1
|
Mapindra MP, Castillo-Hernandez T, Clark H, Madsen J. Surfactant Protein-A and its immunomodulatory roles in infant respiratory syncytial virus infection: a potential for therapeutic intervention? Am J Physiol Lung Cell Mol Physiol 2025; 328:L179-L196. [PMID: 39662519 DOI: 10.1152/ajplung.00199.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 12/13/2024] Open
Abstract
The vast majority of early-life hospital admissions globally highlight respiratory syncytial virus (RSV), the leading cause of neonatal lower respiratory tract infections, as the major culprit behind the poor neonatal outcomes following respiratory infections. Unlike those of older children and adults, the immune system of neonates looks rather unique, therefore mostly counting on the innate immune system and antibodies of maternal origins. The collaborations between cells and immune compartments during infancy inclines bias toward a T-helper 2 (Th2) immune profile and thereby away from a T-helper 1 (Th1) immune response. What makes it more problematic is that RSV infection also tends to elicit a stronger Th2-biased immune response and drive an aberrant allergy-like inflammation. It is thus evident how RSV infections potentially pave the way for wheezing recurrences and childhood asthma later in life. Surfactant, the essential lung substance for normal breathing processes in mammals, has immunomodulatory properties including lung collectins such as Surfactant Protein-A (SP-A), which is the most abundant protein component of surfactant, and also Surfactant Protein-D (SP-D). Deficiency of SP-A and SP-D has been found to be associated with impaired pathogen clearance and exacerbated immune responses during infections. We therefore conducted a review of the literature to describe pathomechanisms of RSV infections during blunted neonatal immunity potentially facilitating allergy-like inflammatory events within the developing lungs and highlight the potential protective role of the humoral collectin SP-A to mitigate these in the "early in life" pulmonary immune system.
Collapse
Affiliation(s)
- Muhammad Pradhika Mapindra
- Targeted Lung Immunotherapy Group, Neonatology Department, Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Tania Castillo-Hernandez
- Targeted Lung Immunotherapy Group, Neonatology Department, Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Howard Clark
- Targeted Lung Immunotherapy Group, Neonatology Department, Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Jens Madsen
- Targeted Lung Immunotherapy Group, Neonatology Department, Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| |
Collapse
|
2
|
Lachover-Roth I, Cohen-Engler A, Furman Y, Shachar I, Rosman Y, Meir-Shafrir K, Mozer-Mandel M, Farladansky-Gershnabel S, Biron-Shental T, Mandel M, Confino-Cohen R. Early, continuing exposure to cow's milk formula and cow's milk allergy: The COMEET study, a single center, prospective interventional study. Ann Allergy Asthma Immunol 2023; 130:233-239.e4. [PMID: 36441058 DOI: 10.1016/j.anai.2022.10.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Cow's milk allergy (CMA) is a common food allergy among infants. Information regarding the best timing for first exposure to cow's milk formula (CMF) is controversial and more evidence is required. Few randomized control trials have tried to accurately assess the timing and preventive effect of exposure to CMF on small cohorts. OBJECTIVE This study assessed the association between early, continuing exposure to CMF on the basis of the parents' preferences and the development of immunoglobulin E (IgE)-mediated CMA in a large birth cohort. METHODS Newborns were prospectively recruited shortly before birth and divided into 2 groups according to parental feeding preference for the first 2 months of life: (1) exclusive breastfeeding (EBF); or (2) at least 1 meal of CMF (with or without breastfeeding) daily. Infants were followed up monthly until the age of 12 months. RESULTS Among 1992 infants participating in the study, 1073 (53.86%) were in the EBF group until 2 months of age. IgE-mediated CMA was confirmed in 0.85% (n = 17); all were in the EBF group. Within this group, the prevalence of IgE-mediated CMA was 1.58% compared with 0 in the other groups (relative risk, 29.98; P < .001). Post hoc analysis revealed IgE-mediated CMA prevalence of 0.7% in the per-protocol EBF group vs 3.27% among breastfed infants who were exposed to a small amount of CMF during the first 2 months of life. A family atopic background did not affect the results. CONCLUSION Early, continuing exposure to CMF from birth has the potential to prevent the development of IgE-mediated CMA and should be encouraged. However, the exposure needs to be consistent because occasional exposure increases the risk of developing IgE-mediated CMA and should be avoided.
Collapse
Affiliation(s)
- Idit Lachover-Roth
- Allergy and Clinical Immunology Unit, Meir Medical Center, Kfar Saba, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Anat Cohen-Engler
- Allergy and Clinical Immunology Unit, Meir Medical Center, Kfar Saba, Israel
| | - Yael Furman
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel
| | - Ido Shachar
- Department of Statistics and Data Science, Faculty of Social Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yossi Rosman
- Allergy and Clinical Immunology Unit, Meir Medical Center, Kfar Saba, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Keren Meir-Shafrir
- Allergy and Clinical Immunology Unit, Meir Medical Center, Kfar Saba, Israel
| | - Michal Mozer-Mandel
- Department of Statistics and Data Science, Faculty of Social Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sivan Farladansky-Gershnabel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel
| | - Tal Biron-Shental
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel
| | - Micha Mandel
- Department of Statistics and Data Science, Faculty of Social Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ronit Confino-Cohen
- Allergy and Clinical Immunology Unit, Meir Medical Center, Kfar Saba, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
3
|
Ruan F, Zhang J, Liu J, Sun X, Li Y, Xu S, Xia W. Association between prenatal exposure to metal mixtures and early childhood allergic diseases. ENVIRONMENTAL RESEARCH 2022; 206:112615. [PMID: 34968434 DOI: 10.1016/j.envres.2021.112615] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
The association between prenatal exposure to the metal mixture and allergic diseases is poorly understood. We aimed to explore the individual effect and the combined effect of prenatal exposure to vanadium (V), chromium (Cr), nickel (Ni), arsenic (As), cadmium (Cd), thallium (Tl), and lead (Pb) on early childhood allergic diseases based on a birth cohort study that included 628 mother-infant pairs. Metals were measured in maternal urine samples collected in the first, second, and third trimesters. Children were prospectively followed up at age 4 years to collect information on allergic rhinitis, wheeze, and eczema status. By applying logistic regression models, weighted quantile sum (WQS) regression, and Bayesian kernel machine regression (BKMR), the different statistical analyses revealed urinary metals were only associated with early childhood allergic rhinitis. The averaged prenatal As exposure was significantly associated with an increased OR for allergic rhinitis in both single-metal (OR = 2.04, 95% CI: 1.35, 3.07) and multiple-metal logistic regression models (OR = 1.78, 95% CI: 1.15, 2.78). The WQS index of mixed metal exposure was positively associated with allergic rhinitis (OR = 1.66, 95% CI: 1.26, 2.19), and As and Tl had the largest weights in the WQS index (weighted 0.51 and 0.29, respectively). The BKMR analysis also showed the overall effect of the metal mixture was significantly associated with allergic rhinitis when all the metals were at their 55th percentile or above, compared to their 50th percentile. The effect of As and Tl on the risk of allergic rhinitis was significant when all of the other metals were fixed at the specific percentiles. Our findings suggest that prenatal co-exposure to higher levels of the seven metals increases the risk of allergic rhinitis in children, and As and Tl may contribute most to the combined risk.
Collapse
Affiliation(s)
- Fengyu Ruan
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jingjing Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Juan Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xiaojie Sun
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
4
|
Warner JO, Warner JA. The Foetal Origins of Allergy and Potential Nutritional Interventions to Prevent Disease. Nutrients 2022; 14:nu14081590. [PMID: 35458152 PMCID: PMC9026316 DOI: 10.3390/nu14081590] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 11/23/2022] Open
Abstract
The first nine months from conception to birth involves greater changes than at any other time in life, affecting organogenesis, endocrine, metabolic and immune programming. It has led to the concept that the “first 1000 days” from conception to the second birthday are critical in establishing long term health or susceptibility to disease. Immune ontogeny is predominantly complete within that time and is influenced by the maternal genome, health, diet and environment pre-conception and during pregnancy and lactation. Components of the immunological protection of the pregnancy is the generation of Th-2 and T-regulatory cytokines with the consequence that neonatal adaptive responses are also biased towards Th-2 (allergy promoting) and T-regulatory (tolerance promoting) responses. Normally after birth Th-1 activity increases while Th-2 down-regulates and the evolving normal human microbiome likely plays a key role. This in turn will have been affected by maternal health, diet, exposure to antibiotics, mode of delivery, and breast or cow milk formula feeding. Complex gene/environment interactions affect outcomes. Many individual nutrients affect immune mechanisms and variations in levels have been associated with susceptibility to allergic disease. However, intervention trials employing single nutrient supplementation to prevent allergic disease have not achieved the expected outcomes suggested by observational studies. Investigation of overall dietary practices including fresh fruit and vegetables, fish, olive oil, lower meat intake and home cooked foods as seen in the Mediterranean and other healthy diets have been associated with reduced prevalence of allergic disease. This suggests that the “soup” of overall nutrition is more important than individual nutrients and requires further investigation both during pregnancy and after the infant has been weaned. Amongst all the potential factors affecting allergy outcomes, modification of maternal and infant nutrition and the microbiome are easier to employ than changing other aspects of the environment but require large controlled trials before recommending changes to current practice.
