1
|
Khalil M, Di Ciaula A, Mahdi L, Jaber N, Di Palo DM, Graziani A, Baffy G, Portincasa P. Unraveling the Role of the Human Gut Microbiome in Health and Diseases. Microorganisms 2024; 12:2333. [PMID: 39597722 PMCID: PMC11596745 DOI: 10.3390/microorganisms12112333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
The human gut is a complex ecosystem that supports billions of living species, including bacteria, viruses, archaea, phages, fungi, and unicellular eukaryotes. Bacteria give genes and enzymes for microbial and host-produced compounds, establishing a symbiotic link between the external environment and the host at both the gut and systemic levels. The gut microbiome, which is primarily made up of commensal bacteria, is critical for maintaining the healthy host's immune system, aiding digestion, synthesizing essential nutrients, and protecting against pathogenic bacteria, as well as influencing endocrine, neural, humoral, and immunological functions and metabolic pathways. Qualitative, quantitative, and/or topographic shifts can alter the gut microbiome, resulting in dysbiosis and microbial dysfunction, which can contribute to a variety of noncommunicable illnesses, including hypertension, cardiovascular disease, obesity, diabetes, inflammatory bowel disease, cancer, and irritable bowel syndrome. While most evidence to date is observational and does not establish direct causation, ongoing clinical trials and advanced genomic techniques are steadily enhancing our understanding of these intricate interactions. This review will explore key aspects of the relationship between gut microbiota, eubiosis, and dysbiosis in human health and disease, highlighting emerging strategies for microbiome engineering as potential therapeutic approaches for various conditions.
Collapse
Affiliation(s)
- Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| | - Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| | - Laura Mahdi
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| | - Nour Jaber
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| | - Domenica Maria Di Palo
- Division of Hygiene, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy;
| | - Annarita Graziani
- Institut AllergoSan Pharmazeutische Produkte Forschungs- und Vertriebs GmbH, 8055 Graz, Austria;
| | - Gyorgy Baffy
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02130, USA;
- Section of Gastroenterology, Department of Medicine, VA Boston Healthcare System, Boston, MA 02130, USA
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari Aldo Moro, 70124 Bari, Italy; (M.K.); (A.D.C.); (L.M.); (N.J.)
| |
Collapse
|
2
|
Rueda García AM, Fracassi P, Scherf BD, Hamon M, Iannotti L. Unveiling the Nutritional Quality of Terrestrial Animal Source Foods by Species and Characteristics of Livestock Systems. Nutrients 2024; 16:3346. [PMID: 39408313 PMCID: PMC11478523 DOI: 10.3390/nu16193346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/29/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Background. It is well-established that a range of macronutrients, micronutrients and bioactive compounds found in animal-source foods play unique and important roles in human health as part of a healthy diet. Methods. This narrative review focuses on terrestrial animal source foods (TASFs). It particularly analyzes five groups: poultry eggs, milk, unprocessed meat, foods from hunting and wildlife farming, and insects. The objectives were as follows: (1) examine the nutrient composition of TASFs within and across livestock species, drawing on the country and regional food composition databases; (2) analyze the influence of intrinsic animal characteristics and production practices on TASF nutritional quality. Results. TASFs are rich in high-quality proteins and fats, as well as micronutrients such as vitamin B12, iron or zinc. This study found differences in the nutritional quality of TASFs by livestock species and animal products, as well as by characteristics of livestock production systems. Our findings suggest that there may be public health opportunities by diversifying TASF consumption across species and improving certain aspects of the production systems to provide products that are both more sustainable and of higher quality. Conclusions. Future research should adopt a more holistic approach to examining the food matrix and the dietary patterns that influence TASF digestibility. It is necessary to include meat from hunting and wildlife farming and insects in global food composition databases, as limited literature was found. In addition, scarce research focuses on low- and middle-income countries, highlighting the need for further exploration of TASF food composition analysis and how intrinsic animal characteristics and livestock production system characteristics impact their nutritional value.
Collapse
Affiliation(s)
| | - Patrizia Fracassi
- Food and Agriculture Organization of the United Nations, 00153 Rome, Italy
| | - Beate D Scherf
- Food and Agriculture Organization of the United Nations, 00153 Rome, Italy
| | - Manon Hamon
- Food and Agriculture Organization of the United Nations, 00153 Rome, Italy
| | - Lora Iannotti
- E3 Nutrition Lab, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
3
|
Salvadori M, Rosso G. Update on the gut microbiome in health and diseases. World J Methodol 2024; 14:89196. [PMID: 38577200 PMCID: PMC10989414 DOI: 10.5662/wjm.v14.i1.89196] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/18/2023] [Accepted: 01/27/2024] [Indexed: 03/07/2024] Open
Abstract
The Human Microbiome Project, Earth Microbiome Project, and next-generation sequencing have advanced novel genome association, host genetic linkages, and pathogen identification. The microbiome is the sum of the microbes, their genetic information, and their ecological niche. This study will describe how millions of bacteria in the gut affect the human body in health and disease. The gut microbiome changes in relation with age, with an increase in Bacteroidetes and Firmicutes. Host and environmental factors affecting the gut microbiome are diet, drugs, age, smoking, exercise, and host genetics. In addition, changes in the gut microbiome may affect the local gut immune system and systemic immune system. In this study, we discuss how the microbiome may affect the metabolism of healthy subjects or may affect the pathogenesis of metabolism-generating metabolic diseases. Due to the high number of publications on the argument, from a methodologically point of view, we decided to select the best papers published in referred journals in the last 3 years. Then we selected the previously published papers. The major goals of our study were to elucidate which microbiome and by which pathways are related to healthy and disease conditions.
Collapse
Affiliation(s)
- Maurizio Salvadori
- Department of Renal Transplantation, Careggi University Hospital, Florence 50139, Tuscany, Italy
| | - Giuseppina Rosso
- Division of Nephrology, San Giovanni di Dio Hospital, Florence 50143, Toscana, Italy
| |
Collapse
|
4
|
Skoufou M, Tsigalou C, Vradelis S, Bezirtzoglou E. The Networked Interaction between Probiotics and Intestine in Health and Disease: A Promising Success Story. Microorganisms 2024; 12:194. [PMID: 38258020 PMCID: PMC10818559 DOI: 10.3390/microorganisms12010194] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Probiotics are known to promote human health either precautionary in healthy individuals or therapeutically in patients suffering from certain ailments. Although this knowledge was empirical in past tomes, modern science has already verified it and expanded it to new limits. These microorganisms can be found in nature in various foods such as dairy products or in supplements formulated for clinical or preventive use. The current review examines the different mechanisms of action of the probiotic strains and how they interact with the organism of the host. Emphasis is put on the clinical therapeutic use of these beneficial microorganisms in various clinical conditions of the human gastrointestinal tract. Diseases of the gastrointestinal tract and particularly any malfunction and inflammation of the intestines seriously compromise the health of the whole organism. The interaction between the probiotic strains and the host's microbiota can alleviate the clinical signs and symptoms while in some cases, in due course, it can intervene in the underlying pathology. Various safety issues of the use of probiotics are also discussed.
