1
|
Lim HJ, Kwak HJ. Selective PPARδ Agonist GW501516 Protects Against LPS-Induced Macrophage Inflammation and Acute Liver Failure in Mice via Suppressing Inflammatory Mediators. Molecules 2024; 29:5189. [PMID: 39519830 PMCID: PMC11547330 DOI: 10.3390/molecules29215189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Inflammation is critical in the development of acute liver failure (ALF). Peroxisome proliferator-activated receptor delta (PPARδ) regulates anti-inflammatory responses and is protective in several diseases such as obesity and cancer. However, the beneficial effects and underlying mechanisms of PPARδ agonist GW501516 in ALF remain unclear. This study investigated the molecular mechanisms underlying the anti-inflammatory effects of GW501516 in macrophages and assessed its protective potential against lipopolysaccharide (LPS)/galactosamine (GalN)-induced ALF. In vivo administration of GW501516 significantly reduced LPS/GalN-induced hepatotoxicity, as evidenced by lower mortality, decreased liver damage, and attenuated secretion of IL-1β, IL-6, and TNF-α. GW501516 treatment also decreased LPS-induced nitric oxide synthase 2 (NOS2) expression and nitric oxide (NO) production in RAW264.7 cells, an effect reversed by PPARδ siRNA. Additionally, GW501516 inhibited LPS-induced phosphorylation of p38 and c-Jun N-terminal kinase (JNK), suggesting that inactivation of these MAPKs contributes to its effects. The secretion of IL-6, TNF-α, and NF-κB DNA-binding activity were also suppressed by GW501516, while the nuclear translocation of the NF-κB p65 subunit was unaffected. In conclusion, our findings suggest that GW501516 exerts protective effects in ALF by inhibiting the production of inflammatory mediators. Therefore, GW501516 may act as a potential agent for developing anti-inflammatory therapies for ALF.
Collapse
Affiliation(s)
- Hyun-Joung Lim
- Division of Cardiovascular Diseases Research, Department of Chronic Diseases Convergence, National Institute of Health, Cheongju 28159, Republic of Korea;
| | - Hyun Jeong Kwak
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| |
Collapse
|
2
|
Zhou L, Zhong Y, Li C, Zhou Y, Liu X, Li L, Zou Z, Zhong Z, Ye J. MAPK14 as a key gene for regulating inflammatory response and macrophage M1 polarization induced by ferroptotic keratinocyte in psoriasis. Inflammation 2024; 47:1564-1584. [PMID: 38441793 DOI: 10.1007/s10753-024-01994-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/02/2024] [Accepted: 02/18/2024] [Indexed: 11/09/2024]
Abstract
Psoriasis is a prevalent condition characterized by chronic inflammation, immune dysregulation, and genetic alterations, significantly impacting the well-being of affected individuals. Recently, a novel aspect of programmed cell death, ferroptosis, linked to iron metabolism, has come to light. This research endeavors to unveil novel diagnostic genes associated with ferroptosis in psoriasis, employing bioinformatic methods and experimental validation. Diverse analytical strategies, including "limma," Weighted Gene Co-expression Network Analysis (WGCNA), Least Absolute Shrinkage and Selection Operator (LASSO), Support Vector Machine Recursive Feature Elimination (SVM-RFE), and Random Forest (RF), were employed to pinpoint pivotal ferroptosis-related diagnostic genes (FRDGs) in the training datasets GSE30999, testing dataset GSE41662 and GSE14905. The discriminative potential of FRDGs in distinguishing between normal and psoriatic patients was gauged using Receiver Operating Characteristic (ROC) curves, while the functional pathways of FRDGs were scrutinized through Gene Set Enrichment Analysis (GSEA). Spearman correlation and ssGSEA analysis were applied to explore correlations between FRDGs and immune cell infiltration or oxidative stress-related pathways. The study identified six robust FRDGs - PPARD, MAPK14, PARP9, POR, CDCA3, and PDK4 - which collectively formed a model boasting an exceptional AUC value of 0.994. GSEA analysis uncovered their active involvement in psoriasis-related pathways, and substantial correlations with immune cells and oxidative stress were noted. In vivo, experiments confirmed the consistency of the six FRDGs in the psoriasis model with microarray results. In vitro, genetic knockdown or inhibition of MAPK14 using SW203580 in keratinocytes attenuated ferroptosis and reduced the expression of inflammatory cytokines. Furthermore, the study revealed that intercellular communication between keratinocytes and macrophages was augmented by ferroptotic keratinocytes, increased M1 polarization, and recruitment of macrophage was regulated by MAPK14. In summary, our findings unveil novel ferroptosis-related targets and enhance the understanding of inflammatory responses in psoriasis. Targeting MAPK14 signaling in keratinocytes emerges as a promising therapeutic approach for managing psoriasis.
Collapse
Affiliation(s)
- Lin Zhou
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, 341000, Jiangxi, People's Republic of China
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- Key Laboratory of Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Yingdong Zhong
- Department of Dermatology, Dongguan Liaobu Hospital, Dongguan, 523430, Guangdong, People's Republic of China
| | - Chaowei Li
- Department of Dermatology, Gaozhou People's Hospital, Gaozhou, 525200, Guangdong, People's Republic of China
| | - Yu Zhou
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xi Liu
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Lincai Li
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, 341000, Jiangxi, People's Republic of China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- Key Laboratory of Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Zhengwei Zou
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, 341000, Jiangxi, People's Republic of China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- Key Laboratory of Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Zhihui Zhong
- Center of Stem Cell and Regenerative Medicine, Gaozhou People's Hospital, Gaozhou, Guangdong, 525200, China.
| | - Junsong Ye
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China.
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, 341000, Jiangxi, People's Republic of China.
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China.
- Key Laboratory of Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China.
| |
Collapse
|
3
|
Li B, Qian Q, Niu L, Wang X. Multi-omics reveals protective effects of Ling Gui Zhu Gan Decoction on hyperlipidaemia in hamster. Heliyon 2024; 10:e35426. [PMID: 39253150 PMCID: PMC11382051 DOI: 10.1016/j.heliyon.2024.e35426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 09/11/2024] Open
Abstract
Ling Gui Zhu Gan decoction (LGZGD) is a traditional Chinese medicine (TCM) prescription that is widely used in cardiovascular disease clinical prevention and treatment with high efficacy. Recent studies have shown that LGZGD can also be used in hyperlipidemia (HL) intervention, but its pharmacodynamic material basis and its mechanisms remains unclear. This study aimed to reveal the protective effects of LGZGD on HL, elucidate the pharmacodynamic material basis. The hamster HL model was established by high-fat diet. Thereafter, non-targeted metabolomics and quantitative lipidomics were established for screening differential metabolites and pathways. Finally, the mechanisms were elucidated based on network pharmacology to screen for shared targets, which were computational selected by molecular docking. After four weeks of LGZGD administration, the TC, TG, and liver index levels decreased notably and hepatocyte injury was obviously reduced. The Multi-omics identified 62 differential metabolites and 144 differential lipids, respectively. The network pharmacology study predicted 343, 85, and 974 relevant targets from LGZGD components, HL, differential metabolites and lipids, respectively. Eventually, seven core targets were selected by molecular docking. Six key components in LGZGD, including genistein and naringenin, could play a therapeutic role in HL by regulating seven pathways, including HMGCR and PPARA. This comprehensive strategy provides a promising example and approach for further research on TCM for the treatment of lipid metabolic diseases.
