1
|
Yang JH, Seong KY, Kang M, Jang S, Yang SY, Hahn YK. Turbulence-enhanced microneedle immunoassay platform (TMIP) for high-precision biomarker detection from skin interstitial fluid. Biosens Bioelectron 2025; 282:117480. [PMID: 40279736 DOI: 10.1016/j.bios.2025.117480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/22/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
Conventional diagnostic methods for biomarker detection often require invasive procedures and exhibit limited reproducibility and sensitivity. In this study, the turbulence-enhanced microneedle immunoassay platform (TMIP) was designed to enhance the performance and accuracy of biomarker detection in skin interstitial fluid (ISF). TMIP combines a bullet-shaped microneedle (MN) array for minimally invasive biomarker capture, a microfluidic device for MN-mediated immunoassay process simplification, and a star-shaped magnetic stirrer tool (MST) to facilitate efficient washing. By targeting S100 calcium-binding protein B (S100B), a diagnostic biomarker for melanoma, TMIP demonstrated substantial improvements in reproducibility, reducing signal deviations by up to 55 % compared to manual operation. The application of nanoporous MNs (NPMNs) achieved a low detection limit of 20 pg/mL with a high linearity (R2 = 0.9758). Validation using a gelatin phantom mimicking human skin confirmed TMIP's ability to achieve improved reproducibility and sensitivity. Furthermore, TMIP successfully detected S100B with high reproducibility in both the phantom (R2 = 0.97523) and melanoma-expressing mice within a rapid incubation time of 1 min. TMIP enables the detection of biomarkers with remarkable reproducibility and sub-nanogram sensitivity by simplifying the analysis process and enhancing reagent washing through turbulence. These features suggest that TMIP has the potential to serve as an efficient and reliable tool for biomarker detection in skin ISF.
Collapse
Affiliation(s)
- Ju-Hong Yang
- Department of Biomedical Convergence Science and Technology, Advanced Institute of Science and Technology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Keum-Yong Seong
- Department of Biomaterials Science (BK21 Four Program), Life and Industry Convergence Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Mingi Kang
- Department of Biomaterials Science (BK21 Four Program), Life and Industry Convergence Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Sangsoo Jang
- Department of Biomaterials Science (BK21 Four Program), Life and Industry Convergence Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Seung Yun Yang
- Department of Biomaterials Science (BK21 Four Program), Life and Industry Convergence Institute, Pusan National University, Miryang, 50463, Republic of Korea.
| | - Young Ki Hahn
- Department of Biomedical Convergence Science and Technology, Advanced Institute of Science and Technology, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Advanced Bioconvergence (BK21 Four Program), Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
2
|
Hu Y, Pan Z, De Bock M, Tan TX, Wang Y, Shi Y, Yan N, Yetisen AK. A wearable microneedle patch incorporating reversible FRET-based hydrogel sensors for continuous glucose monitoring. Biosens Bioelectron 2024; 262:116542. [PMID: 38991372 DOI: 10.1016/j.bios.2024.116542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/13/2024]
Abstract
Continuous glucose monitors are crucial for diabetes management, but invasive sampling, signal drift and frequent calibrations restrict their widespread usage. Microneedle sensors are emerging as a minimally-invasive platform for real-time monitoring of clinical parameters in interstitial fluid. Herein, a painless and flexible microneedle sensing patch is constructed by a mechanically-strong microneedle base and a thin layer of fluorescent hydrogel sensor for on-site, accurate, and continuous glucose monitoring. The Förster resonance energy transfer (FRET)-based hydrogel sensors are fabricated by facile photopolymerizations of acryloylated FRET pairs and glucose-specific phenylboronic acid. The optimized hydrogel sensor enables quantification of glucose with reversibility, high selectivity, and signal stability against photobleaching. Poly (ethylene glycol diacrylate)-co-polyacrylamide hydrogel is utilized as the microneedle base, facilitating effective skin piercing and biofluid extraction. The integrated microneedle sensor patch displays a sensitivity of 0.029 mM-1 in the (patho)physiological range, a low detection limit of 0.193 mM, and a response time of 7.7 min in human serum. Hypoglycemia, euglycemia and hyperglycemia are continuously monitored over 6 h simulated meal and rest activities in a porcine skin model. This microneedle sensor with high transdermal analytical performance offers a powerful tool for continuous diabetes monitoring at point-of-care settings.