Collapse
Affiliation(s)
- John O. Warner
- National Heart and Lung Institute, Imperial College, London SW3 6LY, UK
- Paediatric Allergy, Red Cross Memorial Children’s Hospital, University of Cape Town, Cape Town 7700, South Africa;
- Correspondence:
| | - Jill Amanda Warner
- Paediatric Allergy, Red Cross Memorial Children’s Hospital, University of Cape Town, Cape Town 7700, South Africa;
| |
Collapse
|
5
|
Moroishi Y, Signes-Pastor AJ, Li Z, Cottingham KL, Jackson BP, Punshon T, Madan J, Nadeau K, Gui J, Karagas MR. Infant infections, respiratory symptoms, and allergy in relation to timing of rice cereal introduction in a United States cohort. Sci Rep 2022; 12:4450. [PMID: 35292690 PMCID: PMC8924265 DOI: 10.1038/s41598-022-08354-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/28/2022] [Indexed: 01/03/2023] Open
Abstract
Rice products marketed in the USA, including baby rice cereal, contain inorganic arsenic, a putative immunotoxin. We sought to determine whether the timing of introduction of rice cereal in the first year of life influences occurrence of infections, respiratory symptoms, and allergy. Among 572 infants from the New Hampshire Birth Cohort Study, we used generalized estimating equation, adjusted for maternal smoking during pregnancy, marital status, education attainment, pre-pregnancy body mass index, maternal age at enrollment, infant birth weight, and breastfeeding history. Among 572 infants, each month earlier of introduction to rice cereal was associated with increased risks of subsequent upper respiratory tract infections (relative risk, RR = 1.04; 95% CI: 1.00-1.09); lower respiratory tract infections (RR = 1.19; 95% CI: 1.02-1.39); acute respiratory symptoms including wheeze, difficulty breathing, and cough (RR = 1.10; 95% CI: 1.00-1.22); fever requiring a prescription medicine (RR = 1.22; 95% CI: 1.02-1.45) and allergy diagnosed by a physician (RR = 1.20; 95% CI: 1.06-1.36). No clear associations were observed with gastrointestinal symptoms. Our findings suggest that introduction of rice cereal earlier may influence infants' susceptibility to respiratory infections and allergy.
Collapse
Affiliation(s)
- Yuka Moroishi
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | | | - Zhigang Li
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Kathryn L Cottingham
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
- Children's Environmental Health and Disease Prevention Research Center at Dartmouth, Hanover, NH, USA
| | - Brian P Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, NH, USA
| | - Tracy Punshon
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
- Children's Environmental Health and Disease Prevention Research Center at Dartmouth, Hanover, NH, USA
| | - Juliette Madan
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Children's Environmental Health and Disease Prevention Research Center at Dartmouth, Hanover, NH, USA
- Department of Pediatrics, Children's Hospital at Dartmouth, Lebanon, NH, USA
| | - Kari Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Jiang Gui
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
- Children's Environmental Health and Disease Prevention Research Center at Dartmouth, Hanover, NH, USA.
| |
Collapse
|
6
|
A perfect storm: fetal inflammation and the developing immune system. Pediatr Res 2020; 87:319-326. [PMID: 31537013 PMCID: PMC7875080 DOI: 10.1038/s41390-019-0582-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/20/2019] [Accepted: 08/23/2019] [Indexed: 12/17/2022]
Abstract
Histologic chorioamnionitis is an inflammatory disorder of the placenta that commonly precedes preterm delivery. Preterm birth related to chorioamnionitis and fetal inflammation has been associated with a risk for serious inflammatory complications in infancy. In addition, preterm infants exposed to chorioamnionitis may be more susceptible to infection in the neonatal intensive care unit and possibly later in life. A significant body of work has established an association between chorioamnionitis and inflammatory processes. However, the potential consequences of this inflammation on postnatal immunity are less understood. In this review, we will discuss current knowledge regarding the effects of fetal exposure to inflammation on postnatal immune responses.
Collapse
|
7
|
Georgountzou A, Papadopoulos NG. Postnatal Innate Immune Development: From Birth to Adulthood. Front Immunol 2017; 8:957. [PMID: 28848557 PMCID: PMC5554489 DOI: 10.3389/fimmu.2017.00957] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/26/2017] [Indexed: 12/20/2022] Open
Abstract
It is well established that adaptive immune responses are deficient in early life, contributing to increased mortality and morbidity. The developmental trajectories of different components of innate immunity are only recently being explored. Individual molecules, cells, or pathways of innate recognition and signaling, within different compartments/anatomical sites, demonstrate variable maturation patterns. Despite some discrepancies among published data, valuable information is emerging, showing that the developmental pattern of cytokine responses during early life is age and toll-like receptor specific, and may be modified by genetic and environmental factors. Interestingly, specific environmental exposures have been linked both to innate function modifications and the occurrence of chronic inflammatory disorders, such as respiratory allergies. As these conditions are on the rise, our knowledge on innate immune development and its modulating factors needs to be expanded. Improved understanding of the sequence of events associated with disease onset and persistence will lead toward meaningful interventions. This review describes the state-of-the-art on normal postnatal innate immune ontogeny and highlights research areas that are currently explored or should be further addressed.
Collapse
Affiliation(s)
- Anastasia Georgountzou
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos G Papadopoulos
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece.,Division of Infection, Inflammation and Respiratory Medicine, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
8
|
Hardy A, Benford D, Halldorsson T, Jeger MJ, Knutsen HK, More S, Naegeli H, Noteborn H, Ockleford C, Ricci A, Rychen G, Schlatter JR, Silano V, Solecki R, Turck D, Bresson JL, Dusemund B, Gundert-Remy U, Kersting M, Lambré C, Penninks A, Tritscher A, Waalkens-Berendsen I, Woutersen R, Arcella D, Court Marques D, Dorne JL, Kass GE, Mortensen A. Guidance on the risk assessment of substances present in food intended for infants below 16 weeks of age. EFSA J 2017; 15:e04849. [PMID: 32625502 PMCID: PMC7010120 DOI: 10.2903/j.efsa.2017.4849] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Following a request from the European Commission to EFSA, the EFSA Scientific Committee (SC) prepared a guidance for the risk assessment of substances present in food intended for infants below 16 weeks of age. In its approach to develop this guidance, the EFSA SC took into account, among others, (i) an exposure assessment based on infant formula as the only source of nutrition; (ii) knowledge of organ development in human infants, including the development of the gut, metabolic and excretory capacities, the brain and brain barriers, the immune system, the endocrine and reproductive systems; (iii) the overall toxicological profile of the substance identified through the standard toxicological tests, including critical effects; (iv) the relevance for the human infant of the neonatal experimental animal models used. The EFSA SC notes that during the period from birth up to 16 weeks, infants are expected to be exclusively fed on breast milk and/or infant formula. The EFSA SC views this period as the time where health-based guidance values for the general population do not apply without further considerations. High infant formula consumption per body weight is derived from 95th percentile consumption. The first weeks of life is the time of the highest relative consumption on a body weight basis. Therefore, when performing an exposure assessment, the EFSA SC proposes to use the high consumption value of 260 mL/kg bw per day. A decision tree approach is proposed that enables a risk assessment of substances present in food intended for infants below 16 weeks of age. The additional information needed when testing substances present in food for infants below 16 weeks of age and the approach to be taken for the risk assessment are on a case-by-case basis, depending on whether the substance is added intentionally to food and is systemically available.
