1
|
Wang W, Gao T, Wang Y, Wang R, He M, Wang L, Zhou W, Ding M, Song Y, Ji X, Li X, Song Y, Zhu Y, Zhang Y, Xie Y, Chen Y, Jin Q, Xie M, Zhang L. Macrophage-Tased Dual-Phase T Cell Immunomodulation to Combat Transplant Rejection. Adv Healthc Mater 2025:e2403591. [PMID: 40264278 DOI: 10.1002/adhm.202403591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 03/31/2025] [Indexed: 04/24/2025]
Abstract
Transplant rejection remains a major challenge, driven primarily by the activation of alloreactive T cells. While enhancement of PD-L1 checkpoint molecules has exhibited potential in inhibiting T cell activity, its efficacy is often hindered by limited specificity and inadequate efficiency. Herein, a novel dual-phase immune modulation strategy is developed in which CTLA4-Ig and PD-L1 provide distinct, non-redundant inhibitory signals during the initial activation phase and the post-activation phase of T cells. PD-L1 is stably expressed on macrophages (sPD-L1 M) through lentiviral transduction, allowing them to leverage their chemotactic and antigen-presenting functions to target and deliver PD-L1 to transplant rejection sites. Notably, sPD-L1 M exhibited adaptive targeting capabilities, increasing their migration to grafts in response to heightened rejection. In an allograft skin model, the combined intravenous administration of sPD-L1 M and subcutaneous administration of CTLA4-Ig demonstrated synergistic efficacy, significantly suppressing alloreactive T cell activation, enhancing the recruitment of regulatory T cells (Tregs), downregulating pro-inflammatory cytokines, and prolonging allograft survival compared to either treatment alone. This study presents a promising strategy to effectively suppress T cell activity and prevent allogeneic immune responses without systemic immunosuppression.
Collapse
Affiliation(s)
- Wenyuan Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Tang Gao
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yihui Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Rui Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Mengrong He
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Lufang Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Wuqi Zhou
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Mengdan Ding
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yuan Song
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Xiang Ji
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Xueke Li
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yishu Song
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Ye Zhu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yiwei Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yuji Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yan Chen
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Qiaofeng Jin
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Mingxing Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Li Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| |
Collapse
|
2
|
Zhang B, Ji W, Wang D, Chen G, Xiong W, Qi F. Gbp2 driving macrophages dynamics in murine heart transplant. Tissue Cell 2025; 93:102695. [PMID: 39709712 DOI: 10.1016/j.tice.2024.102695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND AND OBJECTIVE Organ transplantation is a vital treatment for patients with end-stage organ diseases, and macrophages play a key role in the rejection process. This study seeks to pinpoint key genes responsible for the dynamic changes in macrophages during rejection and to evaluate their impact on macrophage polarization through bioinformatics analysis. METHODS We selected single-cell sequencing data of mouse heart transplant models from Genome Sequence Archive to construct a dynamic landscape of immune cells during acute rejection. Key genes involved in macrophage changes were screened using pseudotime analysis and hdWGCNA. The mouse heart transplant models also were established to validate changes of the key genes during rejection. RESULTS Bioinformatics analysis identified Gbp2 as the key gene driving macrophage dynamics during rejection, which was also confirmed in another dataset showed Gbp2 levels increased in macrophages during acute rejection. Further experiments validated the upregulation of Gbp2 in both tissues and macrophages during acute rejection, and in vitro experiments confirmed Gbp2 increasing in M1 macrophages. CONCLUSION Gbp2 is a key gene that regulates macrophage polarization during acute rejection, making it a potential therapeutic target for the acute rejection.
Collapse
Affiliation(s)
- Baotong Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China; Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| | - Wenbin Ji
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China; Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| | - Duowei Wang
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China; Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| | - Guoshan Chen
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China; Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| | - Wenhao Xiong
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China; Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, No. 154, Anshan Road, Heping District, Tianjin 300052, China
| | - Feng Qi
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin 300052, China; Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, No. 154, Anshan Road, Heping District, Tianjin 300052, China.
| |
Collapse
|
3
|
Song Y, Wang Y, Wang W, Xie Y, Zhang J, Liu J, Jin Q, Wu W, Li H, Wang J, Zhang L, Yang Y, Gao T, Xie M. Advancements in noninvasive techniques for transplant rejection: from biomarker detection to molecular imaging. J Transl Med 2025; 23:147. [PMID: 39901268 PMCID: PMC11792214 DOI: 10.1186/s12967-024-05964-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/11/2024] [Indexed: 02/05/2025] Open
Abstract
Transplant rejection remains a significant barrier to the long-term success of organ transplantation. Biopsy, although considered the gold standard, is invasive, costly, and unsuitable for routine monitoring. Traditional biomarkers, such as creatinine and troponin, offer limited predictive value owing to their low specificity, and conventional imaging techniques often fail to detect early organ damage, increasing the risk of undiagnosed rejection episodes. Considering these limitations, emerging noninvasive biomarkers and molecular imaging techniques hold promise for the early and accurate detection of transplant rejection, enabling personalized management strategies. This review highlights noninvasive biomarkers that predict, diagnose, and assess transplant prognosis by reflecting graft injury, inflammation, and immune responses. For example, donor-derived cell-free DNA (dd-cfDNA) is highly sensitive in detecting early graft injury, whereas gene expression profiling effectively excludes moderate-to-severe acute rejection (AR). Additionally, microRNA (miRNA) profiling enhances the diagnostic specificity for precise AR detection. Advanced molecular imaging techniques further augment the monitoring of rejection. Fluorescence imaging provides a high spatiotemporal resolution for AR grading, ultrasound offers real-time and portable monitoring, and magnetic resonance delivers high tissue contrast for anatomical assessments. Nuclear imaging modalities such as single photon emission computed tomography and positron emission tomography, enable dynamic visualization of immune responses within transplanted organs. Notably, dd-cfDNA and nuclear medicine imaging have already been integrated into clinical practice, thereby demonstrating the translational potential of these techniques. Unlike previous reviews, this work uniquely synthesizes advancements in both noninvasive biomarkers and molecular imaging, emphasizing their complementary strengths. Biomarkers deliver molecular-level insights, whereas imaging provides spatial and temporal resolution. Together, they create a synergistic framework for comprehensive and precise transplant monitoring. By bridging these domains, this review underscores their individual contributions and collective potential to enhance diagnostic accuracy, improve patient outcomes, and guide future research and clinical applications in transplant medicine.
Collapse
Affiliation(s)
- Yuan Song
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yihui Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Wenyuan Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yuji Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Junmin Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Jing Liu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Qiaofeng Jin
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Wenqian Wu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - He Li
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Jing Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Li Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518029, China
| | - Yali Yang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China.
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| | - Tang Gao
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China.
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| | - Mingxing Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China.
- Clinical Research Center for Medical Imaging in Hubei Province, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518029, China.
| |
Collapse
|
4
|
Cui Y, Hackett RG, Ascue J, Muralidaran V, Patil D, Kang J, Kaufman SS, Khan K, Kroemer A. Innate and Adaptive Immune Responses in Intestinal Transplant Rejection: Through the Lens of Inflammatory Bowel and Intestinal Graft-Versus-Host Diseases. Gastroenterol Clin North Am 2024; 53:359-382. [PMID: 39068000 DOI: 10.1016/j.gtc.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Intestinal transplantation is a life-saving procedure utilized for patients failing total parenteral nutrition. However, intestinal transplantattion remains plagued with low survival rates and high risk of allograft rejection. The authors explore roles of innate (macrophages, natural killer cells, innate lymphoid cells) and adaptive immune cells (Th1, Th2, Th17, Tregs) in inflammatory responses, particularly inflammatory bowel disease and graft versus host disease, and correlate these findings to intestinal allograft rejection, highlighting which effectors exacerbate or suppress intestinal rejection. Better understanding of this immunology can open further investigation into potential biomolecular targets to develop improved therapeutic treatment options and immunomonitoring techniques to combat allograft rejection and enhance patient lives.
Collapse
Affiliation(s)
- Yuki Cui
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Ryan G Hackett
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Jhalen Ascue
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Vinona Muralidaran
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Digvijay Patil
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Jiman Kang
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA; Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA
| | - Stuart S Kaufman
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Khalid Khan
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Alexander Kroemer
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
5
|
Nevarez-Mejia J, Jin YP, Pickering H, Parmar R, Valenzuela NM, Sosa RA, Heidt S, Fishbein GA, Rozengurt E, Baldwin WM, Fairchild RL, Reed EF. Human leukocyte antigen class I antibody-activated endothelium promotes CD206+ M2 macrophage polarization and MMP9 secretion through TLR4 signaling and P-selectin in a model of antibody-mediated rejection and allograft vasculopathy. Am J Transplant 2024; 24:406-418. [PMID: 38379280 PMCID: PMC11110958 DOI: 10.1016/j.ajt.2023.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/03/2023] [Accepted: 10/24/2023] [Indexed: 02/22/2024]
Abstract
HLA donor-specific antibodies (DSA) elicit alloimmune responses against the graft vasculature, leading to endothelial cell (EC) activation and monocyte infiltration during antibody-mediated rejection (AMR). AMR promotes chronic inflammation and remodeling, leading to thickening of the arterial intima termed transplant vasculopathy or cardiac allograft vasculopathy (CAV) in heart transplants. Intragraft-recipient macrophages serve as a diagnostic marker in AMR; however, their polarization and function remain unclear. In this study, we utilized an in vitro Transwell coculture system to explore the mechanisms of monocyte-to-macrophage polarization induced by HLA I DSA-activated ECs. Anti-HLA I (IgG or F(ab')2) antibody-activated ECs induced the polarization of M2 macrophages with increased CD206 expression and MMP9 secretion. However, inhibition of TLR4 signaling or PSGL-1-P-selectin interactions significantly decreased both CD206 and MMP9. Monocyte adherence to Fc-P-selectin coated plates induced M2 macrophages with increased CD206 and MMP9. Moreover, Fc-receptor and IgG interactions synergistically enhanced active-MMP9 in conjunction with P-selectin. Transcriptomic analysis of arteries from DSA+CAV+ rejected cardiac allografts and multiplex-immunofluorescent staining illustrated the expression of CD68+CD206+CD163+MMP9+ M2 macrophages within the neointima of CAV-affected lesions. These findings reveal a novel mechanism linking HLA I antibody-activated endothelium to the generation of M2 macrophages which secrete vascular remodeling proteins contributing to AMR and CAV pathogenesis.
Collapse
Affiliation(s)
- Jessica Nevarez-Mejia
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA
| | - Yi-Ping Jin
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA
| | - Harry Pickering
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA
| | - Rajesh Parmar
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA
| | - Nicole M Valenzuela
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA
| | - Rebecca A Sosa
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA
| | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Gregory A Fishbein
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA
| | - Enrique Rozengurt
- Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, California, USA
| | - William M Baldwin
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland Clinic, Ohio, USA
| | - Robert L Fairchild
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland Clinic, Ohio, USA
| | - Elaine F Reed
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA.
| |
Collapse
|
6
|
Fang XH, Li ZJ, Liu CY, Mor G, Liao AH. Macrophage memory: Types, mechanisms, and its role in health and disease. Immunology 2024; 171:18-30. [PMID: 37702350 DOI: 10.1111/imm.13697] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023] Open
Abstract
On the basis of the mechanisms of action and characteristics of immune effects, immunity is commonly categorized into innate and adaptive immunity. Adaptive immunity is associated with the response to non-self-entities and is characterized by high specificity and memory properties. In contrast, innate immunity has traditionally been considered devoid of memory characteristics. However, an increasing number of studies have sought to challenge this conventional immunological dogma and shown that innate immune cells exhibit a more robust and rapid response to secondary stimulation, thus providing evidence of the immunological memory in innate immunity. Macrophages, which are among the most important innate immune cells, can also acquire memory phenotype that facilitates the mediation of recall responses. Macrophage memory is a relatively new concept that is revolutionizing our understanding of macrophage biology and immunological memory and could lead to a new class of vaccines and immunotherapies. In this review, we describe the characteristics and mechanisms of macrophage memory, as well as its essential roles in various diseases.
Collapse
Affiliation(s)
- Xu-Hui Fang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Zhi-Jing Li
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Chun-Yan Liu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Gil Mor
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Ai-Hua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
7
|
Vichare R, Crelli C, Liu L, Das AC, McCallin R, Zor F, Kulahci Y, Gorantla VS, Janjic JM. A Reversibly Thermoresponsive, Theranostic Nanoemulgel for Tacrolimus Delivery to Activated Macrophages: Formulation and In Vitro Validation. Pharmaceutics 2023; 15:2372. [PMID: 37896130 PMCID: PMC10610217 DOI: 10.3390/pharmaceutics15102372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Despite long-term immunosuppression, organ transplant recipients face the risk of immune rejection and graft loss. Tacrolimus (TAC, FK506, Prograf®) is an FDA-approved keystone immunosuppressant for preventing transplant rejection. However, it undergoes extensive first-pass metabolism and has a narrow therapeutic window, which leads to erratic bioavailability and toxicity. Local delivery of TAC directly into the graft, instead of systemic delivery, can improve safety, efficacy, and tolerability. Macrophages have emerged as promising therapeutic targets as their increased levels correlate with an increased risk of organ rejection and a poor prognosis post-transplantation. Here, we present a locally injectable drug delivery platform for macrophages, where TAC is incorporated into a colloidally stable nanoemulsion and then formulated as a reversibly thermoresponsive, pluronic-based nanoemulgel (NEG). This novel formulation is designed to undergo a sol-to-gel transition at physiological temperature to sustain TAC release in situ at the site of local application. We also show that TAC-NEG mitigates the release of proinflammatory cytokines and nitric oxide from lipopolysaccharide (LPS)-activated macrophages. To the best of our knowledge, this is the first TAC-loaded nanoemulgel with demonstrated anti-inflammatory effects on macrophages in vitro.
