1
|
Wang L, Xu W, Zhang S, Gundberg GC, Zheng CR, Wan Z, Mustafina K, Caliendo F, Sandt H, Kamm R, Weiss R. Sensing and guiding cell-state transitions by using genetically encoded endoribonuclease-mediated microRNA sensors. Nat Biomed Eng 2024; 8:1730-1743. [PMID: 38982158 DOI: 10.1038/s41551-024-01229-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/11/2024] [Indexed: 07/11/2024]
Abstract
Precisely sensing and guiding cell-state transitions via the conditional genetic activation of appropriate differentiation factors is challenging. Here we show that desired cell-state transitions can be guided via genetically encoded sensors, whereby endogenous cell-state-specific miRNAs regulate the translation of a constitutively transcribed endoribonuclease, which, in turn, controls the translation of a gene of interest. We used this approach to monitor several cell-state transitions, to enrich specific cell types and to automatically guide the multistep differentiation of human induced pluripotent stem cells towards a haematopoietic lineage via endothelial cells as an intermediate state. Such conditional activation of gene expression is durable and resistant to epigenetic silencing and could facilitate the monitoring of cell-state transitions in physiological and pathological conditions and eventually the 'rewiring' of cell-state transitions for applications in organoid-based disease modelling, cellular therapies and regenerative medicine.
Collapse
Affiliation(s)
- Lei Wang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Bioengineering, Northeastern University, Boston, MA, USA.
- Department of Biology, Northeastern University, Boston, MA, USA.
| | - Wenlong Xu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shun Zhang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Gregory C Gundberg
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christine R Zheng
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zhengpeng Wan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kamila Mustafina
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Fabio Caliendo
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hayden Sandt
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Roger Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ron Weiss
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
2
|
Li Z, Wu W, Li Q, Heng X, Zhang W, Zhu Y, Chen L, Chen Z, Shen M, Ma N, Xiao Q, Yan Y. BCL6B-dependent suppression of ETV2 hampers endothelial cell differentiation. Stem Cell Res Ther 2024; 15:226. [PMID: 39075623 PMCID: PMC11287929 DOI: 10.1186/s13287-024-03832-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/27/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND B-cell CLL/lymphoma 6 member B (BCL6B) operates as a sequence-specific transcriptional repressor within the nucleus, playing crucial roles in various biological functions, including tumor suppression, immune response, stem cell self-renew, and vascular angiogenesis. However, whether BCL6B is involved in endothelial cell (EC) development has remained largely unknown. ETS variant transcription factor 2 (ETV2) is well known to facilitate EC differentiation. This study aims to determine the important role of BCL6B in EC differentiation and its potential mechanisms. METHODS Doxycycline-inducible human induced pluripotent stem cell (hiPSC) lines with BCL6B overexpression or BCL6B knockdown were established and subjected to differentiate into ECs and vessel organoids (VOs). RNA sequencing analysis was performed to identify potential signal pathways regulated by BCL6B during EC differentiation from hiPSCs. Quantitative real-time PCR (qRT-PCR) was used to detect the expression of pluripotency and vascular-specific marker genes expression. EC differentiation efficiency was determined by Flow cytometry analysis. The performance of EC was evaluated by in vitro Tube formation assay. The protein expression and the vessel-like structures were assessed using immunofluorescence analysis or western blot. Luciferase reporter gene assay and chromatin immunoprecipitation (ChIP)-PCR analysis were used to determine the regulatory relationship between BCL6B and ETV2. RESULTS Functional ECs and VOs were successfully generated from hiPSCs. Notably, overexpression of BCL6B suppressed while knockdown of BCL6B improved EC differentiation from hiPSCs. Additionally, the overexpression of BCL6B attenuated the capacity of derived hiPSC-ECs to form a tubular structure. Furthermore, compared to the control VOs, BCL6B overexpression repressed the growth of VOs, whereas BCL6B knockdown had little effect on the size of VOs. RNA sequencing analysis confirmed that our differentiation protocol induced landscape changes for cell/tissue/system developmental process, particularly vascular development and tube morphogenesis, which were significantly modulated by BCL6B. Subsequent experiments confirmed the inhibitory effect of BCL6B is facilitated by the binding of BCL6B to the promoter region of ETV2, led to the suppression of ETV2's transcriptional activity. Importantly, the inhibitory effect of BCL6B overexpression on EC differentiation from hiPSCs could be rescued by ETV2 overexpression. CONCLUSIONS BCL6B inhibits EC differentiation and hinders VO development by repressing the transcriptional activity of ETV2.
Collapse
Affiliation(s)
- Zhonghao Li
- Department of Cardiology, Translational Research Center for Regenerative Medicine and 3D Printing Technologies, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Wei Wu
- Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qiushi Li
- Department of Cardiology, Translational Research Center for Regenerative Medicine and 3D Printing Technologies, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Xin Heng
- Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wei Zhang
- Department of Cardiology, Translational Research Center for Regenerative Medicine and 3D Printing Technologies, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Yinghong Zhu
- Department of Cardiology, Translational Research Center for Regenerative Medicine and 3D Printing Technologies, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Lin Chen
- Department of Cardiology, Translational Research Center for Regenerative Medicine and 3D Printing Technologies, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Ziqi Chen
- Department of Cardiology, Translational Research Center for Regenerative Medicine and 3D Printing Technologies, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China
| | - Mengcheng Shen
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, 94305, USA
| | - Ning Ma
- Guangzhou National Laboratory, Guangzhou, 510005, China.
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK.
- Key Laboratory of Cardiovascular Diseases at The Second Affiliated Hospital of Guangzhou Medical University and Guangzhou Municipal, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Yi Yan
- Department of Cardiology, Translational Research Center for Regenerative Medicine and 3D Printing Technologies, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
3
|
Grath A, Dai G. SOX17/ETV2 improves the direct reprogramming of adult fibroblasts to endothelial cells. CELL REPORTS METHODS 2024; 4:100732. [PMID: 38503291 PMCID: PMC10985233 DOI: 10.1016/j.crmeth.2024.100732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/07/2023] [Accepted: 02/23/2024] [Indexed: 03/21/2024]
Abstract
An autologous source of vascular endothelial cells (ECs) is valuable for vascular regeneration and tissue engineering without the concern of immune rejection. The transcription factor ETS variant 2 (ETV2) has been shown to directly convert patient fibroblasts into vascular EC-like cells. However, reprogramming efficiency is low and there are limitations in EC functions, such as eNOS expression. In this study, we directly reprogram adult human dermal fibroblasts into reprogrammed ECs (rECs) by overexpressing SOX17 in conjunction with ETV2. We find several advantages to rEC generation using this approach, including improved reprogramming efficiency, increased enrichment of EC genes, formation of large blood vessels carrying blood from the host, and, most importantly, expression of eNOS in vivo. From these results, we present an improved method to reprogram adult fibroblasts into functional ECs and posit ideas for the future that could potentially further improve the reprogramming process.
Collapse
Affiliation(s)
- Alexander Grath
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Guohao Dai
- Department of Bioengineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|
4
|
Steimle JD, Kim C, Rowton M, Nadadur RD, Wang Z, Stocker M, Hoffmann AD, Hanson E, Kweon J, Sinha T, Choi K, Black BL, Cunningham JM, Moskowitz IP, Ikegami K. ETV2 primes hematoendothelial gene enhancers prior to hematoendothelial fate commitment. Cell Rep 2023; 42:112665. [PMID: 37330911 PMCID: PMC10592526 DOI: 10.1016/j.celrep.2023.112665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 03/14/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023] Open
Abstract
Mechanisms underlying distinct specification, commitment, and differentiation phases of cell fate determination remain undefined due to difficulties capturing these processes. Here, we interrogate the activity of ETV2, a transcription factor necessary and sufficient for hematoendothelial differentiation, within isolated fate intermediates. We observe transcriptional upregulation of Etv2 and opening of ETV2-binding sites, indicating new ETV2 binding, in a common cardiac-hematoendothelial progenitor population. Accessible ETV2-binding sites are active at the Etv2 locus but not at other hematoendothelial regulator genes. Hematoendothelial commitment coincides with the activation of a small repertoire of previously accessible ETV2-binding sites at hematoendothelial regulators. Hematoendothelial differentiation accompanies activation of a large repertoire of new ETV2-binding sites and upregulation of hematopoietic and endothelial gene regulatory networks. This work distinguishes specification, commitment, and sublineage differentiation phases of ETV2-dependent transcription and suggests that the shift from ETV2 binding to ETV2-bound enhancer activation, not ETV2 binding to target enhancers, drives hematoendothelial fate commitment.