Collapse
Affiliation(s)
- Yubing Hu
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom.
| | - Zhisheng Pan
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Marieke De Bock
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
| | - Tai Xuan Tan
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Yuhuai Wang
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Yuqi Shi
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Neng Yan
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom.
| |
Collapse
|
3
|
Ehring K, Ehlers SF, Froese J, Gude F, Puschmann J, Grobe K. Two-way Dispatched function in Sonic hedgehog shedding and transfer to high-density lipoproteins. eLife 2024; 12:RP86920. [PMID: 39297609 PMCID: PMC11412720 DOI: 10.7554/elife.86920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
The Sonic hedgehog (Shh) signaling pathway controls embryonic development and tissue homeostasis after birth. This requires regulated solubilization of dual-lipidated, firmly plasma membrane-associated Shh precursors from producing cells. Although it is firmly established that the resistance-nodulation-division transporter Dispatched (Disp) drives this process, it is less clear how lipidated Shh solubilization from the plasma membrane is achieved. We have previously shown that Disp promotes proteolytic solubilization of Shh from its lipidated terminal peptide anchors. This process, termed shedding, converts tightly membrane-associated hydrophobic Shh precursors into delipidated soluble proteins. We show here that Disp-mediated Shh shedding is modulated by a serum factor that we identify as high-density lipoprotein (HDL). In addition to serving as a soluble sink for free membrane cholesterol, HDLs also accept the cholesterol-modified Shh peptide from Disp. The cholesteroylated Shh peptide is necessary and sufficient for Disp-mediated transfer because artificially cholesteroylated mCherry associates with HDL in a Disp-dependent manner, whereas an N-palmitoylated Shh variant lacking C-cholesterol does not. Disp-mediated Shh transfer to HDL is completed by proteolytic processing of the palmitoylated N-terminal membrane anchor. In contrast to dual-processed soluble Shh with moderate bioactivity, HDL-associated N-processed Shh is highly bioactive. We propose that the purpose of generating different soluble forms of Shh from the dual-lipidated precursor is to tune cellular responses in a tissue-type and time-specific manner.
Collapse
Affiliation(s)
- Kristina Ehring
- Institute of Physiological Chemistry and Pathobiochemistry, University of MünsterMünsterGermany
| | | | - Jurij Froese
- Institute of Physiological Chemistry and Pathobiochemistry, University of MünsterMünsterGermany
| | - Fabian Gude
- Institute of Physiological Chemistry and Pathobiochemistry, University of MünsterMünsterGermany
| | - Janna Puschmann
- Institute of Physiological Chemistry and Pathobiochemistry, University of MünsterMünsterGermany
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry, University of MünsterMünsterGermany
| |
Collapse
|
4
|
Ehlers SF, Manikowski D, Steffes G, Ehring K, Gude F, Grobe K. A Residual N-Terminal Peptide Enhances Signaling of Depalmitoylated Hedgehog to the Patched Receptor. J Dev Biol 2024; 12:11. [PMID: 38651456 PMCID: PMC11036296 DOI: 10.3390/jdb12020011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/26/2024] [Accepted: 04/07/2024] [Indexed: 04/25/2024] Open
Abstract
During their biosynthesis, Sonic hedgehog (Shh) morphogens are covalently modified by cholesterol at the C-terminus and palmitate at the N-terminus. Although both lipids initially anchor Shh to the plasma membrane of producing cells, it later translocates to the extracellular compartment to direct developmental fates in cells expressing the Patched (Ptch) receptor. Possible release mechanisms for dually lipidated Hh/Shh into the extracellular compartment are currently under intense debate. In this paper, we describe the serum-dependent conversion of the dually lipidated cellular precursor into a soluble cholesteroylated variant (ShhC) during its release. Although ShhC is formed in a Dispatched- and Scube2-dependent manner, suggesting the physiological relevance of the protein, the depalmitoylation of ShhC during release is inconsistent with the previously postulated function of N-palmitate in Ptch receptor binding and signaling. Therefore, we analyzed the potency of ShhC to induce Ptch-controlled target cell transcription and differentiation in Hh-sensitive reporter cells and in the Drosophila eye. In both experimental systems, we found that ShhC was highly bioactive despite the absence of the N-palmitate. We also found that the artificial removal of N-terminal peptides longer than eight amino acids inactivated the depalmitoylated soluble proteins in vitro and in the developing Drosophila eye. These results demonstrate that N-depalmitoylated ShhC requires an N-peptide of a defined minimum length for its signaling function to Ptch.