Collapse
Affiliation(s)
- Maria Skoufou
- Master Program in “Food, Nutrition and Microbiome”, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.T.); (S.V.)
- Proctology Department, Paris Saint Joseph Hospital Paris, 75014 Paris, France
| | - Christina Tsigalou
- Master Program in “Food, Nutrition and Microbiome”, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.T.); (S.V.)
- Laboratory of Hygiene and Environmental Protection, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Stergios Vradelis
- Master Program in “Food, Nutrition and Microbiome”, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.T.); (S.V.)
- Department of Gastrenterology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Eugenia Bezirtzoglou
- Master Program in “Food, Nutrition and Microbiome”, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.T.); (S.V.)
- Laboratory of Hygiene and Environmental Protection, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|
5
|
Stols-Gonçalves D, Mak AL, Madsen MS, van der Vossen EWJ, Bruinstroop E, Henneman P, Mol F, Scheithauer TPM, Smits L, Witjes J, Meijnikman AS, Verheij J, Nieuwdorp M, Holleboom AG, Levin E. Faecal Microbiota transplantation affects liver DNA methylation in Non-alcoholic fatty liver disease: a multi-omics approach. Gut Microbes 2023; 15:2223330. [PMID: 37317027 DOI: 10.1080/19490976.2023.2223330] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023] Open
Abstract
Individuals with nonalcoholic fatty liver disease (NAFLD) have an altered gut microbiota composition. Moreover, hepatic DNA methylation may be altered in the state of NAFLD. Using a fecal microbiota transplantation (FMT) intervention, we aimed to investigate whether a change in gut microbiota composition relates to altered liver DNA methylation in NAFLD. Moreover, we assessed whether plasma metabolite profiles altered by FMT relate to changes in liver DNA methylation. Twenty-one individuals with NAFLD underwent three 8-weekly vegan allogenic donor (n = 10) or autologous (n = 11) FMTs. We obtained hepatic DNA methylation profiles from paired liver biopsies of study participants before and after FMTs. We applied a multi-omics machine learning approach to identify changes in the gut microbiome, peripheral blood metabolome and liver DNA methylome, and analyzed cross-omics correlations. Vegan allogenic donor FMT compared to autologous FMT induced distinct differential changes in I) gut microbiota profiles, including increased abundance of Eubacterium siraeum and potential probiotic Blautia wexlerae; II) plasma metabolites, including altered levels of phenylacetylcarnitine (PAC) and phenylacetylglutamine (PAG) both from gut-derived phenylacetic acid, and of several choline-derived long-chain acylcholines; and III) hepatic DNA methylation profiles, most importantly in Threonyl-TRNA Synthetase 1 (TARS) and Zinc finger protein 57 (ZFP57). Multi-omics analysis showed that Gemmiger formicillis and Firmicutes bacterium_CAG_170 positively correlated with both PAC and PAG. E siraeum negatively correlated with DNA methylation of cg16885113 in ZFP57. Alterations in gut microbiota composition by FMT caused widespread changes in plasma metabolites (e.g. PAC, PAG, and choline-derived metabolites) and liver DNA methylation profiles in individuals with NAFLD. These results indicate that FMTs might induce metaorganismal pathway changes, from the gut bacteria to the liver.
Collapse
Affiliation(s)
- Daniela Stols-Gonçalves
- Department of Vascular Medicine, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Anne Linde Mak
- Department of Vascular Medicine, Amsterdam University Medical Centre, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mette S Madsen
- Gubra, Hørsholm, Denmark
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Eveline Bruinstroop
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Endocrinology, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Peter Henneman
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Human Genetics, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Femke Mol
- Department of Vascular Medicine, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Torsten P M Scheithauer
- Department of Vascular Medicine, Amsterdam University Medical Centre, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Internal Medicine, Amsterdam University Medical Centre (UMC), Vrije Universiteit (VU) University Medical Centre, Amsterdam, Netherlands
| | - Loek Smits
- Department of Vascular Medicine, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Julia Witjes
- Department of Vascular Medicine, Amsterdam University Medical Centre, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Abraham Stijn Meijnikman
- Department of Vascular Medicine, Amsterdam University Medical Centre, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Joanne Verheij
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Pathology, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Vascular Medicine, Amsterdam University Medical Centre, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Adriaan G Holleboom
- Department of Vascular Medicine, Amsterdam University Medical Centre, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Evgeni Levin
- Department of Vascular Medicine, Amsterdam University Medical Centre, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Horaizon BV, Delft, The Netherlands
| |
Collapse
|
6
|
Lu J, Tao X, Luo J, Zhu T, Jiao L, Sun P, Zhou Q, Tocher DR, Jin M. Dietary choline activates the Ampk/Srebp signaling pathway and decreases lipid levels in Pacific white shrimp ( Litopenaeus vannamei). ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:58-70. [PMID: 37818178 PMCID: PMC10561004 DOI: 10.1016/j.aninu.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/01/2023] [Accepted: 05/04/2023] [Indexed: 10/12/2023]
Abstract
An 8-week feeding trial was conducted in Pacific white shrimp (Litopenaeus vannamei) to evaluate the effects of dietary choline supplementation on choline transport and metabolism, hepatopancreas histological structure and fatty acid profile, and regulation of lipid metabolism. Six isonitrogenous and isolipidic diets were formulated to contain different choline levels of 2.91 (basal diet), 3.85, 4.67, 6.55, 10.70 and 18.90 g/kg, respectively. A total of 960 shrimp (initial weight, 1.38 ± 0.01 g) were distributed randomly into twenty-four 250-L cylindrical fiber-glass tanks, with each diet assigned randomly to 4 replicate tanks. The results indicated that dietary choline significantly promoted the deposition of choline, betaine and carnitine (P < 0.05). The diameters and areas of R cells, total lipid and triglyceride contents in hepatopancreas, and triglyceride and non-esterified fatty acid contents in hemolymph were negatively correlated with dietary choline level. The contents of functional fatty acids in hepatopancreas, the activity of acetyl-CoA carboxylase (Acc), and the mRNA expression of fas, srebp and acc were highest in shrimp fed the diet containing 4.67 g/kg choline, and significantly higher than those fed the diet containing 2.91 g/kg, the lowest level of choline (P < 0.05). The number of R cells, content of very low-density lipoprotein (VLDL), activities of carnitine palmitoyl-transferase (Cpt1), lipoprotein lipase and hepatic lipase, and the mRNA expression levels of cpt1, fabp, fatp, ldlr, and ampk in hepatopancreas increased significantly as dietary choline increased (P < 0.05). In addition, hepatopancreas mRNA expression levels of ctl1, ctl2, oct1, badh, bhmt, ck, cept, and cct were generally up-regulated as dietary choline level increased (P < 0.01). In conclusion, dietary choline promoted the deposition of choline and its metabolites by up-regulating genes related to choline transport and metabolism. Moreover, appropriate dietary choline level promoted the development of hepatopancreas R cells and maintained the normal accumulation of lipids required for development, while high dietary choline not only promoted hepatopancreas lipid export by enhancing VLDL synthesis, but also promoted fatty acid β-oxidation and inhibited de novo fatty acid synthesis by activating the Ampk/Srebp signaling pathway. These findings provided further insight and understanding of the mechanisms by which dietary choline regulated lipid metabolism in L. vannamei.