Collapse
Affiliation(s)
- Jeffrey D Steimle
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Chul Kim
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA; Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Megan Rowton
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Rangarajan D Nadadur
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Zhezhen Wang
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Matthew Stocker
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Andrew D Hoffmann
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Erika Hanson
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Junghun Kweon
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Tanvi Sinha
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kyunghee Choi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian L Black
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John M Cunningham
- Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Ivan P Moskowitz
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA.
| | - Kohta Ikegami
- Division of Molecular and Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA.
| |
Collapse
|
5
|
Rincon-Benavides MA, Mendonca NC, Cuellar-Gaviria TZ, Salazar-Puerta AI, Ortega-Pineda L, Blackstone BN, Deng B, McComb DW, Gallego-Perez D, Powell HM, Higuita-Castro N. Engineered Vasculogenic Extracellular Vesicles Drive Nonviral Direct Conversions of Human Dermal Fibroblasts into Induced Endothelial Cells and Improve Wound Closure. ADVANCED THERAPEUTICS 2023; 6:2200197. [PMID: 37577183 PMCID: PMC10416766 DOI: 10.1002/adtp.202200197] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Indexed: 08/15/2023]
Abstract
Vasculogenic cell therapies have emerged as a powerful tool to increase vascularization and promote tissue repair/regeneration. Current approaches to cell therapies, however, rely mostly on progenitor cells, which pose significant risks (e.g., uncontrolled differentiation, tumorigenesis, and genetic/epigenetic abnormalities). Moreover, reprogramming methodologies used to generate induced endothelial cells (iECs) from induced pluripotent stem cells rely heavily on viral vectors, which pose additional translational limitations. This work describes the development of engineered human extracellular vesicles (EVs) capable of driving reprogramming-based vasculogenic therapies without the need for progenitor cells and/or viral vectors. The EVs were derived from primary human dermal fibroblasts (HDFs), and were engineered to pack transcription factor genes/transcripts of ETV2, FLI1, and FOXC2 (EFF). Our results indicate that in addition of EFF, the engineered EVs were also loaded with transcripts of angiogenic factors (e.g., VEGF-A, VEGF-KDR, FGF2). In vitro and in vivo studies indicate that such EVs effectively transfected HDFs and drove direct conversions towards iECs within 7-14 days. Finally, wound healing studies in mice indicate that engineered EVs lead to improved wound closure and vascularity. Altogether, our results show the potential of engineered human vasculogenic EVs to drive direct reprogramming processes of somatic cells towards iECs, and facilitate tissue repair/regeneration.
Collapse
Affiliation(s)
- Maria A. Rincon-Benavides
- Biophysics Graduate Program, The Ohio State University, Columbus, OH
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH
| | | | | | | | | | - Britani N. Blackstone
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH
| | - Binbin Deng
- Center for Electron Microscopy and Analysis (CEMAS), The Ohio State University, Columbus, OH
| | - David W McComb
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH
- Center for Electron Microscopy and Analysis (CEMAS), The Ohio State University, Columbus, OH
| | - Daniel Gallego-Perez
- Biophysics Graduate Program, The Ohio State University, Columbus, OH
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH
- Department of Surgery, The Ohio State University, Columbus, OH
| | - Heather M. Powell
- Biophysics Graduate Program, The Ohio State University, Columbus, OH
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH
| | - Natalia Higuita-Castro
- Biophysics Graduate Program, The Ohio State University, Columbus, OH
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH
- Department of Surgery, The Ohio State University, Columbus, OH
| |
Collapse
|
6
|
Das S, Gupta V, Bjorge J, Shi X, Gong W, Garry MG, Garry DJ. ETV2 and VEZF1 interaction and regulation of the hematoendothelial lineage during embryogenesis. Front Cell Dev Biol 2023; 11:1109648. [PMID: 36923254 PMCID: PMC10009235 DOI: 10.3389/fcell.2023.1109648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/13/2023] [Indexed: 03/02/2023] Open
Abstract
Ets variant 2 (Etv2), a member of the Ets factor family, has an essential role in the formation of endothelial and hematopoietic cell lineages during embryonic development. The functional role of ETS transcription factors is, in part, dependent on the interacting proteins. There are relatively few studies exploring the coordinated interplay between ETV2 and its interacting proteins that regulate mesodermal lineage determination. In order to identify novel ETV2 interacting partners, a yeast two-hybrid analysis was performed and the C2H2 zinc finger transcription factor VEZF1 (vascular endothelial zinc finger 1) was identified as a binding factor, which was specifically expressed within the endothelium during vascular development. To confirm this interaction, co-immunoprecipitation and GST pull down assays demonstrated the direct interaction between ETV2 and VEZF1. During embryoid body differentiation, Etv2 achieved its peak expression at day 3.0 followed by rapid downregulation, on the other hand Vezf1 expression increased through day 6 of EB differentiation. We have previously shown that ETV2 potently activated Flt1 gene transcription. Using a Flt1 promoter-luciferase reporter assay, we demonstrated that VEZF1 co-activated the Flt1 promoter. Electrophoretic mobility shift assay and Chromatin immunoprecipitation established VEZF1 binding to the Flt1 promoter. Vezf1 knockout embryonic stem cells had downregulation of hematoendothelial marker genes when undergoing embryoid body mediated mesodermal differentiation whereas overexpression of VEZF1 induced the expression of hematoendothelial genes during differentiation. These current studies provide insight into the co-regulation of the hemato-endothelial lineage development via a co-operative interaction between ETV2 and VEZF1.
Collapse
Affiliation(s)
- Satyabrata Das
- Department of Medicine, Cardiovascular Division, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
| | - Vinayak Gupta
- Department of Medicine, Cardiovascular Division, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
| | - Johannes Bjorge
- Department of Medicine, Cardiovascular Division, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
| | - Xiaozhong Shi
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, JX, China
| | - Wuming Gong
- Department of Medicine, Cardiovascular Division, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
| | - Mary G. Garry
- Department of Medicine, Cardiovascular Division, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
- Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN, United States
| | - Daniel J. Garry
- Department of Medicine, Cardiovascular Division, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
- Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
7
|
Sierra-Pagan JE, Garry DJ. The regulatory role of pioneer factors during cardiovascular lineage specification – A mini review. Front Cardiovasc Med 2022; 9:972591. [PMID: 36082116 PMCID: PMC9445115 DOI: 10.3389/fcvm.2022.972591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/03/2022] [Indexed: 11/15/2022] Open
Abstract
Cardiovascular disease (CVD) remains the number one cause of death worldwide. Ischemic heart disease contributes to heart failure and has considerable morbidity and mortality. Therefore, alternative therapeutic strategies are urgently needed. One class of epigenetic regulators known as pioneer factors has emerged as an important tool for the development of regenerative therapies for the treatment of CVD. Pioneer factors bind closed chromatin and remodel it to drive lineage specification. Here, we review pioneer factors within the cardiovascular lineage, particularly during development and reprogramming and highlight the implications this field of research has for the future development of cardiac specific regenerative therapies.
