1
|
Holm H, Jujic A, Nilsson PM, Magnusson M, Malan L. The prognostic significance of stress-phenotyping for stroke incidence: the Malmö Diet and Cancer Study. Stress 2025; 28:2443980. [PMID: 39731532 DOI: 10.1080/10253890.2024.2443980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 12/08/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Self-reported mental stress is not consistently recognized as a risk factor for stroke. This prompted development of a novel algorithm for stress-phenotype indices to quantify chronic stress prevalence in relation to a modified stroke risk score in a South African cohort. The algorithm is based on biomarkers adrenocorticotrophic hormone, high-density lipoprotein cholesterol, high-sensitive cardiac-troponin-T, and diastolic blood pressure which exemplifies the stress-ischemic-phenotype index. Further modification of the stroke risk score to accommodate alcohol misuse established the stress-diabetes-phenotype index. Whether positive stress-phenotype individuals will demonstrate a higher incidence of stroke in an independent Swedish cohort was unknown and investigated. METHODS Stress-phenotyping was done at baseline for 50 participants with incident stroke and 100 age-, and sex matched controls (aged 76 ± 5 years) from 2,924 individuals in southern Sweden. The mean time from inclusion to first stroke event was 5 ± 3 years. Stress-phenotyping comparisons and stroke incidence risk were determined. RESULTS A positive stress-ischemic-phenotype reflected higher incident stroke (72% vs. 28%, p = 0.019) and mortality rates (41% vs. 23%, p = 0.019). Whereas a positive stress-diabetes-phenotype reflected a higher incident stroke rate (80% vs. 20%, p = 0.008) but similar mortality rate (38% vs. 25%, p = 0.146). Both the positive stress-ischemic (OR: 2.9, 95% CI: 1.3-6.5, p = 0.011) and stress-diabetes-phenotypes (OR: 3.7, 95% CI: 1.5-8.9, p = 0.004) showed large effect size associations with incident stroke independent of cardiovascular risk confounders. CONCLUSION Positive stress-phenotype indices demonstrated a higher incidence of stroke. Ultimately the Malan stress-phenotype algorithms developed in South Africa could confirm incident stroke in an independent Swedish cohort. Stress-phenotyping could thus be useful in clinical routine practice in order to detect individuals at higher stroke risk.
Collapse
Affiliation(s)
- H Holm
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- Department of Cardiology, Skåne University Hospital, Malmö, Sweden
| | - A Jujic
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- Department of Cardiology, Skåne University Hospital, Malmö, Sweden
| | - P M Nilsson
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - M Magnusson
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- Department of Cardiology, Skåne University Hospital, Malmö, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa
| | - L Malan
- Technology Transfer and Innovation-Support Office, North-West University, Potchefstroom, South Africa
| |
Collapse
|
2
|
Yu C, Hu W, Lei X. Association between cardiometabolic index (CMI) and suicidal ideation: The mediating role of depression and cardiovascular disease. J Affect Disord 2025; 380:487-495. [PMID: 40154805 DOI: 10.1016/j.jad.2025.03.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/06/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Although existing evidence has shown a significant relationship between lipids and suicidal ideation, the relationship between Cardiometabolic index (CMI) and suicidal ideation remains unclear. This study aimed to explore the association between CMI and suicidal ideation. Furthermore, we explored whether several common CMI-related diseases mediate this association. METHODS This cross-sectional study analyzed data from 13,549 adults in the National Health and Nutrition Examination Survey (NHANES) from 2005 to 2018. Weighted multivariate regression models and restricted cubic spline (RCS) were used to examine the association between CMI and suicidal ideation. Subgroup and interaction analyses were conducted to assess the robustness of findings across different populations. Mediation analysis was performed to evaluate the potential mediating roles of depression, coronary artery disease (CVD), hypertension, and diabetes in this relationship. RESULTS In the fully adjusted model, each unit increase in CMI was associated with a 17 % increase in the risk of suicidal ideation. Compared to the lowest tertile, participants in the highest tertile had a 41 % increased likelihood of suicidal ideation (95 % CI: 1.05-1.91). The association between CMI and suicidal ideation was consistent across different populations (all P for interaction >0.05). Depression and CVD partially mediated this relationship, accounting for 20.4 % and 4.5 % of the total effect, respectively. CONCLUSIONS CMI is associated with an increased risk of suicidal ideation, with depression and CVD acting as partial mediators in this relationship. Reducing CMI with the goal of improving obesity and glucose and lipid disorders may be a key strategy to reduce suicidal ideation.
Collapse
Affiliation(s)
- Chunchun Yu
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Wanting Hu
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xiong Lei
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
3
|
Sirtori CR, Cincotto G, Castiglione S, Pavanello C. HDL-replacement therapy: From traditional to emerging clinical applications. ATHEROSCLEROSIS PLUS 2025; 59:68-79. [PMID: 40103705 PMCID: PMC11914826 DOI: 10.1016/j.athplu.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/27/2025] [Accepted: 02/23/2025] [Indexed: 03/20/2025]
Abstract
The unique and multifaceted properties of high-density lipoproteins (HDL)-ranging from cholesterol efflux to anti-inflammatory, anti-oxidant, and immunomodulatory effects-have prompted their direct use, particularly in cardiovascular ischemic conditions. Recent advances have extended the interest in HDL-based treatments to novel applications, from improving stent biocompatibility, to treatment of heart failure to central nervous system (CNS) disorders. Strategies to harness HDL's therapeutic potential have evolved from the direct use of isolated HDL in animal models to reconstituted HDL (rHDL) in humans. For these latter, the use of isolated apoA-I associated with different phospholipids has been the most frequent approach, also involving apparently beneficial mutants, such as the apo A-I Milano (AIM). From the initial very promising results, particularly with this mutant in coronary patients, later studies have mostly been non-confirmatory, although issues such as possible inadequate dose/response and unexpected immunological properties have come to light. Most recently a study on isolated plasma HDL in coronary patients (AEGIS-II) provided overall negative findings, but a clear fall of major cardiovascular events was recorded when restricting analysis to hypercholesterolemic patients. Emerging approaches, including gene therapy and plant-derived recombinant HDL formulations, hold promise for enhancing the accessibility and efficacy of HDL-based interventions. At this time, an improved approach to heart failure treatment also appears feasible, and a better understanding of the role played by HDL in the CNS may lead to significant improvements in the handling of some dramatic diseases at this level. While challenges persist, the evolving landscape of HDL replacement therapies offers hope for significant progress in addressing both cardiovascular and non-cardiovascular conditions.
Collapse
Affiliation(s)
- Cesare Riccardo Sirtori
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università Degli Studi di Milano, Milan, Italy
- Dyslipidemia Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Giulia Cincotto
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università Degli Studi di Milano, Milan, Italy
| | - Sofia Castiglione
- Dyslipidemia Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università Degli Studi di Milano, Milan, Italy
| | - Chiara Pavanello
- Dyslipidemia Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università Degli Studi di Milano, Milan, Italy
| |
Collapse
|
4
|
Kelliher JC, Maric I, Engeland CG, Shearer GC, Skibicka KP. Sex differences in the central and peripheral omega 3 oxylipin response to acute systemic inflammation. Am J Physiol Regul Integr Comp Physiol 2025; 328:R341-R351. [PMID: 39718589 DOI: 10.1152/ajpregu.00242.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/02/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
High-density lipoprotein (HDL) oxylipins regulate inflammation, and acute systemic inflammation can precipitate cognitive impairment. Females have more HDL and stronger immune responses than males, yet higher dementia risk. Little is known about sex differences in oxylipin responses to inflammatory stimuli and potential crosstalk between acute systemic inflammation and central oxylipin signaling in either sex. In this targeted lipidomics study, we used liquid chromatography with tandem mass spectrometry (LC/MS/MS) to characterize oxylipin profiles in plasma HDL and cerebrospinal fluid (CSF) of male and female rats following an intraperitoneal interleukin-1β (IL-1β)-induced inflammatory challenge to determine whether and how peripheral and central oxylipins respond to acute systemic inflammation in both sexes. We hypothesized that females mount a greater oxylipin response to IL-1β than males and that acute activation of peripheral inflammatory pathways changes central oxylipin concentrations. We found that IL-1β altered the abundance of omega (ω)6 and ω3 oxylipins in plasma HDL and CSF of both sexes. However, IL-1β reduced global concentrations of peripheral and central oxylipins in plasma HDL and CSF, respectively, in female rats only. Reduced oxylipin concentrations in IL-1β-treated females were driven by a loss of anti-inflammatory ω3 eicosapentaenoic acid (EPA)-derived dihydroxyeicosatetraenoic acids (DiHETEs) in plasma HDL and CSF. Interestingly, plasma HDL and CSF concentrations of EPA-derived DiHETEs were only correlated in IL-1β-treated rats, suggesting increased periphery-brain crosstalk during acute systemic inflammation. Overall, the sexually dimorphic responses of peripheral and central oxylipins to acute systemic inflammation provide molecular insight into sex differences in both innate immunity and neuroinflammatory responses.NEW & NOTEWORTHY This study examines previously unexplored sex differences in oxylipin signaling cascade activation in the central nervous system and periphery during the acute phase response. This is the first study to assess and correlate oxylipins in plasma HDL and CSF in males and females following an acute systemic inflammatory challenge. This work showing reduced concentrations of anti-inflammatory ω3 EPA-derived DiHETEs in acutely inflamed females provides molecular insight into sex differences in immunity and inflammation-induced neurological changes.
Collapse
Affiliation(s)
- Julia C Kelliher
- Integrative and Biomedical Physiology, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Ivana Maric
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Christopher G Engeland
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, Pennsylvania, United States
- Ross and Carol Nese College of Nursing, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Gregory C Shearer
- Integrative and Biomedical Physiology, The Pennsylvania State University, University Park, Pennsylvania, United States
- Nutritional Sciences Department, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Karolina P Skibicka
- Integrative and Biomedical Physiology, The Pennsylvania State University, University Park, Pennsylvania, United States
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Nutritional Sciences Department, The Pennsylvania State University, University Park, Pennsylvania, United States
| |
Collapse
|
5
|
Ruggiero M, Cianciulli A, Calvello R, Lofrumento DD, Saponaro C, Filannino FM, Porro C, Panaro MA. Lactoferrin Attenuates Pro-Inflammatory Response and Promotes the Conversion into Neuronal Lineages in the Astrocytes. Int J Mol Sci 2025; 26:405. [PMID: 39796258 PMCID: PMC11720426 DOI: 10.3390/ijms26010405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Neurodegenerative diseases are characterized by progressive loss of neurons and persistent inflammation. Neurons are terminally differentiated cells, and lost neurons cannot be replaced since neurogenesis is restricted to only two neurogenic niches in the adult brain, whose neurogenic potential decreases with age. In this regard, the astrocytes reprogramming into neurons may represent a promising strategy for restoring the lost neurons and rebuilding neural circuits. To date, many anti-inflammatory agents have been shown to reduce neuroinflammation; however, their potential to restore neuronal loss was poorly investigated. This study investigates the anti-inflammatory effects of lactoferrin on DI-TNC1 astrocyte cell line and its ability to induce astrocyte reprogramming in a context of sustained inflammation. For this purpose, astrocytes were pre-treated with lactoferrin (4 μg/mL) for 24 h, then with lipopolysaccharide (LPS) (400 ng/mL), and examined 2, 9 and 16 days from treatment. The results demonstrate that lactoferrin attenuates astrocyte reactivity by reducing Toll-like receptor 4 (TLR4), Glial fibrillary acidic protein (GFAP) and IL-6 expression, as well as by upregulating Interleukin-10 (IL-10) cytokine and NRF2 expression. Moreover, lactoferrin promotes the reprogramming of reactive astrocytes into proliferative neuroblasts by inducing the overexpression of the Sex determining region Y/SRY-box 2 (SOX2) reprogramming transcription factor. Overall, this study highlights the potential effects of lactoferrin to attenuate neuroinflammation and improve neurogenesis, suggesting a future strategy for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Melania Ruggiero
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy; (M.R.); (A.C.); (R.C.)
| | - Antonia Cianciulli
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy; (M.R.); (A.C.); (R.C.)
| | - Rosa Calvello
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy; (M.R.); (A.C.); (R.C.)
| | - Dario Domenico Lofrumento
- Department of Biological and Environmental Sciences and Technologies, Section of Human Anatomy, University of Salento, 73100 Lecce, Italy;
| | - Concetta Saponaro
- IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, 70124 Bari, Italy;
| | - Francesca Martina Filannino
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy; (F.M.F.); (C.P.)
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, 71121 Foggia, Italy; (F.M.F.); (C.P.)
| | - Maria Antonietta Panaro
- Department of Biosciences, Biotechnologies and Environment, University of Bari, 70125 Bari, Italy; (M.R.); (A.C.); (R.C.)
| |
Collapse
|
6
|
Wang Z, Zhong R, Curran GL, Min P, Lowe VJ, Li L, Kandimalla KK. High-Density Lipoprotein Mimetic Peptide 4F Reduces Toxic Amyloid-Beta Exposure to the Blood-Brain Barrier Endothelium in Alzheimer's Disease Transgenic Mice. Mol Pharm 2024; 21:5661-5671. [PMID: 39394037 DOI: 10.1021/acs.molpharmaceut.4c00633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Aβ accumulation in the blood-brain barrier (BBB) endothelium, which lines the cerebrovascular lumen, is a significant contributor to cerebrovascular dysfunction in Alzheimer's disease (AD). Reduced high-density lipoprotein (HDL) levels are associated with increased AD risk, and the HDL mimetic peptide 4F has been developed as a promising therapeutic agent to improve cerebrovascular health in AD. In this study, we evaluated the impact of 4F on 125I-Aβ42 blood-to-brain distribution using dynamic SPECT/CT imaging in both wild-type and APP/PS1 transgenic mice. Graphical analysis of the imaging data demonstrated that 4F significantly reduced the blood-to-brain influx rate in wild-type mice and the distribution of 125I-Aβ42 in the BBB endothelium in APP/PS1 mice. To elucidate the molecular mechanisms underlying the effect of 4F, we evaluated its impact on the p38 pathway and its role in mediating Aβ42 trafficking in human BBB endothelial cell monolayers. Treatment with 4F significantly decreased Aβ42 induced p38 activation in BBB endothelial cells. Furthermore, inhibition of p38 kinase significantly reduced endothelial accumulation of fluorescence-labeled Aβ42 and luminal-to-abluminal permeability across the cell monolayer. While our previous publication has hinted at the potential of 4F to reduce Aβ accumulation in the brain parenchyma, the current findings demonstrated the protective effect of 4F in reducing Aβ42 accumulation in the BBB endothelium of AD transgenic mice. These findings revealed the impact of a clinically tested agent, the HDL mimetic peptide 4F, on Aβ exposure to the BBB endothelium and offer novel mechanistic insights into potential therapeutic strategies to treat cerebrovascular dysfunction in AD.
