granulocytic differentiation of HSC or leukemic myeloblasts. Here we determined that, in humanized mouse microenvironment, MAT1 overexpression resisted intrinsic MAT1 fragmentation to sustain hematopoietic CD34+ cell expansion while preventing granulopoiesis. Conversely, we mimicked MAT1 fragmentation in vitro and in a mouse model by overexpressing a fragmented 81-aa MAT1 polypeptide (pM9) that retains the domain for assembling CAK but cannot affix CAK to TFIIH-core. Our results showed that pM9 formed ΔCAK by competing with MAT1 for CAK assembly to mimic MAT1 fragmentation-depletion of CAK. This resulting ΔCAK acted as a dominant negative to inhibit the growth and metastasis of different leukemic myeloblasts, with or without RA resistance, by concurrently suppressing CAK and TFIIH kinase activities to inhibit cell cycle and gene transcription. These findings suggest that the intrinsically programmed MAT1 expression and fragmentation regulate granulopoiesis by inversely coordinating CAK and TFIIH activities, whereas pM9 shares a mechanistic resemblance with MAT1 fragmentation in suppressing myeloid leukemogenesis.
Collapse
Affiliation(s)
- Siyue Lou
- Department of Pathology, Children's Hospital Los Angeles, The Saban Research Institute, Los Angeles, California, USA
| | | | | | | | | | | |
Collapse
|
29
|
Orfali N, McKenna SL, Cahill MR, Gudas LJ, Mongan NP. Retinoid receptor signaling and autophagy in acute promyelocytic leukemia. Exp Cell Res 2014; 324:1-12. [PMID: 24694321 DOI: 10.1016/j.yexcr.2014.03.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 03/20/2014] [Accepted: 03/22/2014] [Indexed: 12/18/2022]
Abstract
Retinoids are a family of signaling molecules derived from vitamin A with well established roles in cellular differentiation. Physiologically active retinoids mediate transcriptional effects on cells through interactions with retinoic acid (RARs) and retinoid-X (RXR) receptors. Chromosomal translocations involving the RARα gene, which lead to impaired retinoid signaling, are implicated in acute promyelocytic leukemia (APL). All-trans-retinoic acid (ATRA), alone and in combination with arsenic trioxide (ATO), restores differentiation in APL cells and promotes degradation of the abnormal oncogenic fusion protein through several proteolytic mechanisms. RARα fusion-protein elimination is emerging as critical to obtaining sustained remission and long-term cure in APL. Autophagy is a degradative cellular pathway involved in protein turnover. Both ATRA and ATO also induce autophagy in APL cells. Enhancing autophagy may therefore be of therapeutic benefit in resistant APL and could broaden the application of differentiation therapy to other cancers. Here we discuss retinoid signaling in hematopoiesis, leukemogenesis, and APL treatment. We highlight autophagy as a potential important regulator in anti-leukemic strategies.
Collapse
Affiliation(s)
- Nina Orfali
- Cork Cancer Research Center, University College Cork, Cork, Ireland; Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Sharon L McKenna
- Cork Cancer Research Center, University College Cork, Cork, Ireland
| | - Mary R Cahill
- Department of Hematology, Cork University Hospital, Cork, Ireland
| | - Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA..
| | - Nigel P Mongan
- Faculty of Medicine and Health Science, School of Veterinary Medicine and Science, University of Nottingham, LE12 5RD, United Kingdom; Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA..