Collapse
Affiliation(s)
- Javier E. Sierra-Pagan
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Daniel J. Garry
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
- Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN, United States
- *Correspondence: Daniel J. Garry
| |
Collapse
|
8
|
Differential Etv2 threshold requirement for endothelial and erythropoietic development. Cell Rep 2022; 39:110881. [PMID: 35649376 PMCID: PMC9203129 DOI: 10.1016/j.celrep.2022.110881] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 02/23/2022] [Accepted: 05/06/2022] [Indexed: 11/21/2022] Open
Abstract
Endothelial and erythropoietic lineages arise from a common developmental progenitor. Etv2 is a master transcriptional regulator required for the development of both lineages. However, the mechanisms through which Etv2 initiates the gene-regulatory networks (GRNs) for endothelial and erythropoietic specification and how the two GRNs diverge downstream of Etv2 remain incompletely understood. Here, by analyzing a hypomorphic Etv2 mutant, we demonstrate different threshold requirements for initiation of the downstream GRNs for endothelial and erythropoietic development. We show that Etv2 functions directly in a coherent feedforward transcriptional network for vascular endothelial development, and a low level of Etv2 expression is sufficient to induce and sustain the endothelial GRN. In contrast, Etv2 induces the erythropoietic GRN indirectly via activation of Tal1, which requires a significantly higher threshold of Etv2 to initiate and sustain erythropoietic development. These results provide important mechanistic insight into the divergence of the endothelial and erythropoietic lineages.
Collapse
|
9
|
Li J, Zhu Y, Li N, Wu T, Zheng X, Heng BC, Zou D, Xu J. Upregulation of ETV2 Expression Promotes Endothelial Differentiation of Human Dental Pulp Stem Cells. Cell Transplant 2021; 30:963689720978739. [PMID: 33522307 PMCID: PMC7863555 DOI: 10.1177/0963689720978739] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/30/2020] [Accepted: 12/12/2020] [Indexed: 11/26/2022] Open
Abstract
The lack of vasculogenesis often hampers the survivability and integration of newly engineered tissue grafts within the host. Autologous endothelial cells (ECs) are an ideal cell source for neovascularization, but they are limited by their scarcity, lack of proliferative capacity, and donor site morbidity upon isolation. The objective of this study was to determine whether differentiation of human dental pulp stem cells (DPSCs) into the endothelial lineage can be enhanced by recombinant ETV2 overexpression. DPSCs were extracted from fresh dental pulp tissues. ETV2 overexpression in DPSCs was achieved by lentiviral infection and cellular morphological changes were evaluated. The mRNA and protein expression levels of endothelial-specific markers were assessed through quantitative real-time polymerase chain reaction, western blot, immunofluorescence staining, and flow cytometry. The tube formation assay and Matrigel plug assay were also performed to evaluate the angiogenic potential of the ETV2-transduced cells in vitro and in vivo, respectively. Additionally, proteomic analysis was performed to analyze global changes in protein expression following ETV2 overexpression. After lentiviral infection, ETV2-overexpressing DPSCs showed endothelial-like morphology. Compared with control DPSCs, significantly higher mRNA and protein expression levels of endothelial-specific genes, including CD31, VE-Cadherin, VEGFR1, and VEGFR2, were detected in ETV2-overexpressing DPSCs. Moreover, ETV2 overexpression enhanced capillary-like tube formation on Matrigel in vitro, as well as neovascularization in vivo. In addition, comparative proteomic profiling showed that ETV2 overexpression upregulated the expression of vascular endothelial growth factor (VEGF) receptors, which was indicative of increased VEGF signaling. Taken together, our results indicate that ETV2 overexpression significantly enhanced the endothelial differentiation of DPSCs. Thus, this study shows that DPSCs can be a promising candidate cell source for tissue engineering applications.
Collapse
Affiliation(s)
- Jing Li
- Department of Orthodontics, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, P. R. China
| | - Youming Zhu
- Department of Orthodontics, Stomatologic Hospital & College, Anhui Medical University, Key Lab of Oral Diseases Research of Anhui Province, Hefei, P. R. China
| | - Na Li
- Department of Orthodontics, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, P. R. China
| | - Tao Wu
- Department of Orthodontics, Stomatologic Hospital & College, Anhui Medical University, Key Lab of Oral Diseases Research of Anhui Province, Hefei, P. R. China
| | - Xianyu Zheng
- Department of Orthodontics, Stomatologic Hospital & College, Anhui Medical University, Key Lab of Oral Diseases Research of Anhui Province, Hefei, P. R. China
| | - Boon chin Heng
- Central Laboratories, School of Stomatology, Peking University, Beijing, P. R. China
| | - Duohong Zou
- Department of Oral Surgery, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Jianguang Xu
- Department of Orthodontics, Stomatologic Hospital & College, Anhui Medical University, Key Lab of Oral Diseases Research of Anhui Province, Hefei, P. R. China
| |
Collapse
|
10
|
Lange L, Hoffmann D, Schwarzer A, Ha TC, Philipp F, Lenz D, Morgan M, Schambach A. Inducible Forward Programming of Human Pluripotent Stem Cells to Hemato-endothelial Progenitor Cells with Hematopoietic Progenitor Potential. Stem Cell Reports 2019; 14:122-137. [PMID: 31839543 PMCID: PMC6962646 DOI: 10.1016/j.stemcr.2019.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 02/08/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) offer a promising platform to model early embryonic developmental processes, to create disease models that can be evaluated by drug screens as well as proof-of-concept experiments for regenerative medicine. However, generation of iPSC-derived hemato-endothelial and hematopoietic progenitor cells for these applications is challenging due to variable and limited cell numbers, which necessitates enormous up-scaling or development of demanding protocols. Here, we unravel the function of key transcriptional regulators SCL, LMO2, GATA2, and ETV2 (SLGE) on early hemato-endothelial specification and establish a fully inducible and stepwise hemato-endothelial forward programming system based on SLGE-regulated overexpression. Regulated induction of SLGE in stable SLGE-iPSC lines drives very efficient generation of large numbers of hemato-endothelial progenitor cells (CD144+/CD73–), which produce hematopoietic progenitor cells (CD45+/CD34+/CD38–/CD45RA−/CD90+/CD49f+) through a gradual process of endothelial-to-hematopoietic transition (EHT). Inducible and robust hemato-endothelial forward programming of human iPSCs Efficient, scalable generation of hemato-endothelial progenitor cells Production of HPCs with HSC-like immunophenotype and multi-lineage potential Whole transcriptome screen for potential regulators of definitive hematopoiesis
Collapse
Affiliation(s)
- Lucas Lange
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany; REBIRTH Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Dirk Hoffmann
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany; REBIRTH Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Adrian Schwarzer
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany; REBIRTH Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Department of Hematology, Oncology, Hemostasis and Stem Cell Transplantation, Hannover Medical School, Hannover 30625, Germany
| | - Teng-Cheong Ha
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany; REBIRTH Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Friederike Philipp
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany; REBIRTH Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine, 30625 Hannover, Germany
| | - Daniela Lenz
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany; REBIRTH Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Michael Morgan
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany; REBIRTH Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany; REBIRTH Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, 02115 Boston, MA, USA.
| |
Collapse
|
11
|
Tracing the first hematopoietic stem cell generation in human embryo by single-cell RNA sequencing. Cell Res 2019; 29:881-894. [PMID: 31501518 PMCID: PMC6888893 DOI: 10.1038/s41422-019-0228-6] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/13/2019] [Indexed: 12/20/2022] Open
Abstract
Tracing the emergence of the first hematopoietic stem cells (HSCs) in human embryos, particularly the scarce and transient precursors thereof, is so far challenging, largely due to the technical limitations and the material rarity. Here, using single-cell RNA sequencing, we constructed the first genome-scale gene expression landscape covering the entire course of endothelial-to-HSC transition during human embryogenesis. The transcriptomically defined HSC-primed hemogenic endothelial cells (HECs) were captured at Carnegie stage (CS) 12–14 in an unbiased way, showing an unambiguous feature of arterial endothelial cells (ECs) with the up-regulation of RUNX1, MYB and ANGPT1. Importantly, subcategorizing CD34+CD45− ECs into a CD44+ population strikingly enriched HECs by over 10-fold. We further mapped the developmental path from arterial ECs via HSC-primed HECs to hematopoietic stem progenitor cells, and revealed a distinct expression pattern of genes that were transiently over-represented upon the hemogenic fate choice of arterial ECs, including EMCN, PROCR and RUNX1T1. We also uncovered another temporally and molecularly distinct intra-embryonic HEC population, which was detected mainly at earlier CS 10 and lacked the arterial feature. Finally, we revealed the cellular components of the putative aortic niche and potential cellular interactions acting on the HSC-primed HECs. The cellular and molecular programs that underlie the generation of the first HSCs from HECs in human embryos, together with the ability to distinguish the HSC-primed HECs from others, will shed light on the strategies for the production of clinically useful HSCs from pluripotent stem cells.