Collapse
|
9
|
Perinatal Activation of the Interleukin-33 Pathway Promotes Type 2 Immunity in the Developing Lung. Immunity 2016; 45:1285-1298. [DOI: 10.1016/j.immuni.2016.10.031] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/03/2016] [Accepted: 10/27/2016] [Indexed: 11/19/2022]
|
10
|
Farzan SF, Li Z, Korrick SA, Spiegelman D, Enelow R, Nadeau K, Baker E, Karagas MR. Infant Infections and Respiratory Symptoms in Relation to in Utero Arsenic Exposure in a U.S. Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:840-7. [PMID: 26359651 PMCID: PMC4892909 DOI: 10.1289/ehp.1409282] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 09/04/2015] [Indexed: 05/19/2023]
Abstract
BACKGROUND Arsenic has been linked to disrupted immune function and greater infection susceptibility in highly exposed populations. Well arsenic levels above the U.S. EPA limit occur in our U.S. study area and are of particular concern for pregnant women and infants. OBJECTIVES We investigated whether in utero arsenic exposure affects the risk of infections and respiratory symptoms over the first year of life. METHODS We prospectively obtained information on infant infections and symptoms, including their duration and treatment (n = 412) at 4, 8, and 12 months using a parental telephone survey. Using generalized estimating equation models adjusted for potential confounders, we evaluated the association between maternal pregnancy urinary arsenic and infant infections and symptoms over the first year. RESULTS Each doubling of maternal urinary arsenic was related to increases in the total number of infections requiring prescription medication in the first year [relative risk (RR) = 1.1; 95% CI: 1.0, 1.2]. Urinary arsenic was related specifically to respiratory symptoms (difficulty breathing, wheezing, and cough) lasting ≥ 2 days or requiring prescription medication (RR = 1.1; 95% CI: 1.0, 1.2; and RR = 1.2; 95% CI: 1.0, 1.5, respectively), and wheezing lasting ≥ 2 days, resulting in a doctor visit or prescription medication treatment (RR = 1.3; 95% CI: 1.0, 1.7; RR = 1.3; 95% CI: 1.0, 1.8, and RR = 1.5; 95% CI: 1.0, 2.2, respectively). Associations also were observed with diarrhea (RR = 1.4; 95% CI: 1.1, 1.9) and fever resulting in a doctor visit (RR = 1.2; 95% CI: 1.0, 1.5). CONCLUSIONS In utero arsenic exposure was associated with a higher risk of infection during the first year of life in our study population, particularly infections requiring medical treatment, and with diarrhea and respiratory symptoms. CITATION Farzan SF, Li Z, Korrick SA, Spiegelman D, Enelow R, Nadeau K, Baker E, Karagas MR. 2016. Infant infections and respiratory symptoms in relation to in utero arsenic exposure in a U.S. COHORT Environ Health Perspect 124:840-847; http://dx.doi.org/10.1289/ehp.1409282.
Collapse
Affiliation(s)
- Shohreh F. Farzan
- Children’s Environmental Health and Disease Prevention Research Center at Dartmouth, Hanover, New Hampshire, USA
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Zhigang Li
- Children’s Environmental Health and Disease Prevention Research Center at Dartmouth, Hanover, New Hampshire, USA
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Susan A. Korrick
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Donna Spiegelman
- Department of Biostatistics, and
- Department of Epidemiology, Global Health and Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Richard Enelow
- Children’s Environmental Health and Disease Prevention Research Center at Dartmouth, Hanover, New Hampshire, USA
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Kari Nadeau
- Division of Immunology and Allergy, Stanford Medical School and Lucile Packard Children’s Hospital, Stanford, California, USA
| | - Emily Baker
- Department of Obstetrics and Gynecology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Margaret R. Karagas
- Children’s Environmental Health and Disease Prevention Research Center at Dartmouth, Hanover, New Hampshire, USA
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
- Address correspondence to M.R. Karagas, Department of Epidemiology, Geisel School of Medicine, One Medical Center Dr., 7927 Rubin, Lebanon, NH 03756 USA. Telephone: (603) 653-9010. E-mail:
| |
Collapse
|
11
|
Procario MC, McCarthy MK, Levine RE, Molloy CT, Weinberg JB. Prostaglandin E2 production during neonatal respiratory infection with mouse adenovirus type 1. Virus Res 2016; 214:26-32. [PMID: 26795547 DOI: 10.1016/j.virusres.2016.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/08/2016] [Accepted: 01/14/2016] [Indexed: 12/20/2022]
Abstract
Neonatal mice are more susceptible than adults to mouse adenovirus type 1 (MAV1) respiratory infection. In adult mice, MAV-1 respiratory infection induces production of prostaglandin E2 (PGE2), a lipid mediator that exerts suppressive effects on a variety of host immune functions. We tested the hypothesis that exaggerated PGE2 production in neonatal mice contributes to increased susceptibility to MAV-1. PGE2 concentrations were lower in lungs of uninfected neonatal mice than in adults. PGE2 production was induced by both MAV-1 and a nonspecific stimulus to a greater degree in neonatal mice than in adults, but only in adults was PGE2 induced in a virus-specific manner. Lung viral loads were equivalent in PGE2-deficient neonatal mice and wild type controls, as was virus-induced expression of IFN-γ, IL-17A, and CCL5 in the lungs. PGE2 deficiency had minimal effect on production of virus-specific IgG or establishment of protective immunity in neonatal mice. Collectively, our data indicate that lung PGE2 production is exaggerated early in life, but this effect does not mediate increased susceptibility to MAV-1 infection.
Collapse
Affiliation(s)
- Megan C Procario
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, United States
| | - Mary K McCarthy
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States
| | - Rachael E Levine
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, United States
| | - Caitlyn T Molloy
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, United States
| | - Jason B Weinberg
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, United States; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
12
|
Carraro S, Scheltema N, Bont L, Baraldi E. Early-life origins of chronic respiratory diseases: understanding and promoting healthy ageing. Eur Respir J 2014; 44:1682-96. [PMID: 25323240 DOI: 10.1183/09031936.00084114] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chronic obstructive respiratory disorders such as asthma and chronic obstructive pulmonary disease often originate early in life. In addition to a genetic predisposition, prenatal and early-life environmental exposures have a persistent impact on respiratory health. Acting during a critical phase of lung development, these factors may change lung structure and metabolism, and may induce maladaptive responses to harmful agents, which will affect the whole lifespan. Some environmental factors, such as exposure to cigarette smoke, type of childbirth and diet, may be modifiable, but it is more difficult to influence other factors, such as preterm birth and early exposure to viruses or allergens. Here, we bring together recent literature to analyse the critical aspects involved in the early stages of lung development, going back to prenatal and perinatal events, and we discuss the mechanisms by which noxious factors encountered early on may have a lifelong impact on respiratory health. We briefly comment on the need for early disease biomarkers and on the possible role of "-omic" technologies in identifying risk profiles predictive of chronic respiratory conditions. Such profiles could guide the ideation of effective preventive strategies and/or targeted early lifestyle or therapeutic interventions.
Collapse
Affiliation(s)
- Silvia Carraro
- Women's and Children's Health Dept, University of Padua, Padua, Italy
| | - Nienke Scheltema
- Dept of Pediatrics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Louis Bont
- Dept of Pediatrics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Eugenio Baraldi
- Women's and Children's Health Dept, University of Padua, Padua, Italy
| |
Collapse
|
13
|
Nadeau KC, Li Z, Farzan S, Koestler D, Robbins D, Fei DL, Malipatlolla M, Maecker H, Enelow R, Korrick S, Karagas MR. In utero arsenic exposure and fetal immune repertoire in a US pregnancy cohort. Clin Immunol 2014; 155:188-97. [PMID: 25229165 DOI: 10.1016/j.clim.2014.09.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/02/2014] [Accepted: 09/04/2014] [Indexed: 12/25/2022]
Abstract
Arsenic has wide-ranging effects on human health and there is evidence that it alters the immune response by influencing CD4+/CD8+ T cell ratios, IL-2 cytokine levels, and the expression of immune-response genes. We investigated the impact of in utero environmental arsenic exposure on immune development and function in newborns participating in a pregnancy cohort in New Hampshire, U.S., where arsenic levels have exceeded the current EPA maximum contaminant level of 10 μg/L. Our results showed that maternal urinary arsenic concentrations were inversely related to absolute total CD45RA+ CD4+ cord blood CD69+ T cell counts (N=116, p=0.04) and positively associated with CD45RA+ CD69- CD294+ cell counts (p=0.01). In placental samples (N=70), higher in utero urinary arsenic concentrations were positively associated with the expression of IL1β (p=0.03). These data provide evidence that relatively low-level arsenic exposure in utero may alter the fetal immune system and lead to immune dysregulation.