| |
Collapse
|
30
|
Bavelloni A, Piazzi M, Faenza I, Raffini M, D'Angelo A, Cattini L, Cocco L, Blalock WL. Prohibitin 2 represents a novel nuclear AKT substrate during all-trans retinoic acid-induced differentiation of acute promyelocytic leukemia cells. FASEB J 2014; 28:2009-19. [PMID: 24522204 DOI: 10.1096/fj.13-244368] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The AKT/PKB kinase is essential for cell survival, proliferation, and differentiation; however, aberrant AKT activation leads to the aggressiveness and drug resistance of many human neoplasias. In the human acute promyelocytic leukemia cell line NB4, nuclear AKT activity increases during all-trans retinoic acid (ATRA)-mediated differentiation. As nuclear AKT activity is associated with differentiation, we sought to identify the nuclear substrates of AKT that were phosphorylated after ATRA treatment. A proteomics-based search for nuclear substrates of AKT in ATRA-treated NB4 cells was undertaken by using 2D-electrophoresis/mass spectrometry (MS) in combination with an anti-AKT phospho-substrate antibody. Western blot analysis, an in vitro kinase assay, and/or site-directed mutagenesis were performed to further characterize the MS findings. MS analysis revealed prohibitin (PHB)-2, a multifunctional protein involved in cell cycle progression and the suppression of oxidative stress, to be a putative nuclear substrate of AKT. Follow-up studies confirmed that AKT phosphorylates PHB2 on Ser-91 and that forced expression of the PHB2(S91A) mutant results in a rapid loss of viability and apoptotic cell death. Activation of nuclear AKT during ATRA-mediated differentiation results in the phosphorylation of several proteins, including PHB2, which may serve to coordinate nuclear-mitochondrial events during differentiation.
Collapse
Affiliation(s)
- Alberto Bavelloni
- 2IGM-CNR, Bologna, Rizzoli Orthopedic Institute, via di Barbiano, 1/10, 40136 Bologna, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
ZHENG JIE. Oncogenic chromosomal translocations and human cancer (Review). Oncol Rep 2013; 30:2011-9. [DOI: 10.3892/or.2013.2677] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 08/02/2013] [Indexed: 11/06/2022] Open
|
32
|
Coordinated regulation of the immunoproteasome subunits by PML/RARα and PU.1 in acute promyelocytic leukemia. Oncogene 2013; 33:2700-8. [PMID: 23770850 DOI: 10.1038/onc.2013.224] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 03/21/2013] [Accepted: 04/08/2013] [Indexed: 12/13/2022]
Abstract
Recognition and elimination of malignant cells by cytotoxic T lymphocytes depends on antigenic peptides generated by proteasomes. It has been established that impairment of the immunoproteasome subunits, that is, PSMB8, PSMB9 and PSMB10 (PSMBs), is critical for malignant cells to escape immune recognition. We report here the regulatory mechanism of the repression of PU.1-dependent activation of PSMBs by PML/RARα in the pathogenesis of acute promyelocytic leukemia (APL) and the unidentified function of all-trans retinoic acid (ATRA) as an immunomodulator in the treatment of APL. Chromatin immunoprecipitation and luciferase reporter assays showed that PU.1 directly bound to and coordinately transactivated the promoters of PSMBs, indicating that PSMBs were transcriptional targets of PU.1 and PU.1 regulated their basal expression. Analysis of expression profiling data from a large population of acute myeloid leukemia (AML) patients revealed that the expression levels of PSMBs were significantly lower in APL patients than in non-APL AML patients. Further evidence demonstrated that the decrease in their expression was achieved through PML/RARα-mediated repression of both PU.1-dependent transactivation and PU.1 expression. Moreover, ATRA but not arsenic trioxide induced the expression of PSMBs in APL cells, indicating that ATRA treatment might activate the antigen-processing/presentation machinery. Finally, the above observations were confirmed in primary APL samples. Collectively, our data demonstrate that PML/RARα suppresses PU.1-dependent activation of the immunosubunits, which may facilitate the escape of APL cells from immune surveillance in leukemia development, and ATRA treatment is able to reactivate their expression, which would promote more efficient T-cell-mediated recognition in the treatment.