Collapse
Affiliation(s)
- Sophia F. Ehlers
- Institute of Physiological Chemistry and Pathobiochemistry, Faculty of Medicine, University of Münster, Waldeyerstrasse 15, 48149 Münster, Germany; (S.F.E.); (D.M.); (K.E.); (F.G.)
| | - Dominique Manikowski
- Institute of Physiological Chemistry and Pathobiochemistry, Faculty of Medicine, University of Münster, Waldeyerstrasse 15, 48149 Münster, Germany; (S.F.E.); (D.M.); (K.E.); (F.G.)
| | - Georg Steffes
- Institute for Neuro- and Behavioral Biology, Faculty of Biology, University of Münster, Röntgenstrasse 16, 48149 Münster, Germany;
| | - Kristina Ehring
- Institute of Physiological Chemistry and Pathobiochemistry, Faculty of Medicine, University of Münster, Waldeyerstrasse 15, 48149 Münster, Germany; (S.F.E.); (D.M.); (K.E.); (F.G.)
| | - Fabian Gude
- Institute of Physiological Chemistry and Pathobiochemistry, Faculty of Medicine, University of Münster, Waldeyerstrasse 15, 48149 Münster, Germany; (S.F.E.); (D.M.); (K.E.); (F.G.)
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry, Faculty of Medicine, University of Münster, Waldeyerstrasse 15, 48149 Münster, Germany; (S.F.E.); (D.M.); (K.E.); (F.G.)
| |
Collapse
|
5
|
Khalifa A, Guijarro A, Ravera S, Bertola N, Adorni MP, Papotti B, Raffaghello L, Benelli R, Becherini P, Namatalla A, Verzola D, Reverberi D, Monacelli F, Cea M, Pisciotta L, Bernini F, Caffa I, Nencioni A. Cyclic fasting bolsters cholesterol biosynthesis inhibitors' anticancer activity. Nat Commun 2023; 14:6951. [PMID: 37907500 PMCID: PMC10618279 DOI: 10.1038/s41467-023-42652-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 10/17/2023] [Indexed: 11/02/2023] Open
Abstract
Identifying oncological applications for drugs that are already approved for other medical indications is considered a possible solution for the increasing costs of cancer treatment. Under the hypothesis that nutritional stress through fasting might enhance the antitumour properties of at least some non-oncological agents, by screening drug libraries, we find that cholesterol biosynthesis inhibitors (CBIs), including simvastatin, have increased activity against cancers of different histology under fasting conditions. We show fasting's ability to increase CBIs' antitumour effects to depend on the reduction in circulating insulin, insulin-like growth factor-1 and leptin, which blunts the expression of enzymes from the cholesterol biosynthesis pathway and enhances cholesterol efflux from cancer cells. Ultimately, low cholesterol levels through combined fasting and CBIs reduce AKT and STAT3 activity, oxidative phosphorylation and energy stores in the tumour. Our results support further studies of CBIs in combination with fasting-based dietary regimens in cancer treatment and highlight the value of fasting for drug repurposing in oncology.
Collapse
Affiliation(s)
- Amr Khalifa
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132, Genoa, Italy
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Ana Guijarro
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132, Genoa, Italy
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Silvia Ravera
- Department of Experimental Medicine, University of Genoa, Via Leon Battista Alberti 2, 16132, Genoa, Italy
| | - Nadia Bertola
- Department of Experimental Medicine, University of Genoa, Via Leon Battista Alberti 2, 16132, Genoa, Italy
| | - Maria Pia Adorni
- Department of Medicine and Surgery, University of Parma, 43125, Parma, Italy
| | - Bianca Papotti
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Lizzia Raffaghello
- Center of Translational and Experimental Myology, IRCCS Istituto Giannina Gaslini, 16147, Genoa, Italy
| | - Roberto Benelli
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Pamela Becherini
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132, Genoa, Italy
| | - Asmaa Namatalla
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132, Genoa, Italy
| | - Daniela Verzola
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132, Genoa, Italy
| | - Daniele Reverberi
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132, Genoa, Italy
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Michele Cea
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132, Genoa, Italy
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Livia Pisciotta
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132, Genoa, Italy
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Franco Bernini
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Irene Caffa
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132, Genoa, Italy.