Collapse
Affiliation(s)
- Kari C Nadeau
- Division of Immunology and Allergy, Stanford University, 730 Welch Road, Stanford, CA, USA.
| | - Zhigang Li
- Geisel School of Medicine at Dartmouth, 1 Rope Ferry Road, Hanover, NH 03755, USA.
| | - Shohreh Farzan
- Geisel School of Medicine at Dartmouth, 1 Rope Ferry Road, Hanover, NH 03755, USA.
| | - Devin Koestler
- Geisel School of Medicine at Dartmouth, 1 Rope Ferry Road, Hanover, NH 03755, USA.
| | - David Robbins
- University of Miami, Miller School of Medicine, 1600 NW 10th Ave #1140, Miami, FL 33136, USA.
| | - Dennis Liang Fei
- University of Miami, Miller School of Medicine, 1600 NW 10th Ave #1140, Miami, FL 33136, USA.
| | - Meena Malipatlolla
- Institute for Immunity, Transplantation, and Infection, Stanford University, 299 Campus Drive, Stanford, CA 94305, USA
| | - Holden Maecker
- Institute for Immunity, Transplantation, and Infection, Stanford University, 299 Campus Drive, Stanford, CA 94305, USA
| | - Richard Enelow
- Geisel School of Medicine at Dartmouth, 1 Rope Ferry Road, Hanover, NH 03755, USA.
| | - Susan Korrick
- Brigham and Women's Hospital, Department of Medicine, Channing Division of Network Medicine, Harvard Medical School, 181 Longwood Ave, Boston, MA 02115, USA; Harvard School of Public Health, Department of Environmental Health, 677 Huntington Ave, Boston, MA 02115, USA.
| | - Margaret R Karagas
- Geisel School of Medicine at Dartmouth, 1 Rope Ferry Road, Hanover, NH 03755, USA.
| |
Collapse
|
14
|
Standl M, Demmelmair H, Koletzko B, Heinrich J. Cord blood LC-PUFA composition and allergic diseases during the first 10 yr. Results from the LISAplus study. Pediatr Allergy Immunol 2014; 25:344-50. [PMID: 24576150 PMCID: PMC4238817 DOI: 10.1111/pai.12212] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/31/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND It has been suggested that n-6 and n-3 long-chain polyunsaturated fatty acids (LC-PUFAs) in blood are associated with risk of allergic diseases, although results are inconclusive. Low levels of n-6 LC-PUFA and high levels of n-3 LC-PUFA are anticipated to have beneficial effects. Pregnancy is considered a critical time period for imprinting the developing immune system. We examined whether n-6 LC-PUFA, n-3 LC-PUFA concentrations or the n-6/n-3 ratio in cord blood (CB) serum are associated with allergic diseases up to the age of 10 yr. METHODS This analysis included 436 children from the Munich LISAplus birth cohort study. Information on doctor-diagnosed asthma, hay fever/allergic rhinitis, and eczema was collected using questionnaires completed at the ages 6 and 10 yr, and for eczema additionally at 2 yr. Specific immunoglobulin E (IgE) against inhalant allergens was measured at 6 and 10 yr. Fatty acid composition was measured by gas chromatography in serum from CB and from blood collected at 2, 6, and 10 yr. Associations between n-3, n-6 LC-PUFA concentrations, and the n-6/n-3 ratio in CB serum and allergic diseases or atopy were assessed using generalized estimating equations (GEE) considering the longitudinal structure. Models were adjusted for LC-PUFA concentrations at follow-up and potential confounding factors. RESULTS There was no significant association between n-3 LC-PUFA, n-6 LC-PUFA, or the n-6/n-3 ratio in CB serum with eczema, asthma, hay fever/allergic rhinitis, or aeroallergen sensitization. CONCLUSIONS There is no indication of a beneficial effect of increased n-3 LC-PUFA in CB serum on the development of any of the disease entities.
Collapse
Affiliation(s)
- Marie Standl
- Institute of Epidemiology I, Helmholtz Zentrum München - German Research Centre for Environmental Health, Neuherberg, Germany
| | | | | | | |
Collapse
|
15
|
Innate immune memory: implications for development of pediatric immunomodulatory agents and adjuvanted vaccines. Pediatr Res 2014; 75:184-8. [PMID: 24352476 PMCID: PMC3973534 DOI: 10.1038/pr.2013.214] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 10/25/2013] [Indexed: 11/28/2022]
Abstract
Unique features of immunity early in life include a distinct immune system particularly reliant on innate immunity, with weak T helper (Th)1-polarizing immune responses, and impaired responses to certain vaccines leading to a heightened susceptibility to infection. To these important aspects, we now add an increasingly appreciated concept that the innate immune system displays epigenetic memory of an earlier infection or vaccination, a phenomenon that has been named "trained immunity." Exposure of neonatal leukocytes in vitro or neonatal animals or humans in vivo to specific innate immune stimuli results in an altered innate immune set point. Given the particular importance of innate immunity early in life, trained immunity to early life infection and/or immunization may play an important role in modulating both acute and chronic diseases.
Collapse
|
16
|
Vanden Driessche K, Persson A, Marais BJ, Fink PJ, Urdahl KB. Immune vulnerability of infants to tuberculosis. Clin Dev Immunol 2013; 2013:781320. [PMID: 23762096 PMCID: PMC3666431 DOI: 10.1155/2013/781320] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/30/2013] [Accepted: 03/31/2013] [Indexed: 02/08/2023]
Abstract
One of the challenges faced by the infant immune system is learning to distinguish the myriad of foreign but nonthreatening antigens encountered from those expressed by true pathogens. This balance is reflected in the diminished production of proinflammatory cytokines by both innate and adaptive immune cells in the infant. A downside of this bias is that several factors critical for controlling Mycobacterium tuberculosis infection are significantly restricted in infants, including TNF, IL-1, and IL-12. Furthermore, infant T cells are inherently less capable of differentiating into IFN- γ -producing T cells. As a result, infected infants are 5-10 times more likely than adults to develop active tuberculosis (TB) and have higher rates of severe disseminated disease, including miliary TB and meningitis. Infant TB is a fundamentally different disease than TB in immune competent adults. Immunotherapeutics, therefore, should be specifically evaluated in infants before they are routinely employed to treat TB in this age group. Modalities aimed at reducing inflammation, which may be beneficial for adjunctive therapy of some forms of TB in older children and adults, may be of no benefit or even harmful in infants who manifest much less inflammatory disease.
Collapse
Affiliation(s)
- Koen Vanden Driessche
- Centre for Understanding and Preventing Infections in Children, Child & Family Research Institute, University of British Columbia, Vancouver, BC, Canada V5Z 4H4
- Department of Pediatrics, Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Alexander Persson
- Centre for Understanding and Preventing Infections in Children, Child & Family Research Institute, University of British Columbia, Vancouver, BC, Canada V5Z 4H4
| | - Ben J. Marais
- Sydney Institute for Emerging Infectious Diseases and Biosecurity and The Children's Hospital at Westmead, University of Sydney, Locked Bag 4100, Sydney, NSW 2145, Australia
| | - Pamela J. Fink
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | - Kevin B. Urdahl
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
- Seattle Biomedical Research Institute, Seattle, WA 98109, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
17
|
Belderbos ME, Levy O, Meyaard L, Bont L. Plasma-mediated immune suppression: a neonatal perspective. Pediatr Allergy Immunol 2013; 24:102-13. [PMID: 23173652 DOI: 10.1111/pai.12023] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/04/2012] [Indexed: 01/31/2023]
Abstract
Plasma is a rich mixture of immune regulatory factors that shape immune cell function. This immunomodulatory role of plasma is especially important in neonates. To maintain in utero feto-maternal tolerance and to allow for microbial colonization after birth, the neonatal immune system is biased against pro-inflammatory responses while favoring immune suppression. Therefore, the neonatal period provides a unique opportunity to study the physiologic mechanisms regulating the immune system. Several recent studies in neonates have identified plasma factors that play a key role in immune regulation. Insight into immune regulation by neonatal and adult plasma may have clinical implications, because plasma is easily accessible, affordable, and widely available. Herein, we review plasma-mediated immune regulation, with specific focus on neonatal plasma. We discuss how immune suppression is a key function of plasma and provide a systematic overview of the published literature regarding plasma-derived immune suppressive proteins, lipids, purines, and sugars. Finally, we outline how immune regulation by these factors, which are particularly abundant in neonatal plasma, may eventually be used to treat immune-mediated diseases, such as autoimmune, allergic, and inflammatory diseases.