Collapse
|
12
|
Majesky MW. Vascular Development. Arterioscler Thromb Vasc Biol 2019; 38:e17-e24. [PMID: 29467221 DOI: 10.1161/atvbaha.118.310223] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 01/22/2018] [Indexed: 12/13/2022]
Abstract
The vascular system forms as a branching network of endothelial cells that acquire identity as arterial, venous, hemogenic, or lymphatic. Endothelial specification depends on gene targets transcribed by Ets domain-containing factors, including Ets variant gene 2 (Etv2), together with the activity of chromatin-remodeling complexes containing Brahma-related gene-1 (Brg1). Once specified and assembled into vessels, mechanisms regulating lumen diameter and axial growth ensure that the structure of the branching vascular network matches the need for perfusion of target tissues. In addition, blood vessels provide important morphogenic cues that guide or direct the development of organs forming around them. As the embryo grows and lumen diameters increase, smooth muscle cells wrap around the nascent vessel walls to provide mechanical strength and vasomotor control of the circulation. Increasing mechanical stretch and wall strain promote smooth muscle cell differentiation via coupling of actin cytoskeletal remodeling to myocardin and serum response factor-dependent transcription. Remodeling of artery walls by developmental signaling pathways reappears in postnatal blood vessels during physiological and pathological adaptation to vessel wall injury, inflammation, or chronic hypoxia. Recent reports providing insights into major steps in vascular development are reviewed here with a particular emphasis on studies that have been recently published in Arteriosclerosis, Thrombosis, and Vascular Biology.
Collapse
Affiliation(s)
- Mark W Majesky
- From the Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, WA; and Departments of Pediatrics and Pathology, University of Washington, Seattle.
| |
Collapse
|
13
|
Xu JG, Gong T, Wang YY, Zou T, Heng BC, Yang YQ, Zhang CF. Inhibition of TGF-β Signaling in SHED Enhances Endothelial Differentiation. J Dent Res 2017; 97:218-225. [PMID: 28972822 DOI: 10.1177/0022034517733741] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Low efficiency of deriving endothelial cells (ECs) from adult stem cells hampers their utilization in tissue engineering studies. The purpose of this study was to investigate whether suppression of transforming growth factor beta (TGF-β) signaling could enhance the differentiation efficiency of dental pulp-derived stem cells into ECs. We initially used vascular endothelial growth factor A (VEGF-A) to stimulate 2 dental pulp-derived stem cells (dental pulp stem cells and stem cells from human exfoliated deciduous teeth [SHED]) and compared their differentiation capacity into ECs. We further evaluated whether the vascular endothelial growth factor receptor I (VEGF-RI)-specific ligand placental growth factor-1 (PlGF-1) could mediate endothelial differentiation. Finally, we investigated whether the TGF-β signaling inhibitor SB-431542 could enhance the inductive effect of VEGF-A on endothelial differentiation, as well as the underlying mechanisms involved. ECs differentiated from dental pulp-derived stem cells exhibited the typical phenotypes of primary ECs, with SHED possessing a higher endothelial differentiation potential than dental pulp stem cells. VEGFR1-specific ligand-PLGF exerted a negligible effect on SHED-ECs differentiation. Compared with VEGF-A alone, the combination of VEGF-A and SB-431542 significantly enhanced the endothelial differentiation of SHED. The presence of SB-431542 inhibited the phosphorylation of Suppressor of Mothers Against Decapentaplegic 2/3 (SMAD2/3), allowing for VEGF-A-dependent phosphorylation and upregulation of VEGFR2. Our results indicate that the combination of VEGF-A and SB-431542 could enhance the differentiation of dental pulp-derived stem cells into endothelial cells, and this process is mediated through enhancement of VEGF-A-VEGFR2 signaling and concomitant inhibition of TGF-β-SMAD2/3 signaling.
Collapse
Affiliation(s)
- J G Xu
- 1 Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - T Gong
- 1 Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.,2 HKU Shenzhen Institute of Research and Innovation, Hong Kong, China
| | - Y Y Wang
- 3 Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, China
| | - T Zou
- 1 Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.,2 HKU Shenzhen Institute of Research and Innovation, Hong Kong, China
| | - B C Heng
- 1 Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.,2 HKU Shenzhen Institute of Research and Innovation, Hong Kong, China
| | - Y Q Yang
- 4 Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - C F Zhang
- 1 Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.,2 HKU Shenzhen Institute of Research and Innovation, Hong Kong, China
| |
Collapse
|
14
|
Liu Y. Earlier and broader roles of Mesp1 in cardiovascular development. Cell Mol Life Sci 2017; 74:1969-1983. [PMID: 28050627 PMCID: PMC11107530 DOI: 10.1007/s00018-016-2448-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/13/2016] [Accepted: 12/20/2016] [Indexed: 12/12/2022]
Abstract
Mesoderm posterior 1 is one of earliest markers of the nascent mesoderm. Its best-known function is driving the onset of the cardiovascular system. In the past decade, new evidence supports that Mesp1 acts earlier with greater breadth in cell fate decisions, and through cell-autonomous and cell non-autonomous mechanisms. This review summarizes these new aspects, with an emphasis on the upstream and downstream regulation around Mesp1 and how they may guide cell fate reprogramming.
Collapse
Affiliation(s)
- Yu Liu
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
15
|
Ross JA, George BJ, Bruno M, Ge Y. Chemical-agnostic hazard prediction: statistical inference of in vitro toxicity pathways from proteomics responses to chemical mixtures. ACTA ACUST UNITED AC 2017; 2:39-44. [PMID: 30345409 DOI: 10.1016/j.comtox.2017.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Toxicity pathways have been defined as normal cellular pathways that, when sufficiently perturbed as a consequence of chemical exposure, lead to an adverse outcome. If an exposure alters one or more normal biological pathways to an extent that leads to an adverse toxicity outcome, a significant correlation must exist between the exposure, the extent of pathway alteration, and the degree of adverse outcome. Biological pathways are regulated at multiple levels, including transcriptional, post-transcriptional, post-translational, and targeted degradation, each of which can affect the levels and extents of modification of proteins involved in the pathways. Significant alterations of toxicity pathways resulting from changes in regulation at any of these levels therefore are likely to be detectable as alterations in the proteome. We hypothesize that significant correlations between exposures, adverse outcomes, and changes in the proteome have the potential to identify putative toxicity pathways, facilitating selection of candidate targets for high throughput screening, even in the absence of a priori knowledge of either the specific pathways involved or the specific agents inducing the pathway alterations. We explored this hypothesis in vitro in BEAS-2B human airway epithelial cells exposed to different concentrations of Ni2+, Cd2+, and Cr6+, alone and in defined mixtures. Levels and phosphorylation status of a variety of signaling pathway proteins and cytokines were measured after 48 hours exposure, together with cytotoxicity. Least Absolute Shrinkage and Selection Operator (LASSO) multiple regression was used to identify a subset of these proteins that constitute a putative toxicity pathway capable of predicting cytotoxicity. The putative toxicity pathway for cytotoxicity of these metals and metal mixtures identified by LASSO is composed of phospho-RPS6KB1, phospho-p53, cleaved CASP3, phospho-MAPK8, IL-10, and Hif-1α. As this approach does not depend on knowledge of the chemical composition of the mixtures, it may be generally useful for identifying sets of proteins predictive of adverse effects for a variety of mixtures, including complex environmental mixtures of unknown composition.