Collapse
Affiliation(s)
- Zengtao Wang
- Department of Pharmaceutics and Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rui Zhong
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Geoffry L Curran
- Departments of Radiology, Neurology, and Health Sciences, College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Paul Min
- Departments of Radiology, Neurology, and Health Sciences, College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Val J Lowe
- Departments of Radiology, Neurology, and Health Sciences, College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Ling Li
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Karunya K Kandimalla
- Department of Pharmaceutics and Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
7
|
Chunowski P, Migda B, Madetko-Alster N, Migda A, Kutyłowski M, Królicki L, Alster P. The possible connection between neutrophil-to-high-density lipoprotein ratio and cerebral perfusion in clinically established corticobasal syndrome: a pilot study. Front Neurol 2024; 15:1464524. [PMID: 39421569 PMCID: PMC11484016 DOI: 10.3389/fneur.2024.1464524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS) are tauopathic atypical parkinsonisms. Given their overlap in terms of clinical manifestation, there is growing interest in the mechanisms leading to these entities. Materials and methods In total, 71 patients were included in the study, 19 of whom were clinically diagnosed with CBS, 37 with PSP, and 15 with Parkinson's disease (PD). The mean ages of the participants were 72.8, 72.9, and 64.0 years, respectively, and the disease duration varied from 3 to 6 years. Each individual underwent blood collection. Morphological and biochemical evaluation of blood samples was performed to analyze the neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and neutrophil-to-high-density lipoprotein ratio (NHR). A single-photon emission computed tomography (SPECT) with technetium-99m hexamethylpropyleneamine oxime (99Tc-HMPAO) tracer was used to assess perfusion in two regions of interest (ROI): the thalamus and insula. Using Pearson correlation to assess the linear relationship between NHR and perfusion in the insula and thalamus for CBS, PSP, and PD patients, the authors intended to verify possible correlations between NLR, PLR, and NHR and perfusion in the indicated ROIs. Results The study revealed a negative linear correlation between NHR and perfusion of both the left (Insula L; R = -0.59) and right (Insula R; R = -0.58) insula regions. Similar to the insula, a linear correlation between NHR and activity in both the left (Thalamus L) and right (Thalamus R) thalamus regions in CBS subjects with a relatively stronger correlation in the right thalamus (R = -0.64 vs. R = -0.58) was found. These observations were not confirmed in PSP and PD patients. Conclusion Simultaneously using non-specific parameters for peripheral inflammation (NLR, PLR, and NHR) and perfusion, SPECT may be an interesting beginning point for further analysis of inflammatory disease mechanisms. To the best of our knowledge, this is the first study to address the potential correlation between the peripheral neuroinflammatory markers NLR, PLR, and NHR and perfusion disturbances in particular ROIs.
Collapse
Affiliation(s)
- Patryk Chunowski
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Bartosz Migda
- Diagnostic Ultrasound Lab, Department of Pediatric Radiology, Medical University of Warsaw, Warsaw, Poland
| | | | - Anna Migda
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | | | - Leszek Królicki
- Department of Nuclear Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Alster
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
8
|
Bian S, Bass AJ, Liu Y, Wingo AP, Wingo T, Cutler DJ, Epstein MP. SCAMPI: A scalable statistical framework for genome-wide interaction testing harnessing cross-trait correlations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612314. [PMID: 39314278 PMCID: PMC11418984 DOI: 10.1101/2024.09.10.612314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Family-based heritability estimates of complex traits are often considerably larger than their single-nucleotide polymorphism (SNP) heritability estimates. This discrepancy may be due to non-additive effects of genetic variation, including variation that interacts with other genes or environmental factors to influence the trait. Variance-based procedures provide a computationally efficient strategy to screen for SNPs with potential interaction effects without requiring the specification of the interacting variable. While valuable, such variance-based tests consider only a single trait and ignore likely pleiotropy among related traits that, if present, could improve power to detect such interaction effects. To fill this gap, we propose SCAMPI (Scalable Cauchy Aggregate test using Multiple Phenotypes to test Interactions), which screens for variants with interaction effects across multiple traits. SCAMPI is motivated by the observation that SNPs with pleiotropic interaction effects induce genotypic differences in the patterns of correlation among traits. By studying such patterns across genotype categories among multiple traits, we show that SCAMPI has improved performance over traditional univariate variance-based methods. Like those traditional variance-based tests, SCAMPI permits the screening of interaction effects without requiring the specification of the interaction variable and is further computationally scalable to biobank data. We employed SCAMPI to screen for interacting SNPs associated with four lipid-related traits in the UK Biobank and identified multiple gene regions missed by existing univariate variance-based tests. SCAMPI is implemented in software for public use.
Collapse
Affiliation(s)
- Shijia Bian
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, 30329, USA
| | - Andrew J Bass
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, 30329, USA
| | - Yue Liu
- Department of Neurology, University of California, Davis, Sacramento, CA 95817, USA
| | - Aliza P Wingo
- Department of Psychiatry, University of California, Davis, Sacramento, CA 95817, USA
- Division of Mental Health, VA Northern California Health Care System, CA 95655, USA
| | - Thomas Wingo
- Department of Neurology, University of California, Davis, Sacramento, CA 95817, USA
| | - David J Cutler
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, 30329, USA
| | - Michael P Epstein
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, 30329, USA
| |
Collapse
|
9
|
Sokouti B. The identification of biomarkers for Alzheimer's disease using a systems biology approach based on lncRNA-circRNA-miRNA-mRNA ceRNA networks. Comput Biol Med 2024; 179:108860. [PMID: 38996555 DOI: 10.1016/j.compbiomed.2024.108860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/16/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024]
Abstract
In addition to being the most prevalent form of neurodegeneration among the elderly, AD is a devastating multifactorial disease. Currently, treatments address only its symptoms. Several clinical studies have shown that the disease begins to manifest decades before the first symptoms appear, indicating that studying early changes is crucial to improving early diagnosis and discovering novel treatments. Our study used bioinformatics and systems biology to identify biomarkers in AD that could be used for diagnosis and prognosis. The procedure was performed on data from the GEO database, and GO and KEGG enrichment analysis were performed. Then, we set up a network of interactions between proteins. Several miRNA prediction tools including miRDB, miRWalk, and TargetScan were used. The ceRNA network led to the identification of eight mRNAs, four circRNAs, seven miRNAs, and seven lncRNAs. Multiple mechanisms, including the cell cycle and DNA replication, have been linked to the promotion of AD development by the ceRNA network. By using the ceRNA network, it should be possible to extract prospective biomarkers and therapeutic targets for the treatment of AD. It is possible that the processes involved in DNA cell cycle and the replication of DNA contribute to the development of Alzheimer's disease.
Collapse
Affiliation(s)
- Babak Sokouti
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Staniek M, Kapelski P, Zakowicz P, Rajewska-Rager A, Wasicka-Przewozna K, Skibinska M. High-Density Lipoprotein Correlates with Cognitive Functioning in Schizophrenic Women. Brain Sci 2024; 14:699. [PMID: 39061439 PMCID: PMC11275118 DOI: 10.3390/brainsci14070699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/02/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Background: Schizophrenia is a chronic and progressive neuropsychiatric illness. Apart from positive and negative symptoms, 98% of the population diagnosed with schizophrenia have impaired cognitive functioning, which significantly influences the quality of life. The correlation between lipids and cognitive functioning has been well established. Our study aimed to investigate correlations between cognitive functions, the severity of schizophrenia symptoms, and lipid profiles. (2) Methods: Fifty-two women diagnosed with schizophrenia participated in this study. Cognitive functioning was measured using the Wisconsin Card Sorting Test (WCST). The Positive and Negative Symptom Scale (PANSS) was used. The serum lipid profile, including low-density lipoproteins (LDLs), high-density lipoproteins (HDLs), and triglycerides was measured. (3) Results: Better cognitive functions were associated with normal HDL levels, while low HDL levels correlated with worse WSCT scores. Only the PANSS negative subscale showed a correlation with HDL levels. Correlations with chronicity of schizophrenia and the patient's age with poorer cognitive functions, but not with symptom severity, were detected. Early/late age at onset did not influence WSCT scores. (4) Conclusions: Our results suggest high HDL levels might be a protective factor against cognitive impairment. The influences of age and illness duration also play a vital role in cognitive performance.
Collapse
Affiliation(s)
| | - Pawel Kapelski
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | | | | | | | - Maria Skibinska
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| |
Collapse
|
11
|
Wang F, Fan Y, Li Y, Zhou Y, Wang X, Zhu M, Chen X, Xue Y, Shen C. Identification of differentially expressed genes of blood leukocytes for Schizophrenia. Front Genet 2024; 15:1398240. [PMID: 38988837 PMCID: PMC11233772 DOI: 10.3389/fgene.2024.1398240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/03/2024] [Indexed: 07/12/2024] Open
Abstract
Background Schizophrenia (SCZ) is a severe neurodevelopmental disorder with brain dysfunction. This study aimed to use bioinformatic analysis to identify candidate blood biomarkers for SCZ. Methods The study collected peripheral blood leukocyte samples of 9 SCZ patients and 20 healthy controls for RNA sequencing analysis. Bioinformatic analyses included differentially expressed genes (DEGs) analysis, pathway enrichment analysis, and weighted gene co-expression network analysis (WGCNA). Results This study identified 1,205 statistically significant DEGs, of which 623 genes were upregulated and 582 genes were downregulated. Functional enrichment analysis showed that DEGs were mainly enriched in cell chemotaxis, cell surface, and serine peptidase activity, as well as involved in Natural killer cell-mediated cytotoxicity. WGCNA identified 16 gene co-expression modules, and five modules were significantly correlated with SCZ (p < 0.05). There were 106 upregulated genes and 90 downregulated genes in the five modules. The top ten genes sorted by the Degree algorithm were RPS28, BRD4, FUS, PABPC1, PCBP1, PCBP2, RPL27A, RPS21, RAG1, and RPL27. RAG1 and the other nine genes belonged to the turquoise and pink module respectively. Pathway enrichment analysis indicated that these 10 genes were mainly involved in processes such as Ribosome, cytoplasmic translation, RNA binding, and protein binding. Conclusion This study finds that the gene functions in key modules and related enrichment pathways may help to elucidate the molecular pathogenesis of SCZ, and the potential of key genes to become blood biomarkers for SCZ warrants further validation.
Collapse
Affiliation(s)
- Feifan Wang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yao Fan
- Department of Clinical Epidemiology, Jiangsu Province Geriatric Institute, Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Yinghui Li
- Department of Medical Psychology, Huai'an Third Hospital, Huai'an, China
| | - Yuan Zhou
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xin Wang
- Department of Medical Laboratory, Huai'an Third Hospital, Huai'an, China
| | - Mengya Zhu
- Department of Medical Laboratory, Huai'an Third Hospital, Huai'an, China
| | - Xuefei Chen
- Department of Medical Laboratory, Huai'an Third Hospital, Huai'an, China
| | - Yong Xue
- Department of Medical Laboratory, Huai'an Third Hospital, Huai'an, China
| | - Chong Shen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
SUN L, LI C, LIU J, LI N, HAN F, QIAO D, TAO Z, ZHAN M, CHEN W, ZHANG X, TONG C, CHEN D, Qi J, LIU Y, LIANG X, ZHENG X, ZHANG Y. Efficacy of Sailuotong on neurovascular unit in amyloid precursor protein/presenilin-1 transgenic mice with Alzheimer's disease. J TRADIT CHIN MED 2024; 44:289-302. [PMID: 38504535 PMCID: PMC10927413 DOI: 10.19852/j.cnki.jtcm.20240203.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/08/2023] [Indexed: 03/21/2024]
Abstract
OBJECTIVE To discuss the influence of Sailuotong (, SLT) on the Neurovascular Unit (NVUs) of amyloid precursor protein (APP)/presenilin-1(PS1) mice and evaluate the role of gas supplementation in activating blood circulation during the progression of Alzheimer's disease (AD). METHODS The mice were allocated into the following nine groups: (a) the C57 Black (C57BL) sham-operated group (control group), (b) ischaemic treatment in C57BL mice (the C57 ischaemic group), (c) the APP/PS1 sham surgery group (APP/PS1 model group), (d) ischaemic treatment in APP/PS1 mice (APP/PS1 ischaemic group), (e) C57BL mice treated with aspirin following ischaemic treatment (C57BL ischaemic + aspirin group), (f) C57BL mice treated with SLT following ischaemic treatment (C57BL ischaemic + SLT group), (g) APP/PS1 mice treated with SLT (APP/PS1 + SLT group), (h) APP/PS1 mice treated with donepezil hydrochloride following ischaemic treatment (APP/PS1 ischaemic + donepezil hydrochloride group) and (i) APP/PS1 mice treated with SLT following ischaemic treatment (APP/PS1 ischaemic + SLT group). The ischaemic model was established by operating on the bilateral common carotid arteries and creating a microembolism. The Morris water maze and step-down tests were used to detect the spatial behaviour and memory ability of mice. The hippocampus of each mouse was observed by haematoxylin and eosin (HE) and Congo red staining. The ultrastructure of NVUs in each group was observed by electron microscopy, and various biochemical indicators were detected by enzyme-linked immunosorbent assay (ELISA). The protein expression level was detected by Western blot. The mRNA expression was detected by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS The results of the Morris water maze and step-down tests showed that ischemia reduced learning and memory in the mice, which were restored by SLT. The results of HE staining showed that SLT restored the pathological changes of the NVUs. The Congo red staining results revealed that SLT also improved the scattered orange-red sediments in the upper cortex and hippocampus of the APP/PS1 and APP/PS1 ischaemic mice. Furthermore, SLT significantly reduced the content of Aβ, improved the vascular endothelium and repaired the mitochondrial structures. The ELISA detection, western blot detection and qRT-PCR showed that SLT significantly increased the vascular endothelial growth factor (VEGF), angiopoietin and basic fibroblast growth factor, as well as the levels of gene and protein expression of low-density lipoprotein receptor-related protein-1 (LRP-1) and VEGF in brain tissue. CONCLUSIONS By increasing the expression of VEGF, SLT can promote vascular proliferation, up-regulate the expression of LRP-1, promote the clearance of Aβ and improve the cognitive impairment of APP/PS1 mice. These results confirm that SLT can improve AD by promoting vascular proliferation and Aβ clearance to protect the function of NVUs.