Collapse
Affiliation(s)
- Jingjing Lu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xinyue Tao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jiaxiang Luo
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Tingting Zhu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Lefei Jiao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Peng Sun
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Douglas R. Tocher
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Min Jin
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
7
|
Swartz TH, Bradford BJ, Mamedova LK, Estes KA. Effects of dietary rumen-protected choline supplementation to periparturient dairy cattle on inflammation, metabolism, and performance during an intramammary lipopolysaccharide challenge. J Dairy Sci 2023; 106:8561-8582. [PMID: 37500444 DOI: 10.3168/jds.2023-23259] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/22/2023] [Indexed: 07/29/2023]
Abstract
Recent studies have suggested that dietary rumen-protected choline (RPC) supplementation can modulate immune function, attenuate inflammation, and improve performance in periparturient dairy cattle; however, this has yet to be evaluated during a mastitis challenge. Therefore, the objective of this study was to examine the effects of supplementation and dose of RPC on metabolism, inflammation, and performance during an intramammary lipopolysaccharide (LPS) challenge. Parous Holstein cows (parity, mean ± SD, 1.9 ± 1.1 at enrollment) were blocked by calving month and randomly assigned within block to receive either 45 g/d of RPC (20.4 g/d of choline ions; CHOL45, n = 18), 30 g/d of RPC (13.6 g/d of choline ions; CHOL30, n = 21), or no RPC (CON, n = 19) as a top-dress starting 24 d before expected calving until 21 d postpartum. Cows were alternately assigned within treatment group to either receive an intramammary LPS challenge (200 μg in each rear quarter; Escherichia coli O111:B4) or not at 17 DIM. Before the challenge, CHOL45 and CHOL30 cows produced 3.4 and 3.8 (±1.2 SED) kg/d more milk than CON, respectively. Dietary RPC supplementation did not mitigate the milk loss associated with the intramammary LPS challenge; however, CHOL45 and CHOL30 cows produced 3.1 and 3.5 (±1.4 SED) kg/d more milk than CON, respectively in the carryover period (22 to 84 DIM). Dietary RPC supplementation enhanced plasma β-hydroxybutyrate (BHB) concentrations before the LPS challenge, and increased plasma nonesterified fatty acids (NEFA) and acetylcarnitine concentrations during the LPS challenge, potentially reflecting greater adipose tissue mobilization, fatty acid transport and oxidation. Aside from trimethylamine N-oxide and sarcosine, which were increased in CHOL45-LPS as compared with CON-LPS, most other choline metabolite concentrations in plasma were unaffected by treatment, likely because more choline was being secreted in milk. Plasma lactic acid concentrations were decreased in CHOL45-LPS and CHOL30-LPS as compared with CON-LPS, suggesting a reduction in glycolysis or an enhancement in the flux through the lactic acid cycle to support gluconeogenesis. Plasma concentrations of fumaric acid, a byproduct of AA catabolism and the urea cycle, were increased in both choline groups as compared with CON-LPS during the LPS challenge. Cows in the CHOL45 group had greater plasma antioxidant potential before the LPS challenge and reduced plasma methionine sulfoxide concentrations during the LPS challenge compared with CON-LPS, suggesting an improvement in oxidant status. Nevertheless, concentrations of inflammatory markers such as haptoglobin and tumor necrosis factor α (TNFα) were not affected by treatment. Taken together, our data suggest that the effects of dietary RPC supplementation on milk yield could be mediated through metabolic pathways and are unlikely to be related to the resolution of inflammation in periparturient dairy cattle. Lastly, dose responses to dietary RPC supplementation were not found for various economically important outcomes including milk yield, limiting the justification for feeding a greater dietary RPC dose in industry.
Collapse
Affiliation(s)
- T H Swartz
- Department of Animal Science, Michigan State University, East Lansing, MI 48824; Department of Dairy and Food Science, South Dakota State University, Brookings, SD 57007.
| | - B J Bradford
- Department of Animal Science, Michigan State University, East Lansing, MI 48824.
| | - L K Mamedova
- Department of Animal Science, Michigan State University, East Lansing, MI 48824
| | - K A Estes
- Balchem Corporation, Montvale, NJ 07645
| |
Collapse
|
8
|
Yang Q, Han H, Sun Z, Liu L, Zheng X, Meng Z, Tao N, Liu J. Association of choline and betaine with the risk of cardiovascular disease and all-cause mortality: Meta-analysis. Eur J Clin Invest 2023; 53:e14041. [PMID: 37318151 DOI: 10.1111/eci.14041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/23/2023] [Accepted: 06/03/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND This study aimed to systematically evaluate the role of circulating levels of choline and betaine in the risk of cardiovascular disease (CVD) and all-cause mortality by comprehensively reviewing observational studies. METHODS This study was conducted according to PRISMA 2020 statement. Six electronic databases, including PubMed, Embase and China National Knowledge Infrastructure (CNKI), were searched for cohort studies and derivative research design types (nested case-control and case-cohort studies) from the date of inception to March 2022. We pooled relative risk (RR) and 95% confidence interval (CI) of the highest versus lowest category and per SD of circulating choline and betaine concentrations in relation to the risk of CVD and all-cause mortality. RESULTS In the meta-analysis, 17 studies with a total of 33,009 participants were included. Random-effects model results showed that highest versus lowest quantile of circulating choline concentrations were associated with the risk of CVD (RR = 1.29, 95% CI: 1.04-1.61) and all-cause mortality (RR = 1.62, 95% CI: 1.12-2.36). We also observed the risk of CVD were increased 13% (5%-22%) with per SD increment. Furthermore, highest versus lowest quantile of circulating betaine concentrations were not associated with the risk of CVD (RR = 1.07, 95% CI: 0.92-1.24) and all-cause mortality (RR = 1.39, 95% CI: 0.96-2.01). However, the risk of CVD was increased 14% (5%-23%) with per SD increment. CONCLUSIONS Higher levels of circulating choline were associated with a higher risk of CVD and all-cause mortality.