Collapse
Affiliation(s)
- Jeffrey A Ross
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711
| | - Barbara Jane George
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711
| | - Maribel Bruno
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711
| | - Yue Ge
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711
| |
Collapse
|
16
|
Abstract
Vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) are uniquely required to balance the formation of new blood vessels with the maintenance and remodelling of existing ones, during development and in adult tissues. Recent advances have greatly expanded our understanding of the tight and multi-level regulation of VEGFR2 signalling, which is the primary focus of this Review. Important insights have been gained into the regulatory roles of VEGFR-interacting proteins (such as neuropilins, proteoglycans, integrins and protein tyrosine phosphatases); the dynamics of VEGFR2 endocytosis, trafficking and signalling; and the crosstalk between VEGF-induced signalling and other endothelial signalling cascades. A clear understanding of this multifaceted signalling web is key to successful therapeutic suppression or stimulation of vascular growth.
Collapse
|
17
|
Toya SP, Wary KK, Mittal M, Li F, Toth PT, Park C, Rehman J, Malik AB. Integrin α6β1 Expressed in ESCs Instructs the Differentiation to Endothelial Cells. Stem Cells 2016; 33:1719-29. [PMID: 25693840 DOI: 10.1002/stem.1974] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/25/2014] [Accepted: 01/14/2015] [Indexed: 12/19/2022]
Abstract
Adhesion of embryonic stem cells (ESCs) to the extracellular matrix may influence differentiation potential and cell fate decisions. Here, we investigated the inductive role of binding of integrin α6β1 expressed in mouse (m)ESCs to laminin-1 (LN1) in mediating the differentiation of ESCs to endothelial cells (ECs). We observed that α6β1 binding to LN1 was required for differentiation to ECs. α6β1 functioned by recruiting the adaptor tetraspanin protein CD151, which activated FAK and Akt signaling and mediated the EC lineage-specifying transcription factor Er71. In contrast, association of the ESC-expressed α3β1, another highly expressed LN1 binding integrin, with CD151, prevented α6β1-mediated differentiation. CD151 thus functioned as a bifurcation router to direct ESCs toward ECs when α6β1 associated with CD151, or prevented transition to ECs when α3β1 associated with CD151. These observations were recapitulated in mice in which α6 integrin or CD151 knockdown reduced the expression of Er71-regulated angiogenesis genes and development of blood vessels. Thus, interaction of α6β1 in ESCs with LN1 activates α6β1/CD151 signaling which programs ESCs toward the EC lineage fate.
Collapse
Affiliation(s)
- Sophie P Toya
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, USA.,Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois, USA.,The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Kishore K Wary
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, USA.,The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Manish Mittal
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, USA.,The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Fei Li
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, USA.,The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Peter T Toth
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Changwon Park
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, USA.,The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Jalees Rehman
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, USA.,Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois, USA.,The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Asrar B Malik
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, USA.,The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois, USA
| |
Collapse
|
18
|
Bowers S, Norden P, Davis G. Molecular Signaling Pathways Controlling Vascular Tube Morphogenesis and Pericyte-Induced Tube Maturation in 3D Extracellular Matrices. ADVANCES IN PHARMACOLOGY 2016; 77:241-80. [DOI: 10.1016/bs.apha.2016.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
LSD1/KDM1A promotes hematopoietic commitment of hemangioblasts through downregulation of Etv2. Proc Natl Acad Sci U S A 2015; 112:13922-7. [PMID: 26512114 DOI: 10.1073/pnas.1517326112] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hemangioblast is a progenitor cell with the capacity to give rise to both hematopoietic and endothelial progenitors. Currently, the regulatory mechanisms underlying hemangioblast formation are being elucidated, whereas those controllers for the selection of hematopoietic or endothelial fates still remain a mystery. To answer these questions, we screened for zebrafish mutants that have defects in the hemangioblast expression of Gata1, which is never expressed in endothelial progenitors. One of the isolated mutants, it627, showed not only down-regulation of hematopoietic genes but also up-regulation of endothelial genes. We identified the gene responsible for the it627 mutant as the zebrafish homolog of Lys-specific demethylase 1 (LSD1/KDM1A). Surprisingly, the hematopoietic defects in lsd1(it627) embryos were rescued by the gene knockdown of the Ets variant 2 gene (etv2), an essential regulator for vasculogenesis. Our results suggest that the LSD1-dependent shutdown of Etv2 gene expression may be a significant event required for hemangioblasts to initiate hematopoietic differentiation.
Collapse
|
20
|
Koyano-Nakagawa N, Shi X, Rasmussen TL, Das S, Walter CA, Garry DJ. Feedback Mechanisms Regulate Ets Variant 2 (Etv2) Gene Expression and Hematoendothelial Lineages. J Biol Chem 2015; 290:28107-28119. [PMID: 26396195 DOI: 10.1074/jbc.m115.662197] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Indexed: 12/12/2022] Open
Abstract
Etv2 is an essential transcriptional regulator of hematoendothelial lineages during embryogenesis. Although Etv2 downstream targets have been identified, little is known regarding the upstream transcriptional regulation of Etv2 gene expression. In this study, we established a novel methodology that utilizes the differentiating ES cell and embryoid body system to define the modules and enhancers embedded within the Etv2 promoter. Using this system, we defined an autoactivating role for Etv2 that is mediated by two adjacent Ets motifs in the proximal promoter. In addition, we defined the role of VEGF/Flk1-Calcineurin-NFAT signaling cascade in the transcriptional regulation of Etv2. Furthermore, we defined an Etv2-Flt1-Flk1 cascade that serves as a negative feedback mechanism to regulate Etv2 gene expression. To complement and extend these studies, we demonstrated that the Flt1 null embryonic phenotype was partially rescued in the Etv2 conditional knockout background. In summary, these studies define upstream and downstream networks that serve as a transcriptional rheostat to regulate Etv2 gene expression.
Collapse
Affiliation(s)
- Naoko Koyano-Nakagawa
- Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Xiaozhong Shi
- Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Tara L Rasmussen
- Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Satyabrata Das
- Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Camille A Walter
- Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Daniel J Garry
- Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, Minnesota 55455.
| |
Collapse
|
21
|
Abstract
Blood and lymphatic vessels deliver oxygen and nutrients, remove waste and CO2, and regulate interstitial pressure in tissues and organs. These vessels begin life early in embryogenesis using transcription factors and signaling pathways that regulate differentiation, morphogenesis, and proliferation. Here we describe how these vessels develop in the mouse embryo, and the signals that are important to their development.