Collapse
|
33
|
Retinoid agonist Am80-enhanced neutrophil bactericidal activity arising from granulopoiesis in vitro and in a neutropenic mouse model. Blood 2012; 121:996-1007. [PMID: 23243275 DOI: 10.1182/blood-2012-06-436022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Despite advances in the therapeutic use of recombinant granulocyte colony-stimulating factor (G-CSF) to promote granulopoiesis of human hematopoietic stem cells (HSCs), neutropenia remains one of the most serious complications of cancer chemotherapy. We discovered that retinoid agonist Am80 (tamibarotene) is more potent than G-CSF in coordinating neutrophil differentiation and immunity development. Am80-induced neutrophils (AINs) either in vitro or in neutropenic mouse model displayed strong bactericidal activities, similar to those of human peripheral blood neutrophils (PBNs) or mouse peripheral blood neutrophils (MPBNs) but markedly greater than did G-CSF–induced neutrophils (GINs). In contrast to GINs but similar to PBNs, the enhanced bacterial killing by AINs accompanied both better granule maturation and greater coexpression of CD66 antigen with the integrin β2 subunit CD18. Consistently, anti-CD18 antibody neutralized Am80-induced bactericidal activities of AINs. These studies demonstrate that Am80 is more effective than G-CSF in promoting neutrophil differentiation and bactericidal activities, probably through coordinating the functional interaction of CD66 with CD18 to enhance the development of neutrophil immunity during granulopoiesis. Our findings herein suggest a molecular rationale for developing new therapy against neutropenia using Am80 as a cost-effective treatment option.
Collapse
|
34
|
Retinoid differentiation therapy for common types of acute myeloid leukemia. LEUKEMIA RESEARCH AND TREATMENT 2012; 2012:939021. [PMID: 23213553 PMCID: PMC3504222 DOI: 10.1155/2012/939021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 03/05/2012] [Indexed: 11/25/2022]
Abstract
Many cancers arise in a tissue stem cell, and cell differentiation is impaired resulting in an accumulation of immature cells. The introduction of all-trans retinoic acid (ATRA) in 1987 to treat acute promyelocytic leukemia (APL), a rare subtype of acute myeloid leukemia (AML), pioneered a new approach to obtain remission in malignancies by restoring the terminal maturation of leukemia cells resulting in these cells having a limited lifespan. Differentiation therapy also offers the prospect of a less aggressive treatment by virtue of attenuated growth of leukemia cells coupled to limited damage to normal cells. The success of ATRA in differentiation therapy of APL is well known. However, ATRA does not work in non-APL AML. Here we examine some of the molecular pathways towards new retinoid-based differentiation therapy of non-APL AML. Prospects include modulation of the epigenetic status of ATRA-insensitive AML cells, agents that influence intracellular signalling events that are provoked by ATRA, and the use of novel synthetic retinoids.
Collapse
|
35
|
Trocoli A, Mathieu J, Priault M, Reiffers J, Souquère S, Pierron G, Besançon F, Djavaheri-Mergny M. ATRA-induced upregulation of Beclin 1 prolongs the life span of differentiated acute promyelocytic leukemia cells. Autophagy 2011; 7:1108-14. [PMID: 21691148 DOI: 10.4161/auto.7.10.16623] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Acute promyelocytic leukemia (APL) results from a blockade of granulocyte differentiation at the promyelocytic stage. All-trans retinoic acid (ATRA) induces clinical remission in APL patients by enhancing the rapid differentiation of APL cells and the clearance of PML-RARα, APL's hallmark oncoprotein. In the present study, we demonstrated that both autophagy and Beclin 1, an autophagic protein, are upregulated during the course of ATRA-induced neutrophil/granulocyte differentiation of an APL-derived cell line named NB4 cells. This induction of autophagy is associated with downregulation of Bcl-2 and inhibition of mTOR activity. Small interfering RNA-mediated knockdown of BECN1 expression enhances apoptosis triggered by ATRA in NB4 cells but does not affect the differentiation process. These results provide evidence that the upregulation of Beclin 1 by ATRA constitutes an anti-apoptotic signal for maintaining the viability of mature APL cells, but has no crucial effect on the granulocytic differentiation. This finding may help to elucidate the mechanisms involved in ATRA resistance of APL patients, and in the ATRA syndrome caused by an accumulation of mature APL cells.