Collapse
Affiliation(s)
- Baolin Li
- Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
- Hebei Traditional Chinese Medicine Formula Granule Engineering & Technology Innovate Center, Shijiazhuang, 050091, China
- Quality Evaluation & Standardization Hebei Province Engineering Research Center of Traditional Chinese Medicine, Shijiazhuang, 050091, China
| | - Qi Qian
- Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
- Hebei Traditional Chinese Medicine Formula Granule Engineering & Technology Innovate Center, Shijiazhuang, 050091, China
- Quality Evaluation & Standardization Hebei Province Engineering Research Center of Traditional Chinese Medicine, Shijiazhuang, 050091, China
| | - Liying Niu
- Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
- Hebei Traditional Chinese Medicine Formula Granule Engineering & Technology Innovate Center, Shijiazhuang, 050091, China
- Quality Evaluation & Standardization Hebei Province Engineering Research Center of Traditional Chinese Medicine, Shijiazhuang, 050091, China
| | - Xinguo Wang
- Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
- Hebei Traditional Chinese Medicine Formula Granule Engineering & Technology Innovate Center, Shijiazhuang, 050091, China
- Quality Evaluation & Standardization Hebei Province Engineering Research Center of Traditional Chinese Medicine, Shijiazhuang, 050091, China
| |
Collapse
|
4
|
De Mattia E, Polesel J, Silvestri M, Roncato R, Scarabel L, Calza S, Spina M, Puglisi F, Toffoli G, Cecchin E. The burden of rare variants in DPYS gene is a novel predictor of the risk of developing severe fluoropyrimidine-related toxicity. Hum Genomics 2023; 17:99. [PMID: 37946254 PMCID: PMC10633914 DOI: 10.1186/s40246-023-00546-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Despite a growing number of publications highlighting the potential impact on the therapy outcome, rare genetic variants (minor allele frequency < 1%) in genes associated to drug adsorption, distribution, metabolism, and elimination are poorly studied. Previously, rare germline DPYD missense variants were shown to identify a subset of fluoropyrimidine-treated patients at high risk for severe toxicity. Here, we investigate the impact of rare genetic variants in a panel of 54 other fluoropyrimidine-related genes on the risk of severe toxicity. METHODS The coding sequence and untranslated regions of 54 genes related to fluoropyrimidine pharmacokinetics/pharmacodynamics were analyzed by next-generation sequencing in 120 patients developing grade 3-5 toxicity (NCI-CTC vs3.0) and 104 matched controls. Sequence Kernel Association Test (SKAT) analysis was used to select genes with a burden of genetic variants significantly associated with risk of severe toxicity. The statistical association of common and rare genetic variants in selected genes was further investigated. The functional impact of genetic variants was assessed using two different in silico prediction tools (Predict2SNP; ADME Prediction Framework). RESULTS SKAT analysis highlighted DPYS and PPARD as genes with a genetic mutational burden significantly associated with risk of severe fluoropyrimidine-related toxicity (Bonferroni adjusted P = 0.024 and P = 0.039, respectively). Looking more closely at allele frequency, the burden of rare DPYS variants was significantly higher in patients with toxicity compared with controls (P = 0.047, Mann-Whitney test). Carrying at least one rare DPYS variant was associated with an approximately fourfold higher risk of severe cumulative (OR = 4.08, P = 0.030) and acute (OR = 4.21, P = 0.082) toxicity. The burden of PPARD rare genetic variants was not significantly related to toxicity. Some common variants with predictive value in DPYS and PPARD were also identified: DPYS rs143004875-T and PPARD rs2016520-T variants predicted an increased risk of severe cumulative (P = 0.002 and P = 0.001, respectively) and acute (P = 0.005 and P = 0.0001, respectively) toxicity. CONCLUSION This work demonstrated that the rare mutational burden of DPYS, a gene strictly cooperating with DPYD in the catabolic pathway of fluoropyrimidines, is a promising pharmacogenetic marker for precision dosing of fluoropyrimidines. Additionally, some common genetic polymorphisms in DPYS and PPARD were identified as promising predictive markers that warrant further investigation.
Collapse
Affiliation(s)
- Elena De Mattia
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini n. 2, 33081, Aviano, PN, Italy
| | - Jerry Polesel
- Unit of Cancer Epidemiology, Centro Di Riferimento Oncologico Di Aviano (CRO) IRCCS, Via Franco Gallini n. 2, 33081, Aviano, PN, Italy
| | - Marco Silvestri
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Giacomo Venezian 1, 20133, Milan, Italy
| | - Rossana Roncato
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini n. 2, 33081, Aviano, PN, Italy
| | - Lucia Scarabel
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini n. 2, 33081, Aviano, PN, Italy
| | - Stefano Calza
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Michele Spina
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCSS, Via Franco Gallini n. 2, 33081, Aviano, PN, Italy
| | - Fabio Puglisi
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCSS, Via Franco Gallini n. 2, 33081, Aviano, PN, Italy
- Department of Medicine, University of Udine, Via Delle Scienze, 206, 33100, Udine, UD, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini n. 2, 33081, Aviano, PN, Italy
| | - Erika Cecchin
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini n. 2, 33081, Aviano, PN, Italy.
| |
Collapse
|
5
|
Maciejewska-Skrendo A, Massidda M, Tocco F, Leźnicka K. The Influence of the Differentiation of Genes Encoding Peroxisome Proliferator-Activated Receptors and Their Coactivators on Nutrient and Energy Metabolism. Nutrients 2022; 14:nu14245378. [PMID: 36558537 PMCID: PMC9782515 DOI: 10.3390/nu14245378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/27/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Genetic components may play an important role in the regulation of nutrient and energy metabolism. In the presence of specific genetic variants, metabolic dysregulation may occur, especially in relation to the processes of digestion, assimilation, and the physiological utilization of nutrients supplied to the body, as well as the regulation of various metabolic pathways and the balance of metabolic changes, which may consequently affect the effectiveness of applied reduction diets and weight loss after training. There are many well-documented studies showing that the presence of certain polymorphic variants in some genes can be associated with specific changes in nutrient and energy metabolism, and consequently, with more or less desirable effects of applied caloric reduction and/or exercise intervention. This systematic review focused on the role of genes encoding peroxisome proliferator-activated receptors (PPARs) and their coactivators in nutrient and energy metabolism. The literature review prepared showed that there is a link between the presence of specific alleles described at different polymorphic points in PPAR genes and various human body characteristics that are crucial for the efficacy of nutritional and/or exercise interventions. Genetic analysis can be a valuable element that complements the work of a dietitian or trainer, allowing for the planning of a personalized diet or training that makes the best use of the innate metabolic characteristics of the person who is the subject of their interventions.
Collapse
Affiliation(s)
- Agnieszka Maciejewska-Skrendo
- Faculty of Physical Culture, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland
- Institute of Physical Culture Sciences, University of Szczecin, 71-065 Szczecin, Poland
- Correspondence:
| | - Myosotis Massidda
- Department of Medical Sciences and Public Health, Faculty of Medicine and Surgery, Sport and Exercise Sciences Degree Courses, University of Cagliari, 72-09124 Cagliari, Italy
| | - Filippo Tocco
- Department of Medical Sciences and Public Health, Faculty of Medicine and Surgery, Sport and Exercise Sciences Degree Courses, University of Cagliari, 72-09124 Cagliari, Italy
| | - Katarzyna Leźnicka
- Faculty of Physical Culture, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland
| |
Collapse
|
6
|
Kim H, Lee DS, An TH, Park HJ, Kim WK, Bae KH, Oh KJ. Metabolic Spectrum of Liver Failure in Type 2 Diabetes and Obesity: From NAFLD to NASH to HCC. Int J Mol Sci 2021; 22:ijms22094495. [PMID: 33925827 PMCID: PMC8123490 DOI: 10.3390/ijms22094495] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Liver disease is the spectrum of liver damage ranging from simple steatosis called as nonalcoholic fatty liver disease (NAFLD) to hepatocellular carcinoma (HCC). Clinically, NAFLD and type 2 diabetes coexist. Type 2 diabetes contributes to biological processes driving the severity of NAFLD, the primary cause for development of chronic liver diseases. In the last 20 years, the rate of non-viral NAFLD/NASH-derived HCC has been increasing rapidly. As there are currently no suitable drugs for treatment of NAFLD and NASH, a class of thiazolidinediones (TZDs) drugs for the treatment of type 2 diabetes is sometimes used to improve liver failure despite the risk of side effects. Therefore, diagnosis, prevention, and treatment of the development and progression of NAFLD and NASH are important issues. In this review, we will discuss the pathogenesis of NAFLD/NASH and NAFLD/NASH-derived HCC and the current promising pharmacological therapies of NAFLD/NASH. Further, we will provide insights into "adipose-derived adipokines" and "liver-derived hepatokines" as diagnostic and therapeutic targets from NAFLD to HCC.