Collapse
Affiliation(s)
- Qinglin Yang
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Hua Han
- Department of Clinical Nutrition, The First People's Hospital of Zunyi, Zunyi, China
| | - Zhongming Sun
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Lu Liu
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Xingting Zheng
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Zeyu Meng
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Na Tao
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jun Liu
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China
| |
Collapse
|
9
|
Afzaal M, Saeed F, Shah YA, Hussain M, Rabail R, Socol CT, Hassoun A, Pateiro M, Lorenzo JM, Rusu AV, Aadil RM. Human gut microbiota in health and disease: Unveiling the relationship. Front Microbiol 2022; 13:999001. [PMID: 36225386 PMCID: PMC9549250 DOI: 10.3389/fmicb.2022.999001] [Citation(s) in RCA: 194] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/31/2022] [Indexed: 12/04/2022] Open
Abstract
The human gut possesses millions of microbes that define a complex microbial community. The gut microbiota has been characterized as a vital organ forming its multidirectional connecting axis with other organs. This gut microbiota axis is responsible for host-microbe interactions and works by communicating with the neural, endocrinal, humoral, immunological, and metabolic pathways. The human gut microorganisms (mostly non-pathogenic) have symbiotic host relationships and are usually associated with the host’s immunity to defend against pathogenic invasion. The dysbiosis of the gut microbiota is therefore linked to various human diseases, such as anxiety, depression, hypertension, cardiovascular diseases, obesity, diabetes, inflammatory bowel disease, and cancer. The mechanism leading to the disease development has a crucial correlation with gut microbiota, metabolic products, and host immune response in humans. The understanding of mechanisms over gut microbiota exerts its positive or harmful impacts remains largely undefined. However, many recent clinical studies conducted worldwide are demonstrating the relation of specific microbial species and eubiosis in health and disease. A comprehensive understanding of gut microbiota interactions, its role in health and disease, and recent updates on the subject are the striking topics of the current review. We have also addressed the daunting challenges that must be brought under control to maintain health and treat diseases.
Collapse
Affiliation(s)
- Muhammad Afzaal
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
- *Correspondence: Muhammad Afzaal,
| | - Farhan Saeed
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Yasir Abbas Shah
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muzzamal Hussain
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Roshina Rabail
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | | | - Abdo Hassoun
- Sustainable AgriFoodtech Innovation & Research (SAFIR), Arras, France
- Syrian Academic Expertise (SAE), Gaziantep, Turkey
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain
- Área de Tecnoloxía dos Alimentos, Faculdade de Ciências de Ourense, Universidade de Vigo, Ourense, Spain
| | - Alexandru Vasile Rusu
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- Faculty of Animal Science and Biotechnology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
- Rana Muhammad Aadil,
| |
Collapse
|
10
|
He LH, Yao DH, Wang LY, Zhang L, Bai XL. Gut Microbiome-Mediated Alteration of Immunity, Inflammation, and Metabolism Involved in the Regulation of Non-alcoholic Fatty Liver Disease. Front Microbiol 2021; 12:761836. [PMID: 34795655 PMCID: PMC8593644 DOI: 10.3389/fmicb.2021.761836] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the leading causes of end-stage liver disease, leading to a rapidly growing global public health burden. The term “gut microbiome (GM)” refers to the approximately 100 trillion microbial cells that inhabit the host’s gastrointestinal tract. There is increasing evidence that GM is involved in the pathogenesis of NAFLD and may be a potential target for intervention. To explore GM-based strategies for precise diagnosis and treatment of NAFLD, great efforts have been made to develop a comprehensive and in-depth understanding of the host–microbe interaction. This review evaluates this interaction critically, mainly considering the intricate regulation of the metabolism, immunity, and inflammatory status during the evolution of the disease pathogenesis, revealing roles for the GM in NAFLD by examining advances in potential mechanisms, diagnostics, and modulation strategies. Synopsis: Considering the intricate metabolic and immune/inflammatory homeostasis regulation, we evaluate the latest understanding of the host–microbe interaction and reveal roles for the gastrointestinal microbiome in NAFLD. Strategies targeting the gastrointestinal microbiome for the diagnosis and treatment of NAFLD are proposed.
Collapse
Affiliation(s)
- Li-Hong He
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,The First Clinical Medical College, Lanzhou University, Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Dun-Han Yao
- The First Clinical Medical College, Lanzhou University, Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Ling-Yun Wang
- The First Clinical Medical College, Lanzhou University, Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Lei Zhang
- The First Clinical Medical College, Lanzhou University, Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xue-Li Bai
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Luo J, Yu J, Peng X. Could partial nonstarch polysaccharides ameliorate cancer by altering m 6A RNA methylation in hosts through intestinal microbiota? Crit Rev Food Sci Nutr 2021; 62:8319-8334. [PMID: 34036843 DOI: 10.1080/10408398.2021.1927975] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
There is a growing scientific view that the improvement of cancer by nonstarch polysaccharides (NSPs) is mediated by intestinal microbiota. Intestinal bacteria affect the supply of methyl donor substances and influence N6-methyladenosine (m6A) RNA methylation. As one of the epigenetic/epitranscriptomic modifications, m6A RNA methylation is closely related to the initiation and progression of cancers. This review summarizes the cancer-improving effects of NSPs through modulation of intestinal microbiota. It also summarizes the relationship between intestinal bacteria and the supply of methyl donor substances. Moreover, it also provides a summary of the effects of m6A RNA methylation on various types of cancer. The proposed mechanism is that, dietary consumed NSPs are utilized by specific intestinal bacteria and further reshape the microbial structure. Methyl donor substances will be directly or indirectly generated by the reshaped-microbiota, and affect the m6A RNA methylation of cancer-related and pro-carcinogenic inflammatory cytokine genes. Therefore, NSPs may change the m6A RNA methylation by affecting the methyl donor supply produced by intestinal microbiota and ameliorate cancer. This review discussed the possibility of cancer improvement of bioactive NSPs achieved by impacting RNA methylation via the intestinal microbiota, and it will offer new insights for the application of NSPs toward specific cancer prevention.
Collapse
Affiliation(s)
- Jianming Luo
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, China
| | - Juntong Yu
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Xichun Peng
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Methylenetetrahydrofolate Reductase (MTHFR) Gene Polymorphism and Infant's Anthropometry at Birth. Nutrients 2021; 13:nu13030831. [PMID: 33802362 PMCID: PMC7998581 DOI: 10.3390/nu13030831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 01/09/2023] Open
Abstract
Identification of causal factors that influence fetal growth and anthropometry at birth is of great importance as they provide information about increased risk of disease throughout life. The association between maternal genetic polymorphism MTHFR(677)C>T and anthropometry at birth has been widely studied because of its key role in the one-carbon cycle. MTHFR(677) CT and TT genotypes have been associated with a greater risk of low birth weight, especially in case of deficient intake of folic acid during pregnancy. This study aimed to analyze the association between the maternal MTHFR(677)C>T genetic polymorphism and anthropometry at birth in a population with adequate folate consumption. We included 694 mother-newborn pairs from a prospective population-based birth cohort in Spain, in the Genetics, Early life enviroNmental Exposures and Infant Development in Andalusia (GENEIDA) project. Women were genotyped for MTHFR(677)C>T SNP by Q-PCR using TaqMan© probes. Relevant maternal and newborn information was obtained from structured questionnaires and medical records. Results showed that maternal MTHFR(677)C>T genotype was associated with newborn anthropometry. Genotypes CT or CT/TT showed statistically significant associations with increased or decreased risk of large-for-gestational-age (LGA) or small-for-gestational-age (SGA) based on weight and height, depending on the newborn's sex, as well as with SGA in premature neonates. The relationships between this maternal genotype and anthropometry at birth remained despite an adequate maternal folate intake.
