1
|
Lv X, Yang C, Li X, Liu Y, Yang Y, Jin T, Chen Z, Jia J, Wang M, Li L. Ferroptosis and hearing loss: from molecular mechanisms to therapeutic interventions. J Enzyme Inhib Med Chem 2025; 40:2468853. [PMID: 39992186 PMCID: PMC11852237 DOI: 10.1080/14756366.2025.2468853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/25/2025] Open
Abstract
Hearing loss profoundly affects social engagement, mental health, cognition, and brain development, with sensorineural hearing loss (SNHL) being a major concern. Linked to ototoxic medications, ageing, and noise exposure, SNHL presents significant treatment challenges, highlighting the need for effective prevention and regeneration strategies. Ferroptosis, a distinct form of cell death featuring iron-dependent lipid peroxidation, has garnered interest due to its potential role in cancer, ageing, and neuronal degeneration, especially hearing loss. The emerging role of ferroptosis as a crucial mediator in SNHL suggests that it may offer a novel therapeutic target for otoprotection. This review aims to summarise the intricate connection between ferroptosis and SNHL, offering a fresh perspective for exploring targeted therapeutic strategies that could potentially mitigate cochlear cells damage and enhance the quality of life for individuals with hearing impairments.
Collapse
Affiliation(s)
- Xingyi Lv
- Department of Physiology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| | - Chenyi Yang
- Department of Physiology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| | - Xianying Li
- Department of Physiology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| | - Yun Liu
- Department of Physiology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| | - Yu Yang
- Department of Physiology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| | - Tongyan Jin
- Department of Physiology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| | - Zhijian Chen
- Department of Physiology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| | - Jinjing Jia
- Department of Physiology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| | - Min Wang
- Department of Physiology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| | - Li Li
- Department of Physiology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| |
Collapse
|
2
|
Hsieh CY, Tsai CY, Chou YF, Hsu CJ, Wu HP, Wu CC. Otoprotection against aminoglycoside- and cisplatin-induced ototoxicity focusing on the upstream drug uptake pathway. J Chin Med Assoc 2024; 87:17-24. [PMID: 37962398 DOI: 10.1097/jcma.0000000000001023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2023] Open
Abstract
Aminoglycoside- and cisplatin-induced ototoxicity, which is a significant issue owing to the widespread use of these drugs in clinical practice, involves the entry of aminoglycosides and cisplatin into the endolymph and hair cells via specific channels or transporters, followed by reactive oxygen species (ROS) generation and hair cells apoptosis. Current strategies focalize primarily on interference with downstream ROS effects; however, recent evidence has demonstrated that inhibiting the uptake of aminoglycosides and cisplatin by hair cells is another promising strategy for tackling the upstream drug uptake pathway. With advances in structural biology, the conformations of certain aminoglycoside and cisplatin channels and transporters, such as the mechanoelectrical transduction channel and organic cation transporter-2, have been largely elucidated. These channels and transporters may become potential targets for the introduction of new otoprotective strategies. This review focuses on the strategies for inhibiting ototoxic drugs uptake by auditory hair cells and provides potential targets for recent developments in the field of otoprotection. Molecular dynamics (MD) simulations of these proteins could help identify the molecules that inhibit the uptake of aminoglycosides and cisplatin by hair cells. Integrating upstream drug uptake pathway targets and MD simulations may help dissect molecular mechanisms and develop novel otoprotective strategies for aminoglycoside- and cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Cheng-Yu Hsieh
- Department of Otolaryngology Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, ROC
- Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Cheng-Yu Tsai
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Yi-Fan Chou
- Department of Otolaryngology Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, ROC
- School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC
| | - Chuan-Jen Hsu
- Department of Otolaryngology Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, ROC
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Hung-Pin Wu
- Department of Otolaryngology Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, ROC
- School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan, ROC
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
- Department of Medical Research, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan, ROC
| |
Collapse
|
3
|
Karimzadeh I, Abdollahpour-Alitappeh M, Ghaffari S, Mahi-Birjand M, Barkhordari A, Alemzadeh E. Aminoglycosides: Single- or Multiple-daily Dosing? An Updated Qualitative Systematic Review of Randomized Trials on Toxicity and Efficacy. Curr Mol Med 2024; 24:1358-1373. [PMID: 37533241 DOI: 10.2174/1566524023666230801160452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/17/2023] [Accepted: 06/22/2023] [Indexed: 08/04/2023]
Abstract
INTRODUCTION Aminoglycosides are among the first-choice antibiotics for routine clinical use. However, dose-limiting factors such as ototoxicity and nephrotoxicity are considered as serious complications of aminoglycosides. OBJECTIVE In this systematic review, the main goal was to investigate the efficacy and incidence of nephrotoxicity and ototoxicity of once-daily dosing (ODD) and multiple daily dosing (MDD) regimens of aminoglycosides through available randomized controlled trials (RCTs). METHODS We performed a literature-based research in relevant databases, including EMBASE, MEDLINE, and SCOPUS published between 1987 and 2023 using the keywords "aminoglycosides", "pharmacokinetics", "ODD", "MDD", "once daily", "multiple daily", "dosing regimen", "nephrotoxicity", "ototoxicity", "efficacy", "safety", and "toxicity". As so told, the results of this article were limited to papers available in English. Our initial search yielded 1124 results. After a review of the titles and abstracts of the articles, 803 articles were excluded from this study because they did not address the toxicity and effectiveness of ODD versus MDD of aminoglycosides. A total number of 20 studies on gentamicin, tobramycin, netilmicin, and amikacin met the inclusion criteria for the efficacy of aminoglycosides and their role in ototoxicity and nephrotoxicity were included in this review. Studies recruited different age classes, and the age of relevant cohorts varied from only a few days to more than 70 years. RESULTS The most common clinical condition in the included studies was cystic fibrosis. CONCLUSION In most studies, there were no significant differences between the two regimens regarding ototoxicity. In addition, the ODD regimens were safer than MDD concerning nephrotoxicity.
Collapse
Affiliation(s)
- Iman Karimzadeh
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Shokouh Ghaffari
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Motahareh Mahi-Birjand
- Department of Clinical Pharmacy, School of Pharmacy, Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Amin Barkhordari
- Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| | - Effat Alemzadeh
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
4
|
Hsieh CY, Lin JN, Kang TY, Wen YH, Yu SH, Wu CC, Wu HP. Otoprotective Effects of Fucoidan Reduce Cisplatin-Induced Ototoxicity in Mouse Cochlear UB/OC-2 Cells. Int J Mol Sci 2023; 24:ijms24043561. [PMID: 36834972 PMCID: PMC9959567 DOI: 10.3390/ijms24043561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023] Open
Abstract
Cisplatin is a widely used standard chemotherapy for various cancers. However, cisplatin treatment is associated with severe ototoxicity. Fucoidan is a complex sulfated polysaccharide mainly derived from brown seaweeds, and it shows multiple bioactivities such as antimicrobial, anti-inflammatory, anticancer, and antioxidant activities. Despite evidence of the antioxidant effects of fucoidan, research on its otoprotective effects remains limited. Therefore, the present study investigated the otoprotective effects of fucoidan in vitro using the mouse cochlear cell line UB/OC-2 to develop new strategies to attenuate cisplatin-induced ototoxicity. We quantified the cell membrane potential and analyzed regulators and cascade proteins in the apoptotic pathway. Mouse cochlear UB/OC-2 cells were pre-treated with fucoidan before cisplatin exposure. The effects on cochlear hair cell viability, mitochondrial function, and apoptosis-related proteins were determined via flow cytometry, Western blot analysis, and fluorescence staining. Fucoidan treatment reduced cisplatin-induced intracellular reactive oxygen species production, stabilized mitochondrial membrane potential, inhibited mitochondrial dysfunction, and successfully protected hair cells from apoptosis. Furthermore, fucoidan exerted antioxidant effects against oxidative stress by regulating the Nrf2 pathway. Therefore, we suggest that fucoidan may represent a potential therapeutic agent for developing a new otoprotective strategy.
Collapse
Affiliation(s)
- Cheng-Yu Hsieh
- Department of Otolaryngology, Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427213, Taiwan
| | - Jia-Ni Lin
- Department of Otolaryngology, Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427213, Taiwan
| | - Ting-Ya Kang
- Department of Otolaryngology, Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427213, Taiwan
| | - Yu-Hsuan Wen
- School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
- Department of Otolaryngology, Head and Neck Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970473, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien 970473, Taiwan
| | - Szu-Hui Yu
- Department of Music, Tainan University of Technology, Tainan 710302, Taiwan
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100225, Taiwan
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 100225, Taiwan
- Department of Medical Research, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu 300195, Taiwan
| | - Hung-Pin Wu
- Department of Otolaryngology, Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427213, Taiwan
- School of Medicine, Tzu Chi University, Hualien 970374, Taiwan
- Correspondence:
| |
Collapse
|
5
|
O'Sullivan JDB, Bullen A, Mann ZF. Mitochondrial form and function in hair cells. Hear Res 2023; 428:108660. [PMID: 36525891 DOI: 10.1016/j.heares.2022.108660] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/07/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Hair cells (HCs) are specialised sensory receptors residing in the neurosensory epithelia of inner ear sense organs. The precise morphological and physiological properties of HCs allow us to perceive sound and interact with the world around us. Mitochondria play a significant role in normal HC function and are also intricately involved in HC death. They generate ATP essential for sustaining the activity of ion pumps, Ca2+ transporters and the integrity of the stereociliary bundle during transduction as well as regulating cytosolic calcium homoeostasis during synaptic transmission. Advances in imaging techniques have allowed us to study mitochondrial populations throughout the HC, and how they interact with other organelles. These analyses have identified distinct mitochondrial populations between the apical and basolateral portions of the HC, in which mitochondrial morphology appears determined by the physiological processes in the different cellular compartments. Studies in HCs across species show that ototoxic agents, ageing and noise damage directly impact mitochondrial structure and function resulting in HC death. Deciphering the molecular mechanisms underlying this mitochondrial sensitivity, and how their morphology relates to their function during HC death, requires that we first understand this relationship in the context of normal HC function.
Collapse
Affiliation(s)
- James D B O'Sullivan
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral, Craniofacial Sciences, King's College London, London SE1 9RT, U.K
| | - Anwen Bullen
- UCL Ear Institute, University College London, London WC1×8EE, U.K.
| | - Zoë F Mann
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral, Craniofacial Sciences, King's College London, London SE1 9RT, U.K.
| |
Collapse
|
6
|
Han H, Hu S, Hu Y, Liu D, Zhou J, Liu X, Ma X, Dong Y. Mitophagy in ototoxicity. Front Cell Neurosci 2023; 17:1140916. [PMID: 36909283 PMCID: PMC9995710 DOI: 10.3389/fncel.2023.1140916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Mitochondrial dysfunction is associated with ototoxicity, which is caused by external factors. Mitophagy plays a key role in maintaining mitochondrial homeostasis and function and is regulated by a series of key mitophagy regulatory proteins and signaling pathways. The results of ototoxicity models indicate the importance of this process in the etiology of ototoxicity. A number of recent investigations of the control of cell fate by mitophagy have enhanced our understanding of the mechanisms by which mitophagy regulates ototoxicity and other hearing-related diseases, providing opportunities for targeting mitochondria to treat ototoxicity.