Collapse
|
36
|
Tumor-specific silencing of COPZ2 gene encoding coatomer protein complex subunit ζ 2 renders tumor cells dependent on its paralogous gene COPZ1. Proc Natl Acad Sci U S A 2011; 108:12449-54. [PMID: 21746916 DOI: 10.1073/pnas.1103842108] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Anticancer drugs are effective against tumors that depend on the molecular target of the drug. Known targets of cytotoxic anticancer drugs are involved in cell proliferation; drugs acting on such targets are ineffective against nonproliferating tumor cells, survival of which leads to eventual therapy failure. Function-based genomic screening identified the coatomer protein complex ζ1 (COPZ1) gene as essential for different tumor cell types but not for normal cells. COPZ1 encodes a subunit of coatomer protein complex 1 (COPI) involved in intracellular traffic and autophagy. The knockdown of COPZ1, but not of COPZ2 encoding isoform coatomer protein complex ζ2, caused Golgi apparatus collapse, blocked autophagy, and induced apoptosis in both proliferating and nondividing tumor cells. In contrast, inhibition of normal cell growth required simultaneous knockdown of both COPZ1 and COPZ2. COPZ2 (but not COPZ1) was down-regulated in the majority of tumor cell lines and in clinical samples of different cancer types. Reexpression of COPZ2 protected tumor cells from killing by COPZ1 knockdown, indicating that tumor cell dependence on COPZ1 is the result of COPZ2 silencing. COPZ2 displays no tumor-suppressive activities, but it harbors microRNA 152, which is silenced in tumor cells concurrently with COPZ2 and acts as a tumor suppressor in vitro and in vivo. Silencing of microRNA 152 in different cancers and the ensuing down-regulation of its host gene COPZ2 offer a therapeutic opportunity for proliferation-independent selective killing of tumor cells by COPZ1-targeting agents.
Collapse
|
37
|
Gocek E, Marcinkowska E. Differentiation therapy of acute myeloid leukemia. Cancers (Basel) 2011; 3:2402-20. [PMID: 24212816 PMCID: PMC3757424 DOI: 10.3390/cancers3022402] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 04/29/2011] [Accepted: 05/05/2011] [Indexed: 12/31/2022] Open
Abstract
Acute Myeloid Leukemia (AML) is a predominant acute leukemia among adults, characterized by accumulation of malignantly transformed immature myeloid precursors. A very attractive way to treat myeloid leukemia, which is now called 'differentiation therapy', was proposed as in vitro studies have shown that a variety of agents stimulate differentiation of the cell lines isolated from leukemic patients. One of the differentiation-inducing agents, all-trans retinoic acid (ATRA), which can induce granulocytic differentiation in myeloid leukemic cell lines, has been introduced into clinics to treat patients with acute promyelocytic leukemia (APL) in which a PML-RARA fusion protein is generated by a t(15;17)(q22;q12) chromosomal translocation. Because differentiation therapy using ATRA has significantly improved prognosis for patients with APL, many efforts have been made to find alternative differentiating agents. Since 1,25-dihydroxyvitamin D3 (1,25D) is capable of inducing in vitro monocyte/macrophage differentiation of myeloid leukemic cells, clinical trials have been performed to estimate its potential to treat patients with AML or myelodysplastic syndrome (MDS). Unfortunately therapeutic concentrations of 1,25D can induce potentially fatal systemic hypercalcemia, thus limiting clinical utility of that compound. Attempts to overcome this problem have focused on the synthesis of 1,25D analogs (VDAs) which retain differentiation inducing potential, but lack its hypercalcemic effects. This review aims to discuss current problems and potential solutions in differentiation therapy of AML.
Collapse
Affiliation(s)
- Elzbieta Gocek
- Department of Biotechnology, University of Wroclaw, ul Tamka 2, Wroclaw 50-137, Poland; E-Mail: (E.G.)
| | - Ewa Marcinkowska
- Department of Biotechnology, University of Wroclaw, ul Tamka 2, Wroclaw 50-137, Poland; E-Mail: (E.G.)