Collapse
|
18
|
Saravia J, Lee GI, Lomnicki S, Dellinger B, Cormier SA. Particulate matter containing environmentally persistent free radicals and adverse infant respiratory health effects: a review. J Biochem Mol Toxicol 2012; 27:56-68. [PMID: 23281110 DOI: 10.1002/jbt.21465] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Revised: 10/25/2012] [Accepted: 11/03/2012] [Indexed: 12/19/2022]
Abstract
The health impacts of airborne particulate matter (PM) are of global concern, and the direct implications to the development/exacerbation of lung disease are immediately obvious. Most studies to date have sought to understand mechanisms associated with PM exposure in adults/adult animal models; however, infants are also at significant risk for exposure. Infants are affected differently than adults due to drastic immaturities, both physiologically and immunologically, and it is becoming apparent that they represent a critically understudied population. Highlighting our work funded by the ONES award, in this review we argue the understated importance of utilizing infant models to truly understand the etiology of PM-induced predisposition to severe, persistent lung disease. We also touch upon various mechanisms of PM-mediated respiratory damage, with a focus on the emerging importance of environmentally persistent free radicals (EPFRs) ubiquitously present in combustion-derived PM. In conclusion, we briefly comment on strengths/challenges facing current PM research, while giving perspective on how we may address these challenges in the future.
Collapse
Affiliation(s)
- Jordy Saravia
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
19
|
Loss G, Bitter S, Wohlgensinger J, Frei R, Roduit C, Genuneit J, Pekkanen J, Roponen M, Hirvonen MR, Dalphin JC, Dalphin ML, Riedler J, von Mutius E, Weber J, Kabesch M, Michel S, Braun-Fahrländer C, Lauener R. Prenatal and early-life exposures alter expression of innate immunity genes: the PASTURE cohort study. J Allergy Clin Immunol 2012; 130:523-30.e9. [PMID: 22846753 DOI: 10.1016/j.jaci.2012.05.049] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 04/20/2012] [Accepted: 05/23/2012] [Indexed: 01/01/2023]
Abstract
BACKGROUND There is evidence that gene expression of innate immunity receptors is upregulated by farming-related exposures. OBJECTIVE We sought to determine environmental and nutritional exposures associated with the gene expression of innate immunity receptors during pregnancy and the first year of a child's life. METHODS For the Protection Against Allergy: Study in Rural Environments (PASTURE) birth cohort study, 1133 pregnant women were recruited in rural areas of Austria, Finland, France, Germany, and Switzerland. mRNA expression of the Toll-like receptor (TLR) 1 through TLR9 and CD14 was assessed in blood samples at birth (n= 938) and year 1 (n= 752). Environmental exposures, as assessed by using questionnaires and a diary kept during year 1, and polymorphisms in innate receptor genes were related to gene expression of innate immunity receptors by using ANOVA and multivariate regression analysis. RESULTS Gene expression of innate immunity receptors in cord blood was overall higher in neonates of farmers (P for multifactorial multivariate ANOVA= .041), significantly so for TLR7 (adjusted geometric means ratio [aGMR], 1.15; 95% CI, 1.02-1.30) and TLR8 (aGMR, 1.15; 95% CI, 1.04-1.26). Unboiled farm milk consumption during the first year of life showed the strongest association with mRNA expression at year 1, taking the diversity of other foods introduced during that period into account: TLR4 (aGMR, 1.22; 95% CI, 1.03-1.45), TLR5 (aGMR, 1.19; 95% CI, 1.01-1.41), and TLR6 (aGMR, 1.20; 95% CI, 1.04-1.38). A previously described modification of the association between farm milk consumption and CD14 gene expression by the single nucleotide polymorphism CD14/C-1721T was not found. CONCLUSION Farming-related exposures, such as raw farm milk consumption, that were previously reported to decrease the risk for allergic outcomes were associated with a change in gene expression of innate immunity receptors in early life.
Collapse
Affiliation(s)
- Georg Loss
- Swiss Tropical and Public Health Institute, Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Shin JH, Kim SW, Park YS. Role of NOD1-mediated signals in a mouse model of allergic rhinitis. Otolaryngol Head Neck Surg 2012; 147:1020-6. [PMID: 23032918 DOI: 10.1177/0194599812461999] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES The purpose of the present study was to investigate the effect of nucleotide-binding oligomerization domain 1 (NOD1), an innate immune sensor, on allergic inflammation and induction of regulatory T cells in a mouse model of allergic rhinitis. We also aimed to explore whether there were differences in the effect of NOD1 ligand according to the timing of administration. Study Design An in vivo study using an animal model. SETTING Catholic Research Institutes of Medical Science. SUBJECTS AND METHODS Forty BALB/c mice were divided into 4 groups: control, OVA, pre-NOD1, and post-NOD1. Ovalbumin (OVA) was used for sensitization and challenge. The pre-NOD1 group received NOD1 ligand intranasally before sensitization, whereas the post-NOD1 group received it after sensitization. The effects of allergic inflammation and regulatory T cells were compared among the groups. RESULTS In the post-NOD1 group, serum OVA-specific IgE, eosinophil counts, interleukin (IL)-13 levels, and GATA-3 mRNA expression were significantly increased and Foxp3(+) mRNA expression and CD4(+) Foxp3(+) T cells were decreased compared with the OVA group. In the pre-NOD1 group, Foxp3 mRNA expression and CD4(+) Foxp3(+) T cells were significantly decreased compared with the OVA group. Although not significant, the pre-NOD1 group showed increases in serum OVA-specific IgE, eosinophil counts, IL-13 levels, and GATA-3 mRNA expression compared with the OVA group. CONCLUSION The innate immune response through NOD1 enhances allergen-specific Th2 response and suppresses induction of regulatory T cells in a mouse model of allergic rhinitis, and the effects are different depending on the timing of exposure to NOD1 ligand.
Collapse
Affiliation(s)
- Ji-Hyeon Shin
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Catholic University of Korea, Seoul, Korea
| | | | | |
Collapse
|
21
|
Diesner SC, Förster-Waldl E, Olivera A, Pollak A, Jensen-Jarolim E, Untersmayr E. Perspectives on immunomodulation early in life. Pediatr Allergy Immunol 2012; 23:210-23. [PMID: 22299601 DOI: 10.1111/j.1399-3038.2011.01259.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The immune system early in life is characterized by immature activation and function of immune cells and a preponderance of Th2 cytokines. Together with other factors such as genetics and epigenetics, these immature immune responses might prone newborns susceptible to severe infections as well as allergic diseases. Immunomodulation therapy may have potential as therapeutic strategy against those disorders and might have implication in early-life interventions in the future. In this review, we will focus on two immunomodulatory substance classes, Toll-like receptor (TLR) ligands and sphingolipids, which are the focus of extensive research to date. Both TLRs and sphingolipid receptors have a very distinct distribution pattern and function on immune cells. Therefore, they can potentially modulate and balance immune responses, which might be in particular beneficial for the immaturity of the immune response early in life.
Collapse
Affiliation(s)
- Susanne C Diesner
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
22
|
Philbin VJ, Dowling DJ, Gallington LC, Cortés G, Tan Z, Suter EE, Chi KW, Shuckett A, Stoler-Barak L, Tomai M, Miller RL, Mansfield K, Levy O. Imidazoquinoline Toll-like receptor 8 agonists activate human newborn monocytes and dendritic cells through adenosine-refractory and caspase-1-dependent pathways. J Allergy Clin Immunol 2012; 130:195-204.e9. [PMID: 22521247 DOI: 10.1016/j.jaci.2012.02.042] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 02/23/2012] [Accepted: 02/29/2012] [Indexed: 11/27/2022]
Abstract
BACKGROUND Newborns have frequent infections and manifest impaired vaccine responses, motivating a search for neonatal vaccine adjuvants. Alum is a neonatal adjuvant but might confer a T(H)2 bias. Toll-like receptor (TLR) agonists are candidate adjuvants, but human neonatal cord blood monocytes demonstrate impaired T(H)1-polarizing responses to many TLR agonists caused by plasma adenosine acting through cyclic AMP. TLR8 agonists, including imidazoquinolines (IMQs), such as the small synthetic 3M-002, induce adult-level TNF from neonatal monocytes, but the scope and mechanisms of IMQ-induced activation of neonatal monocytes and monocyte-derived dendritic cells (MoDCs) have not been reported. OBJECTIVE We sought to characterize IMQ-induced activation of neonatal monocytes and MoDCs. METHODS Neonatal cord and adult peripheral blood monocytes and MoDCs were cultured in autologous plasma; levels of alum- and TLR agonist-induced cytokines and costimulatory molecules were measured. TLR8 and inflammasome function were assayed by using small interfering RNA and Western blotting/caspase-1 inhibitory peptide, respectively. The ontogeny of TLR8 agonist-induced cytokine responses was defined in rhesus macaque whole blood ex vivo. RESULTS IMQs were more potent and effective than alum at inducing TNF and IL-1β from monocytes. 3M-002 induced robust TLR pathway transcriptome activation and T(H)1-polarizing cytokine production in neonatal and adult monocytes and MoDCs, signaling through TLR8 in an adenosine/cyclic AMP-refractory manner. Newborn MoDCs displayed impaired LPS/ATP-induced caspase-1-mediated IL-1β production but robust 3M-002-induced caspase-1-mediated inflammasome activation independent of exogenous ATP. TLR8 IMQs induced robust TNF and IL-1β in whole blood of rhesus macaques at birth and infancy. CONCLUSIONS IMQ TLR8 agonists engage adenosine-refractory TLR8 and inflammasome pathways to induce robust monocyte and MoDC activation and represent promising neonatal adjuvants.