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132, Genoa, Italy.
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132, Genoa, Italy.
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132, Genoa, Italy.
| |
Collapse
|
6
|
Multi-groove microneedles based wearable colorimetric sensor for simple and facile glucose detection. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
7
|
Microneedle Array Technique for the Longitudinal Extraction of Interstitial Fluid without Hair Removal. Methods Protoc 2022; 5:mps5030046. [PMID: 35736547 PMCID: PMC9230921 DOI: 10.3390/mps5030046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/28/2022] [Accepted: 06/02/2022] [Indexed: 11/17/2022] Open
Abstract
Interstitial fluid (ISF) bathes the cells and tissues and is in constant exchange with blood. As an exchange medium for waste, nutrients, exosomes, and signaling molecules, ISF is recognized as a plentiful source of biomolecules. Many basic and pre-clinical small animal studies could benefit from an inexpensive and efficient technique that allows for the in vivo extraction of ISF for the subsequent quantification of molecules in the interstitial space. We have previously reported on a minimally invasive technique for the extraction of ISF using a 3D-printed microneedle array (MA) platform for comprehensive biomedical applications. Previously, hairless animal models were utilized, and euthanasia was performed immediately following the procedure. Here, we demonstrate the technique in Sprague Dawley rats, without the need for hair removal, over multiple extractions and weeks. As an example of this technique, we report simultaneous quantification of the heavy metals Copper (Cu), Lead (Pb), Lithium (Li), and Nickel (Ni) within the ISF, compared with whole blood. These results demonstrate the MA technique applicability to a broader range of species and studies and the reuse of animals, leading to a reduction in number of animals needed to successfully complete ISF extraction experiments.
Collapse
|
8
|
Wu T, You X, Chen Z. Hollow Microneedles on a Paper Fabricated by Standard Photolithography for the Screening Test of Prediabetes. SENSORS 2022; 22:s22114253. [PMID: 35684875 PMCID: PMC9185271 DOI: 10.3390/s22114253] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023]
Abstract
Microneedle (MN) is a novel technique of the biomedical engineering field because of its ability to evaluate bioinformation via minimal invasion. One of the urgent requirements for ground-breaking health care monitoring is persistent monitoring. Hollow microneedles are extremely attractive to extract skin interstitial fluid (ISF) for analysis, which makes them perfect for sensing biomarkers and facilitating diagnosis. Nevertheless, its intricate fabrication process has hampered its extensive application. The present research demonstrates an easy one-step preparation approach for hollow MNs on the foundation of the refraction index variations of polyethylene glycol diacrylate (PEGDA) in the process of photopolymerization. The fabricated hollow microneedle exhibited ideal mechanical characteristics to penetrate the skin. Hydrodynamic simulations showed that the liquid was risen in a hollow microneedle by capillary force. Furthermore, a paper-based glucose sensor was integrated with the hollow microneedle. We also observed that the MN array smoothly extracted ISF in vitro and in vivo by capillary action. The outcomes displayed the applicability of the MN patch to persistent blood glucose (GLU) monitoring, diagnosis-related tests for patients and pre-diabetic individuals.
Collapse
Affiliation(s)
- Tianwei Wu
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China;
| | - Xueqiu You
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China;
- School of Information Engineering, Jimei University, Xiamen 361021, China
- Correspondence: (X.Y.); (Z.C.)
| | - Zhong Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China;
- Correspondence: (X.Y.); (Z.C.)