| |
Collapse
|
38
|
Marcato P, Dean CA, Pan D, Araslanova R, Gillis M, Joshi M, Helyer L, Pan L, Leidal A, Gujar S, Giacomantonio CA, Lee PWK. Aldehyde dehydrogenase activity of breast cancer stem cells is primarily due to isoform ALDH1A3 and its expression is predictive of metastasis. Stem Cells 2011; 29:32-45. [PMID: 21280157 DOI: 10.1002/stem.563] [Citation(s) in RCA: 353] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cancer stem cells (CSCs) are proposed to initiate cancer and propagate metastasis. Breast CSCs identified by aldehyde dehydrogenase (ALDH) activity are highly tumorigenic in xenograft models. However, in patient breast tumor immunohistological studies, where CSCs are identified by expression of ALDH isoform ALDH1A1, CSC prevalence is not correlative with metastasis, raising some doubt as to the role of CSCs in cancer. We characterized the expression of all 19 ALDH isoforms in patient breast tumor CSCs and breast cancer cell lines by total genome microarray expression analysis, immunofluorescence protein expression studies, and quantitative polymerase chain reaction. These studies revealed that ALDH activity of patient breast tumor CSCs and cell lines correlates best with expression of another isoform, ALDH1A3, not ALDH1A1. We performed shRNA knockdown experiments of the various ALDH isoforms and found that only ALDH1A3 knockdown uniformly reduced ALDH activity of breast cancer cells. Immunohistological studies with fixed patient breast tumor samples revealed that ALDH1A3 expression in patient breast tumors correlates significantly with tumor grade, metastasis, and cancer stage. Our results, therefore, identify ALDH1A3 as a novel CSC marker with potential clinical prognostic applicability, and demonstrate a clear correlation between CSC prevalence and the development of metastatic breast cancer.
Collapse
Affiliation(s)
- Paola Marcato
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Although classical mutations in genes such as PIK3CA and PTEN occur at a relatively low frequency in haematological malignancies, activation of PI3K signalling is often detected in these tumours. In some conditions, for example acute myeloid leukaemia (AML), this is due to activating mutations of upstream regulators such as the FLT3 tyrosine kinase or RAS. Primary tumour cells taken from patients with AML, acute lymphoblastic leukaemia, chronic lymphocytic leukaemia and multiple myeloma show varying levels of sensitivity to PI3K and mTOR inhibitors. The challenge now is to conduct high quality trials with novel agents that target these pathways to establish the level of clinical response and to identify those subsets of patients that are more likely to respond.
Collapse
|
40
|
Mengeling BJ, Phan TQ, Goodson ML, Privalsky ML. Aberrant corepressor interactions implicated in PML-RAR(alpha) and PLZF-RAR(alpha) leukemogenesis reflect an altered recruitment and release of specific NCoR and SMRT splice variants. J Biol Chem 2010; 286:4236-47. [PMID: 21131350 DOI: 10.1074/jbc.m110.200964] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human acute promyelocytic leukemia is causally linked to chromosomal translocations that generate chimeric retinoic acid receptor-α proteins (x-RARα fusions). Wild-type RARα is a transcription factor that binds to the SMRT/NCoR family of corepressors in the absence of hormone but releases from corepressor and binds coactivators in response to retinoic acid. In contrast, the x-RARα fusions are impaired for corepressor release and operate in acute promyelocytic leukemia as dominant-negative inhibitors of wild-type RARα. We report that the two most common x-RARα fusions, PML-RARα and PLZF-RARα, have gained the ability to recognize specific splice variants of SMRT and NCoR that are poorly recognized by RARα. These differences in corepressor specificity between the normal and oncogenic receptors are further magnified in the presence of a retinoid X receptor heteromeric partner. The ability of retinoids to fully release corepressor from PML-RARα differs for the different splice variants, a phenomenon relevant to the requirement for supraphysiological levels of this hormone in differentiation therapy of leukemic cells. We propose that this shift in the specificity of the x-RARα fusions to a novel repertoire of corepressors contributes to the dominant-negative and oncogenic properties of these oncoproteins and helps explain previously paradoxical aspects of their behavior.