Collapse
Affiliation(s)
- Victoria J Philbin
- Department of Medicine, Division of Infectious Diseases, Children's Hospital Boston, Boston, Mass; Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Susceptibility to acute mouse adenovirus type 1 respiratory infection and establishment of protective immunity in neonatal mice. J Virol 2012; 86:4194-203. [PMID: 22345470 DOI: 10.1128/jvi.06967-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
There is an incomplete understanding of the differences between neonatal immune responses that contribute to the increased susceptibility of neonates to some viral infections. We tested the hypothesis that neonates are more susceptible than adults to mouse adenovirus type 1 (MAV-1) respiratory infection and are impaired in the ability to generate a protective immune response against a second infection. Following intranasal infection, lung viral loads were greater in neonates than in adults during the acute phase but the virus was cleared from the lungs of neonates as efficiently as it was from adult lungs. Lung gamma interferon (IFN-γ) responses were blunted and delayed in neonates, and lung viral loads were higher in adult IFN-γ(-/-) mice than in IFN-γ(+/+) controls. However, administration of recombinant IFN-γ to neonates had no effect on lung viral loads. Recruitment of inflammatory cells to the airways was impaired in neonates. CD4 and CD8 T cell responses were similar in the lungs of neonates and adults, although a transient increase in regulatory T cells occurred only in the lungs of infected neonates. Infection of neonates led to protection against reinfection later in life that was associated with increased effector memory CD8 T cells in the lungs. We conclude that neonates are more susceptible than adults to acute MAV-1 respiratory infection but are capable of generating protective immune responses.
Collapse
|
24
|
Abstract
UNLABELLED During foetal development, neonatal period and childhood, the immune system is constantly maturing. In the foetus, infection responsiveness is low and associates with spontaneous abortion. During the neonatal period, the infection response shifts towards a more pro-inflammatory response. The immune system of the newborn acquires adaptive features as a result of exposure to microbes. CONCLUSION The development of the human immune system is a continuous process where both accelerated and retarded development is deleterious.
Collapse
Affiliation(s)
- Sofia Ygberg
- The Institution for Woman and Child Health, Unit of Clinical Pediatrics, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
25
|
Belderbos ME, Houben ML, van Bleek GM, Schuijff L, van Uden NOP, Bloemen-Carlier EM, Kimpen JLL, Eijkemans MJC, Rovers M, Bont LJ. Breastfeeding modulates neonatal innate immune responses: a prospective birth cohort study. Pediatr Allergy Immunol 2012; 23:65-74. [PMID: 22103307 DOI: 10.1111/j.1399-3038.2011.01230.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Neonatal Toll-like receptor (TLR) responses are biased toward Th2-polarizing responses at birth and rapidly mature toward more balanced responses during the first month of life. Postnatal TLR maturation may be guided by environmental exposure. AIMS To determine the environmental determinants of neonatal TLR function. MATERIALS AND METHODS A prospective birth cohort study was performed in 291 healthy term neonates. Mode of delivery, breastfeeding, birth month, siblings, pets and parental smoking were analyzed in relation to neonatal innate immune parameters at the age of 1 month. Whole blood concentrations of innate immune cells were measured by flow cytometry. In vitro TLR-mediated cytokine production was determined by ELISA. RESULTS Breastfeeding was the major determinant of neonatal innate immunity, associated with 5 (31%) of neonatal innate immune parameters, of which the association with TLR7-mediated IL-10 production was most significant (76 pg/ml in breastfed neonates vs. 293 pg/ml in formula-fed neonates, p = 0.001). Of innate immune variables, TLR3-mediated IL-12p70 production was highly associated with environmental exposures (pets, breastfeeding and mode of delivery), whereas TLR9-mediated cytokine responses were not associated with any environmental factor. CONCLUSION Neonatal innate immune responses are differentially modulated by environmental exposure in the first month of life. The protective effect of breastfeeding against subsequent infections and atopy might be explained by its innate immune modulatory effects in the first month of life.
Collapse
Affiliation(s)
- M E Belderbos
- Department of Pediatrics, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Algra SO, Driessen MMP, Schadenberg AWL, Schouten ANJ, Haas F, Bollen CW, Houben ML, Jansen NJG. Bedside prediction rule for infections after pediatric cardiac surgery. Intensive Care Med 2012; 38:474-81. [PMID: 22258564 PMCID: PMC3286511 DOI: 10.1007/s00134-011-2454-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 10/31/2011] [Indexed: 12/20/2022]
Abstract
Purpose Infections after pediatric cardiac surgery are a common complication, occurring in up to 30% of cases. The purpose of this study was to develop a bedside prediction rule to estimate the risk of a postoperative infection. Methods All consecutive pediatric cardiac surgery procedures between April 2006 and May 2009 were retrospectively analyzed. The primary outcome variable was any postoperative infection, as defined by the Center of Disease Control (2008). All variables known to the clinician at the bedside at 48 h post cardiac surgery were included in the primary analysis, and multivariable logistic regression was used to construct a prediction rule. Results A total of 412 procedures were included, of which 102 (25%) were followed by an infection. Most infections were surgical site infections (26% of all infections) and bloodstream infections (25%). Three variables proved to be most predictive of an infection: age less than 6 months, postoperative pediatric intensive care unit (PICU) stay longer than 48 h, and open sternum for longer than 48 h. Translation into prediction rule points yielded 1, 4, and 1 point for each variable, respectively. Patients with a score of 0 had 6.6% risk of an infection, whereas those with a maximal score of 6 had a risk of 57%. The area under the receiver operating characteristic curve was 0.78 (95% confidence interval 0.72–0.83). Conclusions A simple bedside prediction rule designed for use at 48 h post cardiac surgery can discriminate between children at high and low risk for a subsequent infection.
Collapse
Affiliation(s)
- Selma O Algra
- Department of Pediatric Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Standl M, Sausenthaler S, Lattka E, Koletzko S, Bauer CP, Wichmann HE, von Berg A, Berdel D, Krämer U, Schaaf B, Lehmann I, Herbarth O, Klopp N, Koletzko B, Heinrich J. FADS gene cluster modulates the effect of breastfeeding on asthma. Results from the GINIplus and LISAplus studies. Allergy 2012; 67:83-90. [PMID: 21933193 DOI: 10.1111/j.1398-9995.2011.02708.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND The protective effect of breastfeeding (BF) on the development of asthma has been widely recognized, even if not all results have been consistent. Gene variants of the FADS gene cluster have a major impact on fatty acid composition in blood and in breast milk. Therefore, we evaluated the influence of the FADS1 FADS2 gene cluster polymorphisms on the association between BF and asthma. METHODS The analysis was based on data (N=2245) from two German prospective birth cohort studies. Information on asthma and BF during the first 6 months was collected using questionnaires completed by the parents. Logistic regression modelling was used to analyse the association between exclusive BF and ever having asthma stratified by genotype. RESULTS In the stratified analyses, BF for 3 or 4 months after birth had a protective effect for heterozygous and homozygous carriers of the minor allele (adjusted odds ratio between 0.37 (95% CI: 0.18-0.80) and 0.42 (95% CI: 0.20-0.88). Interaction terms of BF with genotype were significant and ranged from -1.17 (P-value: 0.015) to -1.33 (0.0066). Moreover, heterozygous and homozygous carriers of the minor allele who were exclusively breastfed for 5 or 6 months after birth had a reduced risk of asthma [0.32 (0.18-0.57) to 0.47 (0.27-0.81)] in the stratified analyses. For individuals carrying the homozygous major allele, BF showed no significant effect on the development of asthma. CONCLUSIONS The association between exclusive BF and asthma is modified by the genetic variants of FADS genotypes in children.