Collapse
|
13
|
GUIMARÃES VM, SANTOS VN, BORGES PSDA, DE FARIAS JLR, GRILLO P, PARISE ER. PERIPHERAL BLOOD ENDOTOXIN LEVELS ARE NOT ASSOCIATED WITH SMALL INTESTINAL BACTERIAL OVERGROWTH IN NONALCOHOLIC FATTY LIVER DISEASE WITHOUT CIRRHOSIS. ARQUIVOS DE GASTROENTEROLOGIA 2020; 57:471-476. [DOI: 10.1590/s0004-2803.202000000-82] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
ABSTRACT BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is one of the most common forms of chronic liver disease worldwide. Approximately 20% of individuals with NAFLD develop nonalcoholic steatohepatitis (NASH), which is associated with increased risk of cirrhosis, portal hypertension, and hepatocellular carcinoma. Intestinal microflora, including small intestinal bacterial overgrowth (SIBO), appear to play an important role in the pathogenesis of the disease, as demonstrated in several clinical and experimental studies, by altering intestinal permeability and allowing bacterial endotoxins to enter the circulation. OBJECTIVE: To determine the relationship between SIBO and endotoxin serum levels with clinical, laboratory, and histopathological aspects of NAFLD and the relationship between SIBO and endotoxin serum levels before and after antibiotic therapy. METHODS: Adult patients with a histological diagnosis of NAFLD, without cirrhosis were included. A comprehensive biochemistry panel, lactulose breath test (for diagnosis of SIBO), and serum endotoxin measurement (chromogenic LAL assay) were performed. SIBO was treated with metronidazole 250 mg q8h for 10 days and refractory cases were given ciprofloxacin 500 mg q12h for 10 days. RESULTS: Overall, 42 patients with a histopathological diagnosis of NAFLD were examined. The prevalence of SIBO was 26.2%. Comparison of demographic and biochemical parameters between patients with SIBO and those without SIBO revealed no statistically significant differences, except for use of proton pump inhibitors, which was significantly more frequent in patients with positive breath testing. The presence of SIBO was also associated with greater severity of hepatocellular ballooning on liver biopsy. Although the sample, as a whole, have elevated circulating endotoxin levels, we found no significant differences in this parameter between the groups with and without SIBO. Endotoxin values before and after antibiotic treatment did not differ, even on paired analysis, suggesting absence of any relationship between these factors. Serum endotoxin levels were inversely correlated with HDL levels, and directly correlated with triglyceride levels. CONCLUSION: Serum endotoxin levels did not differ between patients with and without SIBO, nor did these levels change after antibacterial therapy, virtually ruling out the possibility that elevated endotoxinemia in non-cirrhotic patients with NAFLD is associated with SIBO. Presence of SIBO was associated with greater severity of ballooning degeneration on liver biopsy, but not with a significantly higher prevalence of NASH. Additional studies are needed to evaluate the reproducibility and importance of this finding in patients with NAFLD and SIBO.
Collapse
|
14
|
Microbiota-Associated Therapy for Non-Alcoholic Steatohepatitis-Induced Liver Cancer: A Review. Int J Mol Sci 2020; 21:ijms21175999. [PMID: 32825440 PMCID: PMC7504062 DOI: 10.3390/ijms21175999] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 12/24/2022] Open
Abstract
Even though advancement in medicine has contributed to the control of many diseases to date, cancer therapy continues to pose several challenges. Hepatocellular carcinoma (HCC) etiology is multifactorial. Recently, non-alcoholic fatty liver disease (NAFLD) has been considered as an important risk factor of HCC. NAFLD can be divided into non-alcoholic simple fatty liver (NAFL) and non-alcoholic steatohepatitis (NASH) based on histopathological features. Recently, studies have indicated that the gut microbiota is associated with NAFLD and HCC. Therefore, in this review, we have discussed the effects of gut microbiota-related mechanisms, including dysbiosis and gut barrier function, and gut microbiota-derived metabolites on NAFLD and HCC pathogenesis and the potential therapeutic strategies for NAFLD and HCC. With a better understanding of the gut microbiota composition and function, new and improved diagnostic, prognostic, and therapeutic strategies for common liver diseases can be developed.
Collapse
|
15
|
Huang KT, Shen YL, Lee CN, Chu KY, Ku WC, Liu CY, Huang RFS. Using Differential Threshold Effects of Individual and Combined Periconceptional Methyl Donor Status on Maternal Genomic LINE-1 and Imprinted H19 DNA Methylation to Predict Birth Weight Variance in the Taiwan Pregnancy-Newborn Epigenetics (TPNE) Cohort Study. J Nutr 2020; 150:108-117. [PMID: 31504733 DOI: 10.1093/jn/nxz204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Few studies have comprehensively examined the effect of methyl donor status on maternal DNA methylation and birth outcomes. OBJECTIVES This study examined associations between periconceptional methyl donor status and genome-wide and specific imprinted gene methylation and fetal growth indices in the Taiwan Pregnancy-Newborn Epigenetics cohort. METHODS Plasma folate, choline (free form), and betaine concentrations of the participants enrolled at 7-10 weeks of gestation were analyzed. DNA methylation at regulatory sequences of the imprinted H19 gene and genomic long interspersed nuclear element 1 (LINE-1) were measured in maternal lymphocytes using bisulfite/high-resolution melt polymerase chain reaction. Associations with birth weight (BW) were estimated through multiple regressions from 112 mother-newborn pairs. RESULTS A nonlinear "L-shaped" relation and an inverse association between maternal plasma folate in T1 (mean ± SE: 17.6 ± 5.1 nmol/L) and lymphocytic LINE-1 methylation (β: -0.49, P = 0.027) were characterized. After adjusting for LINE-1 methylation, individual maternal folate concentrations were positively associated with BW variance (β = 0.24, P = 0.035), and the association was more pronounced in mothers with choline in T1 (mean ± SE: 5.4 ± 0.6 μmol/L; β: 0.40, P = 0.039). Choline status of the mothers in T2 (mean ± SE: 7.2 ± 0.6 μmol/L) was inversely associated with LINE-1 methylation (β: -0.43, P = 0.035), and a positive association was evident between T1 choline and H19 methylation (β: 0.48, P = 0.011). After adjusting for epigenetic modification, maternal choline status predicted a positive association with BW (β: 0.56, P = 0.005), but the effect was limited to mothers with high betaine concentrations in T3 (mean ± SE: 36.4 ± 8.8 μmol/L), depending on folate status. CONCLUSIONS Our data highlight the differential threshold effects of periconceptional folate, choline, and betaine status on genomic LINE-1 and H19 DNA methylation and how their interplay has a long-term effect on BW variance.