Collapse
Affiliation(s)
- Brenda J Mengeling
- Department of Microbiology, College of Biological Sciences, University of California at Davis, Davis, California 95616, USA
| | | | | | | |
Collapse
|
41
|
Wu YL, Zhou HC, Chen GQ. Molecular mechanisms of leukemia-associated protein degradation. ACTA ACUST UNITED AC 2010; 4:363-70. [PMID: 21104160 DOI: 10.1007/s11684-010-0210-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 10/12/2010] [Indexed: 11/25/2022]
Abstract
Chemical biology, using small molecules as probes to study the cellular signaling network, has developed rapidly in recent years. The interaction between chemistry and biology not only provides new insight into the understanding of cellular activities, but also generates new lead compounds for the treatment of diseases. Transcription factors and kinases such as retinoic acid receptor-alpha (RARα), acute myeloid leukemia 1 (AML1), CAAT/enhancer-binding protein α (C/EBPα), c-myc, and c-abl play important roles in the differentiation of hematopoietic stem/progenitor cells. Abnormalities in these proteins may cause the dysregulation of hematopoiesis and even the occurrence of leukemia. Ubiquitin-mediated protein degradation represents a critical mechanism in regulating the cellular levels and functions of these proteins. Thus, targeting protein degradation has been emerging as an important strategy to conquer malignant diseases. In this review, we will summarize the recent advances in the understanding of the roles of protein degradation in leukemia, with an emphasis on the mechanisms revealed by small molecules.
Collapse
MESH Headings
- CCAAT-Enhancer-Binding Protein-alpha/genetics
- CCAAT-Enhancer-Binding Protein-alpha/metabolism
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/metabolism
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/metabolism
- Leukemia, Myeloid/physiopathology
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Protein Kinases/genetics
- Protein Kinases/metabolism
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- RUNX1 Translocation Partner 1 Protein
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Retinoic Acid Receptor alpha
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Ubiquitin/genetics
- Ubiquitin/metabolism
Collapse
Affiliation(s)
- Ying-Li Wu
- Department of Pathophysiology and Chemical Biology Division of Shanghai Universities E-Institutes, Key laboratory of Cell Differentiation and Apoptosis of the Ministry of Education of China, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
| | | | | |
Collapse
|
42
|
Singh KP, Garrett RW, Casado FL, Gasiewicz TA. Aryl hydrocarbon receptor-null allele mice have hematopoietic stem/progenitor cells with abnormal characteristics and functions. Stem Cells Dev 2010; 20:769-84. [PMID: 20874460 DOI: 10.1089/scd.2010.0333] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) belongs to the basic helix-loop-helix family of DNA-binding proteins that play a role in the toxicity and carcinogenicity of certain chemicals. The most potent ligand of the AhR known is 2,3,7,8-tetracholorodibenzo-p-dioxin. We previously reported tetrachlorodibenzo-p-dioxin-induced alterations in numbers and function of hematopoietic stem cells (HSCs). To better understand a possible role of the AhR in hematopoiesis, studies were undertaken in young adult AhR null-allele (KO) mice. These mice have enlarged spleens with increased number of cells from different lineages. Altered expression of several chemokine, cytokine, and their receptor genes were observed in spleen. The KO mice have altered numbers of circulating red and white blood cells, as well as a circadian rhythm-associated 2-fold increase in the number of HSC-enriched Lin(-)Sca-1(+)c-Kit(+) (LSK) cells in bone marrow. Primary cultures of KO HSCs and in vivo bromodeoxyuridine incorporation studies demonstrated an approximate 2-fold increased proliferative ability of these cells. More LSK cells from KO mice were in G(1) and S phases of cell cycle. Competitive repopulation studies also indicated significant functional changes in KO HSCs. LSK cells showed increased expression of Cebpe and decreased expression of several hematopoiesis-associated genes. These data indicate that AhR has a physiological and functional role in hematopoiesis. The AhR appears to play a role in maintaining the normal quiescence of HSCs.
Collapse
Affiliation(s)
- Kameshwar P Singh
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
43
|
Pharicin B stabilizes retinoic acid receptor-α and presents synergistic differentiation induction with ATRA in myeloid leukemic cells. Blood 2010; 116:5289-97. [PMID: 20739655 DOI: 10.1182/blood-2010-02-267963] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All-trans retinoic acid (ATRA), a natural ligand for the retinoic acid receptors (RARs), induces clinical remission in most acute promyelocytic leukemia (APL) patients through the induction of differentiation and/or eradication of leukemia-initiating cells. Here, we identify a novel natural ent-kaurene diterpenoid derived from Isodon pharicus leaves, called pharicin B, that can rapidly stabilize RAR-α protein in various acute myeloid leukemic (AML) cell lines and primary leukemic cells from AML patients, even in the presence of ATRA, which is known to induce the loss of RAR-α protein. Pharicin B also enhances ATRA-dependent the transcriptional activity of RAR-α protein in the promyelocytic leukemia-RARα-positive APL cell line NB4 cells. We also showed that pharicin B presents a synergistic or additive differentiation-enhancing effect when used in combination with ATRA in several AML cell lines and, especially, some primary leukemic cells from APL patients. In addition, pharicin B can overcome retinoid resistance in 2 of 3 NB4-derived ATRA-resistant subclones. These findings provide a good example for chemical biology-based investigations of pathophysiological and therapeutic significances of RAR-α and PML-RAR-α proteins. The effectiveness of the ATRA/pharicin B combination warrants further investigation on their use as a therapeutic strategy for AML patients.