Collapse
Affiliation(s)
- Hezhou Han
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Sainan Hu
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yue Hu
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Dongliang Liu
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Junbo Zhou
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Xiaofang Liu
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiulan Ma
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yaodong Dong
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Alpha-Lipoic Acid Attenuates Apoptosis and Ferroptosis in Cisplatin-Induced Ototoxicity via the Reduction of Intracellular Lipid Droplets. Int J Mol Sci 2022; 23:ijms231810981. [PMID: 36142894 PMCID: PMC9504145 DOI: 10.3390/ijms231810981] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Alpha-lipoic acid (α-LA) is a potent antioxidant that can prevent apoptosis associated with cisplatin-induced ototoxicity through ROS. Ferroptosis is defined as an iron-dependent cell death pathway that has recently been highlighted and is associated with the accumulation of intracellular lipid droplets (LDs) due to an inflammatory process. Herein, we investigated the impact of α-LA on ferroptosis and analyzed the characteristics of LDs in auditory hair cells treated with cisplatin using high-resolution 3D quantitative-phase imaging with reconstruction of the refractive index (RI) distribution. HEI-OC1 cells were treated with 500 μM α-LA for 24 h and then with 15 μM cisplatin for 48 h. With 3D optical diffraction tomography (3D-ODT), the RI values of treated cells were analyzed. Regions with high RI values were considered to be LDs and labelled to measure the count, mass, and volume of LDs. The expression of LC3-B, P62, GPX4, 4-hydroxynonenal (4-HNE), and xCT was evaluated by Western blotting. HEI-OC1 cells damaged by cisplatin showed lipid peroxidation, depletion of xCT, and abnormal accumulation of 4-HNE. Additionally, the count, mass, and volume of LDs increased in the cells. Cells treated with α-LA had inhibited expression of 4-HNE, while the expression of xCT and GPX4 was recovered, which restored LDs to a level that was similar to that in the control group. Our research on LDs with 3D-ODT offers biological evidence of ferroptosis and provides insights on additional approaches for investigating the molecular pathways.
Collapse
|
8
|
Niknazar S, Abbaszadeh HA, Khoshsirat S, Mehrjerdi FZ, Peyvandi AA. Combined treatment of retinoic acid with olfactory ensheathing cells protect gentamicin-induced SGNs damage in the rat cochlea in vitro. Mol Cell Neurosci 2022; 121:103752. [PMID: 35781072 DOI: 10.1016/j.mcn.2022.103752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 11/19/2022] Open
Abstract
Hearing is mainly dependent on the function of hair cells (HCs) and spiral ganglion neurons (SGNs) which damage or loss of them leads to irreversible hearing loss. Olfactory ensheathing cells (OECs) are specialized glia that forms the fascicles of the olfactory nerve by surrounding the olfactory sensory axons. The OECs, as a regenerating part of the nervous system, play a supporting function in axonal regeneration and express a wide range of growth factors. In addition, retinoic acid (RA) enhances the proliferation and differentiation of these cells into the nerve. In the present study, we co-cultured human OECs (hOECs) with cochlear SGNs in order to determine whether hOECs and RA co-treatment can protect the repair process in gentamycin-induced SGNs damage in vitro. For this purpose, cochlear cultures were prepared from P4 Wistar rats, which were randomly appointed to four groups: normal cultivated SGNs (Control), gentamicin-lesioned SGNs culture (Gent), gentamicin-lesioned SGNs culture treated with OECs (Gent + OECs) and gentamicin-lesioned SGNs culture co-treated with OECs and RA (Gent + OEC& RA). The expression of a specific protein in SGNs was examined using immunohistochemical and Western blotting technique. TUNEl staining was used to detect cell apoptosis. Here, we revealed that combined treatment of OECs and RA protect synapsin and Tuj-1 expression in the lesioned SGNs and attenuate cell apoptosis. These findings suggest that RA co-treatment can enhance efficiency of OECs in repair of SGNs damage induced by ototoxic drug.
Collapse
Affiliation(s)
- Somayeh Niknazar
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hojjat-Allah Abbaszadeh
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Anatomical Sciences and Biology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahrokh Khoshsirat
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Zare Mehrjerdi
- Neuroendocrine Research Center, Shahid Sadoughi University of MedicalSciences, Yazd, Iran
| | - Ali Asghar Peyvandi
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Chen X, Zhang H, Wang C, Su Y, Xiong M, Feng X, Chen D, Ke Z, Wen L, Chen G. Curcumin-Encapsulated Chitosan-Coated Nanoformulation as an Improved Otoprotective Strategy for Ototoxic Hearing Loss. Mol Pharm 2022; 19:2217-2230. [DOI: 10.1021/acs.molpharmaceut.2c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaozhu Chen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System & Class III Laboratory of Modern Chinese Medicine Preparation & Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hong Zhang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System & Class III Laboratory of Modern Chinese Medicine Preparation & Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chu Wang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System & Class III Laboratory of Modern Chinese Medicine Preparation & Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yue Su
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System & Class III Laboratory of Modern Chinese Medicine Preparation & Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Min Xiong
- Department of Otolaryngology Head and Neck Surgery, General Hospital of Southern Theater Command of PLA, Guangzhou 510010, China
| | - Xiaohua Feng
- Department of Otolaryngology Head and Neck Surgery, General Hospital of Southern Theater Command of PLA, Guangzhou 510010, China
| | - Daishi Chen
- Department of Otolaryngology Head and Neck Surgery, Shenzhen People’s Hospital, Shenzhen 518020, China
| | - Zhaoyang Ke
- Department of Otolaryngology Head and Neck Surgery, Shenzhen People’s Hospital, Shenzhen 518020, China
| | - Lu Wen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Gang Chen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System & Class III Laboratory of Modern Chinese Medicine Preparation & Key Laboratory of Modern Chinese Medicine of Education Department of Guangdong Province, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
10
|
Pravastatin Administration Alleviates Kanamycin-Induced Cochlear Injury and Hearing Loss. Int J Mol Sci 2022; 23:ijms23094524. [PMID: 35562915 PMCID: PMC9105065 DOI: 10.3390/ijms23094524] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 11/23/2022] Open
Abstract
The effect of statins on aminoglycoside-induced ototoxicity is controversial. This study aimed to explore the role of pravastatin (PV) in kanamycin-induced hearing loss in rats. Adult rats were intraperitoneally treated with 20 mg/kg/day of kanamycin (KM) for 10 days. In the PV- and PV + KM-treated rats, 25 mg/kg/day of PV was intraperitoneally administered for 5 days. The auditory brainstem response (ABR) thresholds were measured before and after drug treatment using a smartEP system at 4, 8, 16, and 32 kHz. Cochlear changes in poly ADP-ribose (PAR) polymerase (PARP), PAR, and caspase 3 were estimated using Western blotting. PV administration did not increase the ABR thresholds. The KM-treated rats showed elevated ABR thresholds at 4, 8, 16, and 32 kHz. The PV + KM-treated rats demonstrated lower ABR thresholds than the KM-treated rats at 4, 8, and 16 kHz. The cochlear outer hair cells and spiral ganglion cells were relatively preserved in the PV + KM-treated rats when compared with that in the KM-treated rats. The cochlear expression levels of PARP, PAR, and caspase 3 were higher in the KM-treated rats. The PV + KM-treated rats showed lower levels of PARP, PAR, and caspase 3 than the KM-treated rats. PV protected cochleae from KM-induced hearing loss in rats. The regulation of autophagy and apoptosis mediated the otoprotective effects of PV.
Collapse
|
11
|
Guo L, Cao W, Niu Y, He S, Chai R, Yang J. Autophagy Regulates the Survival of Hair Cells and Spiral Ganglion Neurons in Cases of Noise, Ototoxic Drug, and Age-Induced Sensorineural Hearing Loss. Front Cell Neurosci 2021; 15:760422. [PMID: 34720884 PMCID: PMC8548757 DOI: 10.3389/fncel.2021.760422] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022] Open
Abstract
Inner ear hair cells (HCs) and spiral ganglion neurons (SGNs) are the core components of the auditory system. However, they are vulnerable to genetic defects, noise exposure, ototoxic drugs and aging, and loss or damage of HCs and SGNs results in permanent hearing loss due to their limited capacity for spontaneous regeneration in mammals. Many efforts have been made to combat hearing loss including cochlear implants, HC regeneration, gene therapy, and antioxidant drugs. Here we review the role of autophagy in sensorineural hearing loss and the potential targets related to autophagy for the treatment of hearing loss.
Collapse
Affiliation(s)
- Lingna Guo
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.,Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Cao
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuguang Niu
- Department of Ambulatory Medicine, The First Medical Center of PLA General Hospital, Beijing, China
| | - Shuangba He
- Department of Otolaryngology Head and Neck Surgery, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Jianming Yang
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
12
|
Müller U. Exosome-mediated protection of auditory hair cells from ototoxic insults. J Clin Invest 2021; 130:2206-2208. [PMID: 32310224 DOI: 10.1172/jci135710] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hearing loss caused by the death of sensory hair cells of the inner ear is an unfortunate side effect for many patients treated with aminoglycoside antibiotics or platinum-containing chemotherapy agents. In animal models, induction of heat shock confers substantial otoprotection against aminoglycoside- and cisplatin-induced hair cell death. In this issue of the JCI, Breglio et al. demonstrate that inner ear tissue released exosomes carrying heat shock protein 70 (HSP70) in response to heat stress. HSP70 acted by a paracrine mechanism that engaged the Toll-like receptor 4 (TLR4) on hair cells to protect them from death. Exosomes and the HSP70/TLR4 pathway could thus provide treatment targets for the protection of hair cells from chemically induced death or from other insults, such as noise.
Collapse
|
13
|
Liproxstatin-1 Protects Hair Cell-Like HEI-OC1 Cells and Cochlear Hair Cells against Neomycin Ototoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1782659. [PMID: 33343803 PMCID: PMC7725559 DOI: 10.1155/2020/1782659] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/14/2020] [Accepted: 10/28/2020] [Indexed: 11/17/2022]
Abstract
Ferroptosis is a recently discovered iron-dependent form of oxidative programmed cell death distinct from caspase-dependent apoptosis. In this study, we investigated the effect of ferroptosis in neomycin-induced hair cell loss by using selective ferroptosis inhibitor liproxstatin-1 (Lip-1). Cell viability was identified by CCK8 assay. The levels of reactive oxygen species (ROS) were determined by DCFH-DA and cellROX green staining. The mitochondrial membrane potential (ΔΨm) was evaluated by TMRM staining. Intracellular iron and lipid peroxides were detected with Mito-FerroGreen and Liperfluo probes. We found that ferroptosis can be induced in both HEI-OC1 cells and neonatal mouse cochlear explants, as evidenced by Mito-FerroGreen and Liperfluo staining. Further experiments showed that pretreatment with Lip-1 significantly alleviated neomycin-induced increased ROS generation and disruption in ΔΨm in the HEI-OC1 cells. In parallel, Lip-1 significantly attenuated neomycin-induced hair cell damage in neonatal mouse cochlear explants. Collectively, these results suggest a novel mechanism for neomycin-induced ototoxicity and suggest that ferroptosis inhibition may be a new clinical intervention to prevent hearing loss.
Collapse
|
14
|
Apaydın E, Dağlı E, Bayrak S, Kankılıç ES, Şahin H, Acar A. Protective effect of creatine on amikacin-induced ototoxicity. Braz J Otorhinolaryngol 2020; 88:651-656. [PMID: 33121925 PMCID: PMC9483946 DOI: 10.1016/j.bjorl.2020.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/26/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022] Open
Abstract
Introduction Aminoglycosides are widely known for their ototoxic side effects. Nevertheless, they are potent antibiotics used in the treatment of life-threatening conditions because of the current concern for antibiotic resistance. We hypothesized that creatine supplements which are believed to improve mitochondrial antioxidant defense system and maintain optimal energy homeostasis may improve the ototoxic side effects. Objective This study aimed to investigate the protective effects of creatine monohydrate against ototoxicity induced by amikacin in rats in an experimental animal model, using distortion product otoacoustic emissions and auditory brainstem response. Methods Twenty healthy rats were assigned to four groups (5 rats in each): the control group, the creatine monohydrate group, the amikacin group and the amikacin + creatine monohydrate group. The creatine monohydrate group received creatine at a dose of 2 g/kg once daily via gastric gavage for 21 days. The amikacin group received amikacin at a dose of 600 mg/kg by intramuscular injections once daily for 21 days. The amikacin + creatine monohydrate group received intramuscular injections of amikacin (600 mg/kg) once daily for 21 days and creatine monohydrate (2 g/kg) once daily via gastric gavage for 21 days. The control group received nothing. The distortion product otoacoustic emissions and auditory brainstem response measurements were performed on all rats on days 0, 7, 21. Results Regarding auditory brainstem response values, a significant increase in the auditory threshold was observed in the amikacin group on day 21 (p < 0.001). The amikacin+creatine monohydrate group showed significantly lower levels of auditory brainstem response auditory thresholds on day 21 in comparison to the amikacin group (p < 0.001). Additionally, the control group and the amikacin+creatine monohydrate group did not differ significantly with respect to auditory brainstem response thresholds on treatment day 21 (p > 0.05). When we compare distortion product otoacoustic emissions values, there was no significant difference between the amikacin and amikacin+creatine monohydrate groups on day 7 (p > 0.05), However significantly greater distortion product otoacoustic emissions values were observed in the amikacin+creatine monohydrate group on day 21 compared to the amikacin group (p < 0.001). Conclusion Our findings demonstrate that creatine treatment protects against amikacin ototoxicity when given at a sufficient dose and for an adequate time period.