Collapse
Affiliation(s)
- Linjuan SUN
- 1 Department of Neurology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Chengfu LI
- 2 China Population and Development Research Center, Beijing 100081, China
| | - Jiangang LIU
- 1 Department of Neurology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Nannan LI
- 1 Department of Neurology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Fuhua HAN
- 5 Graduate School of Beijing University of Chinese Medicine, Beijing 100029, China
| | - Dandan QIAO
- 1 Department of Neurology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Zhuang TAO
- 4 Graduate School of China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Min ZHAN
- 1 Department of Neurology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Wenjie CHEN
- 1 Department of Neurology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Xiaohui ZHANG
- 1 Department of Neurology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Chenguang TONG
- 1 Department of Neurology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Dong CHEN
- 1 Department of Neurology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Jiangxia Qi
- 1 Department of Neurology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yang LIU
- 1 Department of Neurology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Xiao LIANG
- 1 Department of Neurology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Xiaoying ZHENG
- 3 Department of Institute of Population Research, Peking University, Beijing 100087, China
| | - Yunling ZHANG
- 1 Department of Neurology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| |
Collapse
|
13
|
Cao S, Teng L, Gao M, Hu S, Xiao S, Chen C, He Y, Cheng S, Xie X. Nonlinear relationship between triglycerides and cognitive function after acute ischemic stroke among older adults. Heliyon 2024; 10:e27943. [PMID: 38524625 PMCID: PMC10958424 DOI: 10.1016/j.heliyon.2024.e27943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024] Open
Abstract
Background Although studies have explored the association between triglyceride levels and cognitive function after acute ischemic stroke (AIS), the results have been conflicting. Therefore, the purpose of this study was to investigate the relationship between triglyceride levels and cognitive function after AIS among older adults. Methods This is an observational cross-sectional study. From November 2022 to June 2023, we consecutively collected patients diagnosed with AIS in China. Triglyceride levels were measured within 24 h of admission. The Mini-Mental State Examination (MMSE) was used to assess cognitive function. Nonlinear associations between triglyceride levels and cognitive function were assessed using smooth curve fitting and threshold effect analysis. Results In this study, a total of 221 patients (mean ± SD: 70.64 ± 7.43 years) with AIS were consecutively recruited, among whom 144 (65.16%) were male. Among the 221 recruited patients, 102 (46.15%) had cognitive impairment. Triglyceride levels and cognitive impairment were found to have a nonlinear association after controlling for potential confounders, with an inflection point at 0.8 mmol/L. Below the inflection point, triglyceride levels were positively correlated with MMSE scores (β = 14.11, 95% confidence interval [CI] = 2.33-25.89, P = 0.020). However, above the inflection point, the correlation between MMSE score and triglyceride levels was not statistically significant (β = 1.04, 95% CI = -1.27 - 3.34, P = 0.380). Conclusion There is a nonlinear association between triglyceride levels and cognitive function after AIS in older adults. Triglyceride was positively connected with cognitive function when it was less than 0.8 mmol/L.
Collapse
Affiliation(s)
- Simin Cao
- School of Nursing, Guangzhou Medical University, Guangzhou, China
- Department of Nursing, The First Affiliated Hospital of Shenzhen University/ Shenzhen Second People's Hospital, Shenzhen, China
| | - Liting Teng
- School of Nursing, Guangxi University of Chinese Medicine, Nanning, China
| | - Maofeng Gao
- School of Nursing, Anhui Medical University, Anhui, China
| | - Shoudi Hu
- School of Nursing, Anhui Medical University, Anhui, China
| | - Shiyan Xiao
- School of Nursing, University of South China, Hunan, China
| | - Chen Chen
- Department of Nursing, The First Affiliated Hospital of Shenzhen University/ Shenzhen Second People's Hospital, Shenzhen, China
| | - Yu He
- School of Nursing, Anhui Medical University, Anhui, China
| | - Shouzhen Cheng
- Department of Nursing, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaohua Xie
- Department of Nursing, The First Affiliated Hospital of Shenzhen University/ Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
14
|
Liu ZL, Hua FF, Qu L, Yan N, Zhang HF. Evaluating serum CXCL12, sCD22, Lp-PLA2 levels and ratios as biomarkers for diagnosis of Alzheimer's disease. World J Psychiatry 2024; 14:380-387. [PMID: 38617987 PMCID: PMC11008386 DOI: 10.5498/wjp.v14.i3.380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/15/2024] [Accepted: 02/04/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND Grasping the underlying mechanisms of Alzheimer's disease (AD) is still a work in progress, and existing diagnostic techniques encounter various obstacles. Therefore, the discovery of dependable biomarkers is essential for early detection, tracking the disease's advancement, and steering treatment strategies. AIM To explore the diagnostic potential of serum CXCL12, sCD22, Lp-PLA2, and their ratios in AD, aiming to enhance early detection and inform targeted treatment strategies. METHODS The study was conducted in Dongying people's Hospital from January 2021 to December 2022. Participants included 60 AD patients (AD group) and 60 healthy people (control group). Using a prospective case-control design, the levels of CXCL12, sCD22 and Lp-PLA2 and their ratios were detected by enzyme-linked immunosorbent assay kit in the diagnosis of AD. The differences between the two groups were analyzed by statistical methods, and the corresponding ratio was constructed to improve the specificity and sensitivity of diagnosis. RESULTS Serum CXCL12 levels were higher in the AD group (47.2 ± 8.5 ng/mL) than the control group (32.8 ± 5.7 ng/mL, P < 0.001), while sCD22 levels were lower (14.3 ± 2.1 ng/mL vs 18.9 ± 3.4 ng/mL, P < 0.01). Lp-PLA2 levels were also higher in the AD group (112.5 ± 20.6 ng/mL vs 89.7 ± 15.2 ng/mL, P < 0.05). Significant differences were noted in CXCL12/sCD22 (3.3 vs 1.7, P < 0.001) and Lp-PLA2/sCD22 ratios (8.0 vs 5.2, P < 0.05) between the groups. Receiver operating characteristic analysis confirmed high sensitivity and specificity of these markers and their ratios in distinguishing AD, with area under the curves ranging from 0.568 to 0.787. CONCLUSION Serum CXCL12 and Lp-PLA2 levels were significantly increased, while sCD22 were significantly decreased, as well as increases in the ratios of CXCL12/sCD22 and Lp-PLA2/sCD22, are closely related to the onset of AD. These biomarkers and their ratios can be used as potential diagnostic indicators for AD, providing an important clinical reference for early intervention and treatment.
Collapse
Affiliation(s)
- Zeng-Ling Liu
- Department of Neurology, Dongying People's Hospital, Dongying 257000, Shandong Province, China
| | - Fei-Fei Hua
- Department of Neurology, Dongying People's Hospital, Dongying 257000, Shandong Province, China
| | - Lei Qu
- Department of Neurology, Dongying People's Hospital, Dongying 257000, Shandong Province, China
| | - Na Yan
- Department of Neurology, Dongying People's Hospital, Dongying 257000, Shandong Province, China
| | - Hui-Fang Zhang
- Department of Neurology, Dongying People's Hospital, Dongying 257000, Shandong Province, China
| |
Collapse
|
15
|
Wen J, Hao X, Jia Y, Wang B, Pang J, Liang F. Sex Differences in the Association Between LDL/HDL with Cognitive Decline in Older Adults: National Health and Nutrition Examination Survey. J Alzheimers Dis 2024; 98:1493-1502. [PMID: 38578891 DOI: 10.3233/jad-231195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Background Lipids have a significant impact on the development and functioning of the nervous system, but the sex differences between the association of LDL/HDL, which reflects lipid metabolic status, and cognitive impairment remains unclear. Objective We aimed to determine if there were sex differences between the association of LDL/HDL and cognitive function in US older adults. Methods This population-based cross-sectional study used data from the National Health and Nutrition Examination Survey (NHANES) 2011-2012 and 2013-2014 cycles. The main outcome was poor cognitive performance defined by the Digit Symbol Substitution Test (DSST) < 34 based on published literature. Results A total of 1,225 participants were included in the study, with a cognitive impairment incidence of 25.6% (314/1,225). Multivariate regression models demonstrated a significant association between cognitive decline and each 1-unit increase in LDL/HDL, after adjusting for all covariates (adjusted odds ratio [OR] = 1.36, 95% confidence interval [CI]: 1.11-1.67). Furthermore, subgroup analysis revealed an interaction between LDL/HDL and cognitive impairment in sex subgroups. Conclusions LDL/HDL was associated with cognitive impairment in the US older adult population in adjusted models, although the significance of this association was not observed in females.
Collapse
Affiliation(s)
- Jiaqi Wen
- Department of Neurology, Baotou Central Hospital, Baotou, China
- Inner Mongolia Autonomous Region Clinical Medical Research Center for Neurological Diseases, Baotou, China
| | - Xiwa Hao
- Department of Neurology, Baotou Central Hospital, Baotou, China
- Inner Mongolia Autonomous Region Clinical Medical Research Center for Neurological Diseases, Baotou, China
| | - Yanhong Jia
- Department of Neurology, Baotou Central Hospital, Baotou, China
| | - Baojun Wang
- Department of Neurology, Baotou Central Hospital, Baotou, China
- Inner Mongolia Autonomous Region Clinical Medical Research Center for Neurological Diseases, Baotou, China
| | - Jiangxia Pang
- Department of Neurology, Baotou Central Hospital, Baotou, China
- Inner Mongolia Autonomous Region Clinical Medical Research Center for Neurological Diseases, Baotou, China
| | - Furu Liang
- Department of Neurology, Baotou Central Hospital, Baotou, China
- Inner Mongolia Autonomous Region Clinical Medical Research Center for Neurological Diseases, Baotou, China
| |
Collapse
|
16
|
Ramadan FA, Arani G, Jafri A, Thompson T, Bland VL, Renquist B, Raichlen DA, Alexander GE, Klimentidis YC. Mendelian Randomization of Blood Metabolites Suggests Circulating Glutamine Protects Against Late-Onset Alzheimer's Disease. J Alzheimers Dis 2024; 98:1069-1078. [PMID: 38489176 PMCID: PMC11805495 DOI: 10.3233/jad-231063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Background Late-onset Alzheimer's disease (LOAD) represents a growing health burden. Previous studies suggest that blood metabolite levels influence risk of LOAD. Objective We used a genetics-based study design which may overcome limitations of other epidemiological studies to assess the influence of metabolite levels on LOAD risk. Methods We applied Mendelian randomization (MR) to evaluate bi-directional causal effects using summary statistics from the largest genome-wide association studies (GWAS) of 249 blood metabolites (n = 115,082) and GWAS of LOAD (ncase = 21,982, ncontrol = 41,944). Results MR analysis of metabolites as exposures revealed a negative association of genetically-predicted glutamine levels with LOAD (Odds Ratio (OR) = 0.83, 95% CI = 0.73, 0.92) that was consistent in multiple sensitivity analyses. We also identified a positive association of genetically-predicted free cholesterol levels in small LDL (OR = 1.79, 95% CI = 1.36, 2.22) on LOAD. Using genetically-predicted LOAD as the exposure, we identified associations with phospholipids to total lipids ratio in large LDL (OR = 0.96, 95% CI = 0.94, 0.98), but not with glutamine, suggesting that the relationship between glutamine and LOAD is unidirectional. Conclusions Our findings support previous evidence that higher circulating levels of glutamine may be a target for protection against LOAD.
Collapse
Affiliation(s)
- Ferris A. Ramadan
- Department of Epidemiology and Biostatistics, University of Arizona, 1295 North Martin Avenue, Tucson, AZ 85724, United States
| | - Gayatri Arani
- Department of Epidemiology and Biostatistics, University of Arizona, 1295 North Martin Avenue, Tucson, AZ 85724, United States
| | - Ayan Jafri
- Department of Epidemiology and Biostatistics, University of Arizona, 1295 North Martin Avenue, Tucson, AZ 85724, United States
| | - Tingting Thompson
- Department of Epidemiology and Biostatistics, University of Arizona, 1295 North Martin Avenue, Tucson, AZ 85724, United States
| | - Victoria L. Bland
- Department of Nutritional Sciences, University of Arizona, 1177 East 4th Street, Tucson, AZ 85721, United States
| | - Benjamin Renquist
- School of Animal & Comparative Biomedical Sciences, University of Arizona, 1117 East Lowell St #222, Tucson, AZ 85721, United States
| | - David A. Raichlen
- Human and Evolutionary Biology Section, Department of Biological Sciences and Anthropology, University of Southern California, 3616 Trousdale Parkway, AHF 252, Los Angeles, CA 90089, United States
| | - Gene E. Alexander
- Department of Psychology, University of Arizona, 503 East University Boulevard, Building 68, Tucson, AZ 85721, United States
- BIO5 Institute, University of Arizona, 1657 East Helen Street, Tucson, AZ 85719, United States
| | - Yann C. Klimentidis
- Department of Epidemiology and Biostatistics, University of Arizona, 1295 North Martin Avenue, Tucson, AZ 85724, United States
- BIO5 Institute, University of Arizona, 1657 East Helen Street, Tucson, AZ 85719, United States
| |
Collapse
|
17
|
Lee CH, Murrell CE, Chu A, Pan X. Circadian Regulation of Apolipoproteins in the Brain: Implications in Lipid Metabolism and Disease. Int J Mol Sci 2023; 24:17415. [PMID: 38139244 PMCID: PMC10743770 DOI: 10.3390/ijms242417415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/24/2023] Open
Abstract
The circadian rhythm is a 24 h internal clock within the body that regulates various factors, including sleep, body temperature, and hormone secretion. Circadian rhythm disruption is an important risk factor for many diseases including neurodegenerative illnesses. The central and peripheral oscillators' circadian clock network controls the circadian rhythm in mammals. The clock genes govern the central clock in the suprachiasmatic nucleus (SCN) of the brain. One function of the circadian clock is regulating lipid metabolism. However, investigations of the circadian regulation of lipid metabolism-associated apolipoprotein genes in the brain are lacking. This review summarizes the rhythmic expression of clock genes and lipid metabolism-associated apolipoprotein genes within the SCN in Mus musculus. Nine of the twenty apolipoprotein genes identified from searching the published database (SCNseq and CircaDB) are highly expressed in the SCN. Most apolipoprotein genes (ApoE, ApoC1, apoA1, ApoH, ApoM, and Cln) show rhythmic expression in the brain in mice and thus might be regulated by the master clock. Therefore, this review summarizes studies on lipid-associated apolipoprotein genes in the SCN and other brain locations, to understand how apolipoproteins associated with perturbed cerebral lipid metabolism cause multiple brain diseases and disorders. This review describes recent advancements in research, explores current questions, and identifies directions for future research.
Collapse
Affiliation(s)
- Chaeeun Hannah Lee
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| | - Charlotte Ellzabeth Murrell
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| | - Alexander Chu
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
| | - Xiaoyue Pan
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, NY 11501, USA
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, NY 11501, USA
| |
Collapse
|
18
|
Jiang G, Rabin JS, Black SE, Swardfager W, MacIntosh BJ. A Blood-Based Lipid Profile Associated With Hippocampal Volume and Brain Resting-State Activation Within Obese Adults from the UK Biobank. Brain Connect 2023; 13:578-588. [PMID: 37930726 DOI: 10.1089/brain.2023.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
Objectives: Obesity and dyslipidemia may be associated with hippocampal alterations and may increase the risk of neurodegeneration. This study studied hippocampal anatomical and functional association with a lipid profile based on high-density lipoprotein, low-density lipoprotein, and triglyceride related to dyslipidemia in obese and nonobese adults. A whole-brain analysis was also conducted to examine the effect of dyslipidemia on resting-state function across the brain. Participants and Methods: In total, 553 UK Biobank participants comprised three groups based on body mass index (BMI) rankings: obese adults with high BMI (OHigh, n = 184, 32.7 kg/m2 ≤ BMI ≤53.4 kg/m2), obese adults with a lower BMI (OLow, n = 182, 30.3 kg/m2 ≤ BMI ≤32.6 kg/m2), and nonobese controls (n = 187). Structural MRI and functional MRI data were accessed. The fractional amplitude of low-frequency fluctuations (fALFFs) maps was calculated to reflect resting-state brain activity. A lipid health factor was created using principal component analysis. Linear models tested for associations between the lipid health score and hippocampal MRI readouts. Results: With a higher lipid health factor corresponding to a lower dyslipidemia risk, we found a positive correlation between hippocampal volume with the lipid health factor exclusively in group OLow (p = 0.01). We also found a positive association between the lipid health factor and hippocampal fALFF in group OHigh (p = 0.02). Additional fALFF voxel-wise analysis to group OHigh also implicated that the premotor cortex, amygdala, thalamus, subcallosal cortex, temporal fusiform cortex, and middle temporal gyrus brain regions are related with lipid. Conclusion: The study finds novel associations among circulating lipid, hippocampal structure, and hippocampal function exclusively in the obese adults.