Collapse
Affiliation(s)
- Victoria L Bautch
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Kathleen M Caron
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 Department of Cell and Molecular Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
22
|
Shi X, Zirbes KM, Rasmussen TL, Ferdous A, Garry MG, Koyano-Nakagawa N, Garry DJ. The transcription factor Mesp1 interacts with cAMP-responsive element binding protein 1 (Creb1) and coactivates Ets variant 2 (Etv2) gene expression. J Biol Chem 2015; 290:9614-25. [PMID: 25694434 DOI: 10.1074/jbc.m114.614628] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Indexed: 12/31/2022] Open
Abstract
Mesoderm posterior 1 (Mesp1) is well recognized for its role in cardiac development, although it is expressed broadly in mesodermal lineages. We have previously demonstrated important roles for Mesp1 and Ets variant 2 (Etv2) during lineage specification, but their relationship has not been defined. This study reveals that Mesp1 binds to the proximal promoter and transactivates Etv2 gene expression via the CRE motif. We also demonstrate the protein-protein interaction between Mesp1 and cAMP-responsive element binding protein 1 (Creb1) in vitro and in vivo. Utilizing transgenesis, lineage tracing, flow cytometry, and immunostaining technologies, we define the lineage relationship between Mesp1- and Etv2-expressing cell populations. We observe that the majority of Etv2-EYFP(+) cells are derived from Mesp1-Cre(+) cells in both the embryo and yolk sac. Furthermore, we observe that the conditional deletion of Etv2, using a Mesp1-Cre transgenic strategy, results in vascular and hematopoietic defects similar to those observed in the global deletion of Etv2 and that it has embryonic lethality by embryonic day 9.5. In summary, our study supports the hypothesis that Mesp1 is a direct upstream transactivator of Etv2 during embryogenesis and that Creb1 is an important cofactor of Mesp1 in the transcriptional regulation of Etv2 gene expression.
Collapse
Affiliation(s)
- Xiaozhong Shi
- From the Lillehei Heart Institute, Medical School, University of Minnesota, Minneapolis, Minnesota 55455 and
| | - Katie M Zirbes
- From the Lillehei Heart Institute, Medical School, University of Minnesota, Minneapolis, Minnesota 55455 and
| | - Tara L Rasmussen
- From the Lillehei Heart Institute, Medical School, University of Minnesota, Minneapolis, Minnesota 55455 and
| | - Anwarul Ferdous
- the Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Mary G Garry
- From the Lillehei Heart Institute, Medical School, University of Minnesota, Minneapolis, Minnesota 55455 and
| | - Naoko Koyano-Nakagawa
- From the Lillehei Heart Institute, Medical School, University of Minnesota, Minneapolis, Minnesota 55455 and
| | - Daniel J Garry
- From the Lillehei Heart Institute, Medical School, University of Minnesota, Minneapolis, Minnesota 55455 and
| |
Collapse
|
23
|
ETS transcription factor ETV2 directly converts human fibroblasts into functional endothelial cells. Proc Natl Acad Sci U S A 2014; 112:160-5. [PMID: 25540418 DOI: 10.1073/pnas.1413234112] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Transplantation of endothelial cells (ECs) is a promising therapeutic approach for ischemic disorders. In addition, the generation of ECs has become increasingly important for providing vascular plexus to regenerated organs, such as the liver. Although many attempts have been made to generate ECs from pluripotent stem cells and nonvascular cells, the minimum number of transcription factors that specialize in directly inducing vascular ECs remains undefined. Here, by screening 18 transcription factors that are important for both endothelial and hematopoietic development, we demonstrate that ets variant 2 (ETV2) alone directly converts primary human adult skin fibroblasts into functional vascular endothelial cells (ETVECs). In coordination with endogenous FOXC2 in fibroblasts, transduced ETV2 elicits expression of multiple key endothelial development factors, including FLI1, ERG, and TAL1, and induces expression of endothelial functional molecules, including EGFL7 and von Willebrand factor. Consequently, ETVECs exhibits EC characteristics in vitro and forms mature functional vasculature in Matrigel plugs transplanted in NOD SCID mice. Furthermore, ETVECs significantly improve blood flow recovery in a hind limb ischemic model using BALB/c-nu mice. Our study indicates that the creation of ETVECs provides further understanding of human EC development induced by ETV2.
Collapse
|
24
|
Robinson AS, Materna SC, Barnes RM, De Val S, Xu SM, Black BL. An arterial-specific enhancer of the human endothelin converting enzyme 1 (ECE1) gene is synergistically activated by Sox17, FoxC2, and Etv2. Dev Biol 2014; 395:379-389. [PMID: 25179465 DOI: 10.1016/j.ydbio.2014.08.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 08/19/2014] [Indexed: 11/19/2022]
Abstract
Endothelin-converting enzyme-1 (Ece-1), a crucial component of the Endothelin signaling pathway, is required for embryonic development and is an important regulator of vascular tone, yet the transcriptional regulation of the ECE1 gene has remained largely unknown. Here, we define the activity and regulation of an enhancer from the human ECE1 locus in vivo. The enhancer identified here becomes active in endothelial progenitor cells shortly after their initial specification and is dependent on a conserved FOX:ETS motif, a composite binding site for Forkhead transcription factors and the Ets transcription factor Etv2, for activity in vivo. The ECE1 FOX:ETS motif is bound and cooperatively activated by FoxC2 and Etv2, but unlike other described FOX:ETS-dependent enhancers, ECE1 enhancer activity becomes restricted to arterial endothelium and endocardium by embryonic day 9.5 in transgenic mouse embryos. The ECE1 endothelial enhancer also contains an evolutionarily-conserved, consensus SOX binding site, which is required for activity in transgenic mouse embryos. Importantly, the ECE1 SOX site is bound and activated by Sox17, a transcription factor involved in endothelial cell differentiation and an important regulator of arterial identity. Moreover, the ECE1 enhancer is cooperatively activated by the combinatorial action of FoxC2, Etv2, and Sox17. Although Sox17 is required for arterial identity, few direct transcriptional targets have been identified in endothelial cells. Thus, this work has important implications for our understanding of endothelial specification and arterial subspecification.
Collapse
Affiliation(s)
- Ashley S Robinson
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158-2517
| | - Stefan C Materna
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158-2517
| | - Ralston M Barnes
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158-2517
| | - Sarah De Val
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158-2517
| | - Shan-Mei Xu
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158-2517
| | - Brian L Black
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158-2517
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158-2517
| |
Collapse
|
25
|
Behrens AN, Zierold C, Shi X, Ren Y, Koyano-Nakagawa N, Garry DJ, Martin CM. Sox7 is regulated by ETV2 during cardiovascular development. Stem Cells Dev 2014; 23:2004-13. [PMID: 24762086 DOI: 10.1089/scd.2013.0525] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vasculogenesis/angiogenesis is one of the earliest processes that occurs during embryogenesis. ETV2 and SOX7 were previously shown to play a role in endothelial development; however, their mechanistic interaction has not been defined. In the present study, concomitant expression of Etv2 and Sox7 in endothelial progenitor cells was verified. ETV2 was shown to be a direct upstream regulator of Sox7 that binds to ETV2 binding elements in the Sox7 upstream regulatory region and activates transcription. We observed that SOX7 over-expression can mimic ETV2 and increase endothelial progenitor cells in embryonic bodies (EBs), while knockdown of Sox7 is able to block ETV2-induced increase in endothelial progenitor cell formation. Angiogenic sprouting was increased by ETV2 over-expression in EBs, and it was significantly decreased in the presence of Sox7 shRNA. Collectively, these studies support the conclusion that ETV2 directly regulates Sox7, and that ETV2 governs endothelial development by regulating transcriptional networks which include Sox7.