Collapse
Affiliation(s)
- Emre Apaydın
- Kecioren Training and Research Hospital, Department of Otolaryngology, Ankara, Turkey.
| | - Elif Dağlı
- Kecioren Training and Research Hospital, Department of Otolaryngology, Ankara, Turkey; Guven Private Hospital, Department of Audiology, Ankara, Turkey
| | - Sevinç Bayrak
- Kecioren Training and Research Hospital, Department of Otolaryngology, Ankara, Turkey
| | - Ekrem Said Kankılıç
- Kecioren Training and Research Hospital, Department of Otolaryngology, Ankara, Turkey
| | - Hasan Şahin
- Guven Private Hospital, Department of Audiology, Ankara, Turkey
| | - Aydın Acar
- Kecioren Training and Research Hospital, Department of Otolaryngology, Ankara, Turkey
| |
Collapse
|
15
|
Breitzler L, Lau IH, Fonseca PJ, Vasconcelos RO. Noise-induced hearing loss in zebrafish: investigating structural and functional inner ear damage and recovery. Hear Res 2020; 391:107952. [DOI: 10.1016/j.heares.2020.107952] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/19/2020] [Accepted: 03/16/2020] [Indexed: 12/20/2022]
|
16
|
Breglio AM, May LA, Barzik M, Welsh NC, Francis SP, Costain TQ, Wang L, Anderson DE, Petralia RS, Wang YX, Friedman TB, Wood MJ, Cunningham LL. Exosomes mediate sensory hair cell protection in the inner ear. J Clin Invest 2020; 130:2657-2672. [PMID: 32027617 PMCID: PMC7190999 DOI: 10.1172/jci128867] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 01/30/2020] [Indexed: 12/17/2022] Open
Abstract
Hair cells, the mechanosensory receptors of the inner ear, are responsible for hearing and balance. Hair cell death and consequent hearing loss are common results of treatment with ototoxic drugs, including the widely used aminoglycoside antibiotics. Induction of heat shock proteins (HSPs) confers protection against aminoglycoside-induced hair cell death via paracrine signaling that requires extracellular heat shock 70-kDa protein (HSP70). We investigated the mechanisms underlying this non-cell-autonomous protective signaling in the inner ear. In response to heat stress, inner ear tissue releases exosomes that carry HSP70 in addition to canonical exosome markers and other proteins. Isolated exosomes from heat-shocked utricles were sufficient to improve survival of hair cells exposed to the aminoglycoside antibiotic neomycin, whereas inhibition or depletion of exosomes from the extracellular environment abolished the protective effect of heat shock. Hair cell-specific expression of the known HSP70 receptor TLR4 was required for the protective effect of exosomes, and exosomal HSP70 interacted with TLR4 on hair cells. Our results indicate that exosomes are a previously undescribed mechanism of intercellular communication in the inner ear that can mediate nonautonomous hair cell survival. Exosomes may hold potential as nanocarriers for delivery of therapeutics against hearing loss.
Collapse
Affiliation(s)
- Andrew M. Breglio
- National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
- NIH Oxford-Cambridge Scholars Program, Bethesda, Maryland, USA
| | - Lindsey A. May
- National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Melanie Barzik
- National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Nora C. Welsh
- National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Shimon P. Francis
- National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Tucker Q. Costain
- National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Lizhen Wang
- National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - D. Eric Anderson
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Ronald S. Petralia
- National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Ya-Xian Wang
- National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Thomas B. Friedman
- National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| | - Matthew J.A. Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Lisa L. Cunningham
- National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, Maryland, USA
| |
Collapse
|
17
|
Zheng Z, Wang Y, Yu H, Li W, Wu J, Cai C, He Y. Salvianolic acid B inhibits ototoxic drug-induced ototoxicity by suppression of the mitochondrial apoptosis pathway. J Cell Mol Med 2020; 24:6883-6897. [PMID: 32351026 PMCID: PMC7299715 DOI: 10.1111/jcmm.15345] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 12/04/2019] [Accepted: 03/06/2020] [Indexed: 12/22/2022] Open
Abstract
It has been claimed that salvianolic acid B (Sal B), a natural bioactive antioxidant, exerts protective effects in various types of cells. This study aims to evaluate the antioxidant and anti‐apoptosis effects of Sal B in a cultured HEI‐OC1 cell line and in transgenic zebrafish (Brn3C: EGFP). A CCK‐8 assay, Annexin V Apoptosis Detection Kit, TUNEL and caspase‐3/7 staining, respectively, examined apoptosis and cell viability. The levels of reactive oxygen species (ROS) were evaluated by CellROX and MitoSOX Red staining. JC‐1 staining was employed to detect the mitochondrial membrane potential (ΔΨm). Western blotting was used to assess expressions of Bax and Bcl‐2. The expression pattern of p‐PI3K and p‐Akt was determined by immunofluorescent staining. We found that Sal B protected against neomycin‐ and cisplatin‐induced apoptotic features, enhanced cell viability and accompanied with decreased caspase‐3 activity in the HEI‐OC1 cells. Supplementary experiments determined that Sal B reduced ROS production (increased ΔΨm), promoted Bcl‐2 expression and down‐regulated the expression of Bax, as well as activated PI3K/AKT signalling pathways in neomycin‐ and cisplatin‐injured HEI‐OC1 cells. Moreover, Sal B markedly decreased the TUNEL signal and protected against neomycin‐ and cisplatin‐induced neuromast HC loss in the transgenic zebrafish. These results unravel a novel role for Sal B as an otoprotective agent against ototoxic drug–induced HC apoptosis, offering a potential use in the treatment of hearing loss.
Collapse
Affiliation(s)
- Zhiwei Zheng
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Yunfeng Wang
- Department of ENT institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Huiqian Yu
- Department of ENT institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Wen Li
- Department of ENT institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Jingfang Wu
- Department of ENT institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Chengfu Cai
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China.,Teaching Hospital of Fujian Medical University, Xiamen, China.,Xiamen Key Laboratory of Otolaryngology Head and Neck Surgery, Xiamen, China
| | - Yingzi He
- Department of ENT institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Kros CJ, Steyger PS. Aminoglycoside- and Cisplatin-Induced Ototoxicity: Mechanisms and Otoprotective Strategies. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a033548. [PMID: 30559254 DOI: 10.1101/cshperspect.a033548] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ototoxicity refers to damage of inner ear structures (i.e., the cochlea and vestibule) and their function (hearing and balance) following exposure to specific in-hospital medications (i.e., aminoglycoside antibiotics, platinum-based drugs), as well as a variety of environmental or occupational exposures (e.g., metals and solvents). This review provides a narrative derived from relevant papers describing factors contributing to (or increasing the risk of) aminoglycoside and cisplatin-induced ototoxicity. We also review current strategies to protect against ototoxicity induced by these indispensable pharmacotherapeutic treatments for life-threatening infections and solid tumors. We end by highlighting several interventional strategies that are currently in development, as well as the diverse challenges that still need to be overcome to prevent drug-induced hearing loss.
Collapse
Affiliation(s)
- Corné J Kros
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | - Peter S Steyger
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon 97239.,National Center for Rehabilitative Auditory Research, VA Portland Health Care System, Portland, Oregon 97239
| |
Collapse
|
19
|
Guo S, Xu N, Chen P, Liu Y, Qi X, Liu S, Li C, Tang J. Rapamycin Protects Spiral Ganglion Neurons from Gentamicin-Induced Degeneration In Vitro. J Assoc Res Otolaryngol 2019; 20:475-487. [PMID: 31236744 DOI: 10.1007/s10162-019-00717-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 03/12/2019] [Indexed: 02/06/2023] Open
Abstract
Gentamicin, one of the most widely used aminoglycoside antibiotics, is known to have toxic effects on the inner ear. Taken up by cochlear hair cells and spiral ganglion neurons (SGNs), gentamicin induces the accumulation of reactive oxygen species (ROS) and initiates apoptosis or programmed cell death, resulting in a permanent and irreversible hearing loss. Since the survival of SGNs is specially required for cochlear implant, new procedures that prevent SGN cell loss are crucial to the success of cochlear implantation. ROS modulates the activity of the mammalian target of rapamycin (mTOR) signaling pathway, which mediates apoptosis or autophagy in cells of different organs. However, whether mTOR signaling plays an essential role in the inner ear and whether it is involved in the ototoxic side effects of gentamicin remain unclear. In the present study, we found that gentamicin induced apoptosis and cell loss of SGNs in vivo and significantly decreased the density of SGN and outgrowth of neurites in cultured SGN explants. The phosphorylation levels of ribosomal S6 kinase and elongation factor 4E binding protein 1, two critical kinases in the mTOR complex 1 (mTORC1) signaling pathway, were modulated by gentamicin application in the cochlea. Meanwhile, rapamycin, a specific inhibitor of mTORC1, was co-applied with gentamicin to verify the role of mTOR signaling. We observed that the density of SGN and outgrowth of neurites were significantly increased by rapamycin treatment. Our finding suggests that mTORC1 is hyperactivated in the gentamicin-induced degeneration of SGNs, and rapamycin promoted SGN survival and outgrowth of neurites.
Collapse
Affiliation(s)
- Shasha Guo
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Nana Xu
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Peng Chen
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ying Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaofei Qi
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Sheng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Cuixian Li
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China. .,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China. .,Institute of Mental Health, Southern Medical University, Guangzhou, China.
| | - Jie Tang
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China. .,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China. .,Institute of Mental Health, Southern Medical University, Guangzhou, China.
| |
Collapse
|
20
|
Applications of photobiomodulation in hearing research: from bench to clinic. Biomed Eng Lett 2019; 9:351-358. [PMID: 31456894 DOI: 10.1007/s13534-019-00114-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/28/2019] [Accepted: 06/04/2019] [Indexed: 02/06/2023] Open
Abstract
Hearing loss is very common and economically burdensome. No accepted therapeutic modality for sensorineural hearing loss is yet available; most clinicians emphasize rehabilitation, placing hearing aids and cochlear implants. Photobiomodulation (PBM) employs light energy to enhance or modulate the activities of specific organs, and is a popular non-invasive therapy used to treat skin lesions and neurodegenerative disorders. Efforts to use PBM to improve hearing have been ongoing for several decades. Initial in vitro studies using cell lines and ex vivo culture techniques have now been supplanted by in vivo studies in animals; PBM protects the sensory epithelium and triggers neural regeneration. Many reports have used PBM to treat tinnitus. In this brief review, we introduce PBM applications in hearing research, helpful protocols, and relevant background literature.