Collapse
Affiliation(s)
- Guocheng Jiang
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Canada
- Department of Medical Biophysics and University of Toronto, University of Toronto, Toronto, Canada
| | - Jennifer S Rabin
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, Canada
- Sandra E Black Centre for Brain Resilience and Recovery, Sunnybrook Research Institute, Toronto, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Canada
| | - Sandra E Black
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Canada
- Sandra E Black Centre for Brain Resilience and Recovery, Sunnybrook Research Institute, Toronto, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Walter Swardfager
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Canada
- Sandra E Black Centre for Brain Resilience and Recovery, Sunnybrook Research Institute, Toronto, Canada
- Department of Pharmacology and Toxicology, University of Toronto, University of Toronto, Toronto, Canada
| | - Bradley J MacIntosh
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Canada
- Department of Medical Biophysics and University of Toronto, University of Toronto, Toronto, Canada
- Sandra E Black Centre for Brain Resilience and Recovery, Sunnybrook Research Institute, Toronto, Canada
- Computational Radiology and Artificial Intelligence Unit, Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
19
|
Poliakova T, Wellington CL. Roles of peripheral lipoproteins and cholesteryl ester transfer protein in the vascular contributions to cognitive impairment and dementia. Mol Neurodegener 2023; 18:86. [PMID: 37974180 PMCID: PMC10652636 DOI: 10.1186/s13024-023-00671-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023] Open
Abstract
This narrative review focuses on the role of cholesteryl ester transfer protein (CETP) and peripheral lipoproteins in the vascular contributions to cognitive impairment and dementia (VCID). Humans have a peripheral lipoprotein profile where low-density lipoproteins (LDL) represent the dominant lipoprotein fraction and high-density lipoproteins (HDL) represent a minor lipoprotein fraction. Elevated LDL-cholesterol (LDL-C) levels are well-established to cause cardiovascular disease and several LDL-C-lowering therapies are clinically available to manage this vascular risk factor. The efficacy of LDL-C-lowering therapies to reduce risk of all-cause dementia and AD is now important to address as recent studies demonstrate a role for LDL in Alzheimer's Disease (AD) as well as in all-cause dementia. The LDL:HDL ratio in humans is set mainly by CETP activity, which exchanges cholesteryl esters for triglycerides across lipoprotein fractions to raise LDL and lower HDL as CETP activity increases. Genetic and pharmacological studies support the hypothesis that CETP inhibition reduces cardiovascular risk by lowering LDL, which, by extension, may also lower VCID. Unlike humans, wild-type mice do not express catalytically active CETP and have HDL as their major lipoprotein fraction. As HDL has potent beneficial effects on endothelial cells, the naturally high HDL levels in mice protect them from vascular disorders, likely including VCID. Genetic restoration of CETP expression in mice to generate a more human-like lipid profile may increase the relevance of murine models for VCID studies. The therapeutic potential of existing and emerging LDL-lowering therapies for VCID will be discussed. Figure Legend. Cholesteryl Ester Transfer Protein in Alzheimer's Disease. CETP is mainly produced by the liver, and exchanges cholesteryl esters for triglycerides across lipoprotein fractions to raise circulating LDL and lower HDL as CETP activity increases. Low CETP activity is associated with better cardiovascular health, due to decreased LDL and increased HDL, which may also improve brain health. Although most peripheral lipoproteins cannot enter the brain parenchyma due to the BBB, it is increasingly appreciated that direct access to the vascular endothelium may enable peripheral lipoproteins to have indirect effects on brain health. Thus, lipoproteins may affect the cerebrovasculature from both sides of the BBB. Recent studies show an association between elevated plasma LDL, a well-known cardiovascular risk factor, and a higher risk of AD, and considerable evidence suggests that high HDL levels are associated with reduced CAA and lower neuroinflammation. Considering the potential detrimental role of LDL in AD and the importance of HDL's beneficial effects on endothelial cells, high CETP activity may lead to compromised BBB integrity, increased CAA deposits and greater neuroinflammation. Abbreviations: CETP - cholesteryl transfer ester protein; LDL - low-density lipoproteins; HDL - high-density lipoproteins; BBB - blood-brain barrier; CAA - cerebral amyloid angiopathy, SMC - smooth muscle cells, PVM - perivascular macrophages, RBC - red blood cells.
Collapse
Affiliation(s)
- Tetiana Poliakova
- Department of Pathology and Laboratory Medicine, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
- Djavad Mowafagian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Cheryl L Wellington
- Department of Pathology and Laboratory Medicine, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
- Djavad Mowafagian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
- International Collaboration On Repair Discoveries, Vancouver, BC, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
20
|
Frankel R, Sparr E, Linse S. Retardation of Aβ42 fibril formation by apolipoprotein A-I and recombinant HDL particles. J Biol Chem 2023; 299:105273. [PMID: 37739034 PMCID: PMC10616404 DOI: 10.1016/j.jbc.2023.105273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023] Open
Abstract
The double nucleation mechanism of amyloid β (Aβ) peptide aggregation is retained from buffer to cerebrospinal fluid (CSF) but with reduced rate of all microscopic processes. Here, we used a bottom-up approach to identify retarding factors in CSF. We investigated the Aβ42 fibril formation as a function of time in the absence and presence of apolipoprotein A-I (ApoA-I), recombinant high-density lipoprotein (rHDL) particles, or lipid vesicles. A retardation was observed in the presence of ApoA-I or rHDL particles, most pronounced with ApoA-I, but not with lipid vesicles. Global kinetic analysis implies that rHDL interferes with secondary nucleation. The effect of ApoA-I could best be described as an interference with secondary and to a smaller extent primary nucleation. Using surface plasmon resonance and microfluidics diffusional sizing analyses, we find that both rHDL and ApoA-I interact with Aβ42 fibrils but not Aβ42 monomer, thus the effect on kinetics seems to involve interference with the catalytic surface for secondary nucleation. The Aβ42 fibrils were imaged using cryogenic-electron microscopy and found to be longer when formed in the presence of ApoA-I or rHDL, compared to formation in buffer. A retarding effect, as observed in CSF, could be replicated using a simpler system, from key components present in CSF but purified from a CSF-free host. However, the effect of CSF is stronger implying the presence of additional retarding factors.
Collapse
Affiliation(s)
- Rebecca Frankel
- Biochemistry and Structural Biology, Lund University, Lund, Sweden; Division of Physical Chemistry, Lund University, Lund, Sweden
| | - Emma Sparr
- Division of Physical Chemistry, Lund University, Lund, Sweden
| | - Sara Linse
- Biochemistry and Structural Biology, Lund University, Lund, Sweden.
| |
Collapse
|
21
|
Mehta N, Dangas K, Ditmarsch M, Rensen PCN, Dicklin MR, Kastelein JJP. The evolving role of cholesteryl ester transfer protein inhibition beyond cardiovascular disease. Pharmacol Res 2023; 197:106972. [PMID: 37898443 DOI: 10.1016/j.phrs.2023.106972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/21/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
The main role of cholesteryl ester transfer protein (CETP) is the transfer of cholesteryl esters and triglycerides between high-density lipoprotein (HDL) particles and triglyceride-rich lipoprotein and low-density lipoprotein (LDL) particles. There is a long history of investigations regarding the inhibition of CETP as a target for reducing major adverse cardiovascular events. Initially, the potential effect on cardiovascular events of CETP inhibitors was hypothesized to be mediated by their ability to increase HDL cholesterol, but, based on evidence from anacetrapib and the newest CETP inhibitor, obicetrapib, it is now understood to be primarily due to reducing LDL cholesterol and apolipoprotein B. Nevertheless, evidence is also mounting that other roles of HDL, including its promotion of cholesterol efflux, as well as its apolipoprotein composition and anti-inflammatory, anti-oxidative, and anti-diabetic properties, may play important roles in several diseases beyond cardiovascular disease, including, but not limited to, Alzheimer's disease, diabetes, and sepsis. Furthermore, although Mendelian randomization analyses suggested that higher HDL cholesterol is associated with increased risk of age-related macular degeneration (AMD), excess risk of AMD was absent in all CETP inhibitor randomized controlled trial data comprising over 70,000 patients. In fact, certain HDL subclasses may, in contrast, be beneficial for treating the retinal cholesterol accumulation that occurs with AMD. This review describes the latest biological evidence regarding the relationship between HDL and CETP inhibition for Alzheimer's disease, type 2 diabetes mellitus, sepsis, and AMD.
Collapse
Affiliation(s)
- Nehal Mehta
- Mobius Scientific, Inc., JLABS @ Washington, DC, Washington, DC, USA
| | | | | | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory of Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | | | - John J P Kastelein
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, the Netherlands.
| |
Collapse
|
22
|
Hong BV, Zheng J, Zivkovic AM. HDL Function across the Lifespan: From Childhood, to Pregnancy, to Old Age. Int J Mol Sci 2023; 24:15305. [PMID: 37894984 PMCID: PMC10607703 DOI: 10.3390/ijms242015305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The function of high-density lipoprotein (HDL) particles has emerged as a promising therapeutic target and the measurement of HDL function is a promising diagnostic across several disease states. The vast majority of research on HDL functional biology has focused on adult participants with underlying chronic diseases, whereas limited research has investigated the role of HDL in childhood, pregnancy, and old age. Yet, it is apparent that functional HDL is essential at all life stages for maintaining health. In this review, we discuss current data regarding the role of HDL during childhood, pregnancy and in the elderly, how disturbances in HDL may lead to adverse health outcomes, and knowledge gaps in the role of HDL across these life stages.
Collapse
Affiliation(s)
| | | | - Angela M. Zivkovic
- Department of Nutrition, University of California-Davis, Davis, CA 95616, USA; (B.V.H.); (J.Z.)
| |
Collapse
|
23
|
Abyadeh M, Gupta V, Paulo JA, Sheriff S, Shadfar S, Fitzhenry M, Amirkhani A, Gupta V, Salekdeh GH, Haynes PA, Graham SL, Mirzaei M. Apolipoprotein ε in Brain and Retinal Neurodegenerative Diseases. Aging Dis 2023; 14:1311-1330. [PMID: 37199411 PMCID: PMC10389820 DOI: 10.14336/ad.2023.0312-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/12/2023] [Indexed: 05/19/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia that remains incurable and has become a major medical, social, and economic challenge worldwide. AD is characterized by pathological hallmarks of senile plaques (SP) and neurofibrillary tangles (NFTs) that damage the brain up to twenty years before a clinical diagnosis is made. Interestingly these pathological features have also been observed in retinal neurodegenerative diseases including age related macular degeneration (ARMD), glaucoma and diabetic retinopathy (DR). An association of AD with these diseases has been suggested in epidemiological studies and several common pathological events and risk factors have been identified between these diseases. The E4 allele of Apolipoprotein E (APOE) is a well-established genetic risk factor for late onset AD. The ApoE ε4 allele is also associated with retinal neurodegenerative diseases however in contrast to AD, it is considered protective in AMD, likewise ApoE E2 allele, which is a protective factor for AD, has been implicated as a risk factor for AMD and glaucoma. This review summarizes the evidence on the effects of ApoE in retinal neurodegenerative diseases and discusses the overlapping molecular pathways in AD. The involvement of ApoE in regulating amyloid beta (Aβ) and tau pathology, inflammation, vascular integrity, glucose metabolism and vascular endothelial growth factor (VEGF) signaling is also discussed.
Collapse
Affiliation(s)
| | - Vivek Gupta
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW 2109, Australia.
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| | - Samran Sheriff
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW 2109, Australia.
| | - Sina Shadfar
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW 2109, Australia.
| | - Matthew Fitzhenry
- Australian Proteome Analysis Facility, Macquarie University, Macquarie Park, NSW 2113, Australia.
| | - Ardeshir Amirkhani
- Australian Proteome Analysis Facility, Macquarie University, Macquarie Park, NSW 2113, Australia.
| | - Veer Gupta
- School of Medicine, Deakin University, VIC, Australia.
| | - Ghasem H Salekdeh
- School of Natural Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia.
| | - Paul A Haynes
- School of Natural Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia.
| | - Stuart L Graham
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW 2109, Australia.
| | - Mehdi Mirzaei
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW 2109, Australia.
| |
Collapse
|
24
|
Colavitta MF, Barrantes FJ. Therapeutic Strategies Aimed at Improving Neuroplasticity in Alzheimer Disease. Pharmaceutics 2023; 15:2052. [PMID: 37631266 PMCID: PMC10459958 DOI: 10.3390/pharmaceutics15082052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/23/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer disease (AD) is the most prevalent form of dementia among elderly people. Owing to its varied and multicausal etiopathology, intervention strategies have been highly diverse. Despite ongoing advances in the field, efficient therapies to mitigate AD symptoms or delay their progression are still of limited scope. Neuroplasticity, in broad terms the ability of the brain to modify its structure in response to external stimulation or damage, has received growing attention as a possible therapeutic target, since the disruption of plastic mechanisms in the brain appear to correlate with various forms of cognitive impairment present in AD patients. Several pre-clinical and clinical studies have attempted to enhance neuroplasticity via different mechanisms, for example, regulating glucose or lipid metabolism, targeting the activity of neurotransmitter systems, or addressing neuroinflammation. In this review, we first describe several structural and functional aspects of neuroplasticity. We then focus on the current status of pharmacological approaches to AD stemming from clinical trials targeting neuroplastic mechanisms in AD patients. This is followed by an analysis of analogous pharmacological interventions in animal models, according to their mechanisms of action.
Collapse
Affiliation(s)
- María F. Colavitta
- Laboratory of Molecular Neurobiology, Biomedical Research Institute (BIOMED), Universidad Católica Argentina (UCA)—National Scientific and Technical Research Council (CONICET), Buenos Aires C1107AAZ, Argentina
- Centro de Investigaciones en Psicología y Psicopedagogía (CIPP-UCA), Facultad de Psicología, Av. Alicia Moreau de Justo, Buenos Aires C1107AAZ, Argentina;
| | - Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute (BIOMED), Universidad Católica Argentina (UCA)—National Scientific and Technical Research Council (CONICET), Buenos Aires C1107AAZ, Argentina
| |
Collapse
|
25
|
Lu H, Wang B, Liu Y, Wang D, Fields L, Zhang H, Li M, Shi X, Zetterberg H, Li L. DiLeu Isobaric Labeling Coupled with Limited Proteolysis Mass Spectrometry for High-Throughput Profiling of Protein Structural Changes in Alzheimer's Disease. Anal Chem 2023; 95:9746-9753. [PMID: 37307028 PMCID: PMC10330787 DOI: 10.1021/acs.analchem.2c05731] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
High-throughput quantitative analysis of protein conformational changes has a profound impact on our understanding of the pathological mechanisms of Alzheimer's disease (AD). To establish an effective workflow enabling quantitative analysis of changes in protein conformation within multiple samples simultaneously, here we report the combination of N,N-dimethyl leucine (DiLeu) isobaric tag labeling with limited proteolysis mass spectrometry (DiLeu-LiP-MS) for high-throughput structural protein quantitation in serum samples collected from AD patients and control donors. Twenty-three proteins were discovered to undergo structural changes, mapping to 35 unique conformotypic peptides with significant changes between the AD group and the control group. Seven out of 23 proteins, including CO3, CO9, C4BPA, APOA1, APOA4, C1R, and APOA, exhibited a potential correlation with AD. Moreover, we found that complement proteins (e.g., CO3, CO9, and C4BPA) related to AD exhibited elevated levels in the AD group compared to those in the control group. These results provide evidence that the established DiLeu-LiP-MS method can be used for high-throughput structural protein quantitation, which also showed great potential in achieving large-scale and in-depth quantitative analysis of protein conformational changes in other biological systems.