Collapse
|
44
|
Marstrand TT, Borup R, Willer A, Borregaard N, Sandelin A, Porse BT, Theilgaard-Mönch K. A conceptual framework for the identification of candidate drugs and drug targets in acute promyelocytic leukemia. Leukemia 2010; 24:1265-75. [PMID: 20508621 DOI: 10.1038/leu.2010.95] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chromosomal translocations of transcription factors generating fusion proteins with aberrant transcriptional activity are common in acute leukemia. In acute promyelocytic leukemia (APL), the promyelocytic leukemia-retinoic-acid receptor alpha (PML-RARA) fusion protein, which emerges as a consequence of the t(15;17) translocation, acts as a transcriptional repressor that blocks neutrophil differentiation at the promyelocyte (PM) stage. In this study, we used publicly available microarray data sets and identified signatures of genes dysregulated in APL by comparison of gene expression profiles of APL cells and normal PMs representing the same stage of differentiation. We next subjected our identified APL signatures of dysregulated genes to a series of computational analyses leading to (i) the finding that APL cells show stem cell properties with respect to gene expression and transcriptional regulation, and (ii) the identification of candidate drugs and drug targets for therapeutic interventions. Significantly, our study provides a conceptual framework that can be applied to any subtype of AML and cancer in general to uncover novel information from published microarray data sets at low cost. In a broader perspective, our study provides strong evidence that genomic strategies might be used in a clinical setting to prospectively identify candidate drugs that subsequently are validated in vitro to define the most effective drug combination for individual cancer patients on a rational basis.
Collapse
Affiliation(s)
- T T Marstrand
- Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
45
|
Mechanism of inhibition of MMTV-neu and MMTV-wnt1 induced mammary oncogenesis by RARalpha agonist AM580. Oncogene 2010; 29:3665-76. [PMID: 20453882 PMCID: PMC2891995 DOI: 10.1038/onc.2010.119] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We hypothesized that specific activation of a single retinoic acid receptor-alpha (RARalpha), without direct and concurrent activation of RARbeta and gamma, will inhibit mammary tumor oncogenesis in murine models relevant to human cancer. A total of 50 uniparous mouse mammary tumor virus (MMTV)-neu and 50 nuliparous MMTV-wnt1 transgenic mice were treated with RARalpha agonist (retinobenzoic acid, Am580) that was added to the diet for 40 (neu) and 35 weeks (wnt1), respectively. Among the shared antitumor effects was the inhibition of epithelial hyperplasia, a significant increase (P<0.05) in tumor-free survival and a reduction in tumor incidence and in the growth of established tumors. In both models, the mechanisms responsible for these effects involved inhibition of proliferation and survival pathways, and induction of apoptosis. The treatment was more effective in the MMTV-wnt1 model in which Am580 also induced differentiation, in both in vivo and three-dimensional (3D) cultures. In these tumors Am580 inhibited the wnt pathway, measured by loss of nuclear beta-catenin, suggesting partial oncogene dependence of therapy. Am580 treatment increased RARbeta and lowered the level of RARgamma, an isotype whose expression we linked with tumor proliferation. The anticancer effect of RARalpha, together with the newly discovered pro-proliferative role of RARgamma, suggests that specific activation of RARalpha and inhibition of RARgamma might be effective in breast cancer therapy.