Collapse
Affiliation(s)
- Riddhi Vichare
- School of Pharmacy, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA; (R.V.); (C.C.); (L.L.); (A.C.D.); (R.M.)
| | - Caitlin Crelli
- School of Pharmacy, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA; (R.V.); (C.C.); (L.L.); (A.C.D.); (R.M.)
| | - Lu Liu
- School of Pharmacy, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA; (R.V.); (C.C.); (L.L.); (A.C.D.); (R.M.)
| | - Amit Chandra Das
- School of Pharmacy, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA; (R.V.); (C.C.); (L.L.); (A.C.D.); (R.M.)
| | - Rebecca McCallin
- School of Pharmacy, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA; (R.V.); (C.C.); (L.L.); (A.C.D.); (R.M.)
| | - Fatih Zor
- Wake Forest School of Medicine, Wake Forest Institute of Regenerative Medicine, Winston Salem, NC 27101, USA; (F.Z.); (Y.K.); (V.S.G.)
| | - Yalcin Kulahci
- Wake Forest School of Medicine, Wake Forest Institute of Regenerative Medicine, Winston Salem, NC 27101, USA; (F.Z.); (Y.K.); (V.S.G.)
| | - Vijay S. Gorantla
- Wake Forest School of Medicine, Wake Forest Institute of Regenerative Medicine, Winston Salem, NC 27101, USA; (F.Z.); (Y.K.); (V.S.G.)
| | - Jelena M. Janjic
- School of Pharmacy, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA; (R.V.); (C.C.); (L.L.); (A.C.D.); (R.M.)
| |
Collapse
|
8
|
Wen N, Wu J, Li H, Liao J, Lan L, Yang X, Zhu G, Lei Z, Dong J, Sun X. Immune landscape in rejection of renal transplantation revealed by high-throughput single-cell RNA sequencing. Front Cell Dev Biol 2023; 11:1208566. [PMID: 37547477 PMCID: PMC10397399 DOI: 10.3389/fcell.2023.1208566] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023] Open
Abstract
Background: The role of the cellular level in kidney transplant rejection is unclear, and single-cell RNA sequencing (scRNA-seq) can reveal the single-cell landscape behind rejection of human kidney allografts at the single-cell level. Methods: High-quality transcriptomes were generated from scRNA-seq data from five human kidney transplantation biopsy cores. Cluster analysis was performed on the scRNA-seq data by known cell marker genes in order to identify different cell types. In addition, pathways, pseudotime developmental trajectories and transcriptional regulatory networks involved in different cell subpopulations were explored. Next, we systematically analyzed the scoring of gene sets regarding single-cell expression profiles based on biological processes associated with oxidative stress. Results: We obtained 81,139 single cells by scRNA-seq from kidney transplant tissue biopsies of three antibody-mediated rejection (ABMR) patients and two acute kidney injury (AKI) patients with non-rejection causes and identified 11 cell types, including immune cells, renal cells and several stromal cells. Immune cells such as macrophages showed inflammatory activation and antigen presentation and complement signaling, especially in rejection where some subpopulations of cells specifically expressed in rejection showed specific pro-inflammatory responses. In addition, patients with rejection are characterized by an increased number of fibroblasts, and further analysis of subpopulations of fibroblasts revealed their involvement in inflammatory and fibrosis-related pathways leading to increased renal rejection and fibrosis. Notably, the gene set score for response to oxidative stress was higher in patients with rejection. Conclusion: Insight into histological differences in kidney transplant patients with or without rejection was gained by assessing differences in cellular levels at single-cell resolution. In conclusion, we applied scRNA-seq to rejection after renal transplantation to deconstruct its heterogeneity and identify new targets for personalized therapeutic approaches.
Collapse
Affiliation(s)
- Ning Wen
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, China
- Guangxi Clinical Research Center for Organ Transplantation, Nanning, China
| | - Jihua Wu
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, China
- Guangxi Clinical Research Center for Organ Transplantation, Nanning, China
| | - Haibin Li
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, China
- Guangxi Clinical Research Center for Organ Transplantation, Nanning, China
| | - Jixiang Liao
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liugen Lan
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiawei Yang
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guangyi Zhu
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhiying Lei
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jianhui Dong
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xuyong Sun
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, China
- Guangxi Clinical Research Center for Organ Transplantation, Nanning, China
| |
Collapse
|
9
|
Knoedler L, Knoedler S, Panayi AC, Lee CAA, Sadigh S, Huelsboemer L, Stoegner VA, Schroeter A, Kern B, Mookerjee V, Lian CG, Tullius SG, Murphy GF, Pomahac B, Kauke-Navarro M. Cellular activation pathways and interaction networks in vascularized composite allotransplantation. Front Immunol 2023; 14:1179355. [PMID: 37266446 PMCID: PMC10230044 DOI: 10.3389/fimmu.2023.1179355] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Vascularized composite allotransplantation (VCA) is an evolving field of reconstructive surgery that has revolutionized the treatment of patients with devastating injuries, including those with limb losses or facial disfigurement. The transplanted units are typically comprised of different tissue types, including skin, mucosa, blood and lymphatic vasculature, muscle, and bone. It is widely accepted that the antigenicity of some VCA components, such as skin, is particularly potent in eliciting a strong recipient rejection response following transplantation. The fine line between tolerance and rejection of the graft is orchestrated by different cell types, including both donor and recipient-derived lymphocytes, macrophages, and other immune and donor-derived tissue cells (e.g., endothelium). Here, we delineate the role of different cell and tissue types during VCA rejection. Rejection of VCA grafts and the necessity of life-long multidrug immunosuppression remains one of the major challenges in this field. This review sheds light on recent developments in decoding the cellular signature of graft rejection in VCA and how these may, ultimately, influence the clinical management of VCA patients by way of novel therapies that target specific cellular processes.
Collapse
Affiliation(s)
- Leonard Knoedler
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Samuel Knoedler
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Adriana C. Panayi
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Catherine A. A. Lee
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Sam Sadigh
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Lioba Huelsboemer
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Viola A. Stoegner
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Burn Center, Hannover Medical School, Hannover, Germany
| | - Andreas Schroeter
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Burn Center, Hannover Medical School, Hannover, Germany
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Barbara Kern
- Department of Plastic Surgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Vikram Mookerjee
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Christine G. Lian
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Stefan G. Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - George F. Murphy
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Bohdan Pomahac
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Martin Kauke-Navarro
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
10
|
Lackner K, Ebner S, Watschinger K, Maglione M. Multiple Shades of Gray-Macrophages in Acute Allograft Rejection. Int J Mol Sci 2023; 24:8257. [PMID: 37175964 PMCID: PMC10179242 DOI: 10.3390/ijms24098257] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Long-term results following solid organ transplantation do not mirror the excellent short-term results achieved in recent decades. It is therefore clear that current immunosuppressive maintenance protocols primarily addressing the adaptive immune system no longer meet the required clinical need. Identification of novel targets addressing this shortcoming is urgently needed. There is a growing interest in better understanding the role of the innate immune system in this context. In this review, we focus on macrophages, which are known to prominently infiltrate allografts and, during allograft rejection, to be involved in the surge of the adaptive immune response by expression of pro-inflammatory cytokines and direct cytotoxicity. However, this active participation is janus-faced and unspecific targeting of macrophages may not consider the different subtypes involved. Under this premise, we give an overview on macrophages, including their origins, plasticity, and important markers. We then briefly describe their role in acute allograft rejection, which ranges from sustaining injury to promoting tolerance, as well as the impact of maintenance immunosuppressants on macrophages. Finally, we discuss the observed immunosuppressive role of the vitamin-like compound tetrahydrobiopterin and the recent findings that suggest the innate immune system, particularly macrophages, as its target.
Collapse
Affiliation(s)
- Katharina Lackner
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.L.); (S.E.)
| | - Susanne Ebner
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.L.); (S.E.)
| | - Katrin Watschinger
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Manuel Maglione
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (K.L.); (S.E.)
- Department of Visceral, Transplant, and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
11
|
Zhang D, Liu Y, Ma J, Xu Z, Duan C, Wang Y, Li X, Han J, Zhuang R. Competitive binding of CD226/TIGIT with PVR regulates macrophage polarization and is involved in vascularized skin graft rejection. Am J Transplant 2023:S1600-6135(23)00404-5. [PMID: 37054890 DOI: 10.1016/j.ajt.2023.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/15/2023]
Abstract
End-stage organ failure often requires solid organ transplantation. Nevertheless, transplant rejection remains an unresolved issue. The induction of donor-specific tolerance is the ultimate goal in transplantation research. Here, an allograft vascularized skin rejection model using BALB/c-C57/BL6 mice was established to evaluate the regulation of the poliovirus receptor signaling pathway via CD226 knockout (KO) or TIGIT-Fc recombinant protein treatment. In the TIGIT-Fc-treated and CD226KO groups, graft survival time was significantly prolonged, with a Treg cell proportion increase and M2-type macrophage polarization. Donor-reactive recipient T cells became hyporesponsive while responding normally after a third-party antigen challenge. In both groups, serum IL-1β, IL-6, IL-12p70, IL-17A, TNF-α, IFN-γ, and monocyte chemoattractant protein-1 levels decreased, and the IL-10 level increased. In vitro, M2 markers, such as Arg1 and IL-10, were markedly increased by TIGIT-Fc, whereas iNOS, IL-1β, IL-6, IL-12p70, TNF-α, and IFN-γ levels decreased. CD226-Fc had the opposite effect. TIGIT suppressed Th1 and Th17 differentiation by inhibiting macrophage SHP-1 phosphorylation and enhanced ERK1/2-MSK1 phosphorylation and nuclear translocation of CREB. In conclusion, CD226 and TIGIT competitively bind to PVR with activating and inhibitory functions, respectively. Mechanistically, TIGIT promotes IL-10 transcription from macrophages by activating the ERK1/2-MSK1-CREB pathway and enhancing M2-type polarization. CD226/TIGIT-PVR are crucial regulatory molecules of allograft rejection.
Collapse
Affiliation(s)
- Dongliang Zhang
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China; Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yitian Liu
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jingchang Ma
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhigang Xu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Chujun Duan
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yuling Wang
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xuemei Li
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Juntao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Ran Zhuang
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
12
|
Chen Y, Zhu Y, Kramer A, Fang Y, Wilson M, Li YR, Yang L. Genetic engineering strategies to enhance antitumor reactivity and reduce alloreactivity for allogeneic cell-based cancer therapy. Front Med (Lausanne) 2023; 10:1135468. [PMID: 37064017 PMCID: PMC10090359 DOI: 10.3389/fmed.2023.1135468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/09/2023] [Indexed: 03/31/2023] Open
Abstract
The realm of cell-based immunotherapy holds untapped potential for the development of next-generation cancer treatment through genetic engineering of chimeric antigen receptor (CAR)-engineered T (CAR-T) cell therapies for targeted eradication of cancerous malignancies. Such allogeneic "off-the-shelf" cell products can be advantageously manufactured in large quantities, stored for extended periods, and easily distributed to treat an exponential number of cancer patients. At current, patient risk of graft-versus-host disease (GvHD) and host-versus-graft (HvG) allorejection severely restrict the development of allogeneic CAR-T cell products. To address these limitations, a variety of genetic engineering strategies have been implemented to enhance antitumor efficacy, reduce GvHD and HvG onset, and improve the overall safety profile of T-cell based immunotherapies. In this review, we summarize these genetic engineering strategies and discuss the challenges and prospects these approaches provide to expedite progression of translational and clinical studies for adoption of a universal cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Yuning Chen
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yichen Zhu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Adam Kramer
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ying Fang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Matthew Wilson
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
13
|
Ochando J, Mulder WJM, Madsen JC, Netea MG, Duivenvoorden R. Trained immunity - basic concepts and contributions to immunopathology. Nat Rev Nephrol 2023; 19:23-37. [PMID: 36253509 PMCID: PMC9575643 DOI: 10.1038/s41581-022-00633-5] [Citation(s) in RCA: 141] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2022] [Indexed: 02/08/2023]
Abstract
Trained immunity is a functional state of the innate immune response and is characterized by long-term epigenetic reprogramming of innate immune cells. This concept originated in the field of infectious diseases - training of innate immune cells, such as monocytes, macrophages and/or natural killer cells, by infection or vaccination enhances immune responses against microbial pathogens after restimulation. Although initially reported in circulating monocytes and tissue macrophages (termed peripheral trained immunity), subsequent findings indicate that immune progenitor cells in the bone marrow can also be trained (that is, central trained immunity), which explains the long-term innate immunity-mediated protective effects of vaccination against heterologous infections. Although trained immunity is beneficial against infections, its inappropriate induction by endogenous stimuli can also lead to aberrant inflammation. For example, in systemic lupus erythematosus and systemic sclerosis, trained immunity might contribute to inflammatory activity, which promotes disease progression. In organ transplantation, trained immunity has been associated with acute rejection and suppression of trained immunity prolonged allograft survival. This novel concept provides a better understanding of the involvement of the innate immune response in different pathological conditions, and provides a new framework for the development of therapies and treatment strategies that target epigenetic and metabolic pathways of the innate immune system.