Collapse
Affiliation(s)
- Haiyan Lu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Bin Wang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Yuan Liu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Danqing Wang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Lauren Fields
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Hua Zhang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Miyang Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Xudong Shi
- Division of Otolaryngology, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 43141, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, 43130, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, WC1N 3BG, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, 999077, China
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
26
|
Sanotra MR, Kao SH, Lee CK, Hsu CH, Huang WC, Chang TC, Tu FY, Hsu IU, Lin YF. Acrolein adducts and responding autoantibodies correlate with metabolic disturbance in Alzheimer's disease. Alzheimers Res Ther 2023; 15:115. [PMID: 37349844 PMCID: PMC10286356 DOI: 10.1186/s13195-023-01261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 06/10/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is caused by many intertwining pathologies involving metabolic aberrations. Patients with metabolic syndrome (MetS) generally show hyperglycemia and dyslipidemia, which can lead to the formation of aldehydic adducts such as acrolein on peptides in the brain and blood. However, the pathogenesis from MetS to AD remains elusive. METHODS An AD cell model expressing Swedish and Indiana amyloid precursor protein (APP-Swe/Ind) in neuro-2a cells and a 3xTg-AD mouse model were used. Human serum samples (142 control and 117 AD) and related clinical data were collected. Due to the involvement of MetS in AD, human samples were grouped into healthy control (HC), MetS-like, AD with normal metabolism (AD-N), and AD with metabolic disturbance (AD-M). APP, amyloid-beta (Aß), and acrolein adducts in the samples were analyzed using immunofluorescent microscopy, histochemistry, immunoprecipitation, immunoblotting, and/or ELISA. Synthetic Aß1-16 and Aß17-28 peptides were modified with acrolein in vitro and verified using LC-MS/MS. Native and acrolein-modified Aß peptides were used to measure the levels of specific autoantibodies IgG and IgM in the serum. The correlations and diagnostic power of potential biomarkers were evaluated. RESULTS An increased level of acrolein adducts was detected in the AD model cells. Furthermore, acrolein adducts were observed on APP C-terminal fragments (APP-CTFs) containing Aß in 3xTg-AD mouse serum, brain lysates, and human serum. The level of acrolein adducts was correlated positively with fasting glucose and triglycerides and negatively with high-density lipoprotein-cholesterol, which correspond with MetS conditions. Among the four groups of human samples, the level of acrolein adducts was largely increased only in AD-M compared to all other groups. Notably, anti-acrolein-Aß autoantibodies, especially IgM, were largely reduced in AD-M compared to the MetS group, suggesting that the specific antibodies against acrolein adducts may be depleted during pathogenesis from MetS to AD. CONCLUSIONS Metabolic disturbance may induce acrolein adduction, however, neutralized by responding autoantibodies. AD may be developed from MetS when these autoantibodies are depleted. Acrolein adducts and the responding autoantibodies may be potential biomarkers for not only diagnosis but also immunotherapy of AD, especially in complication with MetS.
Collapse
Affiliation(s)
- Monika Renuka Sanotra
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan
| | - Shu-Huei Kao
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan
| | - Ching-Kuo Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan
| | - Chun-Hsien Hsu
- Department of Family Medicine, Taipei City Hospital, Heping Fuyou Branch, Taipei, 100, Taiwan
- Department of Family Medicine, Cardinal Tien Hospital, New Taipei, 231, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, 242, Taiwan
| | - Wen-Chung Huang
- Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333, Taiwan
| | - Tsuei-Chuan Chang
- Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333, Taiwan
| | - Fang-Yu Tu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan
| | - I-Uen Hsu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Yung-Feng Lin
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan.
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
27
|
Qu L, Liu F, Fang Y, Wang L, Chen H, Yang Q, Dong H, Jin L, Wu W, Sun D. Improvement in Zebrafish with Diabetes and Alzheimer's Disease Treated with Pasteurized Akkermansia muciniphila. Microbiol Spectr 2023; 11:e0084923. [PMID: 37191572 PMCID: PMC10269592 DOI: 10.1128/spectrum.00849-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/01/2023] [Indexed: 05/17/2023] Open
Abstract
Diabetes and Alzheimer's disease (AD) are associated with specific changes in the composition of the intestinal flora. Studies have shown that the supplementation with pasteurized Akkermansia muciniphila has therapeutic and preventive effects on diabetes. However, it is not clear whether there is any association with improvement in and prevention of Alzheimer's disease and diabetes with Alzheimer's disease. Here, we found that pasteurized Akkermansia muciniphila can significantly improve the blood glucose, body mass index, and diabetes indexes of zebrafish with diabetes mellitus complicated with Alzheimer's disease and also alleviate the related indexes of Alzheimer's disease. The memory, anxiety, aggression, and social preference behavior of zebrafish with combined type 2 diabetes mellitus (T2DM) and Alzheimer's disease (TA zebrafish) were significantly improved after pasteurized Akkermansia muciniphila treatment. Moreover, we examined the preventive effect of pasteurized Akkermansia muciniphila on diabetes mellitus complicated with Alzheimer's disease. The results showed that the zebrafish in the prevention group were better in terms of biochemical index and behavior than the zebrafish in the treatment group. These findings provide new ideas for the prevention and treatment of diabetes mellitus complicated with Alzheimer's disease. IMPORTANCE The interaction between intestinal microflora and host affects the progression of diabetes and Alzheimer's disease. As a recognized next-generation probiotic, Akkermansia muciniphila has been shown to play a key role in the progression of diabetes and Alzheimer's disease, but whether A. muciniphila can improve diabetes complicated with Alzheimer's disease and its potential mechanism are unclear. In this study, a new zebrafish model of diabetes mellitus complicated with Alzheimer's disease was established, and the effect of Akkermansia muciniphila on diabetes mellitus complicated with Alzheimer's disease is discussed. The results showed that Akkermansia muciniphila after pasteurization significantly improved and prevented diabetes mellitus complicated with Alzheimer's disease. Treatment with pasteurized Akkermansia muciniphila improved the memory, social preference, and aggressive and anxiety behavior of TA zebrafish and alleviated the pathological characteristics of T2DM and AD. These results provide a new prospect for probiotics in the treatment of diabetes and Alzheimer's disease.
Collapse
Affiliation(s)
- Linkai Qu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Fan Liu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Yimeng Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Lei Wang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Haojie Chen
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Hao Dong
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| |
Collapse
|
28
|
Wu CY, Ho CY, Yang YH. Developing Biomarkers for the Skin: Biomarkers for the Diagnosis and Prediction of Treatment Outcomes of Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24108478. [PMID: 37239825 DOI: 10.3390/ijms24108478] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/02/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by memory decline and cognitive impairment. Research on biomarkers can aid in early diagnosis, monitoring disease progression, evaluating treatment efficacy, and advancing fundamental research. We conducted a cross-sectional longitudinal study to see if there is an association between AD patients and age-matched healthy controls for their physiologic skin characteristics, such as pH, hydration, transepidermal water loss (TEWL), elasticity, microcirculation, and ApoE genotyping. The study used the Mini-Mental State Examination (MMSE) and Clinical Dementia Rating-Sum of the Boxes (CDR-SB) scales as references to quantify the presence of disease, if any. Our findings demonstrate that AD patients have a dominantly neutral pH, greater skin hydration, and less elasticity compared to the control subjects. At baseline, the tortuous capillary percentage negatively correlated with MMSE scores in AD patients. However, AD patients who carry the ApoE E4 allele and exhibit a high percentage of tortuous capillaries and capillary tortuous numbers have shown better treatment outcomes at six months. Therefore, we believe that physiologic skin testing is a rapid and effective way to screen, monitor progression, and ultimately guide the most appropriate treatment for AD patients.
Collapse
Affiliation(s)
- Ching-Ying Wu
- Department of Dermatology, College of Medicine and Post Baccalaureat Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Cosmetic Science, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
| | - Chih-Yi Ho
- Department of Dermatology, College of Medicine and Post Baccalaureat Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yuan-Han Yang
- Department of Neurology, College of Post Baccalaureat Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
29
|
HDL-Based Therapy: Vascular Protection at All Stages. Biomedicines 2023; 11:biomedicines11030711. [PMID: 36979690 PMCID: PMC10045384 DOI: 10.3390/biomedicines11030711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
It is known that lipid metabolism disorders are involved in a wide range of pathologies. These pathologies include cardiovascular, metabolic, neurodegenerative diseases, and even cancer. All these diseases lead to serious health consequences, which makes it impossible to ignore them. Unfortunately, these diseases most often have a complex pathogenesis, which makes it difficult to study them and, in particular, diagnose and treat them. HDL is an important part of lipid metabolism, performing many functions under normal conditions. One of such functions is the maintaining of the reverse cholesterol transport. These functions are also implicated in pathology development. Thus, HDL contributes to vascular protection, which has been demonstrated in various conditions: Alzheimer’s disease, atherosclerosis, etc. Many studies have shown that serum levels of HDL cholesterol correlate negatively with CV risk. With these data, HDL-C is a promising therapeutic target. In this manuscript, we reviewed HDL-based therapeutic strategies that are currently being used or may be developed soon.
Collapse
|
30
|
Sergi D, Zauli E, Tisato V, Secchiero P, Zauli G, Cervellati C. Lipids at the Nexus between Cerebrovascular Disease and Vascular Dementia: The Impact of HDL-Cholesterol and Ceramides. Int J Mol Sci 2023; 24:ijms24054403. [PMID: 36901834 PMCID: PMC10002119 DOI: 10.3390/ijms24054403] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Cerebrovascular diseases and the subsequent brain hypoperfusion are at the basis of vascular dementia. Dyslipidemia, marked by an increase in circulating levels of triglycerides and LDL-cholesterol and a parallel decrease in HDL-cholesterol, in turn, is pivotal in promoting atherosclerosis which represents a common feature of cardiovascular and cerebrovascular diseases. In this regard, HDL-cholesterol has traditionally been considered as being protective from a cardiovascular and a cerebrovascular prospective. However, emerging evidence suggests that their quality and functionality play a more prominent role than their circulating levels in shaping cardiovascular health and possibly cognitive function. Furthermore, the quality of lipids embedded in circulating lipoproteins represents another key discriminant in modulating cardiovascular disease, with ceramides being proposed as a novel risk factor for atherosclerosis. This review highlights the role of HDL lipoprotein and ceramides in cerebrovascular diseases and the repercussion on vascular dementia. Additionally, the manuscript provides an up-to-date picture of the impact of saturated and omega-3 fatty acids on HDL circulating levels, functionality and ceramide metabolism.
Collapse
Affiliation(s)
- Domenico Sergi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Correspondence:
| | - Enrico Zauli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Veronica Tisato
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Paola Secchiero
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Giorgio Zauli
- King Khaled Eye Specialistic Hospital, Riyadh 11462, Saudi Arabia
| | - Carlo Cervellati
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
31
|
Murakami K, Harada A, Toh R, Kubo T, Miwa K, Kim J, Kiriyama M, Iino T, Nishikawa Y, Uno SN, Akatsuchi K, Nagao M, Ishida T, Hirata KI. Fully automated immunoassay for cholesterol uptake capacity to assess high-density lipoprotein function and cardiovascular disease risk. Sci Rep 2023; 13:1899. [PMID: 36732570 PMCID: PMC9895055 DOI: 10.1038/s41598-023-28953-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
High-density lipoprotein (HDL) cholesterol efflux capacity (CEC), which is a conventional metric of HDL function, has been associated with coronary heart disease risk. However, the CEC assay requires cultured cells and takes several days to perform. We previously established a cell-free assay to evaluate cholesterol uptake capacity (CUC) as a novel measure of HDL functionality and demonstrated its utility in coronary risk stratification. To apply this concept clinically, we developed a rapid and sensitive assay system based on a chemiluminescent magnetic particle immunoassay. The system is fully automated, providing high reproducibility. Measurement of CUC in serum is completed within 20 min per sample without HDL isolation, a notably higher throughput than that of the conventional CEC assay. CUC decreased with myeloperoxidase-mediated oxidation of HDL or in the presence of N-ethylmaleimide, an inhibitor of lecithin: cholesterol acyltransferase (LCAT), whereas CUC was enhanced by the addition of recombinant LCAT. Furthermore, CUC correlated with CEC even after being normalized by ApoA1 concentration and was significantly associated with the requirement for revascularization due to the recurrence of coronary lesions. Therefore, our new assay system shows potential for the accurate measurement of CUC in serum and permits assessing cardiovascular health.
Collapse
Affiliation(s)
- Katsuhiro Murakami
- Central Research Laboratories, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-Ku, Kobe, 651-2271, Japan
| | - Amane Harada
- Central Research Laboratories, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-Ku, Kobe, 651-2271, Japan.
| | - Ryuji Toh
- Division of Evidence-Based Laboratory Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe, 650-0017, Japan.
| | - Takuya Kubo
- Central Research Laboratories, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-Ku, Kobe, 651-2271, Japan
| | - Keiko Miwa
- Central Research Laboratories, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-Ku, Kobe, 651-2271, Japan
| | - Jeeeun Kim
- Central Research Laboratories, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-Ku, Kobe, 651-2271, Japan
| | - Maria Kiriyama
- Central Research Laboratories, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-Ku, Kobe, 651-2271, Japan
| | - Takuya Iino
- Central Research Laboratories, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-Ku, Kobe, 651-2271, Japan
| | - Youichi Nishikawa
- Central Research Laboratories, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-Ku, Kobe, 651-2271, Japan
| | - Shin-Nosuke Uno
- Central Research Laboratories, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-Ku, Kobe, 651-2271, Japan
| | | | - Manabu Nagao
- Division of Evidence-Based Laboratory Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe, 650-0017, Japan
| | - Tatsuro Ishida
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Ken-Ichi Hirata
- Division of Evidence-Based Laboratory Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe, 650-0017, Japan.,Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| |
Collapse
|
32
|
Li J, Wang C, Zhang P. Effects of traditional Chinese exercise on vascular function in patients with Alzheimer's disease: A protocol for systematic review and network meta-analysis of randomized controlled trials. Medicine (Baltimore) 2023; 102:e32517. [PMID: 36701718 PMCID: PMC9857473 DOI: 10.1097/md.0000000000032517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disorder with an insidious onset, usually characterized by memory impairment, visual-spatial skill impairment, executive dysfunction and personality behavioral changes. Studies have confirmed that vascular dysfunction may precede AD pathological changes and can present as vascular malformations, atherosclerosis, and impaired self-regulation, and can affect oxidative stress and amyloidosis. Therefore, it is important to improve or prevent vascular dysfunction in AD patients. Regular exercise can effectively inhibit the production of reactive oxygen species during the occurrence of AD and can improve the reduction of cerebral blood flow due to AD. Previous studies have shown that exercise can achieve superior clinical results in improving vascular function in AD patients. Therefore, we hypothesize that traditional Chinese exercises (TCEs) may have a good clinical effect in improving vascular function in patients with AD. METHODS We will search "PubMed," "the Cochrane Library," "Embase," "Web of Science," "CINAHL," "ProQuest Dissertations and Theses," and "ProQuest-Health & Medical Collection," "CNKI," "SinoMed," "VIP," and "Wanfang Data" to find randomized controlled trials of the effects of TCEs on AD vascular function from the creation of the database to the present, including at least 1 indicator in carotid intima-media thickness (cIMT), middle cerebral artery mean flow velocity (MFV), blood indicators [Heme Oxidase-1 (HO-1), angiopoietin I (Ang I), vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor, matrix metalloproteinase-9 (MMP-9)], and arterial stiffness [(Ankle Brachial Index (ABI), pulse wave velocity (PWV)]. For the included literature, Excel 2019 will be used for data extraction and collection. For the indicators that can be netted for network meta-analysis, Surface Under the Cumulative Ranking for each exercise modality will be calculated with the help of Stata 16.0 and rank, where the higher the SUCRA score, the higher the ranking. For the indicators that cannot be netted, Review Manager 5.4 will be used for meta-analysis will be performed to evaluate the improvement effect of TCEs on AD patients. RESULTS This meta-analysis will further determine the efficacy and safety of TCEs on vascular function in AD patients. CONCLUSION In this study, randomized controlled trials of the effects of TCEs on vascular function in AD patients will be selected to provide evidence-based medical evidence for promoting the application of TCEs by observing the order of advantages and disadvantages of various exercise modalities through network meta-analysis.