Collapse
Affiliation(s)
- Ann N Behrens
- Lillehei Heart Institute, University of Minnesota , Minneapolis, Minnesota
| | | | | | | | | | | | | |
Collapse
|
26
|
Bell RD, Long X, Lin M, Bergmann JH, Nanda V, Cowan SL, Zhou Q, Han Y, Spector DL, Zheng D, Miano JM. Identification and initial functional characterization of a human vascular cell-enriched long noncoding RNA. Arterioscler Thromb Vasc Biol 2014; 34:1249-59. [PMID: 24578380 DOI: 10.1161/atvbaha.114.303240] [Citation(s) in RCA: 242] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Long noncoding RNAs (lncRNAs) represent a rapidly growing class of RNA genes with functions related primarily to transcriptional and post-transcriptional control of gene expression. There is a paucity of information about lncRNA expression and function in human vascular cells. Thus, we set out to identify novel lncRNA genes in human vascular smooth muscle cells and to gain insight into their role in the control of smooth muscle cell phenotypes. APPROACH AND RESULTS RNA sequencing (RNA-seq) of human coronary artery smooth muscle cells revealed 31 unannotated lncRNAs, including a vascular cell-enriched lncRNA (Smooth muscle and Endothelial cell-enriched migration/differentiation-associated long NonCoding RNA [SENCR]). Strand-specific reverse transcription polymerase chain reaction (PCR) and rapid amplification of cDNA ends indicate that SENCR is transcribed antisense from the 5' end of the FLI1 gene and exists as 2 splice variants. RNA fluorescence in situ hybridization and biochemical fractionation studies demonstrate SENCR is a cytoplasmic lncRNA. Consistent with this observation, knockdown studies reveal little to no cis-acting effect of SENCR on FLI1 or neighboring gene expression. RNA-seq experiments in smooth muscle cells after SENCR knockdown disclose decreased expression of Myocardin and numerous smooth muscle contractile genes, whereas several promigratory genes are increased. Reverse transcription PCR and Western blotting experiments validate several differentially expressed genes after SENCR knockdown. Loss-of-function studies in scratch wound and Boyden chamber assays support SENCR as an inhibitor of smooth muscle cell migration. CONCLUSIONS SENCR is a new vascular cell-enriched, cytoplasmic lncRNA that seems to stabilize the smooth muscle cell contractile phenotype.
Collapse
Affiliation(s)
- Robert D Bell
- From the Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY (R.D.B., X.L., V.N., S.L.C., Q.Z., Y.H., J.M.M.); Department of Genetics (M.L., D.Z.) and Departments of Neurology and Neuroscience (D.Z.), Albert Einstein College of Medicine, Bronx, NY; and Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (J.H.B., D.L.S.)
| | - Xiaochun Long
- From the Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY (R.D.B., X.L., V.N., S.L.C., Q.Z., Y.H., J.M.M.); Department of Genetics (M.L., D.Z.) and Departments of Neurology and Neuroscience (D.Z.), Albert Einstein College of Medicine, Bronx, NY; and Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (J.H.B., D.L.S.)
| | - Mingyan Lin
- From the Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY (R.D.B., X.L., V.N., S.L.C., Q.Z., Y.H., J.M.M.); Department of Genetics (M.L., D.Z.) and Departments of Neurology and Neuroscience (D.Z.), Albert Einstein College of Medicine, Bronx, NY; and Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (J.H.B., D.L.S.)
| | - Jan H Bergmann
- From the Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY (R.D.B., X.L., V.N., S.L.C., Q.Z., Y.H., J.M.M.); Department of Genetics (M.L., D.Z.) and Departments of Neurology and Neuroscience (D.Z.), Albert Einstein College of Medicine, Bronx, NY; and Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (J.H.B., D.L.S.)
| | - Vivek Nanda
- From the Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY (R.D.B., X.L., V.N., S.L.C., Q.Z., Y.H., J.M.M.); Department of Genetics (M.L., D.Z.) and Departments of Neurology and Neuroscience (D.Z.), Albert Einstein College of Medicine, Bronx, NY; and Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (J.H.B., D.L.S.)
| | - Sarah L Cowan
- From the Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY (R.D.B., X.L., V.N., S.L.C., Q.Z., Y.H., J.M.M.); Department of Genetics (M.L., D.Z.) and Departments of Neurology and Neuroscience (D.Z.), Albert Einstein College of Medicine, Bronx, NY; and Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (J.H.B., D.L.S.)
| | - Qian Zhou
- From the Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY (R.D.B., X.L., V.N., S.L.C., Q.Z., Y.H., J.M.M.); Department of Genetics (M.L., D.Z.) and Departments of Neurology and Neuroscience (D.Z.), Albert Einstein College of Medicine, Bronx, NY; and Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (J.H.B., D.L.S.)
| | - Yu Han
- From the Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY (R.D.B., X.L., V.N., S.L.C., Q.Z., Y.H., J.M.M.); Department of Genetics (M.L., D.Z.) and Departments of Neurology and Neuroscience (D.Z.), Albert Einstein College of Medicine, Bronx, NY; and Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (J.H.B., D.L.S.)
| | - David L Spector
- From the Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY (R.D.B., X.L., V.N., S.L.C., Q.Z., Y.H., J.M.M.); Department of Genetics (M.L., D.Z.) and Departments of Neurology and Neuroscience (D.Z.), Albert Einstein College of Medicine, Bronx, NY; and Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (J.H.B., D.L.S.)
| | - Deyou Zheng
- From the Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY (R.D.B., X.L., V.N., S.L.C., Q.Z., Y.H., J.M.M.); Department of Genetics (M.L., D.Z.) and Departments of Neurology and Neuroscience (D.Z.), Albert Einstein College of Medicine, Bronx, NY; and Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (J.H.B., D.L.S.)
| | - Joseph M Miano
- From the Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY (R.D.B., X.L., V.N., S.L.C., Q.Z., Y.H., J.M.M.); Department of Genetics (M.L., D.Z.) and Departments of Neurology and Neuroscience (D.Z.), Albert Einstein College of Medicine, Bronx, NY; and Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (J.H.B., D.L.S.).
| |
Collapse
|
27
|
Cooperative interaction of Etv2 and Gata2 regulates the development of endothelial and hematopoietic lineages. Dev Biol 2014; 389:208-18. [PMID: 24583263 DOI: 10.1016/j.ydbio.2014.02.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 02/07/2014] [Accepted: 02/19/2014] [Indexed: 12/31/2022]
Abstract
Regulatory mechanisms that govern lineage specification of the mesodermal progenitors to become endothelial and hematopoietic cells remain an area of intense interest. Both Ets and Gata factors have been shown to have important roles in the transcriptional regulation in endothelial and hematopoietic cells. We previously reported Etv2 as an essential regulator of vasculogenesis and hematopoiesis. In the present study, we demonstrate that Gata2 is co-expressed and interacts with Etv2 in the endothelial and hematopoietic cells in the early stages of embryogenesis. Our studies reveal that Etv2 interacts with Gata2 in vitro and in vivo. The protein-protein interaction between Etv2 and Gata2 is mediated by the Ets and Gata domains. Using the embryoid body differentiation system, we demonstrate that co-expression of Gata2 augments the activity of Etv2 in promoting endothelial and hematopoietic lineage differentiation. We also identify Spi1 as a common downstream target gene of Etv2 and Gata2. We provide evidence that Etv2 and Gata2 bind to the Spi1 promoter in vitro and in vivo. In summary, we propose that Gata2 functions as a cofactor of Etv2 in the transcriptional regulation of mesodermal progenitors during embryogenesis.