| |
Collapse
|
9
|
Bao L, Park J, Bonfante G, Kim B. Recent advances in porous microneedles: materials, fabrication, and transdermal applications. Drug Deliv Transl Res 2022; 12:395-414. [PMID: 34415566 PMCID: PMC8724174 DOI: 10.1007/s13346-021-01045-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2021] [Indexed: 12/20/2022]
Abstract
In the past two decades, microneedles (MNs), as a painless and simple drug delivery system, have received increasing attention for various biomedical applications such as transdermal drug delivery, interstitial fluid (ISF) extraction, and biosensing. Among the various types of MNs, porous MNs have been recently researched owing to their distinctive and unique characteristics, where porous structures inside MNs with continuous nano- or micro-sized pores can transport drugs or biofluids by capillary action. In addition, a wide range of materials, including non-polymers and polymers, were researched and used to form the porous structures of porous MNs. Adjustable porosity by different fabrication methods enables the achievement of sufficient mechanical strength by optimising fluid flows inside MNs. Moreover, biocompatible porous MNs integrated with biosensors can offer portable detection and rapid measurement of biomarkers in a minimally invasive manner. This review focuses on several aspects of current porous MN technology, including material selection, fabrication processes, biomedical applications, primarily covering transdermal drug delivery, ISF extraction, and biosensing, along with future prospects as well as challenges.
Collapse
Affiliation(s)
- Leilei Bao
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Jongho Park
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | | | - Beomjoon Kim
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.
- LIMMS/CNRS-IIS UMI 2820, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
10
|
He R, Liu H, Fang T, Niu Y, Zhang H, Han F, Gao B, Li F, Xu F. A Colorimetric Dermal Tattoo Biosensor Fabricated by Microneedle Patch for Multiplexed Detection of Health-Related Biomarkers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2103030. [PMID: 34719884 PMCID: PMC8693053 DOI: 10.1002/advs.202103030] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 05/21/2023]
Abstract
Detection of biomarkers associated with body conditions provides in-depth healthcare information and benefits to disease management, where the key challenge is to develop a minimally invasive platform with the ability to directly detect multiple biomarkers in body fluid. Dermal tattoo biosensor holds the potential to simultaneously detect multiple health-related biomarkers in skin interstitial fluid because of the features of minimal invasion, easy operation, and equipment-free result reading. Herein, a colorimetric dermal tattoo biosensor fabricated by a four-area segmented microneedle patch is developed for multiplexed detection of health-related biomarkers. The biosensor exhibits color changes in response to the change of biomarker concentration (i.e., pH, glucose, uric acid, and temperature), which can be directly read by naked eyes or captured by a camera for semi-quantitative measurement. It is demonstrated that the colorimetric dermal tattoo biosensor can simultaneously detect multiple biomarkers in vitro, ex vivo, and in vivo, and monitor the changes of the biomarker concentration for at least 4 days, showing its great potential for long-term health monitoring.
Collapse
Affiliation(s)
- Rongyan He
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationXi'an Jiaotong University School of Life Science and TechnologyXi'an710049China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049China
| | - Hao Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationXi'an Jiaotong University School of Life Science and TechnologyXi'an710049China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049China
| | - Tianshu Fang
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationXi'an Jiaotong University School of Life Science and TechnologyXi'an710049China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049China
| | - Yan Niu
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationXi'an Jiaotong University School of Life Science and TechnologyXi'an710049China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049China
| | - Huiqing Zhang
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049China
- Key Laboratory of Thermo‐Fluid Science and Engineering of Ministry of EducationSchool of Energy & Power EngineeringXi'an Jiaotong UniversityXi'an710049China
| | - Fei Han
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationXi'an Jiaotong University School of Life Science and TechnologyXi'an710049China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049China
| | - Bin Gao
- Department of EndocrinologyTangdu HospitalAir Force Military Medical UniversityXi'an710038China
| | - Fei Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationXi'an Jiaotong University School of Life Science and TechnologyXi'an710049China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationXi'an Jiaotong University School of Life Science and TechnologyXi'an710049China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049China
| |
Collapse
|
11
|
Kluck GEG, Yoo JA, Sakarya EH, Trigatti BL. Good Cholesterol Gone Bad? HDL and COVID-19. Int J Mol Sci 2021; 22:10182. [PMID: 34638523 PMCID: PMC8507803 DOI: 10.3390/ijms221910182] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023] Open
Abstract
The transmissible respiratory disease COVID-19, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has affected millions of people worldwide since its first reported outbreak in December of 2019 in Wuhan, China. Since then, multiple studies have shown an inverse correlation between the levels of high-density lipoprotein (HDL) particles and the severity of COVID-19, with low HDL levels being associated with an increased risk of severe outcomes. Some studies revealed that HDL binds to SARS-CoV-2 particles via the virus's spike protein and, under certain conditions, such as low HDL particle concentrations, it facilitates SARS-CoV-2 binding to angiotensin-converting enzyme 2 (ACE2) and infection of host cells. Other studies, however, reported that HDL suppressed SARS-CoV-2 infection. In both cases, the ability of HDL to enhance or suppress virus infection appears to be dependent on the expression of the HDL receptor, namely, the Scavenger Receptor Class B type 1 (SR-B1), in the target cells. SR-B1 and HDL represent crucial mediators of cholesterol metabolism. Herein, we review the complex role of HDL and SR-B1 in SARS-CoV-2-induced disease. We also review recent advances in our understanding of HDL structure, properties, and function during SARS-CoV-2 infection and the resulting COVID-19 disease.