Collapse
Affiliation(s)
- M Standl
- Helmholtz Zentrum München, German Research Centre for Environmental Health, Institute of Epidemiology I, Ingolstädter Landstrasse 1, Neuherberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The innate immune system consists of multiple cell types that express germline-encoded pattern recognition receptors that recognize pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs). Allergens are frequently found in forms and mixtures that contain PAMPs and DAMPs. The innate immune system is interposed between the external environment and the internal acquired immune system. It is also an integral part of the airways, gut, and skin. These tissues face continuous exposure to allergens, PAMPs, and DAMPs. Interaction of allergens with the innate immune system normally results in immune tolerance but, in the case of allergic disease, this interaction induces recurring and/or chronic inflammation as well as the loss of immunologic tolerance. Upon activation by allergens, the innate immune response commits the acquired immune response to a variety of outcomes mediated by distinct T-cell subsets, such as T-helper 2, regulatory T, or T-helper 17 cells. New studies highlighted in this review underscore the close relationship between allergens, the innate immune system, and the acquired immune system that promotes homeostasis versus allergic disease.
Collapse
Affiliation(s)
- Michael Minnicozzi
- Asthma, Allergy and Inflammation Branch, Division of Allergy, Immunology, and Transplantation, Department of Health and Human Services, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-6601, USA
| | | | | |
Collapse
|
29
|
An overlapping syndrome of allergy and immune deficiency in children. J Allergy (Cairo) 2011; 2012:658279. [PMID: 21918651 PMCID: PMC3171763 DOI: 10.1155/2012/658279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Revised: 05/15/2011] [Accepted: 07/10/2011] [Indexed: 12/13/2022] Open
Abstract
Recurrent airway inflammations in children are an important clinical problem in pediatric practice. An essential challenge is differentiation between allergic background and immune deficiency, which is a difficult task taking into consideration individual predisposition to atopy, immune system maturation in the early childhood, as well as exposition to environmental allergens and microbial antigens. In this paper relationship between selected elements of innate and adaptive immunity, such as pattern-recognition receptors, complement components, dendritic cells, as well as immunoglobulins, and regulatory T lymph cells has been discussed. Particular attention has been paid to these mechanisms of the immune response which, depending on settings and timing of activation, predispose to allergy or contribute to tolerogenic phenotype. In the context of multifactorial conditioning of the innate and adaptive immunity governing the ultimate response and associations between allergy and immune deficiencies, these phenomena should be considered as pathogenetically not precluding, but as an overlapping syndrome.
Collapse
|
30
|
Sun L, Adams AA, Page AE, Betancourt A, Horohov DW. The effect of environment on interferon-gamma production in neonatal foals. Vet Immunol Immunopathol 2011; 143:170-5. [DOI: 10.1016/j.vetimm.2011.06.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 05/19/2011] [Accepted: 06/20/2011] [Indexed: 11/29/2022]
|
31
|
Strickland DH, Holt PG. T regulatory cells in childhood asthma. Trends Immunol 2011; 32:420-7. [PMID: 21798806 DOI: 10.1016/j.it.2011.06.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 05/31/2011] [Accepted: 06/17/2011] [Indexed: 12/20/2022]
Abstract
Asthma is a chronic disease of the airways, most commonly driven by immuno-inflammatory responses to ubiquitous airborne antigens. Epidemiological studies have shown that disease is initiated early in life when the immune and respiratory systems are functionally immature and less able to maintain homeostasis in the face of continuous antigen challenge. Here, we examine the cellular and molecular mechanisms that underlie initial aeroallergen sensitization and the ensuing regulation of secondary responses to inhaled allergens in the airway mucosa. In particular, we focus on how T-regulatory (Treg) cells influence early asthma initiation and the potential of Treg cells as therapeutic targets for drug development in asthma.
Collapse
Affiliation(s)
- Deborah H Strickland
- Telethon Institute for Child Health Research, Centre for Child Health Research, The University of Western Australia, Perth, Australia
| | | |
Collapse
|
32
|
Role of innate immunity in the development of allergy and asthma. Curr Opin Allergy Clin Immunol 2011; 11:127-31. [PMID: 21325945 DOI: 10.1097/aci.0b013e32834487c6] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Asthma is essentially a developmental disease, in which the normal growth and development of the respiratory and immune systems are affected by environmental exposures acting on underlying genetic predispositions. The purpose of this review is to examine the role of innate immunity in the lungs in the development of allergy and asthma. RECENT FINDINGS Both the innate and adaptive arms of the immune system are immature at birth and undergo prolonged periods of postnatal maturation. As such, they are vulnerable to adverse environmental exposures, both before and after birth. Both genetic predispositions and environmentally induced epigenetic changes in gene expression are likely to contribute to the risk of asthma; however, the relative contributions are unclear. Increasing interest is focused on deficient innate responses of the respiratory epithelium to viral infections and how these may increase the risk of asthma. However, definitive proof that these are primary and not secondary effects is lacking. Although most research has concentrated on the role of respiratory viral infections in increasing the asthma risk, the recent suggestion that the lung has a resident bacteriome and potentially important viral-bacterial interactions in the lungs broadens research scope in this area. SUMMARY Classic risk factors for asthma include a family history of asthma and allergies, early and persistent allergic sensitization and viral lower-respiratory infections in early life. However, these factors do not fully explain the risk. Perhaps, the resident pulmonary microbiome and the immune response that this generates during respiratory viral infections will provide the 'missing link' in the epidemiology.
Collapse
|
33
|
Carnieli DS, Yoshioka E, Silva LFF, Lanças T, Arantes FM, Perini A, Martins MA, Saldiva PHN, Dolhnikoff M, Mauad T. Inflammation and remodeling in infantile, juvenile, and adult allergic sensitized mice. Pediatr Pulmonol 2011; 46:650-65. [PMID: 21360835 DOI: 10.1002/ppul.21436] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 12/13/2010] [Accepted: 12/16/2010] [Indexed: 11/09/2022]
Abstract
BACKGROUND Airway structural changes occur early in childhood asthma, but it is unknown whether the development of airway alterations in children is similar to that of adults. We compared inflammation and remodeling parameters in allergic sensitized infantile, juvenile, and adult mice. METHODS Infantile mice (18D) were sensitized with three intraperitoneal injections (i.p.) of ovalbumin (OVA) at days 5 and 7 and challenged with OVA at days 14-16. The 18D1 group received an additional challenge at days 9-11. The juvenile mice (40D) received challenges at days 22-24 and 36-38. Adult mice (100D) were sensitized at days 60-62 and received three inhalations at days 77-79 and 96-98. Animals were submitted to whole body plethysmography. Airway eosinophils, CD3+ T-lymphocytes, IL-5+ cells, mucus content, collagen and reticular fibers density, and smooth muscle thickness were quantified. RESULTS All sensitized animals presented with airway hyperresponsiveness, without differences in eosinophil cell density. The density of CD3+ T-cells was higher in the 100D and 18D1 groups than in the 18D and 40D groups. Infantile sensitized groups demonstrated increased interleukin-5 expression in the airways. Infantile mice demonstrated more mucus in the bronchiolar epithelium than the 40D and 100D mice. The 18D animals demonstrated less collagen than the 18D1 group. Juvenile and adult mice had increased airway smooth muscle thickness when compared to age-matched controls, but no differences were observed in the infantile groups. CONCLUSION We have shown that infantile mice develop inflammatory and structural alterations in the airways that are partially different from those developed in older animals.