Collapse
Affiliation(s)
- Kuang-Ta Huang
- PhD Program in Nutrition and Food Science, Fu Jen Catholic University, New Taipei City, Taiwan.,Loving Care Maternity and Children's Health Centers, New Taipei City, Taiwan
| | - Yu-Li Shen
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chien-Nan Lee
- Department of Gynecology and Obstetrics, National Taiwan University Hospital, Taipei City, Taiwan
| | - Kuan-Yu Chu
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Wei-Chi Ku
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chieh-Yu Liu
- Biostatistical Consultant Lab, Department of Speech Language Pathology and Audiology, National Taipei University of Nursing and Health Sciences, Taipei City, Taiwan
| | - Rwei-Fen S Huang
- PhD Program in Nutrition and Food Science, Fu Jen Catholic University, New Taipei City, Taiwan.,Department of Nutritional Science, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
16
|
Zhou D, Fan JG. Microbial metabolites in non-alcoholic fatty liver disease. World J Gastroenterol 2019; 25:2019-2028. [PMID: 31114130 PMCID: PMC6506577 DOI: 10.3748/wjg.v25.i17.2019] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/25/2019] [Accepted: 03/30/2019] [Indexed: 02/06/2023] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is rising exponentially worldwide. The spectrum of NAFLD includes non-alcoholic fatty liver, non-alcoholic steatohepatitis, liver cirrhosis, and even hepatocellular carcinoma. Evidence shows that microbial metabolites play pivotal roles in the onset and progression of NAFLD. In this review, we discuss how microbe-derived metabolites, such as short-chain fatty acids, endogenous ethanol, bile acids and so forth, contribute to the pathogenesis of NAFLD.
Collapse
Affiliation(s)
- Da Zhou
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai Institute of Liver Disease, Shanghai 200032, China
| | - Jian-Gao Fan
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
| |
Collapse
|
17
|
Safari Z, Gérard P. The links between the gut microbiome and non-alcoholic fatty liver disease (NAFLD). Cell Mol Life Sci 2019; 76:1541-1558. [PMID: 30683985 PMCID: PMC11105223 DOI: 10.1007/s00018-019-03011-w] [Citation(s) in RCA: 327] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/11/2018] [Accepted: 01/15/2019] [Indexed: 12/11/2022]
Abstract
NAFLD is currently the main cause of chronic liver disease in developed countries, and the number of NAFLD patients is growing worldwide. NAFLD often has similar symptoms to other metabolic disorders, including type 2 diabetes and obesity. Recently, the role of the gut microbiota in the pathophysiology of many diseases has been revealed. Regarding NAFLD, experiments using gut microbiota transplants to germ-free animal models showed that fatty liver disease development is determined by gut bacteria. Moreover, the perturbation of the composition of the gut microbiota has been observed in patients suffering from NAFLD. Numerous mechanisms relating the gut microbiome to NAFLD have been proposed, including the dysbiosis-induced dysregulation of gut endothelial barrier function that allows for the translocation of bacterial components and leads to hepatic inflammation. In addition, the various metabolites produced by the gut microbiota may impact the liver and thus modulate NAFLD susceptibility. Therefore, the manipulation of the gut microbiome by probiotics, prebiotics or synbiotics was shown to improve liver phenotype in NAFLD patients as well as in rodent models. Hence, further knowledge about the interactions among dysbiosis, environmental factors, and diet and their impacts on the gut-liver axis can improve the treatment of this life-threatening liver disease and its related disorders.
Collapse
Affiliation(s)
- Zahra Safari
- Micalis Institute, INRA, UMR1319, Equipe AMIPEM, AgroParisTech, Université Paris-Saclay, Building 442, Domaine de Vilvert, 78350, Jouy-en-Josas, France
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Philippe Gérard
- Micalis Institute, INRA, UMR1319, Equipe AMIPEM, AgroParisTech, Université Paris-Saclay, Building 442, Domaine de Vilvert, 78350, Jouy-en-Josas, France.
| |
Collapse
|
18
|
van Lee L, Crozier SR, Aris IM, Tint MT, Sadananthan SA, Michael N, Quah PL, Robinson SM, Inskip HM, Harvey NC, Barker M, Cooper C, Velan SS, Lee YS, Fortier MV, Yap F, Gluckman PD, Tan KH, Shek LP, Chong YS, Godfrey KM, Chong MFF. Prospective associations of maternal choline status with offspring body composition in the first 5 years of life in two large mother-offspring cohorts: the Southampton Women's Survey cohort and the Growing Up in Singapore Towards healthy Outcomes cohort. Int J Epidemiol 2019; 48:433-444. [PMID: 30649331 PMCID: PMC6751083 DOI: 10.1093/ije/dyy291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Choline status has been positively associated with weight and fat mass in animal and human studies. As evidence examining maternal circulating choline concentrations and offspring body composition in human infants/children is lacking, we investigated this in two cohorts. METHODS Maternal choline concentrations were measured in the UK Southampton Women's Survey (SWS; serum, n = 985, 11 weeks' gestation) and Singapore Growing Up Towards healthy Outcomes (GUSTO); n = 955, 26-28 weeks' gestation) mother-offspring cohorts. Offspring anthropometry was measured at birth and up to age 5 years. Body fat mass was determined using dual-energy x-ray absorptiometry at birth and age 4 years for SWS; and using air-displacement plethysmography at birth and age 5 years for GUSTO. Linear-regression analyses were performed, adjusting for confounders. RESULTS In SWS, higher maternal choline concentrations were associated with higher neonatal total body fat mass {β = 0.60 standard deviation [SD]/5 µmol/L maternal choline [95% confidence interval (CI) 0.04-1.16]} and higher subscapular skinfold thickness [β = 0.55 mm/5 µmol/L (95% CI, 0.12-1.00)] at birth. In GUSTO, higher maternal choline concentrations were associated with higher neonatal body mass index-for-age z-score [β = 0.31 SD/5 µmol/L (0.10-0.51)] and higher triceps [β = 0.38 mm/5 µmol/L (95% CI, 0.11-0.65)] and subscapular skinfold thicknesses [β = 0.26 mm/5 µmol/L (95% CI, 0.01-0.50)] at birth. No consistent trends were observed between maternal choline and offspring gain in body mass index, skinfold thicknesses, abdominal circumference, weight, length/height and adiposity measures in later infancy and early childhood. CONCLUSION Our study provides evidence that maternal circulating choline concentrations during pregnancy are positively associated with offspring BMI, skinfold thicknesses and adiposity at birth, but not with growth and adiposity through infancy and early childhood to the age of 5 years.