Collapse
|
21
|
Chang YS, Park H, Hong SH, Chung WH, Cho YS, Moon IJ. Predicting cochlear dead regions in patients with hearing loss through a machine learning-based approach: A preliminary study. PLoS One 2019; 14:e0217790. [PMID: 31158267 PMCID: PMC6546232 DOI: 10.1371/journal.pone.0217790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/18/2019] [Indexed: 11/18/2022] Open
Abstract
We propose a machine learning (ML)-based model for predicting cochlear dead regions (DRs) in patients with hearing loss of various etiologies. Five hundred and fifty-five ears from 380 patients (3,770 test samples) diagnosed with sensorineural hearing loss (SNHL) were analyzed. A threshold-equalizing noise (TEN) test was applied to detect the presence of DRs. Data were collected on sex, age, side of the affected ear, hearing loss etiology, word recognition scores (WRS), and pure-tone thresholds at each frequency. According to the cause of hearing loss as diagnosed by the physician, we categorized the patients into six groups: 1) SNHL with unknown etiology; 2) sudden sensorineural hearing loss (SSNHL); 3) vestibular schwannoma (VS); 4) Meniere's disease (MD); 5) noise-induced hearing loss (NIHL); or 6) presbycusis or age-related hearing loss (ARHL). To develop a predictive model, we performed recursive partitioning and regression for classification, logistic regression, and random forest. The overall prevalence of one or more DRs in test ears was 20.36% (113 ears). Among the 3,770 test samples, the overall frequency-specific prevalence of DR was 6.7%. WRS, pure-tone thresholds at each frequency, disease type (VS or MD), and frequency information were useful for predicting DRs. Sex and age were not associated with detecting DRs. Based on these results, we suggest possible predictive factors for determining the presence of DRs. To improve the predictive power of the model, a more flexible model or more clinical features, such as the duration of hearing loss or risk factors for developing DRs, may be needed.
Collapse
Affiliation(s)
- Young-Soo Chang
- Department of Otorhinolaryngology–Head and Neck Surgery, Korea University College of Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea
- Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Heesung Park
- Hearing Research Laboratory, Samsung Medical Center, Seoul, Republic of Korea
| | - Sung Hwa Hong
- Department of Otorhinolaryngology–Head and Neck Surgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea
| | - Won-Ho Chung
- Department of Otorhinolaryngology–Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yang-Sun Cho
- Department of Otorhinolaryngology–Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Il Joon Moon
- Department of Otorhinolaryngology–Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
22
|
Necroptosis and Apoptosis Contribute to Cisplatin and Aminoglycoside Ototoxicity. J Neurosci 2019; 39:2951-2964. [PMID: 30733218 DOI: 10.1523/jneurosci.1384-18.2019] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 01/23/2019] [Accepted: 01/30/2019] [Indexed: 11/21/2022] Open
Abstract
Ototoxic side effects of cisplatin and aminoglycosides have been extensively studied, but no therapy is available to date. Sensory hair cells, upon exposure to cisplatin or aminoglycosides, undergo apoptotic and necrotic cell death. Blocking these cell death pathways has therapeutic potential in theory, but incomplete protection and lack of therapeutic targets in the case of necrosis, has hampered the development of clinically applicable drugs. Over the past decade, a novel form of necrosis, termed necroptosis, was established as an alternative cell death pathway. Necroptosis is distinguished from passive necrotic cell death, in that it follows a cellular program, involving the receptor-interacting protein kinase (RIPK) 1 and RIPK3. In this study, we used pharmacological and genetic interventions in the mouse to test the relative contributions of necroptosis and caspase-8-mediated apoptosis toward cisplatin and aminoglycoside ototoxicity. We find that ex vivo, only apoptosis contributes to cisplatin and aminoglycoside ototoxicity, while in vivo, necroptosis as well as apoptosis are involved in both sexes. Inhibition of necroptosis and apoptosis using pharmacological compounds is thus a viable strategy to ameliorate aminoglycoside and cisplatin ototoxicity.SIGNIFICANCE STATEMENT The clinical application of cisplatin and aminoglycosides is limited due to ototoxic side effects. Here, using pharmaceutical and genetic intervention, we present evidence that two types of programmed cell death, apoptosis and necroptosis, contribute to aminoglycoside and cisplatin ototoxicity. Key molecular factors mediating necroptosis are well characterized and druggable, presenting new avenues for pharmaceutical intervention.
Collapse
|
23
|
Affiliation(s)
- P. Forrest
- Department of Anaesthetics, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| |
Collapse
|
24
|
Yang Q, Zhou Y, Yin H, Li H, Zhou M, Sun G, Cao Z, Man R, Wang H, Li J. PINK1 Protects Against Gentamicin-Induced Sensory Hair Cell Damage: Possible Relation to Induction of Autophagy and Inhibition of p53 Signal Pathway. Front Mol Neurosci 2018; 11:403. [PMID: 30483050 PMCID: PMC6240688 DOI: 10.3389/fnmol.2018.00403] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/15/2018] [Indexed: 12/30/2022] Open
Abstract
Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1) is a gatekeeper of mitochondrial quality control. The present study was aimed to examine whether PINK1 possesses a protective function against gentamicin (GM)-induced sensory hair cell (HC) damage in vitro. The formation of parkin particles (a marker revealing the activation of PINK1 pathway which is a substrate of PINK1 and could signal depolarized mitochondria for clearance) and autophagy were determined by immunofluorescence staining. The expressions of PINK1, LC3B, cleaved-caspase 3 and p53 were measured by Western blotting. The levels of reactive oxygen species (ROS) and apoptosis were respectively evaluated by DCFH-DA staining, Annexin V Apoptosis Detection Kit and TUNEL staining. Cell viability was tested by a CCK8 kit. We found that treatment of 400 μM GM elicited the formation of ROS, which, in turn, led to PINK1 degradation, parkin recruitment, autophagy formation, an increase of p53 and cleaved-caspase 3 in HEI-OC1 cells and murine HCs. In contrast, co-treatment with ROS scavenger N-acetyl-L-cysteine (NAC) inhibited parkin recruitment, alleviated autophagy and p53 pathway-related damaged-cell elimination. Moreover, PINK1 interference contributed to a decrease of autophagy but an increase of p53 level in HEI-OC1 cells in response to GM stimulus. Findings from this work indicate that PINK1 alleviates the GM-elicited ototoxicity via induction of autophagy and resistance the increase of p53 in HCs.
Collapse
Affiliation(s)
- Qianqian Yang
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Department of Pathology and Pathophysiology, School of Medicine, Shandong University, Jinan, China
| | - Yiwei Zhou
- Weifang Nursing Vocational College, Weifang, China
| | - Haiyan Yin
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Department of Pathology and Pathophysiology, School of Medicine, Shandong University, Jinan, China
| | - Hongrui Li
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Meijuan Zhou
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Otology, Jinan, China
| | - Gaoying Sun
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Otology, Jinan, China
| | - Zhixin Cao
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Rongjun Man
- Department of Otolaryngology Head and Neck Surgery, Zibo Central Hospital, Zibo, China
| | - Haibo Wang
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Otology, Jinan, China
| | - Jianfeng Li
- Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,Department of Pathology and Pathophysiology, School of Medicine, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Otology, Jinan, China
| |
Collapse
|
25
|
Bai H, Wang X, Gao X, Bing J, Wang W, Zhang X, Xi C, Jiang L, Zhang X, Han Z, Zeng S, Xu J. Study of the Mechanisms by Which Aminoglycoside Damage Is Prevented in Chick Embryonic Hair Cells. J Assoc Res Otolaryngol 2018; 20:21-35. [PMID: 30341698 DOI: 10.1007/s10162-018-00700-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/21/2018] [Indexed: 11/27/2022] Open
Abstract
A major side effect of aminoglycoside antibiotics is mammalian hair cell death. It is thus intriguing that embryonic chick hair cells treated with aminoglycosides at embryonic day (E) 12 are insensitive to ototoxicity. To exclude some unknown factors in vivo that might be involved in preventing aminoglycoside damage to embryonic hair cells, we first cultured chick embryonic basilar papilla (BP) with an aminoglycoside antibiotic in vitro. The results indicated that the hair cells were almost intact at E12 and E14 and were only moderately damaged in most parts of the BP at E16 and E18. Generally, hair cells residing in the approximate and abneural regions were more susceptible to streptomycin damage. After incubation with gentamicin-conjugated Texas Red (GTTR), which is typically used to trace the entry route of aminoglycosides, GTTR fluorescence was not remarkable in hair cells at E12, was weak at E14, but was relatively strong in the proximal part of BP at E18. This result indicates that the amounts of GTTR that entered the hair cells are related to the degrees of aminoglycoside damage. The study further showed that the fluorescence intensity of GTTR decreased to a low level at E14 to E18 after disruption of mechanotransduction machinery, suggesting that the aminoglycoside entry into hair cells was mainly through mechanotransduction channels. In addition, most of the entered GTTR was not found to be colocalized with mitochondria even at E18. This finding provides another reason to explain why embryonic chick hair cells are insensitive to aminoglycoside damage.
Collapse
Affiliation(s)
- Huanju Bai
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, 100875, China
| | - Xi Wang
- Department of Otorhinolaryngology, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Xue Gao
- Department of Otorhinolaryngology, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Jie Bing
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, 100875, China
| | - Weiqian Wang
- Department of Otorhinolaryngology, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Xuebo Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, 571158, China
| | - Chao Xi
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, 100875, China
| | - Lingling Jiang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, 100875, China
| | - Xinwen Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, 571158, China
| | - Zhongming Han
- Department of Otorhinolaryngology, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Shaoju Zeng
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, 100875, China.
| | - Jincao Xu
- Department of Otorhinolaryngology, The General Hospital of the PLA Rocket Force, Beijing, 100088, China.
| |
Collapse
|
26
|
Jamesdaniel S, Rosati R, Westrick J, Ruden DM. Chronic lead exposure induces cochlear oxidative stress and potentiates noise-induced hearing loss. Toxicol Lett 2018; 292:175-180. [PMID: 29746905 DOI: 10.1016/j.toxlet.2018.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/24/2018] [Accepted: 05/07/2018] [Indexed: 12/15/2022]
Abstract
Acquired hearing loss is caused by complex interactions of multiple environmental risk factors, such as elevated levels of lead and noise, which are prevalent in urban communities. This study delineates the mechanism underlying lead-induced auditory dysfunction and its potential interaction with noise exposure. Young-adult C57BL/6 mice were exposed to: 1) control conditions; 2) 2 mM lead acetate in drinking water for 28 days; 3) 90 dB broadband noise 2 h/day for two weeks; and 4) both lead and noise. Blood lead levels were measured by inductively coupled plasma mass spectrometry analysis (ICP-MS) lead-induced cochlear oxidative stress signaling was assessed using targeted gene arrays, and the hearing thresholds were assessed by recording auditory brainstem responses. Chronic lead exposure downregulated cochlear Sod1, Gpx1, and Gstk1, which encode critical antioxidant enzymes, and upregulated ApoE, Hspa1a, Ercc2, Prnp, Ccl5, and Sqstm1, which are indicative of cellular apoptosis. Isolated exposure to lead or noise induced 8-12 dB and 11-25 dB shifts in hearing thresholds, respectively. Combined exposure induced 18-30 dB shifts, which was significantly higher than that observed with isolated exposures. This study suggests that chronic exposure to lead induces cochlear oxidative stress and potentiates noise-induced hearing impairment, possibly through parallel pathways.
Collapse
Affiliation(s)
- Samson Jamesdaniel
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, United States; Department of Family Medicine and Public Health Sciences, Wayne State University, Detroit, MI, 48202, United States.
| | - Rita Rosati
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, United States
| | - Judy Westrick
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, United States
| | - Douglas M Ruden
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48202, United States; Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, 48202, United States
| |
Collapse
|
27
|
Fluvastatin protects cochleae from damage by high-level noise. Sci Rep 2018; 8:3033. [PMID: 29445111 PMCID: PMC5813011 DOI: 10.1038/s41598-018-21336-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/02/2018] [Indexed: 02/06/2023] Open
Abstract
Exposure to noise and ototoxic drugs are responsible for much of the debilitating hearing loss experienced by about 350 million people worldwide. Beyond hearing aids and cochlear implants, there have been no other FDA approved drug interventions established in the clinic that would either protect or reverse the effects of hearing loss. Using Auditory Brainstem Responses (ABR) in a guinea pig model, we demonstrate that fluvastatin, an inhibitor of HMG-CoA reductase, the rate-limiting enzyme of the mevalonate pathway, protects against loss of cochlear function initiated by high intensity noise. A novel synchrotron radiation based X-ray tomographic method that imaged soft tissues at micrometer resolution in unsectioned cochleae, allowed an efficient, qualitative evaluation of the three-dimensional internal structure of the intact organ. For quantitative measures, plastic embedded cochleae were sectioned followed by hair cell counting. Protection in noise-exposed cochleae is associated with retention of inner and outer hair cells. This study demonstrates the potential of HMG-CoA reductase inhibitors, already vetted in human medicine for other purposes, to protect against noise induced hearing loss.