Collapse
Affiliation(s)
- Hyunmi Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Da Som Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
| | - Tae Hyeon An
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Hyun-Ju Park
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Won Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
- Correspondence: (K.-H.B.); (K.-J.O.); Tel.: +82-42-860-4268 (K.-H.B.); +82-42-879-8265 (K.-J.O.)
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.K.); (D.S.L.); (T.H.A.); (H.-J.P.); (W.K.K.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34141, Korea
- Correspondence: (K.-H.B.); (K.-J.O.); Tel.: +82-42-860-4268 (K.-H.B.); +82-42-879-8265 (K.-J.O.)
| |
Collapse
|
7
|
Li X, Zhou T, Ma H, Heianza Y, Champagne CM, Williamson DA, Bray GA, Sacks FM, Qi L. Genetic variation in lean body mass, changes of appetite and weight loss in response to diet interventions: The POUNDS Lost trial. Diabetes Obes Metab 2020; 22:2305-2315. [PMID: 32734691 PMCID: PMC8197290 DOI: 10.1111/dom.14155] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/14/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022]
Abstract
AIM To investigate whether the genetic risk score (GRS) for lean body mass (LBM) modified the effects of weight-loss diets on changes in appetite and adiposity among overweight and obese individuals. PARTICIPANTS AND METHODS In the 2-year Preventing Overweight Using Novel Dietary Strategies (POUNDS Lost) trial, we included 692 adults who were randomly assigned to one of four diets varying in macronutrient intake. A GRS was calculated using five single nucleotide polymorphisms associated with LBM. RESULTS The LBM-GRS was not associated with the baseline LBM measured by dual-energy x-ray absorptiometry in a subgroup (50%) of the study population. We found that the LBM-GRS had significantly different associations with changes in appetite from baseline to 6 months according to low- or high-fat diet group (P-interaction < 0.001, 0.021, 0.005 and 0.024 for total appetite score, hunger, fullness and prospective consumption, respectively). Lower LBM-GRS (indicating a greater genetic predisposition to LBM) was associated with greater decreases in the total appetite score (P < 0.001), hunger (P = 0.01), fullness (P = 0.001) and prospective consumption (P = 0.019) in participants in the low-fat diet group, whereas no significant associations with these appetite measures were observed in the high-fat diet group. In addition, lower LBM-GRS was associated with greater reduction in body weight (P = 0.003) and waist circumference (P = 0.011) among participants in the low-fat diet group, while no associations were observed in the high-fat diet group. The interactions attenuated, along with weight regain, from 6 months to 2 years. CONCLUSIONS Our findings suggest that genetic variation in LBM may be differentially associated with appetite changes, and may subsequently be related to changes in body weight and waist circumference, according to dietary fat intake.
Collapse
Affiliation(s)
- Xiang Li
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana
| | - Tao Zhou
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana
| | - Hao Ma
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana
| | - Yoriko Heianza
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana
| | - Catherine M. Champagne
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana
| | - Donald A. Williamson
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana
| | - George A. Bray
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana
| | - Frank M. Sacks
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
8
|
Alvarez-Romero J, Voisin S, Eynon N, Hiam D. Mapping Robust Genetic Variants Associated with Exercise Responses. Int J Sports Med 2020; 42:3-18. [PMID: 32693428 DOI: 10.1055/a-1198-5496] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review summarised robust and consistent genetic variants associated with aerobic-related and resistance-related phenotypes. In total we highlight 12 SNPs and 7 SNPs that are robustly associated with variance in aerobic-related and resistance-related phenotypes respectively. To date, there is very little literature ascribed to understanding the interplay between genes and environmental factors and the development of physiological traits. We discuss future directions, including large-scale exercise studies to elucidate the functional relevance of the discovered genomic markers. This approach will allow more rigour and reproducible research in the field of exercise genomics.
Collapse
Affiliation(s)
| | - Sarah Voisin
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Nir Eynon
- Institute for Health and Sport, Victoria University, Melbourne, Australia.,MCRI, Murdoch Childrens Research Institute, Parkville, Australia
| | - Danielle Hiam
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| |
Collapse
|
9
|
Hudson JL, Wang Y, Bergia III RE, Campbell WW. Protein Intake Greater than the RDA Differentially Influences Whole-Body Lean Mass Responses to Purposeful Catabolic and Anabolic Stressors: A Systematic Review and Meta-analysis. Adv Nutr 2020; 11:548-558. [PMID: 31794597 PMCID: PMC7231581 DOI: 10.1093/advances/nmz106] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/19/2019] [Accepted: 09/09/2019] [Indexed: 12/16/2022] Open
Abstract
Under stressful conditions such as energy restriction (ER) and physical activity, the RDA for protein of 0.8 g · kg-1 · d-1 may no longer be an appropriate recommendation. Under catabolic or anabolic conditions, higher protein intakes are proposed to attenuate the loss or increase the gain of whole-body lean mass, respectively. No known published meta-analysis compares protein intakes greater than the RDA with intakes at the RDA. Therefore, we conducted a systematic review and meta-analysis to assess the effects of protein intakes greater than the RDA, compared with at the RDA, on changes in whole-body lean mass. Three researchers independently screened 1520 articles published through August 2018 using the PubMed, Scopus, CINAHL, and Cochrane databases, with additional articles identified in published systematic review articles. Randomized, controlled, parallel studies ≥6 wk long with apparently healthy adults (≥19 y) were eligible for inclusion. Data from 18 studies resulting in 22 comparisons of lean mass changes were included in the final overall analysis. Among all comparisons, protein intakes greater than the RDA benefitted changes in lean mass relative to consuming the RDA [weighted mean difference (95% CI): 0.32 (0.01, 0.64) kg, n = 22 comparisons]. In the subgroup analyses, protein intakes greater than the RDA attenuated lean mass loss after ER [0.36 (0.06, 0.67) kg, n = 14], increased lean mass after resistance training (RT) [0.77 (0.23, 1.31) kg, n = 3], but did not differentially affect changes in lean mass [0.08 (-0.59, 0.75) kg, n = 7] under nonstressed conditions (no ER + no RT). Protein intakes greater than the RDA beneficially influenced changes in lean mass when adults were purposefully stressed by the catabolic stressor of dietary ER with and without the anabolic stressor of RT. The RDA for protein is adequate to support lean mass in adults during nonstressed states. This review was registered at www.crd.york.ac.uk/prospero as CRD 42018106532.