Collapse
Affiliation(s)
- Linde van Lee
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore
| | - Sarah R Crozier
- MRC Lifecourse Epidemiology Unit, University of Southampton, United Kingdom
| | - Izzuddin M Aris
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mya T Tint
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Suresh Anand Sadananthan
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore
| | - Navin Michael
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore
| | - Phaik Ling Quah
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore
| | - Sian M Robinson
- MRC Lifecourse Epidemiology Unit, University of Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University of Southampton and Hospital Southampton NHS Foundation Trust, United Kingdom
| | - Hazel M Inskip
- MRC Lifecourse Epidemiology Unit, University of Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University of Southampton and Hospital Southampton NHS Foundation Trust, United Kingdom
| | - Nicholas C Harvey
- MRC Lifecourse Epidemiology Unit, University of Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University of Southampton and Hospital Southampton NHS Foundation Trust, United Kingdom
| | - Mary Barker
- MRC Lifecourse Epidemiology Unit, University of Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University of Southampton and Hospital Southampton NHS Foundation Trust, United Kingdom
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit, University of Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University of Southampton and Hospital Southampton NHS Foundation Trust, United Kingdom
| | - Sendhil S Velan
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore
- Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Agency for Science Technology and Research, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yung Seng Lee
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Khoo Teck Puat-National University Children’s Medical Institute, National University Health System, Singapore, Singapore
| | - Marielle V Fortier
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore
- Department of Diagnostic and Interventional Imaging, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Fabian Yap
- Duke-NUS Medical School, Singapore, Nanyang Technological University, Singapore, Singapore
- Department of Pediatrics, KK Women’s and Children’s Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Peter D Gluckman
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore
- Liggings Institute, University of Auckland, New Zealand
| | - Kok Hian Tan
- Department of Reproductive Medicine, KK Women’s and Children’s Hospital, Singapore, Singapore
| | - Lynette P Shek
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yap-Seng Chong
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Keith M Godfrey
- MRC Lifecourse Epidemiology Unit, University of Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University of Southampton and Hospital Southampton NHS Foundation Trust, United Kingdom
| | - Mary FF Chong
- Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, Singapore
- Clinical Nutrition Research Centre, Agency for Science, Technology, and Research, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| |
Collapse
|
19
|
Chen K, Ma J, Jia X, Ai W, Ma Z, Pan Q. Advancing the understanding of NAFLD to hepatocellular carcinoma development: From experimental models to humans. Biochim Biophys Acta Rev Cancer 2018; 1871:117-125. [PMID: 30528647 DOI: 10.1016/j.bbcan.2018.11.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/28/2018] [Accepted: 11/23/2018] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has recently been recognized as an important etiology contributing to the increased incidence of hepatocellular carcinoma (HCC). NAFLD, characterized by fat accumulation in the liver, is affecting at least one-third of the global population. The more aggressive form, nonalcoholic steatohepatitis (NASH), is characterized by hepatocyte necrosis and inflammation. The development of effective approaches for disease prevention and/or treatment heavily relies on deep understanding of the mechanisms underlying NAFLD to HCC development. However, this has been largely hampered by the lack of robust experimental models that recapitulate the full disease spectrum. This review will comprehensively describe the current in vitro and mouse models for studying NAFLD/NASH/HCC, and further emphasize their applications and possible future improvement for better understanding the molecular mechanisms involved in the cascade of NAFLD to HCC progression.
Collapse
Affiliation(s)
- Kan Chen
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China; Biomedical Research Center, Northwest Minzu University, Lanzhou, China; Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Jianbo Ma
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China; Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Xiaoyuan Jia
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Wen Ai
- Department of Cardiology, Shenzhen Nanshan People's Hospital, China
| | - Zhongren Ma
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Qiuwei Pan
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China; Biomedical Research Center, Northwest Minzu University, Lanzhou, China; Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
20
|
Serum metabolomic profiling predicts synovial gene expression in rheumatoid arthritis. Arthritis Res Ther 2018; 20:164. [PMID: 30075744 PMCID: PMC6091066 DOI: 10.1186/s13075-018-1655-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/29/2018] [Indexed: 12/18/2022] Open
Abstract
Background Metabolomics is an emerging field of biomedical research that may offer a better understanding of the mechanisms of underlying conditions including inflammatory arthritis. Perturbations caused by inflamed synovial tissue can lead to correlated changes in concentrations of certain metabolites in the synovium and thereby function as potential biomarkers in blood. Here, we explore the hypothesis of whether characterization of patients’ metabolomic profiles in blood, utilizing 1H-nuclear magnetic resonance (NMR), predicts synovial marker profiling in rheumatoid arthritis (RA). Methods Nineteen active, seropositive patients with RA, on concomitant methotrexate, were studied. One of the involved joints was a knee or a wrist appropriate for arthroscopy. A Bruker Avance 700 MHz spectrometer was used to acquire NMR spectra of serum samples. Gene expression in synovial tissue obtained by arthroscopy was analyzed by real-time PCR. Data processing and statistical analysis were performed in Python and SPSS. Results Analysis of the relationships between each synovial marker-metabolite pair using linear regression and controlling for age and gender revealed significant clustering within the data. We observed an association of serine/glycine/phenylalanine metabolism and aminoacyl-tRNA biosynthesis with lymphoid cell gene signature. Alanine/aspartate/glutamate metabolism and choline-derived metabolites correlated with TNF-α synovial expression. Circulating ketone bodies were associated with gene expression of synovial metalloproteinases. Discriminant analysis identified serum metabolites that classified patients according to their synovial marker levels. Conclusion The relationship between serum metabolite profiles and synovial biomarker profiling suggests that NMR may be a promising tool for predicting specific pathogenic pathways in the inflamed synovium of patients with RA. Electronic supplementary material The online version of this article (10.1186/s13075-018-1655-3) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
van Lee L, Quah PL, Saw SM, Yap FKP, Godfrey KM, Chong YS, Meaney MJ, Chen H, Chong MFF. Maternal choline status during pregnancy, but not that of betaine, is related to antenatal mental well-being: The growing up in Singapore toward healthy outcomes cohort. Depress Anxiety 2017; 34:877-887. [PMID: 28471488 PMCID: PMC5553109 DOI: 10.1002/da.22637] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 04/06/2017] [Accepted: 04/09/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Choline and betaine status have previously been associated with symptoms of depression. However, the relation of maternal plasma choline and betaine concentrations in pregnancy to peripartum maternal mood is unknown. METHODS Maternal plasma choline and betaine concentrations (μmol/L) were measured at 26-28 weeks gestation in the Growing Up in Singapore Toward healthy Outcomes (GUSTO) mother-offspring cohort. Participants completed the State-Trait Anxiety Inventory (STAI) and Edinburgh Postnatal Depression Scale (EDPS) at 26-28 weeks gestation (n = 949) and at 3 months postnatal (n = 689): higher scores are indicative of more symptoms of anxiety and depression. Multivariate linear regression models were used to estimate the association of choline and betaine with ante- and postnatal mental well-being adjusting for covariates. RESULTS Mean (SD) antenatal plasma choline and betaine concentrations were 9.2 μmol/L (1.6) and 13.1 μmol/L (2.7), respectively. Plasma choline concentrations were positively associated with antenatal depressive (β = .24 EPDS score [95% CI: 0.05-0.43] per μmol/L] and anxiety symptoms (β = .46 STAI-state score [95% CI: 0.03-0.88] per μmol/L) adjusting for covariates. Plasma betaine concentrations were not associated with antenatal depression or anxiety symptoms. No associations were observed between pregnancy choline or betaine and postnatal mental well-being. CONCLUSION This study suggests that higher maternal plasma choline status during pregnancy is associated with more symptoms of antenatal depression and anxiety, whereas plasma betaine concentrations showed no associations. No associations were observed for postnatal mental well-being. Prospective studies are required to replicate these findings and further examine the direction of causality and possible biological mechanisms.