Collapse
|
28
|
Philip RC, Rodriguez JJ, Niihori M, Francis RH, Mudery JA, Caskey JS, Krupinski E, Jacob A. Automated High-Throughput Damage Scoring of Zebrafish Lateral Line Hair Cells After Ototoxin Exposure. Zebrafish 2018; 15:145-155. [PMID: 29381431 DOI: 10.1089/zeb.2017.1451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Zebrafish have emerged as a powerful biological system for drug development against hearing loss. Zebrafish hair cells, contained within neuromasts along the lateral line, can be damaged with exposure to ototoxins, and therefore, pre-exposure to potentially otoprotective compounds can be a means of identifying promising new drug candidates. Unfortunately, anatomical assays of hair cell damage are typically low-throughput and labor intensive, requiring trained experts to manually score hair cell damage in fluorescence or confocal images. To enhance throughput and consistency, our group has developed an automated damage-scoring algorithm based on machine-learning techniques that produce accurate damage scores, eliminate potential operator bias, provide more fidelity in determining damage scores that are between two levels, and deliver consistent results in a fraction of the time required for manual analysis. The system has been validated against trained experts using linear regression, hypothesis testing, and the Pearson's correlation coefficient. Furthermore, performance has been quantified by measuring mean absolute error for each image and the time taken to automatically compute damage scores. Coupling automated analysis of zebrafish hair cell damage to behavioral assays for ototoxicity produces a novel drug discovery platform for rapid translation of candidate drugs into preclinical mammalian models of hearing loss.
Collapse
Affiliation(s)
- Rohit C Philip
- 1 Department of Electrical and Computer Engineering, The University of Arizona , Tucson, Arizona
| | - Jeffrey J Rodriguez
- 1 Department of Electrical and Computer Engineering, The University of Arizona , Tucson, Arizona
| | - Maki Niihori
- 2 Department of Otolaryngology, The University of Arizona , Tucson, Arizona.,3 The University of Arizona Cancer Center , Tucson, Arizona
| | - Ross H Francis
- 2 Department of Otolaryngology, The University of Arizona , Tucson, Arizona.,4 College of Medicine, The University of Arizona , Tucson, Arizona
| | - Jordan A Mudery
- 2 Department of Otolaryngology, The University of Arizona , Tucson, Arizona.,4 College of Medicine, The University of Arizona , Tucson, Arizona
| | - Justin S Caskey
- 2 Department of Otolaryngology, The University of Arizona , Tucson, Arizona.,4 College of Medicine, The University of Arizona , Tucson, Arizona
| | - Elizabeth Krupinski
- 5 Department of Radiology and Imaging Sciences, Emory University , Atlanta, Georgia
| | - Abraham Jacob
- 2 Department of Otolaryngology, The University of Arizona , Tucson, Arizona.,3 The University of Arizona Cancer Center , Tucson, Arizona.,6 BIO5 Institute, The University of Arizona , Tucson, Arizona.,7 Ear & Hearing, Center for Neurosciences , Tucson, Arizona
| |
Collapse
|
29
|
Kenyon EJ, Kirkwood NK, Kitcher SR, O'Reilly M, Derudas M, Cantillon DM, Goodyear RJ, Secker A, Baxendale S, Bull JC, Waddell SJ, Whitfield TT, Ward SE, Kros CJ, Richardson GP. Identification of ion-channel modulators that protect against aminoglycoside-induced hair cell death. JCI Insight 2017; 2:96773. [PMID: 29263311 DOI: 10.1172/jci.insight.96773] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/15/2017] [Indexed: 12/22/2022] Open
Abstract
Aminoglycoside antibiotics are used to treat life-threatening bacterial infections but can cause deafness due to hair cell death in the inner ear. Compounds have been described that protect zebrafish lateral line hair cells from aminoglycosides, but few are effective in the cochlea. As the aminoglycosides interact with several ion channels, including the mechanoelectrical transducer (MET) channels by which they can enter hair cells, we screened 160 ion-channel modulators, seeking compounds that protect cochlear outer hair cells (OHCs) from aminoglycoside-induced death in vitro. Using zebrafish, 72 compounds were identified that either reduced loading of the MET-channel blocker FM 1-43FX, decreased Texas red-conjugated neomycin labeling, or reduced neomycin-induced hair cell death. After testing these 72 compounds, and 6 structurally similar compounds that failed in zebrafish, 13 were found that protected against gentamicin-induced death of OHCs in mouse cochlear cultures, 6 of which are permeant blockers of the hair cell MET channel. None of these compounds abrogated aminoglycoside antibacterial efficacy. By selecting those without adverse effects at high concentrations, 5 emerged as leads for developing pharmaceutical otoprotectants to alleviate an increasing clinical problem.
Collapse
Affiliation(s)
| | | | | | | | - Marco Derudas
- Sussex Drug Discovery Centre, School of Life Sciences, and
| | - Daire M Cantillon
- Wellcome Trust Centre for Global Health Research, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | | | | | - Sarah Baxendale
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - James C Bull
- Department of Biosciences, College of Science, Swansea University, Swansea, United Kingdom
| | - Simon J Waddell
- Wellcome Trust Centre for Global Health Research, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Tanya T Whitfield
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Simon E Ward
- Sussex Drug Discovery Centre, School of Life Sciences, and.,Medicines Discovery Institute, Cardiff University, Cardiff, United Kingdom
| | | | | |
Collapse
|
30
|
Antibiotics Reduce Retinal Cell Survival In Vitro. Neurotox Res 2017; 33:781-789. [PMID: 29098663 DOI: 10.1007/s12640-017-9826-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/24/2017] [Accepted: 10/05/2017] [Indexed: 10/18/2022]
Abstract
Antibiotics such as gentamicin (an aminoglycoside) and penicillin (a beta-lactam antibiotic) are routinely used in retinal cell and explant cultures. In many cases, these in vitro systems are testing parameters regarding photoreceptor transplantation or preparing cells for transplantation. In vivo, milligram doses of gentamicin are neurotoxic to the retina. However, little is known about the effects of antibiotics to retina in vitro and whether smaller doses of gentamicin are toxic to retinal cells. To test toxicity, retinal cells were dissociated from tiger salamander, placed in culture, and treated with either 20 μg/ml gentamicin, 100 μg/ml streptomycin, 100 U/ml antibiotic/antimycotic, 0.25 μg/ml amphotericin B, or 100 U/ml penicillin G. All dosages were within manufacturer's recommended levels. Control cultures had defined medium only. Cells were fixed at 2 h or 7 days. Three criteria were used to assess toxicity: (1) survival of retinal neurons, (2) neuritic growth of photoreceptors assessed by the development of presynaptic varicosities, and (3) survival and morphology of Mueller cells. Rod cells were immunolabeled for rod opsin, Mueller cells for glial fibrillary acidic protein, and varicosities for synaptophysin. Neuronal cell density was reduced with all pharmacological treatments. The number of presynaptic varicosities was also significantly lower in both rod and cone photoreceptors in treated compared to control cultures; further, rods were more sensitive to gentamicin than cones. Penicillin G (100 U/ml) was overall the least inhibitory and amphotericin B the most toxic of all the agents to photoreceptors. Mueller cell survival was reduced with all treatments; reduced survival was accompanied by the appearance of proportionally fewer stellate and more rounded glial morphologies. These findings suggest that even microgram doses of antibiotic and antimycotic drugs can be neurotoxic to retinal cells and reduce neuritic regeneration in cell culture systems.
Collapse
|
31
|
Sultemeier DR, Hoffman LF. Partial Aminoglycoside Lesions in Vestibular Epithelia Reveal Broad Sensory Dysfunction Associated with Modest Hair Cell Loss and Afferent Calyx Retraction. Front Cell Neurosci 2017; 11:331. [PMID: 29163044 PMCID: PMC5663721 DOI: 10.3389/fncel.2017.00331] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/09/2017] [Indexed: 11/13/2022] Open
Abstract
Although the effects of aminoglycoside antibiotics on hair cells have been investigated for decades, their influences on the dendrites of primary afferent neurons have not been widely studied. This is undoubtedly due to the difficulty in disassociating pathology to dendritic processes from that resulting from loss of the presynaptic hair cell. This was overcome in the present investigation through development of a preparation using Chinchilla laniger that enabled direct perilymphatic infusion. Through this strategy we unmasked gentamicin's potential effects on afferent calyces. The pathophysiology of the vestibular neuroepithelia after post-administration durations of 0.5 through 6 months was assessed using single-neuron electrophysiology, immunohistochemistry, and confocal microscopy. Hair cell densities within cristae central zones (0.5-, 1-, 2-, and 6-months) and utricle peri- and extrastriola (6-months) regions were determined, and damage to calretinin-immunoreactive calyces was quantified. Gentamicin-induced hair cell loss exhibited a profile that reflected elimination of a most-sensitive group by 0.5-months post-administration (18.2%), followed by loss of a second group (20.6%) over the subsequent 5.5 months. The total hair cell loss with this gentamicin dose (approximately 38.8%) was less than the estimated fraction of type I hair cells in the chinchilla's crista central zone (approximately 60%), indicating that viable type I hair cells remained. Extensive lesions to afferent calyces were observed at 0.5-months, though stimulus-evoked modulation was intact at this post-administration time. Widespread compromise to calyx morphology and severe attenuation of stimulus-evoked afferent discharge modulation was found at 1 month post-administration, a condition that persisted in preparations examined through the 6-month post-administration interval. Spontaneous discharge was robust at all post-administration intervals. All calretinin-positive calyces had retracted at 2 and 6 months post-administration. We found no evidence of morphologic or physiologic recovery. These results indicate that gentamicin-induced partial lesions to vestibular epithelia include hair cell loss (ostensibly reflecting an apoptotic effect) that is far less extensive than the compromise to stimulus-evoked afferent discharge modulation and retraction of afferent calyces (reflecting non-apoptotic effects). Additionally, calyx retraction cannot be completely accounted for by loss of type I hair cells, supporting the possibility for direct action of gentamicin on the afferent dendrite.
Collapse
Affiliation(s)
- David R. Sultemeier
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Larry F. Hoffman
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
32
|
Diphtheria Toxin-Induced Cell Death Triggers Wnt-Dependent Hair Cell Regeneration in Neonatal Mice. J Neurosci 2017; 36:9479-89. [PMID: 27605621 DOI: 10.1523/jneurosci.2447-15.2016] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 07/20/2016] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Cochlear hair cells (HCs), the sensory cells that respond to sound, do not regenerate after damage in adult mammals, and their loss is a major cause of deafness. Here we show that HC regeneration in newborn mouse ears occurred spontaneously when the original cells were ablated by treatment with diphtheria toxin (DT) in ears that had been engineered to overexpress the DT receptor, but was not detectable when HCs were ablated in vivo by the aminoglycoside antibiotic neomycin. A variety of Wnts (Wnt1, Wnt2, Wnt2b, Wnt4, Wnt5a, Wnt7b, Wnt9a, Wnt9b, and Wnt11) and Wnt pathway component Krm2 were upregulated after DT damage. Nuclear β-catenin was upregulated in HCs and supporting cells of the DT-damaged cochlea. Pharmacological inhibition of Wnt decreased spontaneous regeneration, confirming a role of Wnt signaling in HC regeneration. Inhibition of Notch signaling further potentiated supporting cell proliferation and HC differentiation that occurred spontaneously. The absence of new HCs in the neomycin ears was correlated to less robust Wnt pathway activation, but the ears subjected to neomycin treatment nonetheless showed increased cell division and HC differentiation after subsequent forced upregulation of β-catenin. These studies suggest, first, that Wnt signaling plays a key role in regeneration, and, second, that the outcome of a regenerative response to damage in the newborn cochlea is determined by reaching a threshold level of Wnt signaling rather than its complete absence or presence. SIGNIFICANCE STATEMENT Sensory HCs of the inner ear do not regenerate in the adult, and their loss is a major cause of deafness. We found that HCs regenerated spontaneously in the newborn mouse after diphtheria toxin (DT)-induced, but not neomycin-induced, HC death. Regeneration depended on activation of Wnt signaling, and regeneration in DT-treated ears correlated to a higher level of Wnt activation than occurred in nonregenerating neomycin-treated ears. This is significant because insufficient regeneration caused by a failure to reach a threshold level of signaling, if true in the adult, has the potential to be exploited for development of clinical approaches for the treatment of deafness caused by HC loss.