Collapse
Affiliation(s)
- Joshua L Hudson
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Yu Wang
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | | | - Wayne W Campbell
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
10
|
Umasuthan N, Xue X, Caballero-Solares A, Kumar S, Westcott JD, Chen Z, Fast MD, Skugor S, Nowak BF, Taylor RG, Rise ML. Transcriptomic Profiling in Fins of Atlantic Salmon Parasitized with Sea Lice: Evidence for an Early Imbalance Between Chalimus-Induced Immunomodulation and the Host's Defense Response. Int J Mol Sci 2020; 21:E2417. [PMID: 32244468 PMCID: PMC7177938 DOI: 10.3390/ijms21072417] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/27/2020] [Indexed: 01/08/2023] Open
Abstract
Parasitic sea lice (e.g., Lepeophtheirus salmonis) cause costly outbreaks in salmon farming. Molecular insights into parasite-induced host responses will provide the basis for improved management strategies. We investigated the early transcriptomic responses in pelvic fins of Atlantic salmon parasitized with chalimus I stage sea lice. Fin samples collected from non-infected (i.e. pre-infected) control (PRE) and at chalimus-attachment sites (ATT) and adjacent to chalimus-attachment sites (ADJ) from infected fish were used in profiling global gene expression using 44 K microarrays. We identified 6568 differentially expressed probes (DEPs, FDR < 5%) that included 1928 shared DEPs between ATT and ADJ compared to PRE. The ATT versus ADJ comparison revealed 90 DEPs, all of which were upregulated in ATT samples. Gene ontology/pathway term network analyses revealed profound changes in physiological processes, including extracellular matrix (ECM) degradation, tissue repair/remodeling and wound healing, immunity and defense, chemotaxis and signaling, antiviral response, and redox homeostasis in infected fins. The QPCR analysis of 37 microarray-identified transcripts representing these functional themes served to confirm the microarray results with a significant positive correlation (p < 0.0001). Most immune/defense-relevant transcripts were downregulated in both ATT and ADJ sites compared to PRE, suggesting that chalimus exerts immunosuppressive effects in the salmon's fins. The comparison between ATT and ADJ sites demonstrated the upregulation of a suite of immune-relevant transcripts, evidencing the salmon's attempt to mount an anti-lice response. We hypothesize that an imbalance between immunomodulation caused by chalimus during the early phase of infection and weak defense response manifested by Atlantic salmon makes it a susceptible host for L. salmonis.
Collapse
Affiliation(s)
- Navaneethaiyer Umasuthan
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (X.X.); (A.C.-S.); (S.K.)
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (X.X.); (A.C.-S.); (S.K.)
| | - Albert Caballero-Solares
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (X.X.); (A.C.-S.); (S.K.)
| | - Surendra Kumar
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (X.X.); (A.C.-S.); (S.K.)
| | - Jillian D. Westcott
- Fisheries and Marine Institute, Memorial University of Newfoundland, P.O. Box 4920, St. John’s, NL A1C 5R3, Canada; (J.D.W.); (Z.C.)
| | - Zhiyu Chen
- Fisheries and Marine Institute, Memorial University of Newfoundland, P.O. Box 4920, St. John’s, NL A1C 5R3, Canada; (J.D.W.); (Z.C.)
| | - Mark D. Fast
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada;
| | - Stanko Skugor
- Cargill Aqua Nutrition, Cargill, Sea Lice Research Center (SLRC), Hanaveien 17, 4327 Sandnes, Norway;
| | - Barbara F. Nowak
- Institute of Marine and Antarctic Studies, University of Tasmania, Locked Bag 1370, Launceston 7250, TAS, Australia;
| | - Richard G. Taylor
- Cargill Animal Nutrition, 10383 165th Avenue NW, Elk River, MN 55330, USA;
| | - Matthew L. Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (X.X.); (A.C.-S.); (S.K.)
| |
Collapse
|
11
|
Mousavi MS, Shahverdi A, Drevet J, Akbarinejad V, Esmaeili V, Sayahpour FA, Topraggaleh TR, Rahimizadeh P, Alizadeh A. Peroxisome Proliferator-Activated Receptors (PPARs) levels in spermatozoa of normozoospermic and asthenozoospermic men. Syst Biol Reprod Med 2019; 65:409-419. [PMID: 31675245 DOI: 10.1080/19396368.2019.1677801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Interest in the role of male factor in infertility continues to mount with defects related to sperm movement considered as one of the more severe forms of subfertility. The peroxisome proliferator-activated receptor gamma (PPARγ) primarily regulates the expression of target genes involved in energy control as well as lipid and glucose metabolism. Although the pivotal roles of these receptors on female fertility have been reported, there are limited studies addressing PPARs role(s) in the male. This study was designed to determine and compare PPARα, PPARβ and PPARγ mRNA expression in sperm cells of normozoospermic and asthenozoospermic men. In addition, flow cytometric analyses, immunofluorescence and western blot were used to evaluate PPARγ protein levels in spermatozoa. We have compared the sperm PPARs mRNA relative expression in 27 normozoospermic and 28 asthenozoospermic samples and monitored sperm PPARγ protein levels in 39 normozoospermic and 40 asthenozoospermic samples using flow cytometry. We have also assessed in a sub-group of seven normozoospermic and eight asthenozoospermic samples, PPARγ protein levels by western blotting. Relative expression of PPARγ mRNA in normozoospermic men was found to be significantly higher (P = 0.004) than in asthenozoospermic men while PPARα and PPARβ relative expression was similar in the two groups. Likewise, PPARγ showed a positive correlation with motility (r = 0.34; P < 0.05), sperm concentration (r = 0.33) and the percentage of progressive motile spermatozoa (r = 0.31). In agreement with the mRNA behavior, sperm PPARγ protein levels as measured by flow cytometry (P = 0.066) and western blot (P = 0.089) showed a tendency to be higher in normozoospermic than asthenozoospermic men. The present study proposes a link between PPARγ gene expression level and motility in human sperm.Abbreviations: PPARs: Peroxisome Proliferator-Activated Receptors; CASA: Computer Assisted Semen Analysis; TFA: Trans Fatty Acids; HTF: Human Tubal Fluid; PBS: Phosphate-Buffered Saline; PPP: Pentose Phosphate Pathway; PI3K: Phosphoinositide 3-Kinase; G6PDH: Glucose 6-Phosphate Dehydrogenase.
Collapse
Affiliation(s)
- Motahareh Sadat Mousavi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Abdolhossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.,Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Joël Drevet
- GReD Laboratory, CNRS UMR6293- INSERM U1103, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Vahid Akbarinejad
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Vahid Esmaeili
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Forough Azam Sayahpour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Tohid Rezaei Topraggaleh
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Pegah Rahimizadeh
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - AliReza Alizadeh
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
12
|
Nuclear Peroxisome Proliferator-Activated Receptors (PPARs) as Therapeutic Targets of Resveratrol for Autism Spectrum Disorder. Int J Mol Sci 2019; 20:ijms20081878. [PMID: 30995737 PMCID: PMC6515064 DOI: 10.3390/ijms20081878] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/05/2019] [Accepted: 04/12/2019] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by defective social communication and interaction and restricted, repetitive behavior with a complex, multifactorial etiology. Despite an increasing worldwide prevalence of ASD, there is currently no pharmacological cure to treat core symptoms of ASD. Clinical evidence and molecular data support the role of impaired mitochondrial fatty acid oxidation (FAO) in ASD. The recognition of defects in energy metabolism in ASD may be important for better understanding ASD and developing therapeutic intervention. The nuclear peroxisome proliferator-activated receptors (PPAR) α, δ, and γ are ligand-activated receptors with distinct physiological functions in regulating lipid and glucose metabolism, as well as inflammatory response. PPAR activation allows a coordinated up-regulation of numerous FAO enzymes, resulting in significant PPAR-driven increases in mitochondrial FAO flux. Resveratrol (RSV) is a polyphenolic compound which exhibits metabolic, antioxidant, and anti-inflammatory properties, pointing to possible applications in ASD therapeutics. In this study, we review the evidence for the existing links between ASD and impaired mitochondrial FAO and review the potential implications for regulation of mitochondrial FAO in ASD by PPAR activators, including RSV.