Collapse
Affiliation(s)
- Denise S Carnieli
- Department of Pathology, School of Medicine, São Paulo University, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Burl S, Townend J, Njie-Jobe J, Cox M, Adetifa UJ, Touray E, Philbin VJ, Mancuso C, Kampmann B, Whittle H, Jaye A, Flanagan KL, Levy O. Age-dependent maturation of Toll-like receptor-mediated cytokine responses in Gambian infants. PLoS One 2011; 6:e18185. [PMID: 21533209 PMCID: PMC3076452 DOI: 10.1371/journal.pone.0018185] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 02/22/2011] [Indexed: 12/30/2022] Open
Abstract
The global burden of neonatal and infant mortality due to infection is staggering, particularly in resource-poor settings. Early childhood vaccination is one of the major interventions that can reduce this burden, but there are specific limitations to inducing effective immunity in early life, including impaired neonatal leukocyte production of Th1-polarizing cytokines to many stimuli. Characterizing the ontogeny of Toll-like receptor (TLR)-mediated innate immune responses in infants may shed light on susceptibility to infection in this vulnerable age group, and provide insights into TLR agonists as candidate adjuvants for improved neonatal vaccines. As little is known about the leukocyte responses of infants in resource-poor settings, we characterized production of Th1-, Th2-, and anti-inflammatory-cytokines in response to agonists of TLRs 1-9 in whole blood from 120 Gambian infants ranging from newborns (cord blood) to 12 months of age. Most of the TLR agonists induced TNFα, IL-1β, IL-6, and IL-10 in cord blood. The greatest TNFα responses were observed for TLR4, -5, and -8 agonists, the highest being the thiazoloquinoline CLO75 (TLR7/8) that also uniquely induced cord blood IFNγ production. For most agonists, TLR-mediated TNFα and IFNγ responses increased from birth to 1 month of age. TLR8 agonists also induced the greatest production of the Th1-polarizing cytokines TNFα and IFNγ throughout the first year of life, although the relative responses to the single TLR8 agonist and the combined TLR7/8 agonist changed with age. In contrast, IL-1β, IL-6, and IL-10 responses to most agonists were robust at birth and remained stable through 12 months of age. These observations provide fresh insights into the ontogeny of innate immunity in African children, and may inform development of age-specific adjuvanted vaccine formulations important for global health.
Collapse
Affiliation(s)
- Sarah Burl
- Infant Immunology, Medical Research Council (UK) The Gambia, Fajara, The Gambia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Yoon HS. Neonatal innate immunity and Toll-like receptor. KOREAN JOURNAL OF PEDIATRICS 2010; 53:985-8. [PMID: 21253311 PMCID: PMC3021731 DOI: 10.3345/kjp.2010.53.12.985] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 11/30/2010] [Indexed: 01/07/2023]
Abstract
The innate immune response is the first line of defense against microbial infections. Innate immunity is made up of the surface barrier, cellular immunity and humoral immunity. In newborn, immunologic function and demands are different to adults. Neonatal innate immunity specifically suppresses Th1-type immune responses, and not Th2-type immune responses, which are enhanced. And the impaired response of macrophages is associated with the defective innate immunity in newborn period. Toll-like receptors (TLRs) play a key roles in the detection of invading pathogens and in the induction of innate immune responses. In newborn, the expression of TLRs is age dependent, so preterm has low expression of TLRs. Also, there are defects in signaling pathways downstream of TLRs. As a consequence, the defects of TLRs activity cause the susceptibility to infection in the neonatal period.
Collapse
Affiliation(s)
- Hye Sun Yoon
- Department of Pediatrics, Eulji Hospital, Eulji University School of Medicine, Seoul, Korea
| |
Collapse
|
36
|
Bonville CA, Ptaschinski C, Percopo CM, Rosenberg HF, Domachowske JB. Inflammatory responses to acute pneumovirus infection in neonatal mice. Virol J 2010; 7:320. [PMID: 21078159 PMCID: PMC2993675 DOI: 10.1186/1743-422x-7-320] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 11/15/2010] [Indexed: 01/01/2023] Open
Abstract
Background The innate immune responses of neonates differ dramatically from those of adults. Here we examine the acute inflammatory responses of neonatal and weanling mice infected with pneumonia virus of mice (PVM), a rodent pathogen (family Paramyxoviridae, genus Pneumovirus) that replicates the sequelae of severe respiratory syncytial virus infection. Results We demonstrate that virus replication proceeds indistinguishably in all age groups (inoculated at 1, 2, 3 and 4 weeks of age), although inflammatory responses vary in extent and character. Some of the biochemical mediators detected varied minimally with age at inoculation. Most of the mediators evaluated demonstrated elevated expression over baseline correlating directly with age at the time of virus inoculation. Among the latter group are CCL2, CCL3, and IFN-γ, all cytokines previously associated with PVM-induced inflammatory pathology in mature mice. Likewise, we detect neutrophil recruitment to lung tissue in all age groups, but recruitment is most pronounced among the older (3 - 4 week old) mice. Interestingly, all mice exhibit failure to thrive, lagging in expected weight gain for given age, including the youngest mice that present little overt evidence of inflammation. Conclusions Our findings among the youngest mice may explain in part the phenomenon of atypical or minimally symptomatic respiratory infections in human neonates, which may be explored further with this infection model.
Collapse
Affiliation(s)
- Cynthia A Bonville
- Department of Pediatrics, SUNY Upstate Medical University, Syracuse, NY, USA
| | | | | | | | | |
Collapse
|
37
|
Environmental epigenetics of asthma: an update. J Allergy Clin Immunol 2010; 126:453-65. [PMID: 20816181 DOI: 10.1016/j.jaci.2010.07.030] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 07/27/2010] [Accepted: 07/29/2010] [Indexed: 12/29/2022]
Abstract
Asthma, a chronic inflammatory disorder of the airway, is influenced by interplay between genetic and environmental factors now known to be mediated by epigenetics. Aberrant DNA methylation, altered histone modifications, specific microRNA expression, and other chromatin alterations orchestrate a complex early-life reprogramming of immune T-cell response, dendritic cell function, macrophage activation, and a breach of airway epithelial barrier that dictates asthma risk and severity in later life. Adult-onset asthma is under analogous regulation. The sharp increase in asthma prevalence over the past 2 or 3 decades and the large variations among populations of similar racial/ethnic background but different environmental exposures favors a strong contribution of environmental factors. This review addresses the fundamental question of whether environmental influences on asthma risk, severity, and steroid resistance are partly due to differential epigenetic modulations. Current knowledge on the epigenetic effects of tobacco smoke, microbial allergens, oxidants, airborne particulate matter, diesel exhaust particles, polycyclic aromatic hydrocarbons, dietary methyl donors and other nutritional factors, and dust mites is discussed. Exciting findings have been generated by rapid technological advances and well-designed experimental and population studies. The discovery and validation of epigenetic biomarkers linked to exposure, asthma, or both might lead to better epigenotyping of risk, prognosis, treatment prediction, and development of novel therapies.
Collapse
|
38
|
Rohr UD, Gocan AG, Bachg D, Schindler AE. Cancer protection of soy resembles cancer protection during pregnancy. Horm Mol Biol Clin Investig 2010; 3:391-409. [DOI: 10.1515/hmbci.2010.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 11/02/2010] [Indexed: 12/25/2022]
Abstract
AbstractIt has been established that carrying a pregnancy to full-term at an early age can protect against contracting cancer by up to 50% in later life. The trophoblast theory of cancer states that trophoblast and cancer tissue are very similar. New findings suggest that the loss of fetal cells during pregnancy resemble those cells responsible for causing metastasis in cancer. Fetal cells and spreading cancer cells are highly proliferative. They are similar to stem cells, exhibiting no or low hormone receptor expression, and require a hormone receptor independent mechanism for control. Control of membrane stability during pregnancy is of vital importance for a successful pregnancy and is mediated by androstenediol and 2-methoxyestradiol. 2-Methoxyestradiol has no hormone receptor affinity and elicits strong anticancer effects particularly against cancer stem cells and fetal cells, for which currently no treatment has yet been established. There is a discussion whether pregnancy reduces cancer stem cells in the breast. Soy isoflavones are structurally similar to both hormones, and elicit strong anticancer effects and antiangiogenesis via inhibition of NF-κB, even in hormone receptor independent breast cancers seen in epidemiologic studies. The trophoblast theory of cancer could help to explain why soy baby nutrition formulas have no effect on baby physiology, other than the nutritional aspect, although soy elicits many effects on the adult immune system. To survive the immune system of the mother, the immune system of the fetus has to be separated; otherwise, the reduction of the immune system in the mother, a necessary feature for the blastocyst to grow, would immediately reduce the immunity for the fetus and endanger its survival. Similar to a fetus, newly born babies show immune insensitive to Th1 and Th2 cytokines, which are necessary and crucial for regulating the immune system of the mother, thus raising the risk of the baby of developing allergies and neurodermatitis. Gene expression studies in vitro as well as in circulating tumor cells from patients consuming a fermented soy product support the antiangiogenic as well as antiproliferative effects of soy.
Collapse
|