Collapse
|
33
|
Keeling KM. Nonsense Suppression as an Approach to Treat Lysosomal Storage Diseases. Diseases 2016; 4:32. [PMID: 28367323 PMCID: PMC5370586 DOI: 10.3390/diseases4040032] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/14/2016] [Indexed: 02/08/2023] Open
Abstract
In-frame premature termination codons (PTCs) (also referred to as nonsense mutations) comprise ~10% of all disease-associated gene lesions. PTCs reduce gene expression in two ways. First, PTCs prematurely terminate translation of an mRNA, leading to the production of a truncated polypeptide that often lacks normal function and/or is unstable. Second, PTCs trigger degradation of an mRNA by activating nonsense-mediated mRNA decay (NMD), a cellular pathway that recognizes and degrades mRNAs containing a PTC. Thus, translation termination and NMD are putative therapeutic targets for the development of treatments for genetic diseases caused by PTCs. Over the past decade, significant progress has been made in the identification of compounds with the ability to suppress translation termination of PTCs (also referred to as readthrough). More recently, NMD inhibitors have also been explored as a way to enhance the efficiency of PTC suppression. Due to their relatively low threshold for correction, lysosomal storage diseases are a particularly relevant group of diseases to investigate the feasibility of nonsense suppression as a therapeutic approach. In this review, the current status of PTC suppression and NMD inhibition as potential treatments for lysosomal storage diseases will be discussed.
Collapse
Affiliation(s)
- Kim M Keeling
- Department of Biochemistry and Molecular Genetics, Gregory Fleming Cystic Fibrosis Research Center, Comprehensive Arthritis, Musculoskeletal, Bone, and Autoimmunity Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA; ; Tel.: +1-205-975-6585
| |
Collapse
|
34
|
Oh KH, Rah YC, Hwang KH, Lee SH, Kwon SY, Cha JH, Choi J. Melatonin mitigates neomycin-induced hair cell injury in zebrafish. Drug Chem Toxicol 2016; 40:390-396. [PMID: 27855522 DOI: 10.1080/01480545.2016.1244679] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
CONTEXT Ototoxicity due to medications, such as aminoglycosides, is irreversible, and free radicals in the inner ear are assumed to play a major role. Because melatonin has an antioxidant property, we hypothesize that it might mitigate hair cell injury by aminoglycosides. OBJECTIVE The objective of this study was to evaluate whether melatonin has an alleviative effect on neomycin-induced hair cell injury in zebrafish (Danio rerio). METHODS Various concentrations of melatonin were administered to 5-day post-fertilization zebrafish treated with 125 μM neomycin for 1 h. Surviving hair cells within four neuromasts were compared with that of a control group. Apoptosis was assessed via terminal deoxynucleotidyl transferase dUTP nick-end labeling assay. The changes of ultrastructure were confirmed using a scanning electron microscope. RESULTS Melatonin alleviated neomycin-induced hair cell injury in neuromasts (neomycin + melatonin 100 μM: 13.88 ± 0.91 cells, neomycin only: 7.85 ± 0.90 cells; n = 10, p < 0.05) and reduced neomycin-induced apoptosis in the TUNEL assay. In ultrastructural analysis, hair cells within the neuromasts in zebrafish were preserved exposed to 125 μM neomycin and 100 μM melatonin for 1 h in SEM findings. CONCLUSION Melatonin is effective in alleviating aminoglycoside-induced hair cell injury in zebrafish. The results of this study demonstrated that melatonin has the potential to reduce apoptosis induced by aminoglycosides in zebrafish.
Collapse
Affiliation(s)
- Kyoung Ho Oh
- a Department of Otorhinolaryngology-Head and Neck Surgery , Korea University College of Medicine , Seoul , South Korea and
| | - Yoon Chan Rah
- a Department of Otorhinolaryngology-Head and Neck Surgery , Korea University College of Medicine , Seoul , South Korea and
| | - Kyu Ho Hwang
- a Department of Otorhinolaryngology-Head and Neck Surgery , Korea University College of Medicine , Seoul , South Korea and
| | - Seung Hoon Lee
- a Department of Otorhinolaryngology-Head and Neck Surgery , Korea University College of Medicine , Seoul , South Korea and
| | - Soon Young Kwon
- a Department of Otorhinolaryngology-Head and Neck Surgery , Korea University College of Medicine , Seoul , South Korea and
| | - Jae Hyung Cha
- b Medical Science Research Center, Korea University College of Medicine , Ansan , South Korea
| | - June Choi
- a Department of Otorhinolaryngology-Head and Neck Surgery , Korea University College of Medicine , Seoul , South Korea and
| |
Collapse
|
35
|
Esterberg R, Linbo T, Pickett SB, Wu P, Ou HC, Rubel EW, Raible DW. Mitochondrial calcium uptake underlies ROS generation during aminoglycoside-induced hair cell death. J Clin Invest 2016; 126:3556-66. [PMID: 27500493 DOI: 10.1172/jci84939] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 06/09/2016] [Indexed: 12/11/2022] Open
Abstract
Exposure to aminoglycoside antibiotics can lead to the generation of toxic levels of reactive oxygen species (ROS) within mechanosensory hair cells of the inner ear that have been implicated in hearing and balance disorders. Better understanding of the origin of aminoglycoside-induced ROS could focus the development of therapies aimed at preventing this event. In this work, we used the zebrafish lateral line system to monitor the dynamic behavior of mitochondrial and cytoplasmic oxidation occurring within the same dying hair cell following exposure to aminoglycosides. The increased oxidation observed in both mitochondria and cytoplasm of dying hair cells was highly correlated with mitochondrial calcium uptake. Application of the mitochondrial uniporter inhibitor Ru360 reduced mitochondrial and cytoplasmic oxidation, suggesting that mitochondrial calcium drives ROS generation during aminoglycoside-induced hair cell death. Furthermore, targeting mitochondria with free radical scavengers conferred superior protection against aminoglycoside exposure compared with identical, untargeted scavengers. Our findings suggest that targeted therapies aimed at preventing mitochondrial oxidation have therapeutic potential to ameliorate the toxic effects of aminoglycoside exposure.
Collapse
|
36
|
Abstract
Inflammation due to bacterial infection exacerbates hearing loss caused by aminoglycoside antibiotic treatment in a mouse model of sepsis (Koo et al.).
Collapse
Affiliation(s)
- Corné J Kros
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK. Department of Otorhinolaryngology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, Netherlands.
| | - Terri Desmonds
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| |
Collapse
|
37
|
Potentiation of Aminoglycoside Activity in Pseudomonas aeruginosa by Targeting the AmgRS Envelope Stress-Responsive Two-Component System. Antimicrob Agents Chemother 2016; 60:3509-18. [PMID: 27021319 DOI: 10.1128/aac.03069-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/17/2016] [Indexed: 02/06/2023] Open
Abstract
A screen for agents that potentiated the activity of paromomycin (PAR), a 4,5-linked aminoglycoside (AG), against wild-type Pseudomonas aeruginosa identified the RNA polymerase inhibitor rifampin (RIF). RIF potentiated additional 4,5-linked AGs, such as neomycin and ribostamycin, but not the clinically important 4,6-linked AGs amikacin and gentamicin. Potentiation was absent in a mutant lacking the AmgRS envelope stress response two-component system (TCS), which protects the organism from AG-generated membrane-damaging aberrant polypeptides and, thus, promotes AG resistance, an indication that RIF was acting via this TCS in potentiating 4,5-linked AG activity. Potentiation was also absent in a RIF-resistant RNA polymerase mutant, consistent with its potentiation of AG activity being dependent on RNA polymerase perturbation. PAR-inducible expression of the AmgRS-dependent genes htpX and yccA was reduced by RIF, suggesting that AG activation of this TCS was compromised by this agent. Still, RIF did not compromise the membrane-protective activity of AmgRS, an indication that it impacted some other function of this TCS. RIF potentiated the activities of 4,5-linked AGs against several AG-resistant clinical isolates, in two cases also potentiating the activity of the 4,6-linked AGs. These cases were, in one instance, explained by an observed AmgRS-dependent expression of the MexXY multidrug efflux system, which accommodates a range of AGs, with RIF targeting of AmgRS undermining mexXY expression and its promotion of resistance to 4,5- and 4,6-linked AGs. Given this link between AmgRS, MexXY expression, and pan-AG resistance in P. aeruginosa, RIF might be a useful adjuvant in the AG treatment of P. aeruginosa infections.
Collapse
|
38
|
Rah YC, Choi J, Yoo MH, Yum G, Park S, Oh KH, Lee SH, Kwon SY, Cho SH, Kim S, Park HC. Ecabet sodium alleviates neomycin-induced hair cell damage. Free Radic Biol Med 2015; 89:1176-83. [PMID: 26561773 DOI: 10.1016/j.freeradbiomed.2015.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 10/13/2015] [Accepted: 11/06/2015] [Indexed: 02/04/2023]
Abstract
Ecabet sodium (ES) is currently applied to some clinical gastrointestinal disease primarily by the inhibition of the ROS production. In this study, the protective role of ES was evaluated against the neomycin-induced hair cell loss using zebrafish experimental animal model. Zebrafish larvae (5-7 dpf), were treated with each of the following concentrations of ES: 5, 10, 20, 40, and 80 μg/mL for 1 h, followed by 125 μM neomycin for 1h. The positive control group was established by 125 μM neomycin-only treatment (1h) and the negative control group with no additional chemicals was also established. Hair cells inside four neuromasts ( SO1, SO2, O1, OC1) were assessed using fluorescence microscopy (n = 10). Hair cell survival was calculated as the mean number of viable hair cells for each group. Apoptosis and mitochondrial damage were investigated using special staining (TUNEL and DASPEI assay, respectively), and compared among groups. Ultrastructural changes were evaluated using scanning electron microscopy. Pre-treatment group with ES increased the mean number of viable hair cells as a dose-dependent manner achieving almost same number of viable hair cells with 40 μM/ml ES treatment (12.98 ± 2.59 cells) comparing to that of the negative control group (14.15 ± 1.39 cells, p = 0.72) and significantly more number of viable hair cells than that of the positive control group (7.45 ± 0.91 cells, p < 0.01). The production of reactive oxygen species significantly increased by 183% with 125 μM neomycin treatment than the negative control group and significantly decreased down to 105% with the pre-treatment with 40 μM/ml ES (n = 40, p = 0.04). A significantly less number of TUNEL-positive cells (reflecting apoptosis, p < 0.01) and a significantly increased DASPEI reactivity (reflecting viable mitochondria, p < 0.01) were observed in 40 μM/ml ES pre-treatment group. Our data suggest that ES could protect against neomycin-induced hair cell loss possibly by reducing apoptosis, mitochondrial damages, and the ROS generation.