Collapse
Affiliation(s)
- Jin Li
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Chen Wang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Peizhen Zhang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
- * Correspondence: Peizhen Zhang, School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China (e-mail: )
| |
Collapse
|
33
|
Huang J, Zhu H, Yu P, Ma Y, Gong J, Fu Y, Song H, Huang M, Luo J, Jiang J, Gao X, Feng J, Jiang G. Recombinant High-Density Lipoprotein Boosts the Therapeutic Efficacy of Mild Hypothermia in Traumatic Brain Injury. ACS APPLIED MATERIALS & INTERFACES 2023; 15:26-38. [PMID: 35833835 DOI: 10.1021/acsami.2c02940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Traumatic brain injury (TBI) leads to neuropsychiatric symptoms and increased risk of neurodegenerative disorders. Mild hypothermia is commonly used in patients suffering from severe TBI. However, its effect for long-term protection is limited, mostly because of its insufficient anti-inflammatory and neuroprotective efficacy and restricted treatment duration. Recombinant high-density lipoprotein (rHDL), which possesses anti-inflammatory and antioxidant activity and blood-brain barrier (BBB) permeability, was expected to potentially strengthen the therapeutic effect of mild hypothermia in TBI treatment. To test this hypothesis and optimize the regimen for combination therapy, the efficacy of mild hypothermia plus concurrent or sequential rHDL on oxidative stress, inflammatory reaction, and cell survival in the damaged brain cells was evaluated. It was found that the effect of combining mild hypothermia with concurrent rHDL was modest, as mild hypothermia inhibited the cellular uptake and lesion-site-targeting delivery of rHDL. In contrast, the combination of mild hypothermia with sequential rHDL more powerfully improved the anti-inflammatory and antioxidant activities, promoted nerve cell survival and BBB restoration, and ameliorated neurologic changes, which thus remarkably restored the spatial learning and memory ability of TBI mice. Collectively, these findings suggest that rHDL may serve as a novel nanomedicine for adjunctive therapy of TBI and highlight the importance of timing of combination therapy for optimal treatment outcome.
Collapse
Affiliation(s)
- Jialin Huang
- Brain Injury Center, Renji Hospital, Shanghai Institute of Head Trauma, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai 200127, China
| | - Han Zhu
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, No. 2800 Gongwei Road, Shanghai 201399, China
| | - Ping Yu
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Rui Jin Er Road, Shanghai 200025, China
| | - Yuxiao Ma
- Brain Injury Center, Renji Hospital, Shanghai Institute of Head Trauma, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai 200127, China
| | - Jingru Gong
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, No. 2800 Gongwei Road, Shanghai 201399, China
| | - Yuli Fu
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Huahua Song
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Meng Huang
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Jing Luo
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Jiyao Jiang
- Brain Injury Center, Renji Hospital, Shanghai Institute of Head Trauma, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai 200127, China
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Junfeng Feng
- Brain Injury Center, Renji Hospital, Shanghai Institute of Head Trauma, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai 200127, China
| | - Gan Jiang
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| |
Collapse
|
34
|
Quantitative NMR-Based Lipoprotein Analysis Identifies Elevated HDL-4 and Triglycerides in the Serum of Alzheimer’s Disease Patients. Int J Mol Sci 2022; 23:ijms232012472. [PMID: 36293327 PMCID: PMC9604278 DOI: 10.3390/ijms232012472] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia in the elderly and has been associated with changes in lipoprotein metabolism. We performed quantitative lipoprotein analysis in a local cohort of cognitively impaired elderly and control subjects using standardized nuclear magnetic resonance (NMR) spectroscopy. A commercially available quantitative NMR-based assay covering 112 lipoprotein main and subtype variables was used to investigate blood serum samples from a moderate cohort size of 161 persons (71 female, 90 male), including measures of quality control. Additionally, clinical metadata and cerebrospinal fluid AD biomarkers were collected and used for analysis. High-density lipoprotein (HDL) HDL-4 subfraction levels were mostly high in female individuals with mild cognitive impairment (MCI), followed by AD. Low-density lipoprotein (LDL) LDL-2 cholesterol was slightly elevated in male AD patients. HDL-2 apolipoprotein Apo-A1, HDL-2 phospholipids, and HDL-3 triglycerides were highly abundant in AD and MCI women compared to men. When considering clinical biomarkers (Aβ, tau), very low-density lipoprotein (VLDL) VLDL-1 and intermediate-density lipoprotein (IDL) triglycerides were substantially higher in AD compared to MCI. In addition, triglyceride levels correlated positively with dementia. Different lipoprotein serum patterns were identified for AD, MCI, and control subjects. Interestingly, HDL-4 and LDL-2 cholesterol parameters revealed strong gender-specific changes in the context of AD-driven dementia. As gender-based comparisons were based on smaller sub-groups with a low n-number, several statistical findings did not meet the significance threshold for multiple comparisons testing. Still, our finding suggests that serum HDL-4 parameters and various triglycerides correlate positively with AD pathology which could be a read-out of extended lipids traveling through the blood-brain barrier, supporting amyloid plaque formation processes. Thereof, we see herein a proof of concept that this quantitative NMR-based lipoprotein assay can generate important and highly interesting data for refined AD diagnosis and patient stratification, especially when larger cohorts are available.
Collapse
|
35
|
Effect of Obesity and High-Density Lipoprotein Concentration on the Pathological Characteristics of Alzheimer's Disease in High-Fat Diet-Fed Mice. Int J Mol Sci 2022; 23:ijms232012296. [PMID: 36293147 PMCID: PMC9603479 DOI: 10.3390/ijms232012296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 12/05/2022] Open
Abstract
The typical pathological features of Alzheimer's disease (AD) are the accumulation of amyloid plaques in the brain and reactivity of glial cells such as astrocytes and microglia. Clinically, the development of AD and obesity are known to be correlated. In this study, we analyzed the changes in AD pathological characteristics in 5XFAD mice after obesity induction through a high-fat diet (HFD). Surprisingly, high-density lipoprotein and apolipoprotein AI (APOA-I) serum levels were increased without low-density lipoprotein alteration in both HFD groups. The reactivity of astrocytes and microglia in the dentate gyrus of the hippocampus and fornix of the hypothalamus in 5XFAD mice was decreased in the transgenic (TG)-HFD high group. Finally, the accumulation of amyloid plaques in the dentate gyrus region of the hippocampus was also significantly decreased in the TG-HFD high group. These results suggest that increased high-density lipoprotein level, especially with increased APOA-I serum level, alleviates the pathological features of AD and could be a new potential therapeutic strategy for AD treatment.
Collapse
|
36
|
Hong BV, Zheng J, Agus JK, Tang X, Lebrilla CB, Jin LW, Maezawa I, Erickson K, Harvey DJ, DeCarli CS, Mungas DM, Olichney JM, Farias ST, Zivkovic AM. High-Density Lipoprotein Changes in Alzheimer's Disease Are APOE Genotype-Specific. Biomedicines 2022; 10:1495. [PMID: 35884800 PMCID: PMC9312991 DOI: 10.3390/biomedicines10071495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 01/09/2023] Open
Abstract
High-density lipoproteins (HDL) play a critical role in cholesterol homeostasis. Apolipoprotein E (APOE), particularly the E4 allele, is a significant risk factor for Alzheimer's disease but is also a key HDL-associated protein involved in lipid transport in both the periphery and central nervous systems. The objective was to determine the influence of the APOE genotype on HDL function and size in the context of Alzheimer's disease. HDL from 194 participants (non-demented controls, mild cognitive impairment, and Alzheimer's disease dementia) were isolated from the plasma. The HDL cholesterol efflux capacity (CEC), lecithin-cholesterol acyltransferase (LCAT) activity, and particle diameter were measured. Neuropsychological test scores, clinical dementia rating, and magnetic resonance imaging scores were used to determine if cognition is associated with HDL function and size. HDL CEC and LCAT activity were reduced in APOE3E4 carriers compared to APOE3E3 carriers, regardless of diagnosis. In APOE3E3 carriers, CEC and LCAT activity were lower in patients. In APOE3E4 patients, the average particle size was lower. HDL LCAT activity and particle size were positively correlated with the neuropsychological scores and negatively correlated with the clinical dementia rating. We provide evidence for the first time of APOE genotype-specific alterations in HDL particles in Alzheimer's disease and an association between HDL function, size, and cognitive function.
Collapse
Affiliation(s)
- Brian V. Hong
- Department of Nutrition, University of California-Davis, Davis, CA 95616, USA; (B.V.H.); (J.Z.); (J.K.A.); (X.T.)
| | - Jingyuan Zheng
- Department of Nutrition, University of California-Davis, Davis, CA 95616, USA; (B.V.H.); (J.Z.); (J.K.A.); (X.T.)
| | - Joanne K. Agus
- Department of Nutrition, University of California-Davis, Davis, CA 95616, USA; (B.V.H.); (J.Z.); (J.K.A.); (X.T.)
| | - Xinyu Tang
- Department of Nutrition, University of California-Davis, Davis, CA 95616, USA; (B.V.H.); (J.Z.); (J.K.A.); (X.T.)
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California-Davis, Davis, CA 95616, USA;
| | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California-Davis, Davis, CA 95817, USA; (L.-W.J.); (I.M.); (K.E.)
| | - Izumi Maezawa
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California-Davis, Davis, CA 95817, USA; (L.-W.J.); (I.M.); (K.E.)
| | - Kelsey Erickson
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California-Davis, Davis, CA 95817, USA; (L.-W.J.); (I.M.); (K.E.)
| | - Danielle J. Harvey
- Department of Public Health Sciences, University of California-Davis, Davis, CA 95616, USA;
| | - Charles S. DeCarli
- Department of Neurology, School of Medicine, University of California-Davis, Davis, CA 95817, USA; (C.S.D.); (D.M.M.); (J.M.O.); (S.T.F.)
| | - Dan M. Mungas
- Department of Neurology, School of Medicine, University of California-Davis, Davis, CA 95817, USA; (C.S.D.); (D.M.M.); (J.M.O.); (S.T.F.)
| | - John M. Olichney
- Department of Neurology, School of Medicine, University of California-Davis, Davis, CA 95817, USA; (C.S.D.); (D.M.M.); (J.M.O.); (S.T.F.)
| | - Sarah T. Farias
- Department of Neurology, School of Medicine, University of California-Davis, Davis, CA 95817, USA; (C.S.D.); (D.M.M.); (J.M.O.); (S.T.F.)
| | - Angela M. Zivkovic
- Department of Nutrition, University of California-Davis, Davis, CA 95616, USA; (B.V.H.); (J.Z.); (J.K.A.); (X.T.)
| |
Collapse
|
37
|
Lord J, Green R, Choi SW, Hübel C, Aarsland D, Velayudhan L, Sham P, Legido-Quigley C, Richards M, Dobson R, Proitsi P. Disentangling Independent and Mediated Causal Relationships Between Blood Metabolites, Cognitive Factors, and Alzheimer's Disease. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022; 2:167-179. [PMID: 36325159 PMCID: PMC9616368 DOI: 10.1016/j.bpsgos.2021.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/18/2021] [Accepted: 07/07/2021] [Indexed: 01/12/2023] Open
Abstract
Background Education and cognition demonstrate consistent inverse associations with Alzheimer's disease (AD). The biological underpinnings, however, remain unclear. Blood metabolites reflect the end point of biological processes and are accessible and malleable. Identifying metabolites with etiological relevance to AD and disentangling how these relate to cognitive factors along the AD causal pathway could, therefore, offer unique insights into underlying causal mechanisms. Methods Using data from the largest metabolomics genome-wide association study (N ≈ 24,925) and three independent AD cohorts (N = 4725), cross-trait polygenic scores were generated and meta-analyzed. Metabolites genetically associated with AD were taken forward for causal analyses. Bidirectional two-sample Mendelian randomization interrogated univariable causal relationships between 1) metabolites and AD; 2) education and cognition; 3) metabolites, education, and cognition; and 4) education, cognition, and AD. Mediating relationships were computed using multivariable Mendelian randomization. Results Thirty-four metabolites were genetically associated with AD at p < .05. Of these, glutamine and free cholesterol in extra-large high-density lipoproteins demonstrated a protective causal effect (glutamine: 95% confidence interval [CI], 0.70 to 0.92; free cholesterol in extra-large high-density lipoproteins: 95% CI, 0.75 to 0.92). An AD-protective effect was also observed for education (95% CI, 0.61 to 0.85) and cognition (95% CI, 0.60 to 0.89), with bidirectional mediation evident. Cognition as a mediator of the education-AD relationship was stronger than vice versa, however. No evidence of mediation via any metabolite was found. Conclusions Glutamine and free cholesterol in extra-large high-density lipoproteins show protective causal effects on AD. Education and cognition also demonstrate protection, though education's effect is almost entirely mediated by cognition. These insights provide key pieces of the AD causal puzzle, important for informing future multimodal work and progressing toward effective intervention strategies.