Collapse
|
46
|
Active compounds-based discoveries about the differentiation and apoptosis of leukemic cells. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s11434-009-0628-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
47
|
Chute JP, Ross JR, McDonnell DP. Minireview: Nuclear receptors, hematopoiesis, and stem cells. Mol Endocrinol 2009; 24:1-10. [PMID: 19934345 DOI: 10.1210/me.2009-0332] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nuclear receptors (NRs) regulate a panoply of biological processes, including the function and development of cells within the hematopoietic and immune system, such as erythrocytes, monocytes, and lymphocytes. Significantly less is known regarding the function of NRs in regulating the fate of hematopoietic stem cells (HSCs), the self-renewing, pluripotent cells that give rise to the entirety of the blood and immune systems throughout the lifetime of an individual. Several recent studies suggest, either directly or indirectly, a role for members of the NR family in regulating the differentiation and self-renewal of HSCs, embryonic stem cells, and induced pluripotent stem cells. Herein, we review in detail the function of specific NRs in controlling HSC and other stem cell fate and propose a framework through which these observations can be translated into therapeutic amplification of HSCs for clinical purposes.
Collapse
Affiliation(s)
- John P Chute
- Division of Cellular Therapy, Department of Medicine, Duke University, Durham, North Carolina 27710, USA.
| | | | | |
Collapse
|
48
|
Nowak D, Stewart D, Koeffler HP. Differentiation therapy of leukemia: 3 decades of development. Blood 2009; 113:3655-65. [PMID: 19221035 PMCID: PMC2943835 DOI: 10.1182/blood-2009-01-198911] [Citation(s) in RCA: 264] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 02/09/2009] [Indexed: 12/27/2022] Open
Abstract
A characteristic feature of leukemia cells is a blockade of differentiation at a distinct stage in cellular maturation. In the 1970s and 1980s, studies demonstrating the capabilities of certain chemicals to induce differentiation of hematopoietic cell lines fostered the concept of treating leukemia by forcing malignant cells to undergo terminal differentiation instead of killing them through cytotoxicity. The first promising reports on this notion prompted a review article on this subject by us 25 years ago. In this review, we revisit this interesting field of study and report the progress achieved in the course of nearly 3 decades. The best proof of principle for differentiation therapy has been the treatment of acute promyelocytic leukemia with all-trans retinoic acid. Attempts to emulate this success with other nuclear hormone ligands such as vitamin D compounds and PPARgamma agonists or different classes of substances such as hematopoietic cytokines or compounds affecting the epigenetic landscape have not been successful on a broad scale. However, a multitude of studies demonstrating partial progress and improvements and, finally, the new powerful possibilities of forward and reverse engineering of differentiation pathways by manipulation of transcription factors support the continued enthusiasm for differentiation therapy of leukemia in the future.
Collapse
Affiliation(s)
- Daniel Nowak
- Division of Hematology and Oncology, Cedars Sinai Medical Center, University of California Los Angeles (UCLA) School of Medicine, CA 90048, USA.
| | | | | |
Collapse
|
49
|
Epigenetic therapies in haematological malignancies: searching for true targets. Eur J Cancer 2009; 45:1137-1145. [PMID: 19346125 DOI: 10.1016/j.ejca.2009.03.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 03/03/2009] [Indexed: 01/23/2023]
Abstract
Epigenetic alterations complement genetic mutations as a molecular mechanism leading to cell transformation, and maintenance of the cancer phenotype. Of note, they are reversible by pharmacological manipulation of the enzymes responsible for chromatin modification: indeed, epigenetic drugs (histone deacetylase inhibitors and DNA demethylating agents) are currently on the market, inducing proliferative arrest and death of tumor cells. These drugs, however, have been effective only in a few tumor types: the lack of consistent clinical results is mainly due to their use in a poorly targeted approach, since the epigenetic alterations present in cancer cells are mostly unknown. In a few cases (notably, leukemias expressing RAR and MLL fusion proteins), the molecular mechanisms underlying tumor-selective and tumor-specific epigenetic alterations have started to be deciphered. These studies are revealing a dazzling complexity in the mechanisms leading to alterations of the epigenome, and the need of combination therapies targeting different chromatin modifiers to reach an effective reversion of epigenetic alterations.
Collapse
|