Collapse
Affiliation(s)
- Jordi Ochando
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Transplant Immunology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain.
| | - Willem J. M. Mulder
- grid.6852.90000 0004 0398 8763Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands ,grid.59734.3c0000 0001 0670 2351Biomedical Engineering and Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Joren C. Madsen
- grid.32224.350000 0004 0386 9924Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA USA ,grid.32224.350000 0004 0386 9924Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA USA
| | - Mihai G. Netea
- grid.10417.330000 0004 0444 9382Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands ,grid.10388.320000 0001 2240 3300Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Raphaël Duivenvoorden
- Biomedical Engineering and Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
14
|
Roushansarai NS, Pascher A, Becker F. Innate Immune Cells during Machine Perfusion of Liver Grafts-The Janus Face of Hepatic Macrophages. J Clin Med 2022; 11:jcm11226669. [PMID: 36431146 PMCID: PMC9696117 DOI: 10.3390/jcm11226669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022] Open
Abstract
Machine perfusion is an emerging technology in the field of liver transplantation. While machine perfusion has now been implemented in clinical routine throughout transplant centers around the world, a debate has arisen regarding its concurrent effect on the complex hepatic immune system during perfusion. Currently, our understanding of the perfusion-elicited processes involving innate immune cells remains incomplete. Hepatic macrophages (Kupffer cells) represent a special subset of hepatic immune cells with a dual pro-inflammatory, as well as a pro-resolving and anti-inflammatory, role in the sequence of ischemia-reperfusion injury. The purpose of this review is to provide an overview of the current data regarding the immunomodulatory role of machine perfusion and to emphasize the importance of macrophages for hepatic ischemia-reperfusion injury.
Collapse
|
15
|
Muacevic A, Adler JR. Classic and Current Opinions in Human Organ and Tissue Transplantation. Cureus 2022; 14:e30982. [PMID: 36337306 PMCID: PMC9624478 DOI: 10.7759/cureus.30982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2022] [Indexed: 11/30/2022] Open
Abstract
Graft tolerance is a pathophysiological condition heavily reliant on the dynamic interaction of the innate and adaptive immune systems. Genetic polymorphism determines immune responses to tissue/organ transplantation, and intricate humoral and cell-mediated mechanisms control these responses. In transplantation, the clinician's goal is to achieve a delicate equilibrium between the allogeneic immune response, undesired effects of the immunosuppressive drugs, and the existing morbidities that are potentially life-threatening. Transplant immunopathology involves sensitization, effector, and apoptosis phases which recruit and engages immunological cells like natural killer cells, lymphocytes, neutrophils, and monocytes. Similarly, these cells are involved in the transfer of normal or genetically engineered T cells. Advances in tissue transplantation would involve a profound knowledge of the molecular mechanisms that underpin the respective immunopathology involved and the design of precision medicines that are safe and effective.
Collapse
|
16
|
Immune response associated with ischemia and reperfusion injury during organ transplantation. Inflamm Res 2022; 71:1463-1476. [PMID: 36282292 PMCID: PMC9653341 DOI: 10.1007/s00011-022-01651-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 12/03/2022] Open
Abstract
Background Ischemia and reperfusion injury (IRI) is an ineluctable immune-related pathophysiological process during organ transplantation, which not only causes a shortage of donor organs, but also has long-term and short-term negative consequences on patients. Severe IRI-induced cell death leads to the release of endogenous substances, which bind specifically to receptors on immune cells to initiate an immune response. Although innate and adaptive immunity have been discovered to play essential roles in IRI in the context of organ transplantation, the pathway and precise involvement of the immune response at various stages has not yet to be elucidated. Methods We combined “IRI” and “organ transplantation” with keywords, respectively such as immune cells, danger signal molecules, macrophages, neutrophils, natural killer cells, complement cascade, T cells or B cells in PubMed and the Web of Science to search for relevant literatures. Conclusion Comprehension of the immune mechanisms involved in organ transplantation is promising for the treatment of IRI, this review summarizes the similarities and differences in both innate and adaptive immunity and advancements in the immune response associated with IRI during diverse organ transplantation.
Collapse
|
17
|
van Alem CMA, Bank JR, de Vries DK, Bajema IM, Mallat MJK, de Fijter JW, Rotmans JI, van Kooten C. Presence of CD163 + macrophages in DCD kidneys with high DGF reduces the risk for acute cellular rejection in 6 months after kidney transplantation. Transpl Immunol 2022; 75:101714. [PMID: 36108808 DOI: 10.1016/j.trim.2022.101714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 11/19/2022]
Abstract
Acute cellular rejection (ACR) occurs in 10% of renal allograft recipients and is characterized by leukocyte infiltration as observed in needle biopsies. ACR onset is subject to several risk factors, including delayed graft function (DGF). As the impact of DGF on the etiology of ACR remains unclear, this study analyzed the association between presence of leukocyte subsets and ACR onset, in DCD kidney biopsies with extensive DGF following transplantation. Immunohistochemical analysis of protocol biopsies taken 10 days after kidney transplantation revealed that patients with high levels of renal CD163+ macrophages have a decreased risk (OR = 0.021, P = 0.008) for ACR in the first 6 months after transplantation. In pre-transplant biopsies of a comparable DCD cohort, with >80% DGF, presence of donor CD163+ macrophages showed no effect on ACR risk. Therefore, leukocyte infiltrate present during the inflammatory response at the time of DGF may contain anti-inflammatory macrophages that exert a protective effect against ACR development.
Collapse
Affiliation(s)
- C M A van Alem
- Department of Internal Medicine, Nephrology Section, Leiden University Medical Center, Leiden, the Netherlands
| | - J R Bank
- Department of Internal Medicine, Nephrology Section, Leiden University Medical Center, Leiden, the Netherlands
| | - D K de Vries
- Transplant Center, Leiden University Medical Center, Leiden, the Netherlands; Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - I M Bajema
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - M J K Mallat
- Department of Internal Medicine, Nephrology Section, Leiden University Medical Center, Leiden, the Netherlands; Transplant Center, Leiden University Medical Center, Leiden, the Netherlands
| | - J W de Fijter
- Department of Internal Medicine, Nephrology Section, Leiden University Medical Center, Leiden, the Netherlands
| | - J I Rotmans
- Department of Internal Medicine, Nephrology Section, Leiden University Medical Center, Leiden, the Netherlands
| | - C van Kooten
- Department of Internal Medicine, Nephrology Section, Leiden University Medical Center, Leiden, the Netherlands; Transplant Center, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
18
|
Chai H, Lei Z, Liu Y, Gong J, Cao Z, Huang Z, Yang H, Wu Z. miR-505-5p alleviates acute rejection of liver transplantation by inhibiting Myd88 and inducing M2 polarizationof Kupffer cells. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1148-1158. [PMID: 35959879 PMCID: PMC9828294 DOI: 10.3724/abbs.2022100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 06/08/2022] [Indexed: 11/25/2022] Open
Abstract
The occurrence of acute rejection after liver transplantation seriously impairs the prognosis of patients. miRNA is involved in many physiological and pathological processes of the body, but the mechanism of miRNA action in liver transplantation is not completely clear. In this study, we discuss the role of miR-505-5p in acute rejection after liver transplantation and its putative regulating mechanism. We construct an allogeneic rat liver transplantation model, observe the morphological and pathological changes in liver tissue, detect the expression levels of Myd88, miR-505-5p, IL-10 and TNF-α, and confirm that Myd88 is one of the direct targets of miR-505. The effects of miR-505-5p on the Myd88/TRAF6/NF-κB and MAPK pathways are detected both in vitro and in vivo, and the standard markers of Kupffer cell M1/M2 polarization are also detected. The results of qRT-PCR experiments show that miR-505-5p has a downward trend in rats with acute rejection. Western blot analysis reveals that over-expression of miR-505-5p induces the reduction of NF-κB and MAPK pathways both in vitro and in vivo. The role of miR-505-5p in alleviating acute rejection after transplantation may be accomplished by inducing M2-type polarization of Kupffer cells. In conclusion, we find that miR-505-5p alleviates acute rejection of liver transplantation by inducing M2 polarization of macrophages via the Myd88/TRAF6 axis, which suggests a potential strategy based on miRNAs in the follow-up treatment of liver transplantation.
Collapse
Affiliation(s)
- Hao Chai
- Department of Hepatobiliary Surgerythe First Affiliated Hospital of Chongqing Medical UniversityChongqing400042China
| | - Zilun Lei
- Department of Hepatobiliary Surgerythe First Affiliated Hospital of Chongqing Medical UniversityChongqing400042China
| | - Yanyao Liu
- Department of Hepatobiliary Surgerythe First Affiliated Hospital of Chongqing Medical UniversityChongqing400042China
| | - Junhua Gong
- Department of Hepatobiliary Surgerythe First Affiliated Hospital of Chongqing Medical UniversityChongqing400042China
| | - Zhenrui Cao
- Department of Hepatobiliary Surgerythe First Affiliated Hospital of Chongqing Medical UniversityChongqing400042China
| | - Zuotian Huang
- Department of Hepatobiliary Surgerythe First Affiliated Hospital of Chongqing Medical UniversityChongqing400042China
| | - Hang Yang
- Department of Hepatobiliary Surgerythe First Affiliated Hospital of Chongqing Medical UniversityChongqing400042China
| | - Zhongjun Wu
- Department of Hepatobiliary Surgerythe First Affiliated Hospital of Chongqing Medical UniversityChongqing400042China
| |
Collapse
|
19
|
Miller CL, O JM, Allan JS, Madsen JC. Novel approaches for long-term lung transplant survival. Front Immunol 2022; 13:931251. [PMID: 35967365 PMCID: PMC9363671 DOI: 10.3389/fimmu.2022.931251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Allograft failure remains a major barrier in the field of lung transplantation and results primarily from acute and chronic rejection. To date, standard-of-care immunosuppressive regimens have proven unsuccessful in achieving acceptable long-term graft and patient survival. Recent insights into the unique immunologic properties of lung allografts provide an opportunity to develop more effective immunosuppressive strategies. Here we describe advances in our understanding of the mechanisms driving lung allograft rejection and highlight recent progress in the development of novel, lung-specific strategies aimed at promoting long-term allograft survival, including tolerance.
Collapse
Affiliation(s)
- Cynthia L. Miller
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
| | - Jane M. O
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
| | - James S. Allan
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| | - Joren C. Madsen
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
- Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
20
|
Matthaiou EI, Chiu W, Conrad C, Hsu J. Macrophage Lysosomal Alkalinization Drives Invasive Aspergillosis in a Mouse Cystic Fibrosis Model of Airway Transplantation. J Fungi (Basel) 2022; 8:751. [PMID: 35887506 PMCID: PMC9321820 DOI: 10.3390/jof8070751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 01/25/2023] Open
Abstract
Cystic fibrosis (CF) lung transplant recipients (LTRs) exhibit a disproportionately high rate of life-threatening invasive aspergillosis (IA). Loss of the cystic fibrosis transmembrane conductance regulator (CFTR-/-) in macrophages (mφs) has been associated with lyosomal alkalinization. We hypothesize that this alkalinization would persist in the iron-laden post-transplant microenvironment increasing the risk of IA. To investigate our hypothesis, we developed a murine CF orthotopic tracheal transplant (OTT) model. Iron levels were detected by immunofluorescence staining and colorimetric assays. Aspergillus fumigatus (Af) invasion was evaluated by Grocott methenamine silver staining. Phagocytosis and killing of Af conidia were examined by flow cytometry and confocal microscopy. pH and lysosomal acidification were measured by LysoSensorTM and LysotrackerTM, respectively. Af was more invasive in the CF airway transplant recipient compared to the WT recipient (p < 0.05). CFTR-/- mφs were alkaline at baseline, a characteristic that was increased with iron-overload. These CFTR-/- mφs were unable to phagocytose and kill Af conidia (p < 0.001). Poly(lactic-co-glycolic acid) (PLGA) nanoparticles acidified lysosomes, restoring the CFTR-/- mφs’ ability to clear conidia. Our results suggest that CFTR-/- mφs’ alkalinization interacts with the iron-loaded transplant microenvironment, decreasing the CF-mφs’ ability to kill Af conidia, which may explain the increased risk of IA. Therapeutic pH modulation after transplantation could decrease the risk of IA.