Collapse
|
13
|
Djouadi F, Bastin J. Mitochondrial Genetic Disorders: Cell Signaling and Pharmacological Therapies. Cells 2019; 8:cells8040289. [PMID: 30925787 PMCID: PMC6523966 DOI: 10.3390/cells8040289] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/19/2019] [Accepted: 03/23/2019] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial fatty acid oxidation (FAO) and respiratory chain (RC) defects form a large group of inherited monogenic disorders sharing many common clinical and pathophysiological features, including disruption of mitochondrial bioenergetics, but also, for example, oxidative stress and accumulation of noxious metabolites. Interestingly, several transcription factors or co-activators exert transcriptional control on both FAO and RC genes, and can be activated by small molecules, opening to possibly common therapeutic approaches for FAO and RC deficiencies. Here, we review recent data on the potential of various drugs or small molecules targeting pivotal metabolic regulators: peroxisome proliferator activated receptors (PPARs), sirtuin 1 (SIRT1), AMP-activated protein kinase (AMPK), and protein kinase A (PKA)) or interacting with reactive oxygen species (ROS) signaling, to alleviate or to correct inborn FAO or RC deficiencies in cellular or animal models. The possible molecular mechanisms involved, in particular the contribution of mitochondrial biogenesis, are discussed. Applications of these pharmacological approaches as a function of genotype/phenotype are also addressed, which clearly orient toward personalized therapy. Finally, we propose that beyond the identification of individual candidate drugs/molecules, future pharmacological approaches should consider their combination, which could produce additive or synergistic effects that may further enhance their therapeutic potential.
Collapse
Affiliation(s)
- Fatima Djouadi
- Centre de Recherche des Cordeliers, INSERM U1138, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, F-75006 Paris, France.
| | - Jean Bastin
- Centre de Recherche des Cordeliers, INSERM U1138, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, F-75006 Paris, France.
| |
Collapse
|
14
|
Leońska-Duniec A, Cieszczyk P, Jastrzębski Z, Jażdżewska A, Lulińska-Kuklik E, Moska W, Ficek K, Niewczas M, Maciejewska-Skrendo A. The polymorphisms of the PPARD gene modify post-training body mass and biochemical parameter changes in women. PLoS One 2018; 13:e0202557. [PMID: 30157214 PMCID: PMC6114845 DOI: 10.1371/journal.pone.0202557] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 08/06/2018] [Indexed: 11/18/2022] Open
Abstract
In this study we examined the genotype distribution of the PPARD rs2267668, rs2016520, and rs1053049 alleles in a group of women, before and after the completion of a 12-week training program. There were two significant genotype × training interactions resulting in decreases of total cholesterol (Chol) through training in rs2267668 G allele carriers and significant increases of triglyceride (TGL) levels in rs2267668 AA homozygotes. Carriers of rs2016520 PPARD C allele exhibited a significant decrease in Chol through training with an accompanying decrease in TGL. There was also overrepresentation of PPARD rs1053049 TT homozygotes in the group with higher post-training TGL levels. Moreover (rs2267668/rs2016520/rs1053049) G/C/T haplotype displayed smaller post-training body mass decrease, suggesting that harboring this specific G/C/T haplotype is unfavorable for achieving the desired training-induced body mass changes. On the other hand, the G/C/C haplotype was significantly associated with post-training increase in fat free mass (FFM) and with lower levels of Chol as well as TGL as observed in the blood of the participants in response to applied training. This observation constitutes the second important finding of the study, implying that when specific training-induced biochemical changes are taken into account, some individuals may benefit from carrying the G/C/C haplotype.
Collapse
Affiliation(s)
- Agata Leońska-Duniec
- Faculty of Physical Culture and Health Promotion, Szczecin University, Szczecin, Poland
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, Gdańsk, Poland
| | - Pawel Cieszczyk
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, Gdańsk, Poland
| | - Zbigniew Jastrzębski
- Faculty of Tourism and Recreation, Gdansk University of Physical Education and Sport, Gdańsk, Poland
| | - Aleksandra Jażdżewska
- Faculty of Tourism and Recreation, Gdansk University of Physical Education and Sport, Gdańsk, Poland
| | - Ewelina Lulińska-Kuklik
- Faculty of Tourism and Recreation, Gdansk University of Physical Education and Sport, Gdańsk, Poland
| | - Waldemar Moska
- Faculty of Tourism and Recreation, Gdansk University of Physical Education and Sport, Gdańsk, Poland
| | - Krzysztof Ficek
- Faculty of Physiotherapy, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland
| | - Marta Niewczas
- University of Rzeszów, Faculty of Physical Education, Rzeszów, Poland
| | | |
Collapse
|
15
|
Petr M, Stastny P, Zajac A, Tufano JJ, Maciejewska-Skrendo A. The Role of Peroxisome Proliferator-Activated Receptors and Their Transcriptional Coactivators Gene Variations in Human Trainability: A Systematic Review. Int J Mol Sci 2018; 19:E1472. [PMID: 29762540 PMCID: PMC5983571 DOI: 10.3390/ijms19051472] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/11/2018] [Accepted: 05/12/2018] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The peroxisome proliferator-activated receptors (PPARA, PPARG, PPARD) and their transcriptional coactivators' (PPARGC1A, PPARGC1B) gene polymorphisms have been associated with muscle morphology, oxygen uptake, power output and endurance performance. The purpose of this review is to determine whether the PPARs and/or their coactivators' polymorphisms can predict the training response to specific training stimuli. METHODS In accordance with the Preferred Reporting Items for Systematic Reviews and Meta Analyses, a literature review has been run for a combination of PPARs and physical activity key words. RESULTS All ten of the included studies were performed using aerobic training in general, sedentary or elderly populations from 21 to 75 years of age. The non-responders for aerobic training (VO₂peak increase, slow muscle fiber increase and low-density lipoprotein decrease) are the carriers of PPARGC1A rs8192678 Ser/Ser. The negative responders for aerobic training (decrease in VO₂peak) are carriers of the PPARD rs2267668 G allele. The negative responders for aerobic training (decreased glucose tolerance and insulin response) are subjects with the PPARG rs1801282 Pro/Pro genotype. The best responders to aerobic training are PPARGC1A rs8192678 Gly/Gly, PPARD rs1053049 TT, PPARD rs2267668 AA and PPARG rs1801282 Ala carriers. CONCLUSIONS The human response for aerobic training is significantly influenced by PPARs' gene polymorphism and their coactivators, where aerobic training can negatively influence glucose metabolism and VO₂peak in some genetically-predisposed individuals.
Collapse
Affiliation(s)
- Miroslav Petr
- Faculty of Physical Education and Sport, Charles University, 162 52 Prague, Czech Republic.
| | - Petr Stastny
- Faculty of Physical Education and Sport, Charles University, 162 52 Prague, Czech Republic.
| | - Adam Zajac
- Department of Theory and Practice of Sport, The Jerzy Kukuczka Academy of Physical Education in Katowice, 40-065 Katowice, Poland.
| | - James J Tufano
- Faculty of Physical Education and Sport, Charles University, 162 52 Prague, Czech Republic.
| | | |
Collapse
|
16
|
Abstract
We examined whether established metabolic risk genetic variants in the population confer a risk for increased waist circumference in patients with schizophrenia spectrum disorders and also an association with schizophrenia spectrum disorders irrespective of waist circumference.