Collapse
Affiliation(s)
- Yoon Chan Rah
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Ansan Hospital, Korea University, College of Medicine, Seoul, Republic of Korea
| | - June Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Ansan Hospital, Korea University, College of Medicine, Seoul, Republic of Korea.
| | - Myung Hoon Yoo
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Ansan Hospital, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Gunhwee Yum
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Ansan Hospital, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Saemi Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Ansan Hospital, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Kyoung Ho Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Ansan Hospital, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Seung Hoon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Ansan Hospital, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Soon Young Kwon
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Ansan Hospital, Korea University, College of Medicine, Seoul, Republic of Korea
| | | | - Suhyun Kim
- Laboratory of Neurodevelopmental Genetics, Graduate School of Medicine, Korea University, Seoul, Republic of Korea
| | - Hae-Chul Park
- Laboratory of Neurodevelopmental Genetics, Graduate School of Medicine, Korea University, Seoul, Republic of Korea
| |
Collapse
|
39
|
Zholudeva LV, Ward KG, Nichols MG, Smith HJ. Gentamicin differentially alters cellular metabolism of cochlear hair cells as revealed by NAD(P)H fluorescence lifetime imaging. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:051032. [PMID: 25688541 PMCID: PMC4405084 DOI: 10.1117/1.jbo.20.5.051032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
Aminoglycoside antibiotics are implicated as culprits of hearing loss in more than 120,000 individuals annually. Research has shown that the sensory cells, but not supporting cells, of the cochlea are readily damaged and/or lost after use of such antibiotics. High-frequency outer hair cells (OHCs) show a greater sensitivity to antibiotics than high- and low-frequency inner hair cells (IHCs). We hypothesize that variations in mitochondrial metabolism account for differences in susceptibility. Fluorescence lifetime microscopy was used to quantify changes in NAD(P)H in sensory and supporting cells from explanted murine cochleae exposed to mitochondrial uncouplers, inhibitors, and an ototoxic antibiotic, gentamicin (GM). Changes in metabolic state resulted in a redistribution of NAD(P)H between subcellular fluorescence lifetime pools. Supporting cells had a significantly longer lifetime than sensory cells. Pretreatment with GM increased NAD(P)H intensity in high-frequency sensory cells, as well as the NAD(P)H lifetime within IHCs. GM specifically increased NAD(P)H concentration in high-frequency OHCs, but not in IHCs or pillar cells. Variations in NAD(P)H intensity in response to mitochondrial toxins and GM were greatest in high-frequency OHCs. These results demonstrate that GM rapidly alters mitochondrial metabolism, differentially modulates cell metabolism, and provides evidence that GM-induced changes in metabolism are significant and greatest in high-frequency OHCs.
Collapse
Affiliation(s)
- Lyandysha V. Zholudeva
- Drexel University, Department of Neurobiology and Anatomy, 2900 West Queen Lane, Philadelphia, Pennsylvania 19129, United States
| | - Kristina G. Ward
- Creighton University, Department of Physics, 2500 California Plaza, Omaha, Nebraska 68178, United States
| | - Michael G. Nichols
- Creighton University, Department of Physics, 2500 California Plaza, Omaha, Nebraska 68178, United States
- Creighton University, Department of Biomedical Sciences, 2500 California Plaza, Omaha, Nebraska 68178, United States
| | - Heather Jensen Smith
- Creighton University, Department of Biomedical Sciences, 2500 California Plaza, Omaha, Nebraska 68178, United States
| |
Collapse
|
40
|
Monroe JD, Rajadinakaran G, Smith ME. Sensory hair cell death and regeneration in fishes. Front Cell Neurosci 2015; 9:131. [PMID: 25954154 PMCID: PMC4404912 DOI: 10.3389/fncel.2015.00131] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 03/21/2015] [Indexed: 01/31/2023] Open
Abstract
Sensory hair cells are specialized mechanotransductive receptors required for hearing and vestibular function. Loss of hair cells in humans and other mammals is permanent and causes reduced hearing and balance. In the early 1980’s, it was shown that hair cells continue to be added to the inner ear sensory epithelia in cartilaginous and bony fishes. Soon thereafter, hair cell regeneration was documented in the chick cochlea following acoustic trauma. Since then, research using chick and other avian models has led to great insights into hair cell death and regeneration. However, with the rise of the zebrafish as a model organism for studying disease and developmental processes, there has been an increased interest in studying sensory hair cell death and regeneration in its lateral line and inner ears. Advances derived from studies in zebrafish and other fish species include understanding the effect of ototoxins on hair cells and finding otoprotectants to mitigate ototoxin damage, the role of cellular proliferation vs. direct transdifferentiation during hair cell regeneration, and elucidating cellular pathways involved in the regeneration process. This review will summarize research on hair cell death and regeneration using fish models, indicate the potential strengths and weaknesses of these models, and discuss several emerging areas of future studies.
Collapse
Affiliation(s)
- Jerry D Monroe
- Department of Biology, Western Kentucky University Bowling Green, KY, USA
| | - Gopinath Rajadinakaran
- Department of Genetics and Genome Sciences, University of Connecticut Health Center Farmington, CT, USA
| | - Michael E Smith
- Department of Biology, Western Kentucky University Bowling Green, KY, USA
| |
Collapse
|
41
|
Cui C, Liu D, Qin X. Attenuation of Streptomycin Ototoxicity by Tetramethylpyrazine in Guinea Pig Cochlea. Otolaryngol Head Neck Surg 2015; 152:904-11. [PMID: 25605693 DOI: 10.1177/0194599814565594] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/04/2014] [Indexed: 01/17/2023]
Abstract
Objective Tetramethylpyrazine has been suggested to have a therapeutic effect on impaired hearing that is induced by aminoglycoside antibiotics. However, its effectiveness on streptomycin ototoxicity and its cellular mechanisms are relatively unknown. Here we investigate the protective effect of tetramethylpyrazine on streptomycin-induced ototoxicity in guinea pig cochlea. Study Design Prospective randomized laboratory study. Setting Hearing Research Laboratory of China Medical University. Subjects and Methods Adult guinea pigs were randomized to 4 groups. Hearing sensitivity of guinea pigs was tested by auditory brainstem response measurements before streptomycin exposure and again 10 days later. The cochlear tissues were prepared for electron microscopy and immunohistochemical staining of heat shock protein 70 (HSP70). The effect of tetramethylpyrazine on streptomycin-induced activation of caspase-3 was evaluated by Western blotting. Results Co-therapy with tetramethylpyrazine reduced a profound streptomycin-induced auditory threshold shift compared with streptomycin treatment alone ( P = .0002 or P = .00008). Tetramethylpyrazine also attenuated the structural disruption in streptomycin-treated outer hair cells and marginal cells of vascular stria by transmission electronic microscopy and scanning electronic microscopy, respectively. Moreover, tetramethylpyrazine decreased the streptomycin-stimulated expressions of HSP70 and caspase-3. The correlation analysis demonstrated that HSP70 expression had a positive correlation with auditory brainstem response thresholds (|R| = 0.6-0.9, P = .0073 or P = .0169). Conclusions Our data suggest that the protective effect of tetramethylpyrazine on hearing function is associated with the reduction of stress response and inhibition of apoptosis. Tetramethylpyrazine may have therapeutic potential for patients with ototoxicity diseases.
Collapse
Affiliation(s)
- Cheng Cui
- Hearing Research Laboratory, China Medical University, Shenyang, Liaoning, China
- Department of Physiology, China Medical University, Shenyang, Liaoning, China
| | - Dajun Liu
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xin Qin
- Department of Physiology, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
42
|
Population pharmacokinetics of gentamicin and dosing optimization for infants. Antimicrob Agents Chemother 2014; 59:482-9. [PMID: 25385111 DOI: 10.1128/aac.03464-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to characterize and validate the population pharmacokinetics of gentamicin in infants and to determine the influences of clinically relevant covariates to explain the inter- and intraindividual variabilities associated with this drug. Infants receiving intravenous gentamicin and with routine therapeutic drug monitoring were consecutively enrolled in the study. Plasma concentration and time data were retrospectively collected from 208 infants (1 to 24 months old) of the Hospital Universitario Severo Ochoa (Spain), of whom 44% were males (mean age [± standard deviation], 5.8 ± 4.8 months; mean body weight, 6.4 ± 2.2 kg). Data analysis was performed with NONMEM 7.2. One- and two-compartment open models were analyzed to estimate the gentamicin population parameters and the influences of several covariates. External validation was carried out in another population of 55 infants. The behavior of gentamicin in infants exhibits two-compartment pharmacokinetics, with total body weight being the covariate that mainly influences central volume (Vc) and clearance (CL); this parameter was also related to creatinine clearance. Both parameters are age related and different from those reported for neonatal populations. On the basis of clinical presentation and diagnosis, a once-daily dosage regimen of 7 mg/kg of body weight every 24 h is proposed for intravenous gentamicin, followed by therapeutic drug monitoring in order to avoid toxicity and ensure efficacy with minimal blood sampling. Gentamicin pharmacokinetics and disposition were accurately characterized in this pediatric population (infants), with the parameters obtained being different from those reported for neonates and children. These differences should be considered in the dosing and therapeutic monitoring of this antibiotic.
Collapse
|
43
|
Fosso MY, Li Y, Garneau-Tsodikova S. New trends in aminoglycosides use. MEDCHEMCOMM 2014; 5:1075-1091. [PMID: 25071928 PMCID: PMC4111210 DOI: 10.1039/c4md00163j] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Despite their inherent toxicity and the acquired bacterial resistance that continuously threaten their long-term clinical use, aminoglycosides (AGs) still remain valuable components of the antibiotic armamentarium. Recent literature shows that the AGs' role has been further expanded as multi-tasking players in different areas of study. This review aims at presenting some of the new trends observed in the use of AGs in the past decade, along with the current understanding of their mechanisms of action in various bacterial and eukaryotic cellular processes.
Collapse
Affiliation(s)
- Marina Y. Fosso
- University of Kentucky, Department of Pharmaceutical Sciences, College of Pharmacy, BioPharm Complex, Room 423, 789 South Limestone Street, Lexington, KY, 40536-0596, U.S.A
| | - Yijia Li
- University of Kentucky, Department of Pharmaceutical Sciences, College of Pharmacy, BioPharm Complex, Room 423, 789 South Limestone Street, Lexington, KY, 40536-0596, U.S.A
| | - Sylvie Garneau-Tsodikova
- University of Kentucky, Department of Pharmaceutical Sciences, College of Pharmacy, BioPharm Complex, Room 423, 789 South Limestone Street, Lexington, KY, 40536-0596, U.S.A
| |
Collapse
|
44
|
Hydrogen-saturated saline protects intensive narrow band noise-induced hearing loss in guinea pigs through an antioxidant effect. PLoS One 2014; 9:e100774. [PMID: 24945316 PMCID: PMC4063935 DOI: 10.1371/journal.pone.0100774] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 05/29/2014] [Indexed: 11/25/2022] Open
Abstract
The purpose of the current study was to evaluate hydrogen-saturated saline protecting intensive narrow band noise-induced hearing loss. Guinea pigs were divided into three groups: hydrogen-saturated saline; normal saline; and control. For saline administration, the guinea pigs were given daily abdominal injections (1 ml/100 g) 3 days before and 1 h before narrow band noise exposure (2.5–3.5 kHz 130 dB SPL, 1 h). The guinea pigs in the control group received no treatment. The hearing function was assessed by the auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE) recording. The changes of free radicals in the cochlea before noise exposure, and immediately and 7 days after noise exposure were also examined. By Scanning electron microscopy and succinate dehydrogenase staining, we found that pre-treatment with hydrogen-saturated saline significantly reduced noise-induced hair cell damage and hearing loss. We also found that the malondialdehyde, lipid peroxidation, and hydroxyl levels were significantly lower in the hydrogen-saturated saline group after noise trauma, indicating that hydrogen-saturated saline can decrease the amount of harmful free radicals caused by noise trauma. Our findings suggest that hydrogen-saturated saline is effective in preventing intensive narrow band noise-induced hearing loss through the antioxidant effect.