Collapse
Affiliation(s)
- Efthymia Iliana Matthaiou
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA; (E.I.M.); (W.C.)
| | - Wayland Chiu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA; (E.I.M.); (W.C.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carol Conrad
- Department of Pediatrics, Pulmonary Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA;
| | - Joe Hsu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA; (E.I.M.); (W.C.)
| |
Collapse
|
21
|
Ung N, Goldbeck C, Man C, Hoeflich J, Sun R, Barbetta A, Matasci N, Katz J, Lee JSH, Chopra S, Asgharzadeh S, Warren M, Sher L, Kohli R, Akbari O, Genyk Y, Emamaullee J. Adaptation of Imaging Mass Cytometry to Explore the Single Cell Alloimmune Landscape of Liver Transplant Rejection. Front Immunol 2022; 13:831103. [PMID: 35432320 PMCID: PMC9009043 DOI: 10.3389/fimmu.2022.831103] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/08/2022] [Indexed: 12/14/2022] Open
Abstract
Rejection continues to be an important cause of graft loss in solid organ transplantation, but deep exploration of intragraft alloimmunity has been limited by the scarcity of clinical biopsy specimens. Emerging single cell immunoprofiling technologies have shown promise in discerning mechanisms of autoimmunity and cancer immunobiology. Within these applications, Imaging Mass Cytometry (IMC) has been shown to enable highly multiplexed, single cell analysis of immune phenotypes within fixed tissue specimens. In this study, an IMC panel of 10 validated markers was developed to explore the feasibility of IMC in characterizing the immune landscape of chronic rejection (CR) in clinical tissue samples obtained from liver transplant recipients. IMC staining was highly specific and comparable to traditional immunohistochemistry. A single cell segmentation analysis pipeline was developed that enabled detailed visualization and quantification of 109,245 discrete cells, including 30,646 immune cells. Dimensionality reduction identified 11 unique immune subpopulations in CR specimens. Most immune subpopulations were increased and spatially related in CR, including two populations of CD45+/CD3+/CD8+ cytotoxic T-cells and a discrete CD68+ macrophage population, which were not observed in liver with no rejection (NR). Modeling via principal component analysis and logistic regression revealed that single cell data can be utilized to construct statistical models with high consistency (Wilcoxon Rank Sum test, p=0.000036). This study highlights the power of IMC to investigate the alloimmune microenvironment at a single cell resolution during clinical rejection episodes. Further validation of IMC has the potential to detect new biomarkers, identify therapeutic targets, and generate patient-specific predictive models of clinical outcomes in solid organ transplantation.
Collapse
Affiliation(s)
- Nolan Ung
- Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, United States
| | - Cameron Goldbeck
- Division of Hepatobiliary and Abdominal Organ Transplant Surgery, Department of Surgery, University of Southern California, Los Angeles, CA, United States
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Cassandra Man
- Division of Hepatobiliary and Abdominal Organ Transplant Surgery, Department of Surgery, University of Southern California, Los Angeles, CA, United States
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Julianne Hoeflich
- Division of Hepatobiliary and Abdominal Organ Transplant Surgery, Department of Surgery, University of Southern California, Los Angeles, CA, United States
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Ren Sun
- Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, United States
| | - Arianna Barbetta
- Division of Hepatobiliary and Abdominal Organ Transplant Surgery, Department of Surgery, University of Southern California, Los Angeles, CA, United States
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Naim Matasci
- Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, United States
| | - Jonathan Katz
- Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, United States
| | - Jerry S. H. Lee
- Ellison Institute for Transformative Medicine, University of Southern California, Los Angeles, CA, United States
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Chemical Engineering and Material Sciences, University of Southern California, Los Angeles, CA, United States
| | - Shefali Chopra
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pathology, University of Southern California, Los Angeles, CA, United States
| | - Shahab Asgharzadeh
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pediatrics, Children’s Hospital-Los Angeles, Los Angeles, CA, United States
| | - Mika Warren
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pathology, Children’s Hospital-Los Angeles, Los Angeles, CA, United States
| | - Linda Sher
- Division of Hepatobiliary and Abdominal Organ Transplant Surgery, Department of Surgery, University of Southern California, Los Angeles, CA, United States
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Rohit Kohli
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Pediatrics, Children’s Hospital-Los Angeles, Los Angeles, CA, United States
| | - Omid Akbari
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, United States
| | - Yuri Genyk
- Division of Hepatobiliary and Abdominal Organ Transplant Surgery, Department of Surgery, University of Southern California, Los Angeles, CA, United States
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Juliet Emamaullee
- Division of Hepatobiliary and Abdominal Organ Transplant Surgery, Department of Surgery, University of Southern California, Los Angeles, CA, United States
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, United States
- *Correspondence: Juliet Emamaullee,
| |
Collapse
|
22
|
Quante M, Iske J, Uehara H, Minami K, Nian Y, Maenosono R, Matsunaga T, Liu Y, Azuma H, Perkins D, Alegre ML, Zhou H, Elkhal A, Tullius SG. Taurodeoxycholic acid and valine reverse obesity-associated augmented alloimmune responses and prolong allograft survival. Am J Transplant 2022; 22:402-413. [PMID: 34551205 PMCID: PMC10614103 DOI: 10.1111/ajt.16856] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 08/30/2021] [Accepted: 09/14/2021] [Indexed: 01/25/2023]
Abstract
Obesity initiates a chronic inflammatory network linked to perioperative complications and increased acute rejection rates in organ transplantation. Bariatric surgery is the most effective treatment of obesity recommended for morbidly obese transplant recipients. Here, we delineated the effects of obesity and bariatric surgery on alloimmunity and transplant outcomes in diet-induced obese (DIO) mice. Allograft survival was significantly shorter in DIO-mice. When performing sleeve gastrectomies (SGx) prior to transplantation, we found attenuated T cell-derived alloimmune responses resulting in prolonged allograft survival. Administering taurodeoxycholic acid (TDCA) and valine, metabolites depleted in DIO-mice and restored through SGx, prolonged graft survival in DIO-mice comparable with SGx an dampened Th1 and Th17 alloimmune responses while Treg frequencies and CD4+ T cell-derived IL-10 production were augmented. Moreover, in recipient animals treated with TDCA/valine, levels of donor-specific antibodies had been reduced. Mechanistically, TDCA/valine restrained inflammatory M1-macrophage polarization through TGR5 that compromised cAMP signaling and inhibited macrophage-derived T cell activation. Consistently, administering a TGR5 agonist to DIO-mice prolonged allograft survival. Overall, we provide novel insights into obesity-induced inflammation and its impact on alloimmunity. Furthermore, we introduce TDCA/valine as a noninvasive alternative treatment for obese transplant patients.
Collapse
Affiliation(s)
- Markus Quante
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- University Hospital Tuebingen, Department of General, Visceral and Transplant Surgery
| | - Jasper Iske
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Hirofumi Uehara
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Urology, Osaka Medical College, Osaka, Japan
| | - Koichiro Minami
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Urology, Osaka Medical College, Osaka, Japan
| | - Yeqi Nian
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ryochi Maenosono
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Urology, Osaka Medical College, Osaka, Japan
| | - Tomohisa Matsunaga
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Urology, Osaka Medical College, Osaka, Japan
| | - Yang Liu
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Institute of Hepatobiliary Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Haruhito Azuma
- Department of Urology, Osaka Medical College, Osaka, Japan
| | - David Perkins
- Department of Medicine, University of Illinois, Chicago, IL, USA
| | | | - Hao Zhou
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Abdallah Elkhal
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Stefan G. Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
23
|
Bracamonte-Baran W, Gilotra NA, Won T, Rodriguez KM, Talor MV, Oh BC, Griffin J, Wittstein I, Sharma K, Skinner J, Johns RA, Russell SD, Anders RA, Zhu Q, Halushka MK, Brandacher G, Čiháková D. Endothelial Stromal PD-L1 (Programmed Death Ligand 1) Modulates CD8 + T-Cell Infiltration After Heart Transplantation. Circ Heart Fail 2021; 14:e007982. [PMID: 34555935 PMCID: PMC8550427 DOI: 10.1161/circheartfailure.120.007982] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND The role of checkpoint axes in transplantation has been partially addressed in animal models but not in humans. Occurrence of fulminant myocarditis with allorejection-like immunologic features in patients under anti-PD1 (programmed death cell protein 1) treatment suggests a key role of the PD1/PD-L1 (programmed death ligand 1) axis in cardiac immune homeostasis. METHODS We cross-sectionally studied 23 heart transplant patients undergoing surveillance endomyocardial biopsy. Endomyocardial tissue and peripheral blood mononuclear cells were analyzed by flow cytometry. Multivariate logistic regression analyses including demographic, clinical, and hemodynamic parameters were performed. Murine models were used to evaluate the impact of PD-L1 endothelial graft expression in allorejection. RESULTS We found that myeloid cells dominate the composition of the graft leukocyte compartment in most patients, with variable T-cell frequencies. The CD (cluster of differentiation) 4:CD8 T-cell ratios were between 0 and 1.5. The proportion of PD-L1 expressing cells in graft endothelial cells, fibroblasts, and myeloid leukocytes ranged from negligible up to 60%. We found a significant inverse logarithmic correlation between the proportion of PD-L1+HLA (human leukocyte antigen)-DR+ endothelial cells and CD8+ T cells (slope, -18.3 [95% CI, -35.3 to -1.3]; P=0.030). PD-L1 expression and leukocyte patterns were independent of demographic, clinical, and hemodynamic parameters. We confirmed the importance of endothelial PD-L1 expression in a murine allogeneic heart transplantation model, in which Tie2Crepdl1fl/fl grafts lacking PD-L1 in endothelial cells were rejected significantly faster than controls. CONCLUSIONS Loss of graft endothelial PD-L1 expression may play a role in regulating CD8+ T-cell infiltration in human heart transplantation. Murine model results suggest that loss of graft endothelial PD-L1 may facilitate alloresponses and rejection.
Collapse
Affiliation(s)
- William Bracamonte-Baran
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
- Department of Medicine, Texas Tech University Health Sciences Center – Permian Basin, Odessa, TX, 79763, USA
| | - Nisha A Gilotra
- Division of Cardiology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Taejoon Won
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Katrina M Rodriguez
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Monica V Talor
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Byoung C Oh
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Jan Griffin
- Division of Cardiology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
- Current Address: Department of Medicine, Columbia University, New York, NY
| | - Ilan Wittstein
- Division of Cardiology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Kavita Sharma
- Division of Cardiology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - John Skinner
- Department of Anesthesiology and Critical Care Medicine, Division of Adult Anesthesia, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Roger A Johns
- Department of Anesthesiology and Critical Care Medicine, Division of Adult Anesthesia, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Stuart D Russell
- Division of Cardiology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
- Current Address: Department of Medicine, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Robert A Anders
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Qingfeng Zhu
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Marc K Halushka
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Gerald Brandacher
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Daniela Čiháková
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| |
Collapse
|
24
|
Zhang SM, Wei CY, Wang Q, Wang L, Lu L, Qi FZ. M2-polarized macrophages mediate wound healing by regulating connective tissue growth factor via AKT, ERK1/2, and STAT3 signaling pathways. Mol Biol Rep 2021; 48:6443-6456. [PMID: 34398425 DOI: 10.1007/s11033-021-06646-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Timely and sufficient M1 recruitment and M2 polarization are necessary for fibrosis during wound healing. The mechanism of how M2 mediates wound healing is worth exploring. Abnormally up-regulated connective tissue growth factor (CTGF) influences multiple organ fibrosis, including cardiac, pulmonary, hepatic, renal, and cutaneous fibrosis. Previous studies reported that M2 contributed to hepatic and renal fibrosis by secreting CTGF. It is worth discussing if M2 regulates fibrosis through secreting CTGF in wound healing. METHODS AND RESULTS We established the murine wound model and inhibited macrophages during proliferation phase with clodronate liposomes in vivo. Macrophages depletion led to down-regulation of wound healing rates, collagen deposition, as well as expression of collagen 1/3 and Ki67. M2 was induced by interleukin-4 (IL-4) and measured by flow cytometry in vitro. Secreted pro-fibrotic and anti-fibrotic factors were tested by enzyme-linked immunosorbent assay (ELISA). M2 was polarized, which producing more CTGF, transforming growth factor-beta1 (TGF-β1), and IL-6, as well as less tumor necrosis factor-α (TNF-α) and IL-10. M2 CTGF gene was blocked using siCTGF. Effects of M2 on fibroblasts activities were detected by cell counting kit 8 (CCK8) and cellular wound healing assay. Expressions of related signaling pathway were assessed by western blotting. Blockade of CTGF in M2 deactivated fibroblasts proliferation and migration by regulating AKT, ERK1/2, and STAT3 pathway. Recombinant CTGF restored these effects. CONCLUSIONS Our research, for the first time, indicated that M2 promoted wound healing by secreting CTGF, which further mediating proliferation and migration of fibroblasts via AKT, ERK1/2, and STAT3 pathway.
Collapse
Affiliation(s)
- Si-Min Zhang
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Chuan-Yuan Wei
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Qiang Wang
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Lu Wang
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Lu Lu
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Fa-Zhi Qi
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
25
|
Gao T, Wu Y, Wang W, Deng C, Chen Y, Yi L, Song Y, Li W, Xu L, Xie Y, Fang L, Jin Q, Zhang L, Tang BZ, Xie M. Biomimetic Glucan Particles with Aggregation-Induced Emission Characteristics for Noninvasive Monitoring of Transplant Immune Response. ACS NANO 2021; 15:11908-11928. [PMID: 34264052 DOI: 10.1021/acsnano.1c03029] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Real-time monitoring of post-transplant immune response is critical to prolong the survival of grafts. The current gold standard for assessing the immune response to graft is biopsy. However, such a method is invasive and prone to false negative results due to limited tissue size available and the heterogeneity of the rejection site. Herein, we report biomimetic glucan particles with aggregation-induced emission (AIE) characteristics (HBTTPEP/GPs) for real-time noninvasive monitoring of post-transplant immune response. We have found that the positively charged near-infrared AIEgens can effectively aggregate in the confined space of glucan particles (GPs), thereby turning on the fluorescence emission. HBTTPEP/GPs can track macrophages for 7 days without hampering the bioactivity. Oral administration of HBTTPEP/GPs can specially target macrophages by mimicking yeast, which then migrate to the transplant rejection site. The fluorescence emitted from HBTTPEP/GPs correlated well with the infiltration of macrophages and the degree of allograft rejection. Furthermore, a single oral HBTTPEP/GPs dose can dynamically evaluate the therapeutic response to immunosuppressive therapy. Consequently, the biomimetic AIE-active glucan particles can be developed as a promising probe for immune-monitoring in solid organ transplantation.