Collapse
|
17
|
Role of methionine adenosyltransferase 2A in bovine preimplantation development and its associated genomic regions. Sci Rep 2017. [PMID: 28630431 PMCID: PMC5476596 DOI: 10.1038/s41598-017-04003-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Methionine adenosyltransferase (MAT) is involved in folate-mediated one-carbon metabolism, which is essential for preimplantation embryos in terms of both short-term periconceptional development and long-term phenotypic programming beyond the periconceptional period. Here, our immunofluorescence analysis of bovine oocytes and preimplantation embryos revealed the consistent expression of MAT2A (the catalytic subunit of the ubiquitously expressed-type of MAT isozyme) during this period. Addition of the MAT2A inhibitor FIDAS to the culture media of bovine preimplantation embryos reduced their blastocyst development, revealing the particular importance of MAT2A in successful blastocyst development. Exploration of MAT2A-associated genomic regions in bovine blastocysts using chromatin immunoprecipitation and sequencing (ChIP-seq) identified candidate MAT2A-associated genes implicated not only in short-term periconceptional embryo development, but also in long-term phenotypic programming during this period in terms of growth, metabolism, and immune functions. These results suggest the critical involvement of MAT2A in the periconceptional period in life-long programming of health and disease as well as successful preimplantation development.
Collapse
|
18
|
Smith SY, Samadfam R, Chouinard L, Awori M, Bénardeau A, Bauss F, Guldberg RE, Sebokova E, Wright MB. Effects of pioglitazone and fenofibrate co-administration on bone biomechanics and histomorphometry in ovariectomized rats. J Bone Miner Metab 2015; 33:625-41. [PMID: 25534548 DOI: 10.1007/s00774-014-0632-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 09/02/2014] [Indexed: 01/31/2023]
Abstract
Pioglitazone, the peroxisome proliferator-activated receptor-gamma (PPAR-γ) agonist is an effective therapy for type 2 diabetes, but has been associated with increased risk for bone fracture. Preclinical studies suggest that PPAR-α agonists (e.g., fenofibrate) increase bone mineral density/content, although clinical data on bone effects of fibrates are lacking. We investigated the effects of pioglitazone (10 mg/kg/day) and fenofibrate (25 mg/kg/day) on bone strength and bone histomorphometric parameters in osteopenic ovariectomized (OVX) rats. An additional group of rats received a combination of pioglitazone + fenofibrate to mimic the effects of a dual PPAR-α/γ agonist. The study consisted of a 13-week treatment phase followed by a 6-week treatment-free recovery period. Pioglitazone significantly reduced biomechanical strength at the lumbar spine and femoral neck compared with rats administered fenofibrate. Co-treatment with pioglitazone + fenofibrate had no significant effect on bone strength in comparison with OVX vehicle controls. Histomorphometric analysis of the proximal tibia revealed that pioglitazone suppressed bone formation and increased bone resorption at both cancellous and cortical bone sites relative to OVX vehicle controls. In contrast, fenofibrate did not affect bone resorption and only slightly suppressed bone formation. Discontinuation of pioglitazone treatment, both in the monotherapy and in the combination therapy arms, resulted in restoration of bone formation and resorption rates, demonstrating reversibility of effects. The above data support the concept that dual activation of PPAR-γ and PPAR-α attenuates the negative effects of PPAR-γ agonism on bone strength.
Collapse
Affiliation(s)
| | | | | | | | - Agnes Bénardeau
- DTA Cardiovascular and Metabolism, pRED Pharma Research and Early Development, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Frieder Bauss
- Discovery Oncology, Pharmaceutical Research and Early Development (pRED), Roche Diagnostics GmbH, Penzberg, Germany
| | | | - Elena Sebokova
- DTA Cardiovascular and Metabolism, pRED Pharma Research and Early Development, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Matthew B Wright
- DTA Cardiovascular and Metabolism, pRED Pharma Research and Early Development, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| |
Collapse
|
19
|
PPARα Is Required for PPARδ Action in Regulation of Body Weight and Hepatic Steatosis in Mice. PPAR Res 2015; 2015:927057. [PMID: 26604919 PMCID: PMC4641930 DOI: 10.1155/2015/927057] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/09/2015] [Indexed: 12/24/2022] Open
Abstract
Peroxisome proliferator activated receptors alpha (PPARα) and delta (PPARδ) belong to the nuclear receptor superfamily. PPARα is a target of well established lipid-lowering drugs. PPARδ (also known as PPARβ/δ) has been investigated as a promising antidiabetic drug target; however, the evidence in the literature on PPARδ effect on hepatic lipid metabolism is inconsistent. Mice conditionally expressing human PPARδ demonstrated pronounced weight loss and promoted hepatic steatosis when treated with GW501516 (PPARδ-agonist) when compared to wild type mice. This effect was completely absent in mice with either a dominant negative form of PPARδ or deletion of the DNA binding domain of PPARδ. This confirmed the absolute requirement for PPARδ in the physiological actions of GW501516 and confirmed the potential utility against the human form of this receptor. Surprisingly the genetic deletion of PPARα also abrogated the effect of GW501516 in terms of both weight loss and hepatic lipid accumulation. Also the levels of the PPARα endogenous agonist 16:0/18:1-GPC were shown to be modulated by PPARδ in wild type mice. Our results show that both PPARδ and PPARα receptors are essential for GW501516-driven adipose tissue reduction and subsequently hepatic steatosis, with PPARα working downstream of PPARδ.
Collapse
|
20
|
Molecular mechanisms of fatty liver in obesity. Front Med 2015; 9:275-87. [PMID: 26290284 DOI: 10.1007/s11684-015-0410-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 05/25/2015] [Indexed: 12/17/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) covers a spectrum of liver disorders ranging from simple steatosis to advanced pathologies, including nonalcoholic steatohepatitis and cirrhosis. NAFLD significantly contributes to morbidity and mortality in developed societies. Insulin resistance associated with central obesity is the major cause of hepatic steatosis, which is characterized by excessive accumulation of triglyceride-rich lipid droplets in the liver. Accumulating evidence supports that dysregulation of adipose lipolysis and liver de novo lipogenesis (DNL) plays a key role in driving hepatic steatosis. In this work, we reviewed the molecular mechanisms responsible for enhanced adipose lipolysis and increased hepatic DNL that lead to hepatic lipid accumulation in the context of obesity. Delineation of these mechanisms holds promise for developing novel avenues against NAFLD.
Collapse
|
21
|
A metabolomic study of the PPARδ agonist GW501516 for enhancing running endurance in Kunming mice. Sci Rep 2015; 5:9884. [PMID: 25943561 PMCID: PMC4421799 DOI: 10.1038/srep09884] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/24/2015] [Indexed: 11/12/2022] Open
Abstract
Exercise can increase peroxisome proliferator-activated receptor-δ (PPARδ) expression in skeletal muscle. PPARδ regulates muscle metabolism and reprograms muscle fibre types to enhance running endurance. This study utilized metabolomic profiling to examine the effects of GW501516, a PPARδ agonist, on running endurance in mice. While training alone increased the exhaustive running performance, GW501516 treatment enhanced running endurance and the proportion of succinate dehydrogenase (SDH)-positive muscle fibres in both trained and untrained mice. Furthermore, increased levels of intermediate metabolites and key enzymes in fatty acid oxidation pathways were observed following training and/or treatment. Training alone increased serum inositol, glucogenic amino acids, and branch chain amino acids. However, GW501516 increased serum galactose and β-hydroxybutyrate, independent of training. Additionally, GW501516 alone raised serum unsaturated fatty acid levels, especially polyunsaturated fatty acids, but levels increased even more when combined with training. These findings suggest that mechanisms behind enhanced running capacity are not identical for GW501516 and training. Training increases energy availability by promoting catabolism of proteins, and gluconeogenesis, whereas GW501516 enhances specific consumption of fatty acids and reducing glucose utilization.