Collapse
Affiliation(s)
| | | | | | - Bernardo L. Trigatti
- Thrombosis and Atherosclerosis Research Institute and Department of Biochemistry and Biomedical Sciences, McMaster University and Hamilton Health Sciences, Hamilton, ON L8L 2X2, Canada; (G.E.G.K.); (J.-A.Y.); (E.H.S.)
| |
Collapse
|
12
|
Chen J, Wang M, Ye Y, Yang Z, Ruan Z, Jin N. Fabrication of sponge-forming microneedle patch for rapidly sampling interstitial fluid for analysis. Biomed Microdevices 2019; 21:63. [PMID: 31273475 DOI: 10.1007/s10544-019-0413-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Microneedle (MN) patch has been used for collecting dermal interstitial fluid (ISF) containing biomarkers from patients with safety, pain-free and easy-to-use manner. However, long sampling time for biomarkers analysis still poses a significant challenge. Here, we describe a new sponge-forming MN patch consisting of polyvinyl formal (PVF) for rapidly extracting ISF from skin. Owing to the supreme water affinity of PVF, this MN patch can extract 1.6 mg ISF in 1 min without the assistance of extra devices, which remarkably facilitates timely analysis. The MN patch had preserved structural integrity in the swelling hydrated state without leaving residues in skin after usage, and the treated skin recovered within 8 h. More importantly, the extracted ISF can be efficiently recovered from the MN patch by simple centrifugation for the subsequent offline analysis of biomarkers such as glucose and cholesterol. Our results reveal that the new sponge-forming MN patch holds considerable promise for minimally invasive sampling ISF for biomarkers detection in real-life situations.
Collapse
Affiliation(s)
- Jianmin Chen
- School of Pharmacy and Medical Technology, Putian University, Fujian, 351100, China. .,Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine (Putian University), Fujian Province University, Fujian, China.
| | - Meixia Wang
- School of Pharmacy and Medical Technology, Putian University, Fujian, 351100, China
| | - Yaling Ye
- School of Pharmacy and Medical Technology, Putian University, Fujian, 351100, China
| | - Zhouyan Yang
- School of Pharmacy and Medical Technology, Putian University, Fujian, 351100, China
| | - Zhipeng Ruan
- School of Pharmacy and Medical Technology, Putian University, Fujian, 351100, China.,Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine (Putian University), Fujian Province University, Fujian, China
| | - Nan Jin
- School of Pharmacy and Medical Technology, Putian University, Fujian, 351100, China.,Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine (Putian University), Fujian Province University, Fujian, China
| |
Collapse
|
13
|
High-density lipoprotein protects cardiomyocytes against necrosis induced by oxygen and glucose deprivation through SR-B1, PI3K, and AKT1 and 2. Biochem J 2018. [PMID: 29523748 PMCID: PMC5887020 DOI: 10.1042/bcj20170703] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The cardioprotective lipoprotein HDL (high-density lipoprotein) prevents myocardial infarction and cardiomyocyte death due to ischemia/reperfusion injury. The scavenger receptor class B, type 1 (SR-B1) is a high-affinity HDL receptor and has been shown to mediate HDL-dependent lipid transport as well as signaling in a variety of different cell types. The contribution of SR-B1 in cardiomyocytes to the protective effects of HDL on cardiomyocyte survival following ischemia has not yet been studied. Here, we use a model of simulated ischemia (oxygen and glucose deprivation, OGD) to assess the mechanistic involvement of SR-B1, PI3K (phosphatidylinositol-3-kinase), and AKT in HDL-mediated protection of cardiomyocytes from cell death. Neonatal mouse cardiomyocytes and immortalized human ventricular cardiomyocytes, subjected to OGD for 4 h, underwent substantial cell death due to necrosis but not necroptosis or apoptosis. Pretreatment of cells with HDL, but not low-density lipoprotein, protected them against OGD-induced necrosis. HDL-mediated protection was lost in cardiomyocytes from SR-B1-/- mice or when SR-B1 was knocked down in human immortalized ventricular cardiomyocytes. HDL treatment induced the phosphorylation of AKT in cardiomyocytes in an SR-B1-dependent manner. Finally, chemical inhibition of PI3K or AKT or silencing of either AKT1 or AKT2 gene expression abolished HDL-mediated protection against OGD-induced necrosis of cardiomyocytes. These results are the first to identify a role of SR-B1 in mediating the protective effects of HDL against necrosis in cardiomyocytes, and to identify AKT activation downstream of SR-B1 in cardiomyocytes.