Collapse
Affiliation(s)
- Linde van Lee
- Singapore Institute for Clinical Science, Agency for Science, Technology and Research, Singapore, Singapore
| | - Phaik Ling Quah
- Singapore Institute for Clinical Science, Agency for Science, Technology and Research, Singapore, Singapore
| | - Seang Mei Saw
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Fabian KP Yap
- Department of Paediatrics, KK Women’s and Children’s Hospital, Singapore,Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Keith M Godfrey
- Medical Research Council Lifecourse Epidemiology Unit and NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Yap Seng Chong
- Singapore Institute for Clinical Science, Agency for Science, Technology and Research, Singapore, Singapore,Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| | - Michael J Meaney
- Singapore Institute for Clinical Science, Agency for Science, Technology and Research, Singapore, Singapore,Departments of Psychiatry and Neurology & Neurosurgery, McGill University, Montreal, Canada
| | - Helen Chen
- KK Women’s and Children’s Hospital (KKH), Singapore, Singapore
| | - Mary Foong-Fong Chong
- Singapore Institute for Clinical Science, Agency for Science, Technology and Research, Singapore, Singapore,Saw Swee Hock School of Public Health, National University of Singapore, Singapore,Clinical Nutrition Research Center, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
22
|
Lucchini V. Nutrigenetics in practice: little is better than nothing. Curr Opin Food Sci 2017. [DOI: 10.1016/j.cofs.2017.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Ye J, Wu W, Li Y, Li L. Influences of the Gut Microbiota on DNA Methylation and Histone Modification. Dig Dis Sci 2017; 62:1155-1164. [PMID: 28341870 DOI: 10.1007/s10620-017-4538-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/09/2017] [Indexed: 12/12/2022]
Abstract
The gut microbiota is a vast ensemble of microorganisms inhabiting the mammalian gastrointestinal tract that can impact physiologic and pathologic processes. However, our understanding of the underlying mechanism for the dynamic interaction between host and gut microbiota is still in its infancy. The highly evolved epigenetic modifications allow hosts to reprogram the genome in response to environmental stimuli, which may play a key role in triggering multiple human diseases. In spite of increasing studies in gut microbiota and epigenetic modifications, the correlation between them has not been well elaborated. Here, we review current knowledge of gut microbiota impacts on epigenetic modifications, the major evidence of which centers on DNA methylation and histone modification of the immune system.
Collapse
Affiliation(s)
- Jianzhong Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, 310003, China
| | - Wenrui Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, 310003, China
| | - Yating Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
24
|
Bashiardes S, Shapiro H, Rozin S, Shibolet O, Elinav E. Non-alcoholic fatty liver and the gut microbiota. Mol Metab 2016; 5:782-94. [PMID: 27617201 PMCID: PMC5004228 DOI: 10.1016/j.molmet.2016.06.003] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/04/2016] [Accepted: 06/08/2016] [Indexed: 02/06/2023] Open
Abstract
Background Non-alcoholic fatty liver (NAFLD) is a common, multi-factorial, and poorly understood liver disease whose incidence is globally rising. NAFLD is generally asymptomatic and associated with other manifestations of the metabolic syndrome. Yet, up to 25% of NAFLD patients develop a progressive inflammatory liver disease termed non-alcoholic steatohepatitis (NASH) that may progress towards cirrhosis, hepatocellular carcinoma, and the need for liver transplantation. In recent years, several lines of evidence suggest that the gut microbiome represents a significant environmental factor contributing to NAFLD development and its progression into NASH. Suggested microbiome-associated mechanisms contributing to NAFLD and NASH include dysbiosis-induced deregulation of the gut endothelial barrier function, which facilitates systemic bacterial translocation, and intestinal and hepatic inflammation. Furthermore, increased microbiome-modulated metabolites such as lipopolysaccharides, short chain fatty acids (SCFAs), bile acids, and ethanol, may affect liver pathology through multiple direct and indirect mechanisms. Scope of review Herein, we discuss the associations, mechanisms, and clinical implications of the microbiome's contribution to NAFLD and NASH. Understanding these contributions to the development of fatty liver pathogenesis and its clinical course may serve as a basis for development of therapeutic microbiome-targeting approaches for treatment and prevention of NAFLD and NASH. Major conclusions Intestinal host–microbiome interactions play diverse roles in the pathogenesis and progression of NAFLD and NASH. Elucidation of the mechanisms driving these microbial effects on the pathogenesis of NAFLD and NASH may enable to identify new diagnostic and therapeutic targets of these common metabolic liver diseases. This article is part of a special issue on microbiota.
Collapse
Affiliation(s)
- Stavros Bashiardes
- Immunology Department, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Hagit Shapiro
- Immunology Department, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Shachar Rozin
- Immunology Department, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Oren Shibolet
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel; Department of Gastroenterology, Tel Aviv Medical Center, Tel Aviv 6423906, Israel
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
25
|
Goodrich JK, Davenport ER, Beaumont M, Jackson MA, Knight R, Ober C, Spector TD, Bell JT, Clark AG, Ley RE. Genetic Determinants of the Gut Microbiome in UK Twins. Cell Host Microbe 2016; 19:731-43. [PMID: 27173935 PMCID: PMC4915943 DOI: 10.1016/j.chom.2016.04.017] [Citation(s) in RCA: 697] [Impact Index Per Article: 77.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/20/2016] [Accepted: 04/22/2016] [Indexed: 12/27/2022]
Abstract
Studies in mice and humans have revealed intriguing associations between host genetics and the microbiome. Here we report a 16S rRNA-based analysis of the gut microbiome in 1,126 twin pairs, a subset of which was previously reported. Tripling the sample narrowed the confidence intervals around heritability estimates and uncovered additional heritable taxa, some of which are validated in other studies. Repeat sampling of subjects showed heritable taxa to be temporally stable. A candidate gene approach uncovered associations between heritable taxa and genes related to diet, metabolism, and olfaction. We replicate an association between Bifidobacterium and the lactase (LCT) gene locus and identify an association between the host gene ALDH1L1 and the bacteria SHA-98, suggesting a link between formate production and blood pressure. Additional genes detected are involved in barrier defense and self/non-self recognition. Our results indicate that diet-sensing, metabolism, and immune defense are important drivers of human-microbiome co-evolution.
Collapse
Affiliation(s)
- Julia K Goodrich
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Emily R Davenport
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Michelle Beaumont
- Department of Twin Research & Genetic Epidemiology, King's College London, London SE1 7EH, UK
| | - Matthew A Jackson
- Department of Twin Research & Genetic Epidemiology, King's College London, London SE1 7EH, UK
| | - Rob Knight
- Departments of Pediatrics and Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Tim D Spector
- Department of Twin Research & Genetic Epidemiology, King's College London, London SE1 7EH, UK
| | - Jordana T Bell
- Department of Twin Research & Genetic Epidemiology, King's College London, London SE1 7EH, UK
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Ruth E Ley
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA; Department of Microbiome Science, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany.
| |
Collapse
|