Collapse
|
28
|
Kohler EE, Wary KK, Li F, Chatterjee I, Urao N, Toth PT, Ushio-Fukai M, Rehman J, Park C, Malik AB. Flk1+ and VE-cadherin+ endothelial cells derived from iPSCs recapitulates vascular development during differentiation and display similar angiogenic potential as ESC-derived cells. PLoS One 2013; 8:e85549. [PMID: 24386480 PMCID: PMC3875577 DOI: 10.1371/journal.pone.0085549] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 11/27/2013] [Indexed: 01/06/2023] Open
Abstract
RATIONALE Induced pluripotent stem (iPS) cells have emerged as a source of potentially unlimited supply of autologous endothelial cells (ECs) for vascularization. However, the regenerative function of these cells relative to adult ECs and ECs derived from embryonic stem (ES) cells is unknown. The objective was to define the differentiation characteristics and vascularization potential of Fetal liver kinase (Flk)1(+) and Vascular Endothelial (VE)-cadherin(+) ECs derived identically from mouse (m)ES and miPS cells. METHODS AND RESULTS Naive mES and miPS cells cultured in type IV collagen (IV Col) in defined media for 5 days induced the formation of adherent cell populations, which demonstrated similar expression of Flk1 and VE-cadherin and the emergence of EC progenies. FACS purification resulted in 100% Flk1(+) VE-cadherin(+) cells from both mES and miPS cells. Emergence of Flk1(+)VE-cadherin(+) cells entailed expression of the vascular developmental transcription factor Er71, which bound identically to Flk1, VE-cadherin, and CD31 promoters in both populations. Immunostaining with anti-VE-cadherin and anti-CD31 antibodies and microscopy demonstrated the endothelial nature of these cells. Each cell population (unlike mature ECs) organized into well-developed vascular structures in vitro and incorporated into CD31(+) neovessels in matrigel plugs implanted in nude mice in vivo. CONCLUSION Thus, iPS cell-derived Flk1(+)VE-cadherin(+) cells expressing the Er71 are as angiogenic as mES cell-derived cells and incorporate into CD31(+) neovessels. Their vessel forming capacity highlights the potential of autologous iPS cells-derived EC progeny for therapeutic angiogenesis.
Collapse
Affiliation(s)
- Erin E. Kohler
- Department of Pharmacology and Center for Lung and Vascular Biology, The University of Illinois, Chicago, Illinois, United States of America
| | - Kishore K. Wary
- Department of Pharmacology and Center for Lung and Vascular Biology, The University of Illinois, Chicago, Illinois, United States of America
- * E-mail:
| | - Fei Li
- Department of Pharmacology and Center for Lung and Vascular Biology, The University of Illinois, Chicago, Illinois, United States of America
| | - Ishita Chatterjee
- Department of Pharmacology and Center for Lung and Vascular Biology, The University of Illinois, Chicago, Illinois, United States of America
| | - Norifumi Urao
- Department of Pharmacology and Center for Lung and Vascular Biology, The University of Illinois, Chicago, Illinois, United States of America
| | - Peter T. Toth
- Research Resources Center, The University of Illinois, Chicago, Illinois, United States of America
| | - Masuko Ushio-Fukai
- Department of Pharmacology and Center for Lung and Vascular Biology, The University of Illinois, Chicago, Illinois, United States of America
| | - Jalees Rehman
- Department of Pharmacology and Center for Lung and Vascular Biology, The University of Illinois, Chicago, Illinois, United States of America
- Section of Cardiology, Department of Medicine, The University of Illinois, Chicago, Illinois, United States of America
| | - Changwon Park
- Department of Pharmacology and Center for Lung and Vascular Biology, The University of Illinois, Chicago, Illinois, United States of America
| | - Asrar B. Malik
- Department of Pharmacology and Center for Lung and Vascular Biology, The University of Illinois, Chicago, Illinois, United States of America
| |
Collapse
|
29
|
Abstract
The establishment and maintenance of the vascular system is critical for embryonic development and postnatal life. Defects in endothelial cell development and vessel formation and function lead to embryonic lethality and are important in the pathogenesis of vascular diseases. Here, we review the underlying molecular mechanisms of endothelial cell differentiation, plasticity, and the development of the vasculature. This review focuses on the interplay among transcription factors and signaling molecules that specify the differentiation of vascular endothelial cells. We also discuss recent progress on reprogramming of somatic cells toward distinct endothelial cell lineages and its promise in regenerative vascular medicine.
Collapse
Affiliation(s)
- Changwon Park
- Department of Pharmacology, Center for Lung and Vascular Biology, The University of Illinois College of Medicine, Chicago, IL 60612, USA
| | | | | |
Collapse
|
30
|
Kobayashi K, Ding G, Nishikawa SI, Kataoka H. Role of Etv2-positive cells in the remodeling morphogenesis during vascular development. Genes Cells 2013; 18:704-21. [PMID: 23795570 DOI: 10.1111/gtc.12070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/02/2013] [Indexed: 01/12/2023]
Abstract
Etv2 is a critical determinant for the commitment of endothelial (EC) and hematopoietic (HPC) cells from mesoderm. Etv2 is assumed to be transiently required for EC commitment but dispensable after most ECs differentiate around E9.5. To confirm the time window of Etv2 requirement, Etv2 was ablated at different time points using ROSA26CreER mice. Unexpectedly, Etv2 ablation at E9.5 caused vascular remodeling defects in cranial and yolk sac vasculature. Immunostaining showed that Etv2+/VE-cadherin (VECAD)- cells were present around forming vasculature, mostly co-expressing Flk-1 with a small number of Etv2+/VECAD+ cells, indicating that Etv2+/Flk-1+/VECAD- cells are the major Etv2+ population promoting vascular remodeling around E9.5. Gene expression analysis showed up-regulation of Fgf proteins, Il-6, Glypican-3 and matrix metalloproteases in Etv2+/VEDAC- cells over Etv2-/VECAD+ mature ECs. Blockade of those factors caused reduced EC sprouting in ex vivo explant culture from E9.5 embryos, suggesting the functional significance of environmental factors derived from Etv2+ cells. Altogether, we propose that Etv2+/VEDAC- cells around E9.5-E10.5 provide extracellular factors to complete vascular morphogenesis in addition to becoming differentiated ECs incorporated into vessels. This insight for the new role of Ets protein in perivascular Flk-1+/VECAD-/(Etv2+) cells to induce expression of angiogenic factors may provide another strategy to control angiogenesis.
Collapse
Affiliation(s)
- Kumiko Kobayashi
- Laboratory for Stem Cell Biology, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | | | | | | |
Collapse
|
31
|
Ding G, Tanaka Y, Hayashi M, Nishikawa SI, Kataoka H. PDGF receptor alpha+ mesoderm contributes to endothelial and hematopoietic cells in mice. Dev Dyn 2013; 242:254-68. [PMID: 23335233 PMCID: PMC3597973 DOI: 10.1002/dvdy.23923] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/12/2012] [Accepted: 12/20/2012] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Early mesoderm can be classified into Flk-1+ or PDGF receptor alpha (PDGFRα)+ population, grossly representing lateral and paraxial mesoderm, respectively. It has been demonstrated that all endothelial (EC) and hematopoietic (HPC) cells are derived from Flk-1+ cells. Although PDGFRα+ cells give rise to ECs/HPCs in in vitro ES differentiation, whether PDGFRα+ population can become hemato-endothelial lineages has not been proved in mouse embryos. RESULTS Using PDGFRαMerCreMer mice, PDGFRα+ early mesoderm was shown to contribute to endothelial cells including hemogenic ECs, fetal liver B lymphocytes, and Lin-Kit+Sca-1+ (KSL) cells. Contribution of PDGFRα+ mesoderm into ECs and HPCs was limited until E8.5, indicating that PDGFRα+/Flk-1+ population that exists until E8.5 may be the source for hemato-endothelial lineages from PDGFRα+ population. The functional significance of PDGFRα+ mesoderm in vascular development and hematopoiesis was confirmed by genetic deletion of Etv2 or restoration of Runx1 in PDGFRα+ cells. Etv2 deletion and Runx1 restoration in PDGFRα+ cells resulted in abnormal vascular remodeling and rescue of fetal liver CD45+ and Lin-Kit+Sca-1+ (KSL) cells, respectively. CONCLUSIONS Endothelial and hematopoietic cells can be derived from PDGFRα+ early mesoderm in mice. PDGFRα+ mesoderm is functionally significant in vascular development and hematopoiesis from phenotype analysis of genetically modified embryos.
Collapse
Affiliation(s)
- Guo Ding
- Laboratory for Stem Cell Biology, RIKEN Center for Developmental Biology, Kobe, Japan
| | | | | | | | | |
Collapse
|