Collapse
|
14
|
Chang H, Zheng M, Yu X, Than A, Seeni RZ, Kang R, Tian J, Khanh DP, Liu L, Chen P, Xu C. A Swellable Microneedle Patch to Rapidly Extract Skin Interstitial Fluid for Timely Metabolic Analysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1702243. [PMID: 28714117 DOI: 10.1002/adma.201702243] [Citation(s) in RCA: 270] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/16/2017] [Indexed: 05/24/2023]
Abstract
Skin interstitial fluid (ISF) is an emerging source of biomarkers for disease diagnosis and prognosis. Microneedle (MN) patch has been identified as an ideal platform to extract ISF from the skin due to its pain-free and easy-to-administrated properties. However, long sampling time is still a serious problem which impedes timely metabolic analysis. In this study, a swellable MN patch that can rapidly extract ISF is developed. The MN patch is made of methacrylated hyaluronic acid (MeHA) and further crosslinked through UV irradiation. Owing to the supreme water affinity of MeHA, this MN patch can extract sufficient ISF in a short time without the assistance of extra devices, which remarkably facilitates timely metabolic analysis. Due to covalent crosslinked network, the MN patch maintains the structure integrity in the swelling hydrated state without leaving residues in skin after usage. More importantly, the extracted ISF metabolites can be efficiently recovered from MN patch by centrifugation for the subsequent offline analysis of metabolites such as glucose and cholesterol. Given the recent trend of easy-to-use point-of-care devices for personal healthcare monitoring, this study opens a new avenue for the development of MN-based microdevices for sampling ISF and minimally invasive metabolic detection.
Collapse
Affiliation(s)
- Hao Chang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore, Singapore
| | - Mengjia Zheng
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore, Singapore
| | - Xiaojun Yu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore, Singapore
| | - Aung Than
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore, Singapore
| | - Razina Z Seeni
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore, Singapore
| | - Rongjie Kang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore, Singapore
| | - Jingqi Tian
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore, Singapore
| | - Duong Phan Khanh
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore, Singapore
| | - Linbo Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore, Singapore
| | - Peng Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore, Singapore
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore, Singapore
- NTU-Northwestern Institute for Nanomedicine, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
| |
Collapse
|
15
|
Coagulation Factors in the Interstitial Space. Protein Sci 2016. [DOI: 10.1201/9781315374307-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Apro J, Parini P, Broijersén A, Angelin B, Rudling M. Levels of atherogenic lipoproteins are unexpectedly reduced in interstitial fluid from type 2 diabetes patients. J Lipid Res 2015; 56:1633-9. [PMID: 26092865 DOI: 10.1194/jlr.p058842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Indexed: 01/20/2023] Open
Abstract
At a given level of serum cholesterol, patients with T2D have an increased risk of developing atherosclerosis compared with nondiabetic subjects. We hypothesized that T2D patients have an increased interstitial fluid (IF)-to-serum gradient ratio for LDL, due to leakage over the vascular wall. Therefore, lipoprotein profiles in serum and IF from 35 T2D patients and 35 healthy controls were assayed using fast performance liquid chromatography. The IF-to-serum gradients for VLDL and LDL cholesterol, as well as for apoB, were clearly reduced in T2D patients compared with healthy controls. No such differences were observed for HDL cholesterol. Contrary to our hypothesis, the atherogenic VLDL and LDL particles were not increased in IF from diabetic patients. Instead, they were relatively sparser than in healthy controls. The most probable explanation to our unexpected finding is that these lipoproteins are more susceptible to retainment in the extravascular space of these patients, reflecting a more active uptake by, or adhesion to, tissue cells, including macrophages in the vascular wall. Further studies are warranted to further characterize the mechanisms underlying these observations, which may be highly relevant for the understanding of why the propensity to develop atherosclerosis is increased in T2D.