Collapse
Affiliation(s)
- Tang Gao
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Ya Wu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Wenyuan Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Cheng Deng
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yihan Chen
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Luyang Yi
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yishu Song
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Wenqu Li
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Lingling Xu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yuji Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Lingyun Fang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Qiaofeng Jin
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Li Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, China
| | - Mingxing Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| |
Collapse
|
26
|
Song SH, Choi HY, Kim HY, Nam CM, Jeong HJ, Kim MS, Kim SII, Kim YS, Huh KH, Kim BS. Effects of bisphosphonates on long-term kidney transplantation outcomes. Nephrol Dial Transplant 2021; 36:722-729. [PMID: 33367861 DOI: 10.1093/ndt/gfaa371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Bisphosphonates are administered to post-transplantation patients with mineral and bone disorders; however, the association between bisphosphonate therapy and long-term renal graft survival remains unclear. METHODS This nested case-control study investigated the effects of bisphosphonates on long-term graft outcomes after kidney transplantation. We enrolled 3836 kidney transplant recipients treated from April 1979 to June 2016 and matched patients with graft failure to those without (controls). Annual post-transplant bone mineral density assessments were performed and recipients with osteopenia or osteoporosis received bisphosphonate therapy. The associations between bisphosphonate use and long-term graft outcomes and graft survival were analyzed using conditional logistic regression and landmark analyses, respectively. RESULTS A landmark analysis demonstrated that death-censored graft survival was significantly higher in bisphosphonate users than in non-users in the entire cohort (log-rank test, P < 0.001). In the nested case-control matched cohort, bisphosphonate users had a significantly reduced risk of graft failure than did non-users (odds ratio = 0.38; 95% confidence interval 0.30-0.48). Bisphosphonate use, increased cumulative duration of bisphosphonate use >1 year and increased cumulative bisphosphonate dose above the first quartile were associated with a reduced risk of graft failure, after adjustments. CONCLUSIONS Bisphosphonates may improve long-term graft survival in kidney transplant recipients.
Collapse
Affiliation(s)
- Seung Hwan Song
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Surgery, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Hoon Young Choi
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ha Yan Kim
- Department of Biomedical Systems Informatics, Biostatistics Collaboration Unit, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chung Mo Nam
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyeon Joo Jeong
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Myoung Soo Kim
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Transplantation Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soon I I Kim
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Transplantation Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yu Seun Kim
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Transplantation Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyu Ha Huh
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Transplantation Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Beom Seok Kim
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
27
|
Gunawardana H, Romero T, Yao N, Heidt S, Mulder A, Elashoff DA, Valenzuela NM. Tissue-specific endothelial cell heterogeneity contributes to unequal inflammatory responses. Sci Rep 2021; 11:1949. [PMID: 33479269 PMCID: PMC7820348 DOI: 10.1038/s41598-020-80102-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/16/2020] [Indexed: 12/30/2022] Open
Abstract
Endothelial cells (EC) coordinate vascular homeostasis and inflammation. In organ transplantation, EC are a direct alloimmune target. We posited that tissue specific heterogeneity of vascular EC may partly underlie the disparate organ-specific alloimmune risk. We examined the vascular endothelial response to inflammation across six primary endothelial beds from four major transplanted organs: the heart, lung, kidney and liver. First, we reanalyzed a public dataset of cardiac allograft rejection and found that endothelial inflammatory response genes were elevated in human cardiac allograft biopsies undergoing rejection compared with stable grafts. Next, the inducible inflammatory phenotypes of EC from heart, lung, kidney, and liver were characterized in vitro, focused on expression of adhesion molecules and chemokines, and recruitment of allogeneic peripheral blood mononuclear immune cells. Large vessel cardiac EC most highly upregulated VCAM-1, particularly compared with hepatic EC, supported greater leukocyte adhesion and had distinct chemokine profiles after stimulation with cytokines and complement. Differentially expressed gene candidates that are known regulators of cytokine signaling and inflammatory programming were verified in publicly available datasets of organ-specific endothelial transcriptomes. In summary, differential baseline expression of immune regulating genes may contribute to differential vascular inflammatory responses depending on organ.
Collapse
Affiliation(s)
- Hasitha Gunawardana
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, 1000 Veteran Avenue, Room 1-520, Los Angeles, CA, 90095, USA
| | - Tahmineh Romero
- Statistics Core, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Ning Yao
- Statistics Core, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Sebastiaan Heidt
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Arend Mulder
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - David A Elashoff
- Statistics Core, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Nicole M Valenzuela
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, 1000 Veteran Avenue, Room 1-520, Los Angeles, CA, 90095, USA.
| |
Collapse
|
28
|
Zhang F, Zhang J, Cao P, Sun Z, Wang W. The characteristics of regulatory macrophages and their roles in transplantation. Int Immunopharmacol 2021; 91:107322. [PMID: 33418238 DOI: 10.1016/j.intimp.2020.107322] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/25/2020] [Accepted: 12/16/2020] [Indexed: 12/24/2022]
Abstract
Regulatory macrophages (Mregs) are a subtype of macrophages that are involved in regulating immune responses and inhibiting activated T lymphocyte proliferation. With advances in our basic understanding of Mregs and the revelation of their biological characteristics, Mregs have become a focus of research. In addition to promoting malignant tumor progression, Mregs also play an immunosuppressive role in inflammatory diseases and transplantation. Recent studies have shown that Mregs are closely associated with the induction of transplantation immune tolerance. Immune regulatory cell treatment as an adjunct immunosuppressive therapy offers new insights into the mechanism by which transplantation immune tolerance is established. The application of Mreg-based cellular immunotherapy has shown promise in clinical solid organ transplantation. Here, we provide a comprehensive overview of Mreg morphology, phenotype, induction and negative immunoregulatory function and discuss the role of Mregs in different transplantation models as well as their potential application value in clinical organ transplantation.
Collapse
Affiliation(s)
- Feilong Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
| | - Jiandong Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Peng Cao
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Zejia Sun
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Wei Wang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
29
|
|
30
|
Gunata M, Parlakpinar H. A review of myocardial ischaemia/reperfusion injury: Pathophysiology, experimental models, biomarkers, genetics and pharmacological treatment. Cell Biochem Funct 2020; 39:190-217. [PMID: 32892450 DOI: 10.1002/cbf.3587] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/03/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022]
Abstract
Cardiovascular diseases are known to be the most fatal diseases worldwide. Ischaemia/reperfusion (I/R) injury is at the centre of the pathology of the most common cardiovascular diseases. According to the World Health Organization estimates, ischaemic heart disease is the leading global cause of death, causing more than 9 million deaths in 2016. After cardiovascular events, thrombolysis, percutaneous transluminal coronary angioplasty or coronary bypass surgery are applied as treatment. However, after restoring coronary blood flow, myocardial I/R injury may occur. It is known that this damage occurs due to many pathophysiological mechanisms, especially increasing reactive oxygen types. Besides causing cardiomyocyte death through multiple mechanisms, it may be an important reason for affecting other cell types such as platelets, fibroblasts, endothelial and smooth muscle cells and immune cells. Also, polymorphonuclear leukocytes are associated with myocardial I/R damage during reperfusion. This damage may be insufficient in patients with co-morbidity, as it is demonstrated that it can be prevented by various endogenous antioxidant systems. In this context, the resulting data suggest that optimal cardioprotection may require a combination of additional or synergistic multi-target treatments. In this review, we discussed the pathophysiology, experimental models, biomarkers, treatment and its relationship with genetics in myocardial I/R injury. SIGNIFICANCE OF THE STUDY: This review summarized current information on myocardial ischaemia/reperfusion injury (pathophysiology, experimental models, biomarkers, genetics and pharmacological therapy) for researchers and reveals guiding data for researchers, especially in the field of cardiovascular system and pharmacology.
Collapse
Affiliation(s)
- Mehmet Gunata
- Department of Medical Pharmacology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Hakan Parlakpinar
- Department of Medical Pharmacology, Faculty of Medicine, Inonu University, Malatya, Turkey
| |
Collapse
|
31
|
Colazo JM, Evans BC, Farinas AF, Al-Kassis S, Duvall CL, Thayer WP. Applied Bioengineering in Tissue Reconstruction, Replacement, and Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2020; 25:259-290. [PMID: 30896342 DOI: 10.1089/ten.teb.2018.0325] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IMPACT STATEMENT The use of autologous tissue in the reconstruction of tissue defects has been the gold standard. However, current standards still face many limitations and complications. Improving patient outcomes and quality of life by addressing these barriers remain imperative. This article provides historical perspective, covers the major limitations of current standards of care, and reviews recent advances and future prospects in applied bioengineering in the context of tissue reconstruction, replacement, and regeneration.
Collapse
Affiliation(s)
- Juan M Colazo
- 1Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,2Medical Scientist Training Program, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Brian C Evans
- 3Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Angel F Farinas
- 4Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Salam Al-Kassis
- 4Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Craig L Duvall
- 3Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Wesley P Thayer
- 3Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee.,4Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
32
|
Yang P, Zhang X, Lin Z, Wang Q, Guo D, Zhang P, Yang L, Zhang H, Ding R, Tao K, Li X, Dou K. Adoptive transfer of polarized M2c macrophages ameliorates acute rejection in rat liver transplantation. Am J Transl Res 2020; 12:2614-2626. [PMID: 32655794 PMCID: PMC7344085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
Hepatic macrophages play pivotal roles in tolerance induction after liver transplantation (LT). However, macrophages possess functional heterogeneities, and the protective role of M2c macrophages, a macrophage subtype characterized by the surface marker CD163 that secretes interleukin-10 (IL-10) and transforming growth factor-β1 (TGF-β1), in acute rejection following LT, has not been addressed. The aim of this study was to determine whether polarized macrophages of the M2c subtype could improve outcomes after LT for rats, including survival rate, liver function, and inflammatory infiltration. In our study, the numbers of CD163-positive cells were found to be increased in tolerant liver grafts. Immediately following the surgery, M2c macrophages induced from rat bone marrow-derived cells were infused into recipients; this significantly improved survival rate and liver function. The expression levels of IL-10 and TGF-β1 were markedly increased in these rats compared to those in the control group. Furthermore, CD8+ T-cell infiltration was reduced, whereas the numbers of apoptotic cells increased, in rats treated with M2c. To explore the mechanisms of the protective role of M2c, the numbers of major histocompatibility complex (MHC) class II positive cells were found to be decreased and the expression of N-acetylglucosaminyltransferase V (MGAT5) was up-regulated in M2c infusion groups. Together, these findings demonstrate that polarization of macrophages towards the M2c phenotype ameliorated acute rejection in a rat LT model and may provide a novel and effective therapeutic approach for AR after transplantation.
Collapse
Affiliation(s)
- Peijun Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University Xi'an, China
| | - Xuan Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University Xi'an, China
| | - Zhibin Lin
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University Xi'an, China
| | - Quancheng Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University Xi'an, China
| | - Dongnan Guo
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University Xi'an, China
| | - Pengcheng Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University Xi'an, China
| | - Long Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University Xi'an, China
| | - Hong Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University Xi'an, China
| | - Rui Ding
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University Xi'an, China
| | - Kaishan Tao
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University Xi'an, China
| | - Xiao Li
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University Xi'an, China
| | - Kefeng Dou
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University Xi'an, China
| |
Collapse
|
33
|
Kopecky BJ, Frye C, Terada Y, Balsara KR, Kreisel D, Lavine KJ. Role of donor macrophages after heart and lung transplantation. Am J Transplant 2020; 20:1225-1235. [PMID: 31850651 PMCID: PMC7202685 DOI: 10.1111/ajt.15751] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/06/2019] [Accepted: 12/08/2019] [Indexed: 01/25/2023]
Abstract
Since the 1960s, heart and lung transplantation has remained the optimal therapy for patients with end-stage disease, extending and improving quality of life for thousands of individuals annually. Expanding donor organ availability and immunologic compatibility is a priority to help meet the clinical demand for organ transplant. While effective, current immunosuppression is imperfect as it lacks specificity and imposes unintended adverse effects such as opportunistic infections and malignancy that limit the health and longevity of transplant recipients. In this review, we focus on donor macrophages as a new target to achieve allograft tolerance. Donor organ-directed therapies have the potential to improve allograft survival while minimizing patient harm related to global suppression of recipient immune responses. Topics highlighted include the role of ontogenically distinct donor macrophage populations in ischemia-reperfusion injury and rejection, including their interaction with allograft-infiltrating recipient immune cells and potential therapeutic approaches. Ultimately, a better understanding of how donor intrinsic immunity influences allograft acceptance and survival will provide new opportunities to improve the outcomes of transplant recipients.