Collapse
|
22
|
Maciejewska-Karlowska A, Hanson ED, Sawczuk M, Cieszczyk P, Eynon N. Genomic haplotype within the Peroxisome Proliferator-Activated Receptor Delta (PPARD) gene is associated with elite athletic status. Scand J Med Sci Sports 2013; 24:e148-55. [PMID: 24118591 DOI: 10.1111/sms.12126] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2013] [Indexed: 12/17/2022]
Abstract
Peroxisome proliferator-activated receptor delta (PPARδ; encoded by the PPARD gene) plays a role in energy metabolism and mitochondrial function. We have investigated the distribution of PPARD rs2267668, rs2016520 and rs1053049 polymorphisms, individually and in haplotype, in a cohort of 660 elite athletes which was subdivided into four different groups based on the different metabolic demands of their respective sports and 704 healthy controls. PPARD rs2016529 and rs1053049 were individually associated with overall elite athletic performance (P = 0.00002; and P = 0.0002) and also with athletes grouped as strength endurance (P = 0.00008; and P = 0.0003). Furthermore, PPARD A/C/C haplotype (rs2267668/rs2016520/rs1053049) was significantly underrepresented in all athletes and each subgroup of athletes when compared with controls (P < 0.000001), suggesting that harboring this specific haplotype is unfavorable for becoming an elite athlete. These results help to identify which genetic profiles may contribute to elite athletic performance, specifically the role of variants within the PPARD gene, and may be useful in talent identification or optimizing the response to training.
Collapse
|
23
|
Altieri P, Spallarossa P, Barisione C, Garibaldi S, Garuti A, Fabbi P, Ghigliotti G, Brunelli C. Inhibition of doxorubicin-induced senescence by PPARδ activation agonists in cardiac muscle cells: cooperation between PPARδ and Bcl6. PLoS One 2012; 7:e46126. [PMID: 23049957 PMCID: PMC3458009 DOI: 10.1371/journal.pone.0046126] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 08/28/2012] [Indexed: 01/29/2023] Open
Abstract
Senescence and apoptosis are two distinct cellular programs that are activated in response to a variety of stresses. Low or high doses of the same stressor, i.e., the anticancer drug doxorubicin, may either induce apoptosis or senescence, respectively, in cardiac muscle cells. We have demonstrated that PPARδ, a ligand-activated transcriptional factor that controls lipid metabolism, insulin sensitivity and inflammation, is also involved in the doxorubicin-induced senescence program. This occurs through its interference with the transcriptional repressor protein B cell lymphoma-6 (Bcl6). Low doses of doxorubicin increase the expression of PPARδ that sequesters Bcl6, thus preventing it from exerting its anti-senescent effects. We also found that L-165041, a specific PPARδ activator, is highly effective in protecting cardiomyocytes from doxorubicin-induced senescence through a Bcl6 related mechanism. In fact, L-165041 increases Bcl6 expression via p38, JNK and Akt activation, and at the same time it induces the release of Bcl6 from PPARδ, thereby enabling Bcl6 to bind to its target genes. L-165041 also prevented apoptosis induced by higher doses of doxorubicin. However, while experiments performed with siRNA analysis techniques very clearly showed the weight of Bcl6 in the cellular senescence program, no role was found for Bcl6 in the anti-apoptotic effects of L-165041, thus confirming that senescence and apoptosis are two very distinct stress response cellular programs. This study increases our understanding of the molecular mechanism of anthracycline cardiotoxicity and suggests a potential role for PPARδ agonists as cardioprotective agents.
Collapse
Affiliation(s)
- Paola Altieri
- Research Centre of Cardiovascular Biology, University of Genova, Genova, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Suckling K. The landscape of drug discovery in atherosclerosis and dyslipidaemia revisited: an update of patenting activity. Expert Opin Ther Pat 2012; 22:199-204. [PMID: 22404075 DOI: 10.1517/13543776.2012.667402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
INTRODUCTION This paper is an update of a previous paper I published in Expert Opinion of Therapeutic Patents in 2008. The paper was a survey of patenting activity in the fields of atherosclerosis and dyslipidaemia, which identified trends in patenting by reviewing two major mechanistic categories, metabolic/dyslipidaemia and vascular/inflammation, as well as examining the interest in certain specific targets over a period of 10 years. METHODS In this update, the same methodology was followed using the Espacenet of the European Patent Office (EPO) to identify patents claiming therapeutics for atherosclerosis or dyslipidaemia (excluding the wider metabolic syndrome). EXPERT OPINION A major change in the field over the past 5 years has been the departure of larger companies from the field. This is reflected in the patenting activity. Patenting has been at a stable rate over the recent years with few new targets being highlighted. It is suggested that, for this field to return to the higher rates of patenting seen over 10 years ago, breakthroughs in translational medicine and in the ability to conduct clinical trials, particularly in biomarkers and imaging, will need to take place.
Collapse
Affiliation(s)
- Keith Suckling
- Suckling Science Ltd, 291 Knightsfield, Welwyn Garden City, Herts, AL8 7NH, UK.
| |
Collapse
|
25
|
Bieghs V, Rensen PC, Hofker MH, Shiri-Sverdlov R. NASH and atherosclerosis are two aspects of a shared disease: Central role for macrophages. Atherosclerosis 2012; 220:287-93. [DOI: 10.1016/j.atherosclerosis.2011.08.041] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 08/23/2011] [Accepted: 08/24/2011] [Indexed: 02/06/2023]
|
26
|
Samadfam R, Awori M, Bénardeau A, Bauss F, Sebokova E, Wright M, Smith SY. Combination treatment with pioglitazone and fenofibrate attenuates pioglitazone-mediated acceleration of bone loss in ovariectomized rats. J Endocrinol 2012; 212:179-86. [PMID: 22062085 DOI: 10.1530/joe-11-0356] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Peroxisome proliferator-activated receptor (PPAR) γ agonists, such as pioglitazone (Pio), improve glycemia and lipid profile but are associated with bone loss and fracture risk. Data regarding bone effects of PPARα agonists (including fenofibrate (Feno)) are limited, although animal studies suggest that Feno may increase bone mass. This study investigated the effects of a 13-week oral combination treatment with Pio (10 mg/kg per day)+Feno (25 mg/kg per day) on body composition and bone mass parameters compared with Pio or Feno alone in adult ovariectomized (OVX) rats, with a 4-week bone depletion period, followed by a 6-week treatment-free period. Treatment of OVX rats with Pio+Feno resulted in ∼50% lower fat mass gain compared with Pio treatment alone. Combination treatment with Pio+Feno partially prevented Pio-induced loss of bone mineral content (∼45%) and bone mineral density (BMD; ∼60%) at the lumbar spine. Similar effects of treatments were observed at the femur, most notably at sites rich in trabecular bone. At the proximal tibial metaphysis, concomitant treatment with Pio+Feno prevented Pio exacerbation of ovariectomy-induced loss of trabecular bone, resulting in BMD values in the Pio+Feno group comparable to OVX controls. Discontinuation of Pio or Feno treatment of OVX rats was associated with partial reversal of effects on bone loss or bone mass gain, respectively, while values in the Pio+Feno group remained comparable to OVX controls. These data suggest that concurrent/dual agonism of PPARγ and PPARα may reduce the negative effects of PPARγ agonism on bone mass.