Collapse
|
45
|
Translational read-through as an alternative approach for ocular gene therapy of retinal dystrophies caused by in-frame nonsense mutations. Vis Neurosci 2014; 31:309-16. [DOI: 10.1017/s0952523814000194] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AbstractThe eye has become an excellent target for gene therapy, and gene augmentation therapy of inherited retinal disorders has made major progress in recent years. Nevertheless, a recent study indicated that gene augmentation intervention might not stop the progression of retinal degeneration in patients. In addition, for many genes, viral-mediated gene augmentation is currently not feasible due to gene size and limited packaging capacity of viral vectors as well as expression of various heterogeneous isoforms of the target gene. Thus, alternative gene-based strategies to stop or delay the retinal degeneration are necessary. This review focuses on an alternative pharmacologic treatment strategy based on the usage of translational read-through inducing drugs (TRIDs) such as PTC124, aminoglycoside antibiotics, and designer aminoglycosides for overreading in-frame nonsense mutations. This strategy has emerged as an option for up to 30–50% of all cases of recessive hereditary retinal dystrophies. In-frame nonsense mutations are single-nucleotide alterations within the gene coding sequence resulting in a premature stop codon. Consequently, translation of such mutated genes leads to the synthesis of truncated proteins, which are unable to fulfill their physiologic functions. In this context, application of TRIDs facilitates the recoding of the premature termination codon into a sense codon, thus restoring syntheses of full-length proteins. So far, clinical trials for non-ocular diseases have been initiated for diverse TRIDs. Although the clinical outcome is not analyzed in detail, an excellent safety profile, namely for PTC124, was clearly demonstrated. Moreover, recent data demonstrated sustained read-through efficacies of nonsense mutations causing retinal degeneration, as manifested in the human Usher syndrome. In addition, a strong retinal biocompatibility for PTC124 and designer aminoglycosides has been demonstrated. In conclusion, recent progress emphasizes the potential of TRIDs as an alternative pharmacologic treatment strategy for treating nonsense mutation-based retinal disorders.
Collapse
|
46
|
Gunn G, Dai Y, Du M, Belakhov V, Kandasamy J, Schoeb TR, Baasov T, Bedwell DM, Keeling KM. Long-term nonsense suppression therapy moderates MPS I-H disease progression. Mol Genet Metab 2014; 111:374-381. [PMID: 24411223 PMCID: PMC3943726 DOI: 10.1016/j.ymgme.2013.12.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 12/10/2013] [Accepted: 12/11/2013] [Indexed: 01/16/2023]
Abstract
Nonsense suppression therapy is a therapeutic approach aimed at treating genetic diseases caused by in-frame premature termination codons (PTCs; also commonly known as nonsense mutations). This approach utilizes compounds that suppress translation termination at PTCs, which allows translation to continue and partial levels of deficient protein function to be restored. We hypothesize that suppression therapy can attenuate the lysosomal storage disease mucopolysaccharidosis type I-Hurler (MPS I-H), the severe form of α-L-iduronidase deficiency. α-L-iduronidase participates in glycosaminoglycan (GAG) catabolism and its insufficiency causes progressive GAG accumulation and onset of the MPS I-H phenotype, which consists of multiple somatic and neurological defects. 60-80% of MPS I-H patients carry a nonsense mutation in the IDUA gene. We previously showed that 2-week treatment with the designer aminoglycoside NB84 restored enough α-L-iduronidase function via PTC suppression to reduce tissue GAG accumulation in the Idua(tm1Kmke) MPS I-H mouse model, which carries a PTC homologous to the human IDUA-W402X nonsense mutation. Here we report that long-term NB84 administration maintains α-L-iduronidase activity and GAG reduction in Idua(tm1Kmke) mice throughout a 28-week treatment period. An examination of more complex MPS I-H phenotypes in Idua(tm1Kmke) mice following 28-week NB84 treatment revealed significant moderation of the disease in multiple tissues, including the brain, heart and bone, that are resistant to current MPS I-H therapies. This study represents the first demonstration that long-term nonsense suppression therapy can moderate progression of a genetic disease.
Collapse
Affiliation(s)
- Gwen Gunn
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Yanying Dai
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Ming Du
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Valery Belakhov
- The Edith and Joseph Enzyme Inhibitors Laboratory, Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, Israel.
| | - Jeyakumar Kandasamy
- The Edith and Joseph Enzyme Inhibitors Laboratory, Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, Israel.
| | - Trenton R Schoeb
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Timor Baasov
- The Edith and Joseph Enzyme Inhibitors Laboratory, Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, Israel.
| | - David M Bedwell
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Kim M Keeling
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
47
|
Nagel-Wolfrum K, Baasov T, Wolfrum U. Therapy strategies for Usher syndrome Type 1C in the retina. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 801:741-7. [PMID: 24664766 DOI: 10.1007/978-1-4614-3209-8_93] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The Usher syndrome (USH) is the most common form of inherited deaf-blindness with a prevalence of ~ 1/6,000. Three clinical subtypes (USH1-USH3) are defined according to the severity of the hearing impairment, the presence or absence of vestibular dysfunction and the age of onset of retinitis pigmentosa (RP). USH1 is the most severe subtype with congenital severe to profound hearing loss and onset of RP before puberty. Currently only the amelioration of the hearing deficiency is implemented, but no treatment of the senso-neuronal degeneration in the eye exists.In our studies we are focusing on the evaluation of gene-based therapies to cure the retinal degeneration of USH1C patients: (i) gene augmentation using recombinant adeno-associated virus, (ii) genome editing by homologous recombination mediated by zinc-finger nucleases and, (iii) read-through therapy using novel designer aminoglycosides and PTC124. Latter compounds target in-frame nonsense mutations which account for ~ 20 % of all USH cases.All analyzed gene-based therapy strategies lead to the restoration of USH protein expression. These adjustments may be sufficient to reduce the progression of retinal degeneration, which would greatly improve the life quality of USH patients.
Collapse
Affiliation(s)
- Kerstin Nagel-Wolfrum
- Department of Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg University of Mainz, 55099, Mainz, Germany,
| | | | | |
Collapse
|
48
|
Vestibular damage in chronic ototoxicity: a mini-review. Neurotoxicology 2013; 43:21-27. [PMID: 24333467 DOI: 10.1016/j.neuro.2013.11.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/28/2013] [Accepted: 11/28/2013] [Indexed: 01/26/2023]
Abstract
Ototoxicity is a major cause of the loss of hearing and balance in humans. Ototoxic compounds include pharmaceuticals such as aminoglycoside antibiotics, anti-malarial drugs, loop diuretics and chemotherapeutic platinum agents, and industrial chemicals including several solvents and nitriles. Human and rodent data indicate that the main target of toxicity is hair cells (HCs), which are the mechanosensory cells responsible for sensory transduction in both the auditory and the vestibular system. Nevertheless, the compounds may also affect the auditory and vestibular ganglion neurons. Exposure to ototoxic compounds has been found to cause HC apoptosis, HC necrosis, and damage to the afferent terminals, of differing severity depending on the ototoxicity model. One major pathway frequently involved in HC apoptosis is the c-jun N-terminal kinase (JNK) signaling pathway activated by reactive oxygen species, but other apoptotic pathways can also play a role in ototoxicity. Moreover, little is known about the effects of chronic low-dose exposure. In rodent vestibular epithelia, extrusion of live HCs from the sensory epithelium may be the predominant form of cell demise during chronic ototoxicity. In addition, greater involvement of the afferent terminals may occur, particularly the calyx units contacting type I vestibular HCs. As glutamate is the neurotransmitter in this synapse, excitotoxic phenomena may participate in afferent and ganglion neuron damage. Better knowledge of the events that take place in chronic ototoxicity is of great interest, as it will increase understanding of the sensory loss associated with chronic exposure and aging.
Collapse
|
49
|
High-resolution 3-D T2-weighted imaging in the diagnosis of labyrinthitis ossificans: emphasis on subtle cochlear involvement. Pediatr Radiol 2013; 43:1584-90. [PMID: 23843131 DOI: 10.1007/s00247-013-2747-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/22/2013] [Accepted: 06/19/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Meningitis is the most common cause of acquired sensorineural hearing loss (SNHL) in children. Labyrinthitis ossificans develops in a significant number of patients with meningitis-related SNHL. Reduced T2 signal on MRI within the membranous labyrinth is often noted in the fibrous and ossifying stages of labyrinthitis ossificans. OBJECTIVE The purpose of this study is to demonstrate the distribution and extent of involvement of the cochlea in children being evaluated for labyrinthitis ossificans; using high-resolution 3-D T2-weighted imaging, and to evaluate for subtle involvement of the scala tympani within the basal turn of the cochlea. MATERIALS AND METHODS A retrospective review from 2002 to 2012 was performed using a cochlear implant database and PACS search function. Twenty-four patients were found to have MR findings consistent with labyrinthitis ossificans, 13 previously reported. Axial 3-D T2-weighted sequences were obtained in all patients. The presence of abnormal decreased T2 signal within the scala tympani and vestibuli of the cochlea was noted and graded according to the extent. The electronic medical record was reviewed for audiometry and risk factors as well as correlative operative findings. RESULTS The average age at imaging was 4.2 years. M:F ratio = 5:1. Eighty-eight percent (21/24) of patients had bilateral SNHL. The most common risk factor for labyrinthitis ossificans was meningitis (19/24 or 79%). Eighteen (75%) patients had a history of bacterial meningitis. The mean age for the onset of labyrinthitis was 1.2 years with an average of 2.2-year interval to imaging. Nineteen patients (79%) underwent placement of a cochlear implant. Cochlear obstruction was documented in 83% (40/48) of the ears. Lower grade (1) cochlear obstruction was present in 14 ears and limited to the scala tympani. Statistical analysis was performed correlating MRI imaging and surgical findings. CONCLUSION Subtle, isolated involvement of the scala tympani within the proximal basal turn is a common finding in labyrinthitis ossificans and history typical for meningitis is not uniformly present. The extent of cochlear obstruction is important and has surgical implications.
Collapse
|
50
|
Protective Role of Trimetazidine Against Neomycin-induced Hair Cell Damage in Zebrafish. Clin Exp Otorhinolaryngol 2013; 6:219-25. [PMID: 24353861 PMCID: PMC3863670 DOI: 10.3342/ceo.2013.6.4.219] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 11/06/2012] [Accepted: 11/15/2012] [Indexed: 11/29/2022] Open
Abstract
Objectives Trimetazidine (TMZ) is known to reduce the generation of oxygen-derived free radicals. The objective of the present study was to evaluate the effects of TMZ on neomycin-induced ototoxicity in transgenic zebrafish (Brn3C: EGFP). Methods Five-day, postfertilization zebrafish larvae were exposed to 125 µM neomycin and one of the following TMZ concentrations for 1 hour: 10 µM, 100 µM, 500 µM, 1,000 µM, 1,500 µM, or 2,000 µM. Hair cells within the neuromasts of the supraorbital (SO1 and SO2), otic (O1), and occipital (OC1) lateral lines were analyzed using fluorescence microscopy and confocal microscopy (n=10). Hair cell survival was calculated as a percentage of hair cells in the control group that were not exposed to neomycin. Ultrastructural changes were evaluated using scanning electron microscopy. Results TMZ protected against neomycin-induced hair cell loss in the neuromasts (TMZ 1,000 µM, 11.2±0.4 cells; 125 µM neomycin only, 4.2±0.5 cells; n=10; P<0.05) and decreased the terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end labeling (TUNEL) reaction. In the ultrastructural analysis, structures of mitochondria and hair cells within the neuromasts were preserved in zebrafish exposed to 125 µM neomycin and 1,000 µM TMZ. Conclusion TMZ attenuated neomycin-induced hair cell loss in zebrafish. The results of this study suggest that neomycin induces apoptosis, and that apoptotic cell death can be prevented by treatment with tremetazidine.
Collapse
|