Collapse
Affiliation(s)
| | - Christian Frye
- Department of Surgery, Washington University, Saint Louis, Missouri
| | - Yuriko Terada
- Department of Surgery, Washington University, Saint Louis, Missouri
| | - Keki R. Balsara
- Department of Surgery, Vanderbilt University, Nashville, Tennessee
| | - Daniel Kreisel
- Department of Surgery, Washington University, Saint Louis, Missouri
- Department of Pathology and Immunology, Washington University, Saint Louis, Missouri
| | - Kory J. Lavine
- Department of Medicine, Washington University, Saint Louis, Missouri
- Department of Pathology and Immunology, Washington University, Saint Louis, Missouri
- Department of Developmental Biology, Washington University, Saint Louis, Missouri
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Although organ transplantation has become the standard life-saving strategy for patients with end-stage organ failure and those with malignancies, effective and safe therapeutic strategies to combat allograft loss remain to be established. With the emerging evidence suggesting the critical role of innate immunity in the mechanism of allograft injury, we summarize the latest understanding of macrophage-neutrophil cross-communication and discuss therapeutic prospects of their targeting in transplant recipients. RECENT FINDINGS Macrophages and neutrophils contribute to the pathogenesis of early peritransplant ischemia-reperfusion injury and subsequent allograft rejection immune cascade, primarily by exacerbating inflammatory response and tissue damage. Noteworthy, recent advances enabled to elucidate multifaceted functions of innate immune cells, which are not only deleterious but may also prove graft-protective. Indeed, the efficacy of macrophage polarizing regimens or macrophage-targeted migration have been recognized to create graft-protective local environment. Moreover, novel molecular mechanisms in the neutrophil function have been identified, such as neutrophil extracellular traps, tissue-repairing capability, crosstalk with macrophages and T cells as well as reverse migration into the circulation. SUMMARY As efficient strategies to manage allograft rejection and improve transplant outcomes are lacking, newly discovered, and therapeutically attractive innate immune cell functions warrant comprehensive preclinical and clinical attention.
Collapse
|
35
|
A retrievable implant for the long-term encapsulation and survival of therapeutic xenogeneic cells. Nat Biomed Eng 2020; 4:814-826. [PMID: 32231313 PMCID: PMC8051527 DOI: 10.1038/s41551-020-0538-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 02/18/2020] [Indexed: 12/20/2022]
Abstract
The long-term function of transplanted therapeutic cells typically requires systemic immune suppression. Here, we show that a retrievable implant comprising of a silicone reservoir and a porous polymeric membrane protects human cells encapsulated in it after implant transplantation in the intraperitoneal space of immunocompetent mice. Membranes with pores 1 µm in diameter allowed host macrophages to migrate into the device without the loss of transplanted cells, whereas membranes with pore sizes under 0.8 µm prevented their infiltration by immune cells. A synthetic polymer coating prevented fibrosis and was necessary for the long-term function of the device. For over 130 days the device supported human cells engineered to secrete erythropoietin in immunocompetent mice as well as transgenic human cells carrying an inducible gene circuit for the on-demand secretion of erythropoietin. Pancreatic islets from rats encapsulated in the device and implanted in diabetic mice restored normoglycaemia in the mice for over 75 days. The biocompatible device provides a retrievable solution for the transplantation of engineered cells in the absence of immunosuppression.
Collapse
|
36
|
Chu Z, Sun C, Sun L, Feng C, Yang F, Xu Y, Zhao Y. Primed macrophages directly and specifically reject allografts. Cell Mol Immunol 2020; 17:237-246. [PMID: 30948792 PMCID: PMC7052205 DOI: 10.1038/s41423-019-0226-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 03/10/2019] [Indexed: 11/09/2022] Open
Abstract
Monocytes and macrophages have long been associated with acute and chronic allograft rejection; this is mediated by their abilities to promote inflammation, kill target cells via antibody-dependent cytotoxicity and modulate adaptive immunity. Our present study showed that allogeneic antigen-primed macrophages acutely rejected skin grafts with specificity after adoptive transfer into MHC-matched immunodeficient mice. The ability of primed macrophages to reject allografts essentially requires the help of CD4+ T cells and does not require the help of CD8+ T cells. Moreover, the primed, perforin-deficient macrophages rejected the skin grafts in a significantly delayed pattern compared with WT macrophages, indicating that the perforin pathway of the primed macrophages is likely involved in the rejection process. Thus, primed macrophages are endowed with adaptive immunity-like features, such as specificity, with the help of CD4+ T cells during the immune response to allografts. The present study challenges our traditional views of macrophage functions and highlights the biological functions of macrophages beyond innate immunity in mammals.
Collapse
Grants
- This work was supported by grants from the National Key R&D Program of China (2017YFA0105002, 2017YFA0104402, Y.Z.), National Science and Technology Major Project (2017ZX10201101), the National Natural Science Foundation for General and Key Programs (C81530049, C81130055, C31470860, Y.Z.), Knowledge Innovation Program of Chinese Academy of Sciences (XDA04020202-19, Y.Z.), and the China Manned Space Flight Technology Project (TZ-1, Y.Z.).
Collapse
Affiliation(s)
- Zhulang Chu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chenming Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lina Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chang Feng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fan Yang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanan Xu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
37
|
Zhan Y, Lew AM, Chopin M. The Pleiotropic Effects of the GM-CSF Rheostat on Myeloid Cell Differentiation and Function: More Than a Numbers Game. Front Immunol 2019; 10:2679. [PMID: 31803190 PMCID: PMC6873328 DOI: 10.3389/fimmu.2019.02679] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 10/30/2019] [Indexed: 12/27/2022] Open
Abstract
Granulocyte Macrophage-Colony Stimulating Factor (GM-CSF) is a myelopoietic growth factor that has pleiotropic effects not only in promoting the differentiation of immature precursors into polymorphonuclear neutrophils (PMNs), monocytes/macrophages (MØs) and dendritic cells (DCs), but also in controlling the function of fully mature myeloid cells. This broad spectrum of GM-CSF action may elicit paradoxical outcomes-both immunostimulation and immunosuppression-in infection, inflammation, and cancer. The complexity of GM-CSF action remains to be fully unraveled. Several aspects of GM-CSF action could contribute to its diverse biological consequences. Firstly, GM-CSF as a single cytokine affects development of most myeloid cells from progenitors to mature immune cells. Secondly, GM-CSF activates JAK2/STAT5 and also activate multiple signaling modules and transcriptional factors that direct different biological processes. Thirdly, GM-CSF can be produced by different cell types including tumor cells in response to different environmental cues; thus, GM-CSF quantity can vary greatly under different pathophysiological settings. Finally, GM-CSF signaling is also fine-tuned by other less defined feedback mechanisms. In this review, we will discuss the role of GM-CSF in orchestrating the differentiation, survival, and proliferation during the generation of multiple lineages of myeloid cells (PMNs, MØs, and DCs). We will also discuss the role of GM-CSF in regulating the function of DCs and the functional polarization of MØs. We highlight how the dose of GM-CSF and corresponding signal strength acts as a rheostat to fine-tune cell fate, and thus the way GM-CSF may best be targeted for immuno-intervention in infection, inflammation and cancer.
Collapse
Affiliation(s)
- Yifan Zhan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Andrew M Lew
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.,Department of Immunology and Microbiology, University of Melbourne, Parkville, VIC, Australia
| | - Michael Chopin
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
38
|
Bakhtiar H, Pezeshki-Modaress M, Kiaipour Z, Shafiee M, Ellini MR, Mazidi A, Rajabi S, Zamanlui Benisi S, Ostad SN, Galler K, Pakshir P, Azarpazhooh A, Kishen A. Pulp ECM-derived macroporous scaffolds for stimulation of dental-pulp regeneration process. Dent Mater 2019; 36:76-87. [PMID: 31735424 DOI: 10.1016/j.dental.2019.10.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/18/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Recent studies suggest xenogeneic extracellular matrices as potential regenerative tools in dental pulp regeneration. This study aimed to fabricate and characterize a novel three-dimensional macroporous pulp-derived scaffold that enables the attachment, penetration, proliferation and differentiation of mesenchymal stem cells. METHOD Bovine pulp was decellularized and characterized with histological and DNA content methods. This scaffold was prepared using finely milled lyophilized decellularized pulp extracellular matrix (ECM) digested with pepsin. Three different concentrations of ECM (1.50, 2.25 and 3.00mg/ml) were freeze-dried and were tested with/without chemical crosslinking. The specimens were subjected to physicochemical characterization, cell viability and quantitative real time polymerase chain reaction assessments with human bone marrow mesenchymal stem cells (hBMMSCs). All scaffolds were subcutaneously implanted in rats for two weeks and histological and immunostaining analyses were performed. RESULTS Histological and DNA analysis confirmed complete decellularization. All samples demonstrated more than 97% porosity and 1.50mg/ml scaffold demonstrated highest water absorption. The highest cell viability and proliferation of hBMMSCs was observed on the 3.00mg/ml crosslinked scaffolds. The gene expression analysis showed a significant increase of dmp-1 and collagen-I on 3.00mg/ml crosslinked scaffolds compared to the other scaffolds. Histological examination of subcutaneous implanted scaffolds revealed low immunological response, and enhanced angiogenesis in cross-linked samples compared to non-crosslinked samples. SIGNIFICANCE The three-dimensional macroporous pulp-derived injectable scaffold developed and characterized in this study displayed potential for regenerative therapy. While the scaffold biodegradability was decreased by crosslinking, the biocompatibility of post-crosslinked scaffold was significantly improved.
Collapse
Affiliation(s)
- Hengameh Bakhtiar
- Department of Endodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada; Stem Cell Research Center, Tissue Engineering and Regenerative Medicine Institute, Tehran Central Branch, Islamic Azad University, Tehran, Iran
| | | | - Zahra Kiaipour
- Stem Cell Research Center, Tissue Engineering and Regenerative Medicine Institute, Tehran Central Branch, Islamic Azad University, Tehran, Iran
| | - Mahdieh Shafiee
- Stem Cell Research Center, Tissue Engineering and Regenerative Medicine Institute, Tehran Central Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Reza Ellini
- Stem Cell Research Center, Tissue Engineering and Regenerative Medicine Institute, Tehran Central Branch, Islamic Azad University, Tehran, Iran
| | - Amir Mazidi
- Stem Cell Research Center, Tissue Engineering and Regenerative Medicine Institute, Tehran Central Branch, Islamic Azad University, Tehran, Iran
| | - Sarah Rajabi
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Soheila Zamanlui Benisi
- Stem Cell Research Center, Tissue Engineering and Regenerative Medicine Institute, Tehran Central Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Naser Ostad
- Department of Toxicology-Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Kerstin Galler
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Regensburg, Germany
| | - Pardis Pakshir
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Amir Azarpazhooh
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada; Clinical Epidemiology and Health Care Research, Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada; Department of Dentistry, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Anil Kishen
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada; Department of Dentistry, Mount Sinai Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
39
|
Srivastava SP, Hedayat AF, Kanasaki K, Goodwin JE. microRNA Crosstalk Influences Epithelial-to-Mesenchymal, Endothelial-to-Mesenchymal, and Macrophage-to-Mesenchymal Transitions in the Kidney. Front Pharmacol 2019; 10:904. [PMID: 31474862 PMCID: PMC6707424 DOI: 10.3389/fphar.2019.00904] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/18/2019] [Indexed: 12/20/2022] Open
Abstract
microRNAs (miRNAs) are small, non-coding nucleotides that regulate diverse biological processes. Altered microRNA biosynthesis or regulation contributes to pathological processes including kidney fibrosis. Kidney fibrosis is characterized by deposition of excess extracellular matrix (ECM), which is caused by infiltration of immune cells, inflammatory cells, altered chemokines, and cytokines as well as activation and accumulation of fibroblasts in the kidney. These activated fibroblasts can arise from epithelial cells via epithelial-to-mesenchymal transition (EMT), from bone marrow-derived M2 phenotype macrophages via macrophage-to-mesenchymal transition (MMT), from endothelial cells via endothelial-to-mesenchymal transition (EndMT), from resident fibroblasts, and from bone marrow-derived monocytes and play a crucial role in fibrotic events. Disrupted microRNA biosynthesis and aberrant regulation contribute to the activation of mesenchymal programs in the kidney. miR-29 regulates the interaction between dipeptidyl peptidase-4 (DPP-4) and integrin β1 and the associated active transforming growth factor β (TGFβ) and pro-EndMT signaling; however, miR-let-7 targets transforming growth factor β receptors (TGFβRs) to inhibit TGFβ signaling. N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) is an endogenous anti-fibrotic peptide, which is associated with fibroblast growth factor receptor 1 (FGFR1) phosphorylation and subsequently responsible for the production of miR-let-7. miR-29 and miR-let-7 family clusters participate in crosstalk mechanisms, which are crucial for endothelial cell homeostasis. The physiological level of AcSDKP is vital for the activation of anti-fibrotic mechanisms including restoration of anti-fibrotic microRNA crosstalk and suppression of profibrotic signaling by mitigating DPP-4-associated mesenchymal activation in the epithelial cells, endothelial cells, and M2 phenotype macrophages. The present review highlights recent advancements in the understanding of both the role of microRNAs in the development of kidney disease and their potential as novel therapeutic targets for fibrotic disease states.