Collapse
Affiliation(s)
- Rana Samadfam
- Charles River Laboratories, 22022 Transcanadienne, Senneville, Montréal, Québec, Canada H9X 3R3
| | | | | | | | | | | | | |
Collapse
|
27
|
De Filippis B, Giancristofaro A, Ammazzalorso A, D'Angelo A, Fantacuzzi M, Giampietro L, Maccallini C, Petruzzelli M, Amoroso R. Discovery of gemfibrozil analogues that activate PPARα and enhance the expression of gene CPT1A involved in fatty acids catabolism. Eur J Med Chem 2011; 46:5218-24. [PMID: 21889235 DOI: 10.1016/j.ejmech.2011.08.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 08/13/2011] [Accepted: 08/16/2011] [Indexed: 11/25/2022]
Abstract
A new series of gemfibrozil analogues conjugated with α-asarone, trans-stilbene, chalcone, and their bioisosteric modifications were synthesized and evaluated to develop PPARα agonists. In this attempt, we have removed the methyls on the phenyl ring of gemfibrozil and introduced the above scaffolds in para position synthesizing two series of derivatives, keeping the dimethylpentanoic skeleton of gemfibrozil unaltered or demethylated. Four compounds exhibited good activation of the PPARα receptor and were also screened for their activity on PPARα-regulated gene CPT1A.
Collapse
Affiliation(s)
- Barbara De Filippis
- Dipartimento di Scienze del Farmaco, Università degli Studi G. d'Annunzio, Chieti, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Cabarcas S, Hurt E, Farrar W. Defining the molecular nexus of cancer, type 2 diabetes and cardiovascular disease. Curr Mol Med 2010; 10:744-55. [PMID: 20937021 PMCID: PMC3448443 DOI: 10.2174/156652410793384187] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 08/26/2010] [Indexed: 12/12/2022]
Abstract
The metabolic syndrome is characterized by a state of metabolic dysfunction resulting in the development of several chronic diseases that are potentially deadly. These metabolic deregulations are complex and intertwined and it has been observed that many of the mechanisms and pathways responsible for diseases characterizing the metabolic syndrome such as type 2 diabetes and cardiovascular disease are linked with cancer development as well. Identification of molecular pathways common to these diverse diseases may prove to be a critical factor in disease prevention and development of potential targets for therapeutic treatments. This review focuses on several molecular pathways, including AMPK, PPARs and FASN that interconnect cancer development, type 2 diabetes and cardiovascular disease. AMPK, PPARs and FASN are crucial regulators involved in the maintenance of key metabolic processes necessary for proper homeostasis. It is critical to recognize and identify common pathways deregulated in interrelated diseases as it may provide further information and a much more global picture in regards to disease development and prevention. Thus, this review focuses on three key metabolic regulators, AMPK, PPARs and FASN, that may potentially serve as therapeutic targets.
Collapse
Affiliation(s)
- S.M. Cabarcas
- Cancer Stem Cell Section, Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - E.M. Hurt
- MedImmune LLC, Gaithersburg, MD, USA
| | - W.L. Farrar
- Cancer Stem Cell Section, Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
29
|
Zingarelli B, Piraino G, Hake PW, O'Connor M, Denenberg A, Fan H, Cook JA. Peroxisome proliferator-activated receptor {delta} regulates inflammation via NF-{kappa}B signaling in polymicrobial sepsis. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1834-47. [PMID: 20709805 DOI: 10.2353/ajpath.2010.091010] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The nuclear peroxisome proliferator-activated receptor δ (PPARδ) is an important regulator of lipid metabolism. In contrast to its known effects on energy homeostasis, its biological role on inflammation is not well understood. We investigated the role of PPARδ in the modulation of the nuclear factor-κB (NF-κB)-driven inflammatory response to polymicrobial sepsis in vivo and in macrophages in vitro. We demonstrated that administration of GW0742, a specific PPARδ ligand, provided beneficial effects to rats subjected to cecal ligation and puncture, as shown by reduced systemic release of pro-inflammatory cytokines and neutrophil infiltration in lung, liver, and cecum, when compared with vehicle treatment. Molecular analysis revealed that treatment with GW0742 reduced NF-κB binding to DNA in lung and liver. In parallel experiments, heterozygous PPARδ-deficient mice suffered exaggerated lethality when subjected to cecal ligation and puncture and exhibited severe lung injury and higher levels of circulating tumor necrosis factor-α (TNFα) and keratinocyte-derived chemokine than wild-type mice. Furthermore, in lipopolysaccharide-stimulated J774.A1 macrophages, GW0742 reduced TNFα production by inhibiting NF-κB activation. RNA silencing of PPARδ abrogated the inhibitory effects of GW0742 on TNFα production. Chromatin immunoprecipitation assays revealed that PPARδ displaced the NF-κB p65 subunit from the κB elements of the TNFα promoter, while recruiting the co-repressor BCL6. These data suggest that PPARδ is a crucial anti-inflammatory regulator, providing a basis for novel sepsis therapies.
Collapse
Affiliation(s)
- Basilia Zingarelli
- Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center and College of Medicine, University of Cincinnati, Cincinnati, Ohio 45229, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Johns BR, Reaven GM. PPAR-γ agonists, insulin resistance and dyslipidemia: not a simple relationship. ACTA ACUST UNITED AC 2010. [DOI: 10.2217/clp.10.36] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Chen H, Dardik B, Qiu L, Ren X, Caplan SL, Burkey B, Boettcher BR, Gromada J. Cevoglitazar, a novel peroxisome proliferator-activated receptor-alpha/gamma dual agonist, potently reduces food intake and body weight in obese mice and cynomolgus monkeys. Endocrinology 2010; 151:3115-24. [PMID: 20484464 DOI: 10.1210/en.2009-1366] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cevoglitazar is a dual agonist for the peroxisome proliferator-activated receptor (PPAR)-alpha and -gamma subtypes. Dual activation of PPARalpha and -gamma is a therapeutic approach in development for the treatment of type 2 diabetes mellitus and diabetic dyslipidemia. In this report, we show that, in addition to improving insulin sensitivity and lipid metabolism like other dual PPAR agonists, cevoglitazar also elicits beneficial effects on energy homeostasis in two animal models of obesity. In leptin-deficient ob/ob mice, administration of cevoglitazar at 0.5, 1, or 2 mg/kg for 18 d led to acute and sustained, dose-dependent reduction of food intake and body weight. Furthermore, plasma levels of glucose and insulin were normalized after 7 d of cevoglitazar treatment at 0.5 mg/kg. Plasma levels of free fatty acids and triglycerides were dose-dependently reduced. In obese and insulin-resistant cynomolgus monkeys, treatment with cevoglitazar at 50 and 500 mug/kg for 4 wk lowered food intake and body weight in a dose-dependent manner. In these animals, cevoglitazar also reduced fasting plasma insulin and, at the highest dose, reduced hemoglobin A1c levels by 0.4%. These preclinical results demonstrate that cevoglitazar holds promise for the treatment of diabetes and obesity-related disorders because of its unique beneficial effect on energy balance in addition to improving glycemic and metabolic control.
Collapse
Affiliation(s)
- Hong Chen
- Novartis Institutes for BioMedical Research, Inc., 100 Technology Square, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Ehrenborg E, Krook A. Regulation of skeletal muscle physiology and metabolism by peroxisome proliferator-activated receptor delta. Pharmacol Rev 2009; 61:373-93. [PMID: 19805479 DOI: 10.1124/pr.109.001560] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Agonists directed against the alpha and gamma isoforms of the peroxisome proliferator-activated receptors (PPARs) have become important for the respective treatment of hypertriglyceridemia and insulin resistance associated with metabolic disease. PPARdelta is the least well characterized of the three PPAR isoforms. Skeletal muscle insulin resistance is a primary risk factor for the development of type 2 diabetes. There is increasing evidence that PPARdelta is an important regulator of skeletal muscle metabolism, in particular, muscle lipid oxidation, highlighting the potential utility of this isoform as a drug target. In addition, PPARdelta seems to be a key regulator of skeletal muscle fiber type and a possible mediator of the adaptations noted in skeletal muscle in response to exercise. In this review we summarize the current status regarding the regulation, and the metabolic effects, of PPARdelta in skeletal muscle.
Collapse
Affiliation(s)
- Ewa Ehrenborg
- Atherosclerosis Research Unit, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | |
Collapse
|