Collapse
Affiliation(s)
- Jodie Lord
- Institute of Psychology, Psychiatry and Neuroscience, King’s College London, London, United Kingdom
| | - Rebecca Green
- Institute of Psychology, Psychiatry and Neuroscience, King’s College London, London, United Kingdom
- NIHR Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - Shing Wan Choi
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Christopher Hübel
- Institute of Psychology, Psychiatry and Neuroscience, King’s College London, London, United Kingdom
- NIHR Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London, United Kingdom
- National Centre for Register-based Research, Aarhus University, Aarhus, Denmark
| | - Dag Aarsland
- Institute of Psychology, Psychiatry and Neuroscience, King’s College London, London, United Kingdom
- Center for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Latha Velayudhan
- Institute of Psychology, Psychiatry and Neuroscience, King’s College London, London, United Kingdom
| | - Pak Sham
- Department of Psychiatry, University of Hong Kong, Hong Kong, China
| | - Cristina Legido-Quigley
- Institute of Pharmaceutical Science, King’s College London, London, United Kingdom
- Steno Diabetes Center, Copenhagen, Aarhus University, Aarhus, Denmark
| | - Marcus Richards
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, United Kingdom
| | - Richard Dobson
- Institute of Psychology, Psychiatry and Neuroscience, King’s College London, London, United Kingdom
- NIHR Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London, United Kingdom
- Farr Institute of Health Informatics Research, UCL Institute of Health Informatics, London, United Kingdom
| | - Petroula Proitsi
- Institute of Psychology, Psychiatry and Neuroscience, King’s College London, London, United Kingdom
| | - Alzheimer’s Disease Neuroimaging Initiative
- Institute of Psychology, Psychiatry and Neuroscience, King’s College London, London, United Kingdom
- Institute of Pharmaceutical Science, King’s College London, London, United Kingdom
- NIHR Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London, United Kingdom
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, United Kingdom
- Farr Institute of Health Informatics Research, UCL Institute of Health Informatics, London, United Kingdom
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Steno Diabetes Center, Copenhagen, Aarhus University, Aarhus, Denmark
- National Centre for Register-based Research, Aarhus University, Aarhus, Denmark
- Center for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
- Department of Psychiatry, University of Hong Kong, Hong Kong, China
| | - GERAD1 Consortium, and AddNeuroMed
- Institute of Psychology, Psychiatry and Neuroscience, King’s College London, London, United Kingdom
- Institute of Pharmaceutical Science, King’s College London, London, United Kingdom
- NIHR Maudsley Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, London, United Kingdom
- MRC Unit for Lifelong Health and Ageing at UCL, University College London, London, United Kingdom
- Farr Institute of Health Informatics Research, UCL Institute of Health Informatics, London, United Kingdom
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
- Steno Diabetes Center, Copenhagen, Aarhus University, Aarhus, Denmark
- National Centre for Register-based Research, Aarhus University, Aarhus, Denmark
- Center for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
- Department of Psychiatry, University of Hong Kong, Hong Kong, China
| |
Collapse
|
38
|
Mangal R, Ding Y. Mini review: Prospective therapeutic targets of Alzheimer's disease. Brain Circ 2022; 8:1-5. [PMID: 35372728 PMCID: PMC8973446 DOI: 10.4103/bc.bc_20_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/10/2021] [Accepted: 01/11/2022] [Indexed: 11/04/2022] Open
Abstract
Alzheimer's disease is a neurological condition that causes the disruption of neuronal connections in the human brain. It is progressive and targets about 10% of the United States population over the age of 65.3 to date, there is no cure to the disease. Physicians can treat symptoms but lack the ability to stop the progression of the disease. However, promising research has come to the surface in recent years. A collection of these therapeutic targets, which have yielded positive results in mice models, are presented in this article. They include targets such as meningeal lymphatics, mitochondrial homeostasis, genomic instability, calcium homeostasis, and cold-shock proteins such as RNA-binding motif protein 3 and reticulon-3, high-density lipoprotein, and antibodies.
Collapse
Affiliation(s)
- Ruchi Mangal
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
39
|
Karlsson IK, Zhan Y, Wang Y, Li X, Jylhävä J, Hägg S, Dahl Aslan AK, Gatz M, Pedersen NL, Reynolds CA. Adiposity and the risk of dementia: mediating effects from inflammation and lipid levels. Eur J Epidemiol 2022; 37:1261-1271. [PMID: 36192662 PMCID: PMC9792412 DOI: 10.1007/s10654-022-00918-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/18/2022] [Indexed: 12/31/2022]
Abstract
While midlife adiposity is a risk factor for dementia, adiposity in late-life appears to be associated with lower risk. What drives the associations is poorly understood, especially the inverse association in late-life. Using results from genome-wide association studies, we identified inflammation and lipid metabolism as biological pathways involved in both adiposity and dementia. To test if these factors mediate the effect of midlife and/or late-life adiposity on dementia, we then used cohort data from the Swedish Twin Registry, with measures of adiposity and potential mediators taken in midlife (age 40-64, n = 5999) or late-life (age 65-90, n = 7257). Associations between body-mass index (BMI), waist-hip ratio (WHR), C-reactive protein (CRP), lipid levels, and dementia were tested in survival and mediation analyses. Age was used as the underlying time scale, and sex and education included as covariates in all models. Fasting status was included as a covariate in models of lipids. One standard deviation (SD) higher WHR in midlife was associated with 25% (95% CI 2-52%) higher dementia risk, with slight attenuation when adjusting for BMI. No evidence of mediation through CRP or lipid levels was present. After age 65, one SD higher BMI, but not WHR, was associated with 8% (95% CI 1-14%) lower dementia risk. The association was partly mediated by higher CRP, and suppressed when high-density lipoprotein levels were low. In conclusion, the negative effects of midlife adiposity on dementia risk were driven directly by factors associated with body fat distribution, with no evidence of mediation through inflammation or lipid levels. There was an inverse association between late-life adiposity and dementia risk, especially where the body's inflammatory response and lipid homeostasis is intact.
Collapse
Affiliation(s)
- Ida K. Karlsson
- grid.4714.60000 0004 1937 0626Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 1177 Stockholm, Sweden ,grid.118888.00000 0004 0414 7587Aging Research Network – Jönköping (ARN-J), School of Health and Welfare, Jönköping University, Jönköping, Sweden
| | - Yiqiang Zhan
- grid.12981.330000 0001 2360 039XSchool of Public Health, Sun Yat-Sen University, Shenzhen, China
| | - Yunzhang Wang
- grid.4714.60000 0004 1937 0626Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 1177 Stockholm, Sweden
| | - Xia Li
- grid.4714.60000 0004 1937 0626Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 1177 Stockholm, Sweden
| | - Juulia Jylhävä
- grid.4714.60000 0004 1937 0626Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 1177 Stockholm, Sweden
| | - Sara Hägg
- grid.4714.60000 0004 1937 0626Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 1177 Stockholm, Sweden
| | - Anna K. Dahl Aslan
- grid.4714.60000 0004 1937 0626Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 1177 Stockholm, Sweden ,grid.412798.10000 0001 2254 0954School of Health Sciences, University of Skövde, Skövde, Sweden
| | - Margaret Gatz
- grid.4714.60000 0004 1937 0626Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 1177 Stockholm, Sweden ,grid.42505.360000 0001 2156 6853Center for Economic and Social Research, University of Southern California, Los Angeles, USA
| | - Nancy L. Pedersen
- grid.4714.60000 0004 1937 0626Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 1177 Stockholm, Sweden ,grid.42505.360000 0001 2156 6853Department of Psychology, University of Southern California, Los Angeles, USA
| | - Chandra A. Reynolds
- grid.266097.c0000 0001 2222 1582Department of Psychology, University of California, Riverside, USA
| |
Collapse
|
40
|
Renuka Sanotra M, Huang WC, Silver S, Lin CY, Chang TC, Nguyen DPQ, Lee CK, Kao SH, Chang-Cheng Shieh J, Lin YF. Serum levels of 4-hydroxynonenal adducts and responding autoantibodies correlate with the pathogenesis from hyperglycemia to Alzheimer's disease. Clin Biochem 2021; 101:26-34. [PMID: 34933007 DOI: 10.1016/j.clinbiochem.2021.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/22/2021] [Accepted: 12/09/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Hyperglycemia leads to lipid peroxidation, producing 4-hydroxynonenal (HNE) adducts which correlate with the production of amyloid-beta (Aβ), one of the hallmarks of Alzheimer's disease (AD). This study is to investigate the interactions of Aβ, HNE adducts and responding autoantibodies during the pathogenesis from hyperglycemia to AD. METHODS A total of 239 Taiwanese serum samples from a healthy control group and patients with hyperglycemia, and AD with and without hyperglycemia were analyzed. Aβ was immunoprecipitated from randomly pooled serum in each group and immunoblotted. Synthetic Aβ1-16 and Aβ17-28 peptides were modified with HNE in vitro and verified with LC-MS/MS. The levels of Aβ, HNE adducts, and autoantibody isotypes IgG and IgM against either native or HNE-modified Aβ were determined with ELISA. The diagnostic power of potential biomarkers was evaluated. RESULTS Increased fasting glucose and decreased high-density-lipoprotein cholesterol in AD groups indicated abnormal metabolism in the pathogenesis progression from hyperglycemia to AD. Indeed, serum Aβ, HNE adducts and most of the autoantibodies recognizing either native or HNE-modified Aβ were increased in the diseased groups. However, HNE adducts had better diagnostic performances than Aβ for both hyperglycemia and AD. Additionally, HNE-Aβ peptide levels were increased, and the responding autoantibodies (most notably IgM) were decreased in hyperglycemic AD group compared to the hyperglycemia only group, suggesting an immunity disturbance in the pathogenesis progression from hyperglycemia to AD. CONCLUSION Hyperglycemia increases the level of HNE adducts which may be neutralized by responding autoantibodies. Depletion of these autoantibodies promotes AD-like pathogenesis. Thus, levels of a patient's HNE adducts and associated responding autoantibodies are potential biomarkers for AD with diabetes.
Collapse
Affiliation(s)
- Monika Renuka Sanotra
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Wen-Chung Huang
- Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
| | - Simon Silver
- Department of Microbiology and Immunology, University of Illinois College of Medicine at Chicago, Chicago, IL 60612, USA
| | - Ching-Yu Lin
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Tsuei-Chuan Chang
- Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
| | - Doan Phuong Quy Nguyen
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Ching-Kuo Lee
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Shu-Huei Kao
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Jonathan Chang-Cheng Shieh
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Yung-Feng Lin
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
41
|
Sterol and lipid analyses identifies hypolipidemia and apolipoprotein disorders in autism associated with adaptive functioning deficits. Transl Psychiatry 2021; 11:471. [PMID: 34504056 PMCID: PMC8429516 DOI: 10.1038/s41398-021-01580-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/03/2021] [Accepted: 08/18/2021] [Indexed: 12/30/2022] Open
Abstract
An improved understanding of sterol and lipid abnormalities in individuals with autism spectrum disorder (ASD) could lead to personalized treatment approaches. Toward this end, in blood, we identified reduced synthesis of cholesterol in families with ≥2 children with ASD participating with the Autism Genetic Resource Exchange (AGRE), as well as reduced amounts of high-density lipoprotein cholesterol (HDL), apolipoprotein A1 (ApoA1) and apolipoprotein B (ApoB), with 19.9% of the subjects presenting with apolipoprotein patterns similar to hypolipidemic clinical syndromes and 30% with either or both ApoA1 and ApoB less than the fifth centile. Subjects with levels less than the fifth centile of HDL or ApoA1 or ApoA1 + ApoB had lower adaptive functioning than other individuals with ASD, and hypocholesterolemic subjects had apolipoprotein deficits significantly divergent from either typically developing individuals participating in National Institutes of Health or the National Health and Nutrition Examination Survey III.
Collapse
|
42
|
Canfora F, Calabria E, Cuocolo R, Ugga L, Buono G, Marenzi G, Gasparro R, Pecoraro G, Aria M, D'Aniello L, Mignogna MD, Adamo D. Burning Fog: Cognitive Impairment in Burning Mouth Syndrome. Front Aging Neurosci 2021; 13:727417. [PMID: 34475821 PMCID: PMC8406777 DOI: 10.3389/fnagi.2021.727417] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/14/2021] [Indexed: 01/25/2023] Open
Abstract
Background: Due to its common association with chronic pain experience, cognitive impairment (CI) has never been evaluated in patients with burning mouth syndrome (BMS). The purpose of this study is to assess the prevalence of CI in patients with BMS and to evaluate its relationship with potential predictors such as pain, mood disorders, blood biomarkers, and white matter changes (WMCs). Methods: A case-control study was conducted by enrolling 40 patients with BMS and an equal number of healthy controls matched for age, gender, and education. Neurocognitive assessment [Mini Mental State Examination (MMSE), Digit Cancellation Test (DCT), the Forward and Backward Digit Span task (FDS and BDS), Corsi Block-Tapping Test (CB-TT), Rey Auditory Verbal Learning Test (RAVLT), Copying Geometric Drawings (CGD), Frontal Assessment Battery (FAB), and Trail Making A and B (TMT-A and TMT-B)], psychological assessment [Hamilton Rating Scale for Depression and Anxiety (HAM-D and HAM-A), Pittsburgh Sleep Quality Index (PSQI), Epworth Sleepiness Scale (ESS), and 36-Item Short Form Health Survey (SF-36)], and pain assessment [Visual Analogic Scale (VAS), Total Pain Rating index (T-PRI), Brief Pain Inventory (BPI), and Pain DETECT Questionnaire (PD-Q)] were performed. In addition, blood biomarkers and MRI of the brain were recorded for the detection of Age-Related WMCs (ARWMCs). Descriptive statistics, the Mann-Whitney U-test, the Pearson Chi-Squared test and Spearman's correlation analysis were used. Results: Patients with BMS had impairments in most cognitive domains compared with controls (p < 0.001**) except in RAVLT and CGD. The HAM-D, HAM-A, PSQI, ESS, SF-36, VAS, T-PRI, BPI and PD-Q scores were statistically different between BMS patients and controls (p < 0.001**) the WMCs frequency and ARWMC scores in the right temporal (RT) and left temporal (LT) lobe were higher in patients with BMS (p = 0.023*). Conclusions: Meanwhile, BMS is associated with a higher decline in cognitive functions, particularly attention, working memory, and executive functions, but other functions such as praxis-constructive skills and verbal memory are preserved. The early identification of CI and associated factors may help clinicians to identify patients at risk of developing time-based neurodegenerative disorders, such as Alzheimer's disease (AD) and vascular dementia (VD), for planning the early, comprehensive, and multidisciplinary assessment and treatment.