Collapse
Affiliation(s)
- Johanna Apro
- Metabolism Unit Karolinska Institutet at Karolinska University Hospital Huddinge, C2-84, S-141 86 Stockholm, Sweden KI/AZ Integrated CardioMetabolic Center, Department of Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, C2-84, S-141 86 Stockholm, Sweden Molecular Nutrition Unit, Center for Innovative Medicine, Department of Biosciences and Nutrition, Karolinska Institutet at Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden
| | - Paolo Parini
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, C1-74, S-141 86 Stockholm, Sweden
| | - Anders Broijersén
- Metabolism Unit Karolinska Institutet at Karolinska University Hospital Huddinge, C2-84, S-141 86 Stockholm, Sweden
| | - Bo Angelin
- Metabolism Unit Karolinska Institutet at Karolinska University Hospital Huddinge, C2-84, S-141 86 Stockholm, Sweden KI/AZ Integrated CardioMetabolic Center, Department of Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, C2-84, S-141 86 Stockholm, Sweden Molecular Nutrition Unit, Center for Innovative Medicine, Department of Biosciences and Nutrition, Karolinska Institutet at Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden
| | - Mats Rudling
- Metabolism Unit Karolinska Institutet at Karolinska University Hospital Huddinge, C2-84, S-141 86 Stockholm, Sweden KI/AZ Integrated CardioMetabolic Center, Department of Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, C2-84, S-141 86 Stockholm, Sweden Molecular Nutrition Unit, Center for Innovative Medicine, Department of Biosciences and Nutrition, Karolinska Institutet at Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden
| |
Collapse
|
17
|
Prediction of Aggregation In Vivo by Studies of Therapeutic Proteins in Human Plasma. BIOBETTERS 2015. [DOI: 10.1007/978-1-4939-2543-8_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
18
|
Wade KR, Hotze EM, Briles DE, Tweten RK. Mouse, but not human, ApoB-100 lipoprotein cholesterol is a potent innate inhibitor of Streptococcus pneumoniae pneumolysin. PLoS Pathog 2014; 10:e1004353. [PMID: 25188225 PMCID: PMC4154877 DOI: 10.1371/journal.ppat.1004353] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 07/18/2014] [Indexed: 11/19/2022] Open
Abstract
Streptococcus pneumoniae produces the pore-forming toxin pneumolysin (PLY), which is a member of the cholesterol-dependent cytolysin (CDC) family of toxins. The CDCs recognize and bind the 3β-hydroxyl group of cholesterol at the cell surface, which initiates membrane pore formation. The cholesterol transport lipoproteins, which carry cholesterol in their outer monolayer, are potential off-pathway binding targets for the CDCs and are present at significant levels in the serum and the interstitial spaces of cells. Herein we show that cholesterol carried specifically by the ApoB-100-containing lipoprotein particles (CH-ApoB-100) in the mouse, but not that carried by human or guinea pig particles, is a potent inhibitor of the PLY pore-forming mechanism. Cholesterol present in the outer monolayer of mouse ApoB-100 particles is recognized and bound by PLY, which stimulates premature assembly of the PLY oligomeric complex thereby inactivating PLY. These studies further suggest that the vast difference in the inhibitory capacity of mouse CH-ApoB-100 and that of the human and the guinea pig is due to differences in the presentation of cholesterol in the outer monolayer of their ApoB-100 particles. Therefore mouse CH-ApoB-100 represents a significant innate CDC inhibitor that is absent in humans, which may underestimate the contribution of CDCs to human disease when utilizing mouse models of disease.
Collapse
Affiliation(s)
- Kristin R. Wade
- Department of Microbiology and Immunology, The University of Oklahoma Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Eileen M. Hotze
- Department of Microbiology and Immunology, The University of Oklahoma Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - David E. Briles
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Rodney K. Tweten
- Department of Microbiology and Immunology, The University of Oklahoma Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|