Collapse
Affiliation(s)
| | - Ahmad Fahim Hedayat
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States
| | - Keizo Kanasaki
- Internal Medicine 1, Shimane University Faculty of Medicine, Izumo, Japan
| | - Julie E Goodwin
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
40
|
Furuzawa‐Carballeda J, Uribe‐Uribe NO, Arreola‐Guerra JM, Reyes‐Acevedo R, Vilatobá M, López‐Toledo A, Mondragón‐Salgado G, Chávez‐Fernández R, López‐Verdugo F, Mondragón‐Ramírez G, Alberú J. Tissue talks: immunophenotype of cells infiltrating the graft explains histological findings and the benefits of belatacept at 10 years. Clin Exp Immunol 2019; 197:250-261. [PMID: 30916387 PMCID: PMC6642879 DOI: 10.1111/cei.13296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2019] [Indexed: 12/30/2022] Open
Abstract
Previously, we found a substantial number of regulatory T cells (Tregs ) and fewer senescent and T helper type 17 (Th17) and a decrease in interstitial fibrosis (IF) in 12-month graft biopsies in belatacept versus cyclosporin (CNI)-treated patients [Belatacept Evaluation of Nephroprotection and Efficacy as First-line Immunosuppression Trial (BENEFIT) study]. Seven years after kidney transplantation (KT), mean estimated glomerular filtration rate (eGFR), patient and graft survival were significantly higher with belatacept versus CNI treatment. The aim of this study was to determine whether the immunophenotypes of inflammatory and regulatory cell subsets infiltrating the grafts contribute to the BENEFIT's clinical findings a decade after KT. Twenty-three adult patients with functionally stable KT treated with belatacept and 10 treated with CNI were enrolled. Biopsies were analyzed by histomorphometry and immunohistochemistry for proliferation, senescence, apoptosis, inflammatory and regulatory cell markers in a blinded manner. Significantly lower percentages of inflammatory/fibrogenic cells [interleukin (IL)-22+ /Th17/Th2/M1 macrophages] were observed in patients treated with belatacept than in patients treated with CNI. By contrast, remarkably higher percentages of regulatory cells [Tregs /Bregs / plasmacytoid dendritic regulatory cells (pDCregs )/M2] were found in belatacept-treated patients than in CNI-treated patients. Conspicuously lower percentages of apoptosis and senescence and higher proliferation markers were found in belatacept-treated patients than in CNI-treated patients. Consequently, there was significantly more inflammation in the microvascular compartments as well as increased tubular atrophy and IF in CNI-treated patients. These findings strongly suggest that regulatory mechanisms, along with the absence of deleterious effects of CNI, contribute to the long-term graft histology and function stability in patients treated with belatacept.
Collapse
Affiliation(s)
- J. Furuzawa‐Carballeda
- Department of Immunology and RheumatologyInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico CityMexico
| | - N. O. Uribe‐Uribe
- Department of Pathology and Anatomic PathologyInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico CityMexico
| | - J. M. Arreola‐Guerra
- Department of TransplantationCentenario Hospital Miguel HidalgoAguascalientesMexico
| | - R. Reyes‐Acevedo
- Department of TransplantationCentenario Hospital Miguel HidalgoAguascalientesMexico
| | - M. Vilatobá
- Department of TransplantationInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico CityMexico
| | | | | | - R. Chávez‐Fernández
- Department of Immunology and RheumatologyInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico CityMexico
| | - F. López‐Verdugo
- Department of Immunology and RheumatologyInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico CityMexico
| | | | - J. Alberú
- Department of TransplantationInstituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránMexico CityMexico
| |
Collapse
|
41
|
Podestà MA, Remuzzi G, Casiraghi F. Mesenchymal Stromal Cells for Transplant Tolerance. Front Immunol 2019; 10:1287. [PMID: 31231393 PMCID: PMC6559333 DOI: 10.3389/fimmu.2019.01287] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/21/2019] [Indexed: 12/18/2022] Open
Abstract
In solid organ transplantation lifelong immunosuppression exposes transplant recipients to life-threatening complications, such as infections and malignancies, and to severe side effects. Cellular therapy with mesenchymal stromal cells (MSC) has recently emerged as a promising strategy to regulate anti-donor immune responses, allowing immunosuppressive drug minimization and tolerance induction. In this review we summarize preclinical data on MSC in solid organ transplant models, focusing on potential mechanisms of action of MSC, including down-regulation of effector T-cell response and activation of regulatory pathways. We will also provide an overview of available data on safety and feasibility of MSC therapy in solid organ transplant patients, highlighting the issues that still need to be addressed before establishing MSC as a safe and effective tolerogenic cell therapy in transplantation.
Collapse
Affiliation(s)
- Manuel Alfredo Podestà
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy.,Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Giuseppe Remuzzi
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Federica Casiraghi
- Department of Molecular Medicine, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| |
Collapse
|
42
|
Association between Early Acute Respiratory Distress Syndrome after Living-Donor Liver Transplantation and Perioperative Serum Biomarkers: The Role of Club Cell Protein 16. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8958069. [PMID: 31111072 PMCID: PMC6487165 DOI: 10.1155/2019/8958069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 03/27/2019] [Indexed: 12/13/2022]
Abstract
Background Acute respiratory distress syndrome (ARDS) after living-donor liver transplantation (LDLT) is not uncommon, but it lacks the biomarkers for early detection. Club cell protein 16 (CC16), high-motility group box 1 protein (HMGB1), interleukin-1β (IL-1β), and IL-10 have been reported as relevant to the development of ARDS. However, they have not been investigated during LDLT. Methods Seventy-three consecutive recipients undergoing LDLT were enrolled and received the same perioperative care plan. Perioperative serum CC16, HMGB1, IL-1β, and IL-10 levels were measured at the pretransplant state, 30 minutes after reperfusion, postoperative day 1 (POD1), and POD3. ARDS was diagnosed according to the 2012 Berlin definition. Results Of the 73 recipients, 13 developed ARDS with significantly longer durations of mechanical ventilation and intensive care unit stay. Serum CC16 levels on POD1 increased significantly from the pretransplant state in the ARDS group but not in the non-ARDS group. Pretransplant serum CC16 levels were also higher in the ARDS group. The area under the receiver operating characteristic curves for POD1 serum CC16 levels used to discriminate ARDS was 0.803 (95% confidence interval: 0.679 to 0.895; p < 0.001). By comparison, HMGB1, IL-1β, and IL-10 were not associated with ARDS after LDLT. Conclusion The higher pretransplant serum CC16 level and its increased level on POD1 were associated with the development of early ARDS after LDLT. This trial is registered with NCT01936545, 27 August 2013.
Collapse
|
43
|
Chan MWY, Viswanathan S. Recent progress on developing exogenous monocyte/macrophage-based therapies for inflammatory and degenerative diseases. Cytotherapy 2019; 21:393-415. [PMID: 30871899 DOI: 10.1016/j.jcyt.2019.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 02/04/2019] [Accepted: 02/13/2019] [Indexed: 12/14/2022]
Abstract
Cell-based therapies are a rapidly developing area of regenerative medicine as dynamic treatments that execute therapeutic functions multimodally. Monocytes and macrophages, as innate immune cells that control inflammation and tissue repair, are increasing popular clinical candidates due to their spectrum of functionality. In this article, we review the role of monocytes and macrophages specifically in inflammatory and degenerative disease pathology and the evidence supporting the use of these cells as an effective therapeutic strategy. We compare current strategies of exogenously polarized monocyte/macrophage therapies regarding dosage, delivery and processing to identify outcomes, advances and challenges to their clinical use. Monocytes/macrophages hold the potential to be a promising therapeutic avenue but understanding and optimization of disease-specific efficacy is needed to accelerate their clinical use.
Collapse
Affiliation(s)
- Mable Wing Yan Chan
- Arthritis Program, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Sowmya Viswanathan
- Arthritis Program, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Cell Therapy Program, University Health Network, Toronto, Ontario, Canada; Division of Hematology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
44
|
Hamers AAJ, Joshi SK, Pillai AB. Innate Immune Determinants of Graft-Versus-Host Disease and Bidirectional Immune Tolerance in Allogeneic Transplantation. ACTA ACUST UNITED AC 2019; 3. [PMID: 33511333 PMCID: PMC7839993 DOI: 10.21926/obm.transplant.1901044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The success of tissue transplantation from a healthy donor to a diseased individual (allo-transplantation) is regulated by the immune systems of both donor and recipient. Developing a state of specific non-reactivity between donor and recipient, while maintaining the salutary effects of immune function in the recipient, is called “immune (transplantation) tolerance”. In the classic early post-transplant period, minimizing bidirectional donor ←→ recipient reactivity requires the administration of immunosuppressive drugs, which have deleterious side effects (severe immunodeficiency, opportunistic infections, and neoplasia, in addition to drug-specific reactions and organ toxicities). Inducing immune tolerance directly through donor and recipient immune cells, particularly via subsets of immune regulatory cells, has helped to significantly reduce side effects associated with multiple immunosuppressive drugs after allo-transplantation. The innate and adaptive arms of the immune system are both implicated in inducing immune tolerance. In the present article, we will review innate immune subset manipulations and their potential applications in hematopoietic stem cell transplantation (HSCT) to cure malignant and non-malignant hematological disorders by inducing long-lasting donor ←→ recipient (bidirectional) immune tolerance and reduced graft-versus-host disease (GVHD). These innate immunotherapeutic strategies to promote long-term immune allo-transplant tolerance include myeloid-derived suppressor cells (MDSCs), regulatory macrophages, tolerogenic dendritic cells (tDCs), Natural Killer (NK) cells, invariant Natural Killer T (iNKT) cells, gamma delta T (γδ-T) cells and mesenchymal stromal cells (MSCs).
Collapse
Affiliation(s)
- Anouk A J Hamers
- Department of Pediatrics, Division of Hematology / Oncology and Bone Marrow Transplantation, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sunil K Joshi
- Department of Pediatrics, Division of Hematology / Oncology and Bone Marrow Transplantation, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Asha B Pillai
- Department of Pediatrics, Division of Hematology / Oncology and Bone Marrow Transplantation, University of Miami Miller School of Medicine, Miami, FL, USA.,Batchelor Children's Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Holtz Children's Hospital, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
45
|
Yu A, Zhang X, Li M, Ye P, Duan H, Zhang T, Yang Z. Tim-3 enhances brain inflammation by promoting M1 macrophage polarization following intracerebral hemorrhage in mice. Int Immunopharmacol 2018; 53:143-148. [PMID: 29107214 DOI: 10.1016/j.intimp.2017.10.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/06/2017] [Accepted: 10/18/2017] [Indexed: 10/18/2022]
Abstract
Macrophage polarization contributes to brain inflammation following spontaneous intracerebral hemorrhage (ICH). T cell immunoglobulin and mucin domain-3 (Tim-3) has been identified to induce macrophage mediated inflammation following ICH. However, the regulation of Tim-3 on macrophage polarization following ICH has not been fully studied. In current experiment, we explored Tim-3 expression, macrophage polarization, brain water content and neurological function in WT and Tim-3-/- ICH mice. In addition, downstream transcriptional factor TRIF and IRF3 were also analyzed. We found that ICH promoted Tim-3 expression and M1 polarization in the perihematomal region of WT mice, leading to increased brain water content and neurological impairment. However, deletion of Tim-3 expression attenuated M1 polarization, decreased rain water content and improved neurological function of ICH mice. Furthermore, Tim-3 signal promoted transcriptional factors TRIF and IRF3 levels, regulating macrophage polarization. The data suggested that Tim-3 played a crucial role in the macrophage polarization and brain inflammation following ICH, and might represent a promising way in ICH therapy.
Collapse
Affiliation(s)
- Anyong Yu
- Department of Emergency, The First Affiliated Hospital of Zunyi Medical College, Guizhou 563003, China
| | - Xiaojun Zhang
- Department of Emergency, The First Affiliated Hospital of Zunyi Medical College, Guizhou 563003, China
| | - Mo Li
- Department of Emergency, The First Affiliated Hospital of Zunyi Medical College, Guizhou 563003, China
| | - Peng Ye
- Department of Emergency, The First Affiliated Hospital of Zunyi Medical College, Guizhou 563003, China
| | - Haizhen Duan
- Department of Emergency, The First Affiliated Hospital of Zunyi Medical College, Guizhou 563003, China
| | - Tianxi Zhang
- Department of Emergency, The First Affiliated Hospital of Zunyi Medical College, Guizhou 563003, China
| | - Zhao Yang
- Department of Neurology, Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China.
| |
Collapse
|
46
|
Papazova DA, Krebber MM, Oosterhuis NR, Gremmels H, van Zuilen AD, Joles JA, Verhaar MC. Dissecting recipient from donor contribution in experimental kidney transplantation: focus on endothelial proliferation and inflammation. Dis Model Mech 2018; 11:11/7/dmm035030. [PMID: 30038062 PMCID: PMC6078404 DOI: 10.1242/dmm.035030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/14/2018] [Indexed: 12/12/2022] Open
Abstract
Kidney transplantation (Tx) is considered the only definite treatment for end-stage kidney disease (ESKD) patients. The increasing prevalence of ESKD has necessitated the introduction of transplantation with kidneys from suboptimal donors. There is, however, still a lack of fundamental and longitudinal research on suboptimal kidney transplants. Specifically, there is a demand for accurate pre-Tx predictors of donor kidney function and injury to predict post-Tx outcome. In the present study, we combine rat models of chronic kidney disease (CKD) and renal Tx to dissect the effects of healthy and CKD renal grafts on healthy and CKD recipients. We show that renal function at 6 weeks post-Tx is exclusively determined by donor graft quality. Using cell tracking within enhanced green fluorescent protein-positive (eGFP+) recipients, we furthermore show that most inflammatory cells within the donor kidney originate from the donor. Oxidative and vascular extra-renal damage were, in contrast, determined by the recipient. Post- versus pre-Tx evaluation of grafts showed an increase in glomerular and peritubular capillary rarefaction in healthy but not CKD grafts within a CKD environment. Proliferation of glomerular endothelium was similar in all groups, and influx of eGFP+ recipient-derived cells occurred irrespective of graft or recipient status. Glomerular and peritubular capillary rarefaction, severity of inflammation and macrophage subtype data post-Tx were, however, determined by more complicated effects, warranting further study. Our experimental model could help to further distinguish graft from recipient environment effects, leading to new strategies to improve graft survival of suboptimal Tx kidneys. This article has an associated First Person interview with the first author of the paper. Summary: Using experimental kidney transplantation, we dissected donor graft from recipient environment effects, focusing on the endothelium and inflammation. These results can direct strategies to improve graft survival after suboptimal transplantation.