Collapse
Affiliation(s)
- Federica Canfora
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples "Federico II", Naples, Italy
| | - Elena Calabria
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples "Federico II", Naples, Italy
| | - Renato Cuocolo
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, Italy
| | - Giuseppe Buono
- Department of Diagnostical Morphological and Functional, University of Naples "Federico II", Naples, Italy
| | - Gaetano Marenzi
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples "Federico II", Naples, Italy
| | - Roberta Gasparro
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples "Federico II", Naples, Italy
| | - Giuseppe Pecoraro
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples "Federico II", Naples, Italy
| | - Massimo Aria
- Department of Economics and Statistics, University of Naples "Federico II", Naples, Italy
| | - Luca D'Aniello
- Department of Economics and Statistics, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Michele Davide Mignogna
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples "Federico II", Naples, Italy
| | - Daniela Adamo
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
43
|
von Eckardstein A. High Density Lipoproteins: Is There a Comeback as a Therapeutic Target? Handb Exp Pharmacol 2021; 270:157-200. [PMID: 34463854 DOI: 10.1007/164_2021_536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Low plasma levels of High Density Lipoprotein (HDL) cholesterol (HDL-C) are associated with increased risks of atherosclerotic cardiovascular disease (ASCVD). In cell culture and animal models, HDL particles exert multiple potentially anti-atherogenic effects. However, drugs increasing HDL-C have failed to prevent cardiovascular endpoints. Mendelian Randomization studies neither found any genetic causality for the associations of HDL-C levels with differences in cardiovascular risk. Therefore, the causal role and, hence, utility as a therapeutic target of HDL has been questioned. However, the biomarker "HDL-C" as well as the interpretation of previous data has several important limitations: First, the inverse relationship of HDL-C with risk of ASCVD is neither linear nor continuous. Hence, neither the-higher-the-better strategies of previous drug developments nor previous linear cause-effect relationships assuming Mendelian randomization approaches appear appropriate. Second, most of the drugs previously tested do not target HDL metabolism specifically so that the futile trials question the clinical utility of the investigated drugs rather than the causal role of HDL in ASCVD. Third, the cholesterol of HDL measured as HDL-C neither exerts nor reports any HDL function. Comprehensive knowledge of structure-function-disease relationships of HDL particles and associated molecules will be a pre-requisite, to test them for their physiological and pathogenic relevance and exploit them for the diagnostic and therapeutic management of individuals at HDL-associated risk of ASCVD but also other diseases, for example diabetes, chronic kidney disease, infections, autoimmune and neurodegenerative diseases.
Collapse
Affiliation(s)
- Arnold von Eckardstein
- Institute of Clinical Chemistry, University Hospital Zurich and University of Zurich, Zurich, Switzerland.
| |
Collapse
|
44
|
Kim JH, Lim DK, Suh YH, Chang KA. Long-Term Treatment of Cuban Policosanol Attenuates Abnormal Oxidative Stress and Inflammatory Response via Amyloid Plaques Reduction in 5xFAD Mice. Antioxidants (Basel) 2021; 10:antiox10081321. [PMID: 34439569 PMCID: PMC8389325 DOI: 10.3390/antiox10081321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/27/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder resulting in cognitive decline or dementia, the number of patients with AD is continuously increasing. Although a lot of great progress has been made in research and development of AD therapeutics, there is no fundamental cure for this disease yet. This study demonstrated the memory-improving effects of Cuban policosanol (PCO) in 5xFAD mice, which is an animal model of AD. Following 4-months of treatment with PCO in 5xFAD mice, we found that the number of amyloid plaques decreased in the brain compared to the vehicle-treated 5xFAD mice. Long-term PCO treatment in 5xFAD mice resulted in the reduction of gliosis and abnormal inflammatory cytokines level (interleukin [IL]-1β, IL-6, and tumor necrosis factor [TNF]-α) in the cortex and hippocampus. Levels of lipid peroxide (4-hydroxynonenal [4-HNE]) and superoxide dismutase (SOD1 and SOD2) levels were also recoverd in the brains of PCO-treated 5xFAD mice. Notably, PCO administration reduced memory deficits in the passive avoidance test, as well as synaptic loss (PSD-95, synaptophysin) in 5xFAD mice. Collectively, we identified the potential effects of PCO as a useful supplement to delay or prevent AD progression by inhibiting the formation of Aβ plaques in the brain.
Collapse
Affiliation(s)
- Jin-Ho Kim
- Department of Health Sciences and Technology, Gachon Advanced Insiue for Healh Sciences & Technology (GAIHST), Gachon University, Incheon 21999, Korea;
| | - Dong-Kyun Lim
- Neuroscience Research Institute, Gachon University, Incheon 21565, Korea; (D.-K.L.); (Y.-H.S.)
| | - Yoo-Hun Suh
- Neuroscience Research Institute, Gachon University, Incheon 21565, Korea; (D.-K.L.); (Y.-H.S.)
- Department of Pharmacology, College of Medicine, Seoul National University, Seoul 03080, Korea
| | - Keun-A Chang
- Department of Health Sciences and Technology, Gachon Advanced Insiue for Healh Sciences & Technology (GAIHST), Gachon University, Incheon 21999, Korea;
- Neuroscience Research Institute, Gachon University, Incheon 21565, Korea; (D.-K.L.); (Y.-H.S.)
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21999, Korea
- Correspondence: ; Tel.: +82-32-899-6411
| |
Collapse
|
45
|
Dehghani N, Guven G, Kun-Rodrigues C, Gouveia C, Foster K, Hanagasi H, Lohmann E, Samanci B, Gurvit H, Bilgic B, Bras J, Guerreiro R. A comprehensive analysis of copy number variation in a Turkish dementia cohort. Hum Genomics 2021; 15:48. [PMID: 34321086 PMCID: PMC8317312 DOI: 10.1186/s40246-021-00346-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/09/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Copy number variants (CNVs) include deletions or multiplications spanning genomic regions. These regions vary in size and may span genes known to play a role in human diseases. As examples, duplications and triplications of SNCA have been shown to cause forms of Parkinson's disease, while duplications of APP cause early onset Alzheimer's disease (AD). RESULTS Here, we performed a systematic analysis of CNVs in a Turkish dementia cohort in order to further characterize the genetic causes of dementia in this population. One hundred twenty-four Turkish individuals, either at risk of dementia due to family history, diagnosed with mild cognitive impairment, AD, or frontotemporal dementia, were whole-genome genotyped and CNVs were detected. We integrated family analysis with a comprehensive assessment of potentially disease-associated CNVs in this Turkish dementia cohort. We also utilized both dementia and non-dementia individuals from the UK Biobank in order to further elucidate the potential role of the identified CNVs in neurodegenerative diseases. We report CNVs overlapping the previously implicated genes ZNF804A, SNORA70B, USP34, XPO1, and a locus on chromosome 9 which includes a cluster of olfactory receptors and ABCA1. Additionally, we also describe novel CNVs potentially associated with dementia, overlapping the genes AFG1L, SNX3, VWDE, and BC039545. CONCLUSIONS Genotyping data from understudied populations can be utilized to identify copy number variation which may contribute to dementia.
Collapse
Affiliation(s)
- Nadia Dehghani
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Gamze Guven
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Celia Kun-Rodrigues
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Catarina Gouveia
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Kalina Foster
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA
- Neuroscience Department, Michigan State University College of Natural Science, East Lansing, MI, USA
| | - Hasmet Hanagasi
- Behavioural Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ebba Lohmann
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- DZNE, German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Bedia Samanci
- Behavioural Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Hakan Gurvit
- Behavioural Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Basar Bilgic
- Behavioural Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Jose Bras
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA
- Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - Rita Guerreiro
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA.
- Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA.
| |
Collapse
|
46
|
Hoscheidt S, Sanderlin AH, Baker LD, Jung Y, Lockhart S, Kellar D, Whitlow C, Hanson AJ, Friedman S, Register T, Leverenz JB, Craft S. Mediterranean and Western diet effects on Alzheimer's disease biomarkers, cerebral perfusion, and cognition in mid-life: A randomized trial. Alzheimers Dement 2021; 18:457-468. [PMID: 34310044 PMCID: PMC9207984 DOI: 10.1002/alz.12421] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 06/03/2021] [Accepted: 06/11/2021] [Indexed: 11/28/2022]
Abstract
Introduction Mid‐life dietary patterns are associated with Alzheimer's disease (AD) risk, although few controlled trials have been conducted. Methods Eighty‐seven participants (age range: 45 to 65) with normal cognition (NC, n = 56) or mild cognitive impairment (MCI, n = 31) received isocaloric diets high or low in saturated fat, glycemic index, and sodium (Western‐like/West‐diet vs. Mediterranean‐like/Med‐diet) for 4 weeks. Diet effects on cerebrospinal fluid (CSF) biomarkers, cognition, and cerebral perfusion were assessed to determine whether responses differed by cognitive status. Results CSF amyloid beta (Aβ)42/40 ratios increased following the Med‐diet, and decreased after West‐diet for NC adults, whereas the MCI group showed the reverse pattern. For the MCI group, the West‐diet reduced and the Med‐diet increased total tau (t‐tau), whereas CSF Aβ42/t‐tau ratios increased following the West‐diet and decreased following the Med‐diet. For NC participants, the Med‐diet increased and the West‐diet decreased cerebral perfusion. Discussion Diet response during middle age may highlight early pathophysiological processes that increase AD risk.
Collapse
Affiliation(s)
| | | | - Laura D Baker
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Youngkyoo Jung
- University of California-Davis, Sacramento, California, USA
| | - Samuel Lockhart
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Derek Kellar
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | | | - Angela J Hanson
- University of Washington Medical Center, Seattle, Washington, USA
| | - Seth Friedman
- Seattle Children's Hospital, Seattle, Washington, USA
| | - Thomas Register
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - James B Leverenz
- Cleveland Clinic Lou Ruovo Center for Brain Health, Cleveland, Ohio, USA
| | - Suzanne Craft
- Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
47
|
Julve J, Escolà-Gil JC. High-Density Lipoproteins and Cardiovascular Disease: The Good, the Bad and the Future. Biomedicines 2021; 9:biomedicines9080857. [PMID: 34440061 PMCID: PMC8389556 DOI: 10.3390/biomedicines9080857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/16/2021] [Indexed: 11/20/2022] Open
Affiliation(s)
- Josep Julve
- Institut d’Investigacions Biomèdiques IIB Sant Pau, 08041 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
- Correspondence: (J.J.); (J.C.E.-G.)
| | - Joan Carles Escolà-Gil
- Institut d’Investigacions Biomèdiques IIB Sant Pau, 08041 Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
- Correspondence: (J.J.); (J.C.E.-G.)
| |
Collapse
|
48
|
Genetic overlap between Alzheimer's disease and blood lipid levels. Neurobiol Aging 2021; 108:189-195. [PMID: 34340865 DOI: 10.1016/j.neurobiolaging.2021.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/01/2021] [Accepted: 06/26/2021] [Indexed: 01/16/2023]
Abstract
Late-onset Alzheimer's disease (AD) has a significant genetic component, but the molecular mechanisms through which genetic risk factors contribute to AD pathogenesis are unclear. We screened for genetic sharing between AD and the blood levels of 615 metabolites to elucidate how the polygenic architecture of AD affects metabolomic profiles. We retrieved summary statistics from genome-wide association studies of AD and the metabolite blood levels and assessed for shared genetic etiology, using a polygenic risk score-based approach. For the blood levels of 31 metabolites, all of which were lipids, we identified and replicated genetic sharing with AD. We also found a positive genetic concordance - implying that genetic risk factors for AD are associated with higher blood levels - for 16 of the 31 replicated metabolites. In the brain, lipids and their intermediate metabolites have essential structural and functional roles, such as forming and dynamically regulating synaptic membranes. Our results imply that genetic risk factors for AD affect lipid levels, which may be leveraged to develop novel treatment strategies for AD.
Collapse
|
49
|
Fu M, Bakulski KM, Higgins C, Ware EB. Mendelian Randomization of Dyslipidemia on Cognitive Impairment Among Older Americans. Front Neurol 2021; 12:660212. [PMID: 34248819 PMCID: PMC8260932 DOI: 10.3389/fneur.2021.660212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/24/2021] [Indexed: 01/19/2023] Open
Abstract
Background: Altered lipid metabolism may be a risk factor for dementia, and blood cholesterol level has a strong genetic component. We tested the hypothesis that dyslipidemia (either low levels of high-density lipoprotein cholesterol (HDL-C) or high total cholesterol) is associated with cognitive status and domains, and assessed causality using genetic predisposition to dyslipidemia as an instrumental variable. Methods: Using data from European and African genetic ancestry participants in the Health and Retirement Study, we selected observations at the first non-missing biomarker assessment (waves 2006-2012). Cognition domains were assessed using episodic memory, mental status, and vocabulary tests. Overall cognitive status was categorized in three levels (normal, cognitive impairment non-dementia, dementia). Based on 2018 clinical guidelines, we compared low HDL-C or high total cholesterol to normal levels. Polygenic scores for dyslipidemia were used as instrumental variables in a Mendelian randomization framework. Multivariable logistic regressions and Wald-type ratio estimators were used to examine associations. Results: Among European ancestry participants (n = 8,781), at risk HDL-C levels were associated with higher odds of cognitive impairment (OR = 1.20, 95% CI: 1.03, 1.40) and worse episodic memory, specifically. Using cumulative genetic risk for HDL-C levels as a valid instrumental variable, a significant causal estimate was observed between at risk low HDL-C levels and higher odds of dementia (OR = 2.15, 95% CI: 1.16, 3.99). No significant associations were observed between total cholesterol levels and cognitive status. No significant associations were observed in the African ancestry sample (n = 2,101). Conclusion: Our study demonstrates low blood HDL-C is a potential causal risk factor for impaired cognition during aging in non-Hispanic whites of European ancestry. Dyslipidemia can be modified by changing diets, health behaviors, and therapeutic strategies, which can improve cognitive aging. Studies on low density lipoprotein cholesterol, the timing of cholesterol effects on cognition, and larger studies in non-European ancestries are needed.
Collapse
Affiliation(s)
- Mingzhou Fu
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Kelly M. Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Cesar Higgins
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Erin B. Ware
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, United States
- Population Studies Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
50
|
Zuin M, Cervellati C, Trentini A, Passaro A, Rosta V, Zimetti F, Zuliani G. Association between Serum Concentrations of Apolipoprotein A-I (ApoA-I) and Alzheimer's Disease: Systematic Review and Meta-Analysis. Diagnostics (Basel) 2021; 11:984. [PMID: 34071695 PMCID: PMC8229134 DOI: 10.3390/diagnostics11060984] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND A wealth of experimental and epidemiological evidence suggest that Apolipoprotein A-I (ApoA-I), the main protein constituent of high-density lipoprotein (HDL), may protect against Alzheimer disease (AD). To investigate this potential role, we conducted a meta-analysis of the published studies on the relationship between serum ApoA-I and AD occurrence. METHODS We screened MEDLINE, EMBASE, Web of Science, and Scopus, for cross-sectional studies published from inception to 1 March 2021, comparing the ApoA-I serum levels between patients with AD and cognitively normal controls. RESULTS From an initial screening of 245 articles, 5 studies, including 397 AD patients (mean age 75.0 years, 234 females) and 367 controls (mean age 69.2 years, 182 females), met the inclusion criteria. Compared to healthy controls, AD subjects had a lower ApoA-I serum level. The pooled weighted mean difference from a random-effects model was -0.31 g/L (p < 0.0001) (95% Confidence Interval: [-0.62-0.01], with high heterogeneity (I2 = 100%). The Egger's test confirmed an absence of publication bias (t = 0.62, p = 0.576). CONCLUSIONS Our study showed that AD patients present lower serum levels of ApoA-I compared to cognitively normal individuals. Further studies on large population samples are required to support this finding.
Collapse
Affiliation(s)
- Marco Zuin
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy
| | - Carlo Cervellati
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy
| | - Alessandro Trentini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Angelina Passaro
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy
| | - Valentina Rosta
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy
| | - Francesca Zimetti
- Department of Food and Drug, University of Parma, 43121 Parma, Italy
| | - Giovanni Zuliani
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|