Collapse
Affiliation(s)
- Diana A Papazova
- Department of Nephrology and Hypertension, UMC Utrecht, POB 85500, 3508 GA Utrecht, The Netherlands.,Department of Anesthesiology, Amsterdam UMC, Vrije Universiteit Amsterdam, POB 7057, 1007 MB Amsterdam, The Netherlands
| | - Merle M Krebber
- Department of Nephrology and Hypertension, UMC Utrecht, POB 85500, 3508 GA Utrecht, The Netherlands
| | - Nynke R Oosterhuis
- Department of Nephrology and Hypertension, UMC Utrecht, POB 85500, 3508 GA Utrecht, The Netherlands
| | - Hendrik Gremmels
- Department of Nephrology and Hypertension, UMC Utrecht, POB 85500, 3508 GA Utrecht, The Netherlands
| | - Arjan D van Zuilen
- Department of Nephrology and Hypertension, UMC Utrecht, POB 85500, 3508 GA Utrecht, The Netherlands
| | - Jaap A Joles
- Department of Nephrology and Hypertension, UMC Utrecht, POB 85500, 3508 GA Utrecht, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, UMC Utrecht, POB 85500, 3508 GA Utrecht, The Netherlands
| |
Collapse
|
47
|
Salehi S, Sosa RA, Jin YP, Kageyama S, Fishbein MC, Rozengurt E, Kupiec-Weglinski JW, Reed EF. Outside-in HLA class I signaling regulates ICAM-1 clustering and endothelial cell-monocyte interactions via mTOR in transplant antibody-mediated rejection. Am J Transplant 2018; 18:1096-1109. [PMID: 29045076 PMCID: PMC5904014 DOI: 10.1111/ajt.14544] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 10/05/2017] [Accepted: 10/07/2017] [Indexed: 01/25/2023]
Abstract
Antibody-mediated rejection (AMR) resulting in transplant allograft vasculopathy (TAV) is the major obstacle for long-term survival of solid organ transplants. AMR is caused by donor-specific antibodies to HLA, which contribute to TAV by initiating outside-in signaling transduction pathways that elicit monocyte recruitment to activated endothelium. Mechanistic target of rapamycin (mTOR) inhibitors can attenuate TAV; therefore, we sought to understand the mechanistic underpinnings of mTOR signaling in HLA class I Ab-mediated endothelial cell activation and monocyte recruitment. We used an in vitro model to assess monocyte binding to HLA I Ab-activated endothelial cells and found mTOR inhibition reduced ezrin/radixin/moesin (ERM) phosphorylation, intercellular adhesion molecule 1 (ICAM-1) clustering, and monocyte firm adhesion to HLA I Ab-activated endothelium. Further, in a mouse model of AMR, in which C57BL/6. RAG1-/- recipients of BALB/c cardiac allografts were passively transferred with donor-specific MHC I antibodies, mTOR inhibition significantly reduced vascular injury, ERM phosphorylation, and macrophage infiltration of the allograft. Taken together, these studies indicate mTOR inhibition suppresses ERM phosphorylation in endothelial cells, which impedes ICAM-1 clustering in response to HLA class I Ab and prevents macrophage infiltration into cardiac allografts. These findings indicate a novel therapeutic application for mTOR inhibitors to disrupt endothelial cell-monocyte interactions during AMR.
Collapse
Affiliation(s)
- Sahar Salehi
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Rebecca A. Sosa
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yi-Ping Jin
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shoichi Kageyama
- Department of Surgery, University of California, Los Angeles, CA, USA
| | - Michael C. Fishbein
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Enrique Rozengurt
- Department of Medicine, University of California, Los Angeles, CA, USA
| | - Jerzy W. Kupiec-Weglinski
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA.,Department of Surgery, University of California, Los Angeles, CA, USA
| | - Elaine F. Reed
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
48
|
Li J, Xie J, Liu S, Li X, Zhang D, Wang X, Jiang J, Hu W, Zhang Y, Jin B, Zhuang R, Yin W. ADAR1 attenuates allogeneic graft rejection by suppressing miR‐21 biogenesis in macrophages and promoting M2 polarization. FASEB J 2018; 32:5162-5173. [DOI: 10.1096/fj.201701449r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Junjie Li
- Department of Emergency School of Basic Medical SciencesFourth Military Medical UniversityXi'anChina
| | - Jiangang Xie
- Department of Emergency School of Basic Medical SciencesFourth Military Medical UniversityXi'anChina
- Department of Plastic SurgeryXijing HospitalSchool of Basic Medical SciencesFourth Military Medical UniversityXi'anChina
| | - Shanshou Liu
- Department of Emergency School of Basic Medical SciencesFourth Military Medical UniversityXi'anChina
| | - Xiao Li
- Department of Hepatobiliary SurgerySchool of Basic Medical SciencesFourth Military Medical UniversityXi'anChina
| | - Dongliang Zhang
- Department of Plastic SurgeryXijing HospitalSchool of Basic Medical SciencesFourth Military Medical UniversityXi'anChina
- Transplant Immunology Laboratory and School of Basic Medical SciencesFourth Military Medical UniversityXi'anChina
| | - Xianqi Wang
- Department of Emergency School of Basic Medical SciencesFourth Military Medical UniversityXi'anChina
| | - Jinquan Jiang
- Department of Emergency School of Basic Medical SciencesFourth Military Medical UniversityXi'anChina
| | - Wei Hu
- Transplant Immunology Laboratory and School of Basic Medical SciencesFourth Military Medical UniversityXi'anChina
- Department of ImmunologySchool of Basic Medical SciencesFourth Military Medical UniversityXi'anChina
| | - Yuan Zhang
- Transplant Immunology Laboratory and School of Basic Medical SciencesFourth Military Medical UniversityXi'anChina
| | - Boquan Jin
- Department of ImmunologySchool of Basic Medical SciencesFourth Military Medical UniversityXi'anChina
| | - Ran Zhuang
- Transplant Immunology Laboratory and School of Basic Medical SciencesFourth Military Medical UniversityXi'anChina
- Department of ImmunologySchool of Basic Medical SciencesFourth Military Medical UniversityXi'anChina
| | - Wen Yin
- Department of Emergency School of Basic Medical SciencesFourth Military Medical UniversityXi'anChina
| |
Collapse
|
49
|
Zhao Y, Chen S, Lan P, Wu C, Dou Y, Xiao X, Zhang Z, Minze L, He X, Chen W, Li XC. Macrophage subpopulations and their impact on chronic allograft rejection versus graft acceptance in a mouse heart transplant model. Am J Transplant 2018; 18:604-616. [PMID: 29044999 PMCID: PMC5820161 DOI: 10.1111/ajt.14543] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/19/2017] [Accepted: 10/06/2017] [Indexed: 01/25/2023]
Abstract
Macrophages infiltrating the allografts are heterogeneous, consisting of proinflammatory (M1 cells) as well as antiinflammatory and fibrogenic phenotypes (M2 cells); they affect transplantation outcomes via diverse mechanisms. Here we found that macrophage polarization into M1 and M2 subsets was critically dependent on tumor necrosis factor receptor-associated factor 6 (TRAF6) and mammalian target of rapamycin (mTOR), respectively. In a heart transplant model we showed that macrophage-specific deletion of TRAF6 (LysMCre Traf6 fl/fl ) or mTOR (LysMCre Mtorfl/fl ) did not affect acute allograft rejection. However, treatment of LysMCre Mtorfl/fl recipients with CTLA4-Ig induced long-term allograft survival (>100 days) without histological signs of chronic rejection, whereas the similarly treated LysMCre Traf6 fl/fl recipients developed severe transplant vasculopathy (chronic rejection). The presentation of chronic rejection in CTLA4-Ig-treated LysMCre Traf6 fl/fl mice was similar to that of CTLA4-Ig-treated wild-type B6 recipients. Mechanistically, we found that the graft-infiltrating macrophages in LysMCre Mtorfl/fl recipients expressed high levels of PD-L1, and that PD-L1 blockade readily induced rejection of otherwise survival grafts in the LysMCre Mtorfl/fl recipients. Our findings demonstrate that targeting mTOR-dependent M2 cells is critical for preventing chronic allograft rejection, and that graft survival under such conditions is dependent on the PD-1/PD-L1 coinhibitory pathway.
Collapse
Affiliation(s)
- Yue Zhao
- Immunobiology & Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, Texas
| | - Song Chen
- Immunobiology & Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, Texas
| | - Peixiang Lan
- Immunobiology & Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, Texas
| | - Chenglin Wu
- Immunobiology & Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, Texas,Sun Yet-sun University first affiliated hospital, Guangzhou, China
| | - Yaling Dou
- Immunobiology & Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, Texas
| | - Xiang Xiao
- Immunobiology & Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, Texas
| | - Zhiqiang Zhang
- Immunobiology & Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, Texas
| | - Laurie Minze
- Immunobiology & Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, Texas
| | - Xiaoshun He
- Immunobiology & Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, Texas,Sun Yet-sun University first affiliated hospital, Guangzhou, China
| | - Wenhao Chen
- Immunobiology & Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, Texas,Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY
| | - Xian C. Li
- Immunobiology & Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, Texas,Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY,Address correspondence to: Xian C. Li, MD, PhD. Houston Methodist Research Institute, Texas Medical Center, 6670 Bertner Avenue, R7-211, Houston, Texas 77030,
| |
Collapse
|
50
|
Azad TD, Donato M, Heylen L, Liu AB, Shen-Orr SS, Sweeney TE, Maltzman JS, Naesens M, Khatri P. Inflammatory macrophage-associated 3-gene signature predicts subclinical allograft injury and graft survival. JCI Insight 2018; 3:95659. [PMID: 29367465 PMCID: PMC5821209 DOI: 10.1172/jci.insight.95659] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 12/12/2017] [Indexed: 12/22/2022] Open
Abstract
Late allograft failure is characterized by cumulative subclinical insults manifesting over many years. Although immunomodulatory therapies targeting host T cells have improved short-term survival rates, rates of chronic allograft loss remain high. We hypothesized that other immune cell types may drive subclinical injury, ultimately leading to graft failure. We collected whole-genome transcriptome profiles from 15 independent cohorts composed of 1,697 biopsy samples to assess the association of an inflammatory macrophage polarization-specific gene signature with subclinical injury. We applied penalized regression to a subset of the data sets and identified a 3-gene inflammatory macrophage-derived signature. We validated discriminatory power of the 3-gene signature in 3 independent renal transplant data sets with mean AUC of 0.91. In a longitudinal cohort, the 3-gene signature strongly correlated with extent of injury and accurately predicted progression of subclinical injury 18 months before clinical manifestation. The 3-gene signature also stratified patients at high risk of graft failure as soon as 15 days after biopsy. We found that the 3-gene signature also distinguished acute rejection (AR) accurately in 3 heart transplant data sets but not in lung transplant. Overall, we identified a parsimonious signature capable of diagnosing AR, recognizing subclinical injury, and risk-stratifying renal transplant patients. Our results strongly suggest that inflammatory macrophages may be a viable therapeutic target to improve long-term outcomes for organ transplantation patients.
Collapse
Affiliation(s)
- Tej D. Azad
- Stanford Institute for Immunity, Transplantation and Infection and
- Division of Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, California, USA
| | - Michele Donato
- Stanford Institute for Immunity, Transplantation and Infection and
- Division of Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, California, USA
| | - Line Heylen
- Department of Microbiology and Immunology, KU Leuven – University of Leuven, Leuven, Belgium
| | - Andrew B. Liu
- Stanford Institute for Immunity, Transplantation and Infection and
- Division of Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, California, USA
| | - Shai S. Shen-Orr
- Department of Immunology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Timothy E. Sweeney
- Stanford Institute for Immunity, Transplantation and Infection and
- Division of Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, California, USA
| | - Jonathan Scott Maltzman
- Division of Nephrology, Department of Medicine, Stanford University, Stanford, California, USA
| | - Maarten Naesens
- Department of Microbiology and Immunology, KU Leuven – University of Leuven, Leuven, Belgium
| | - Purvesh Khatri
- Stanford Institute for Immunity, Transplantation and Infection and
- Division of Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|