1
|
Sui M, Li T, Lu H, Li Y, Huang J, Zhang P, Wang S, Zeng L. SOCS3 inhibits the mesenchymal stromal cell secretory factor SDF-1-mediated improvement of islet function in non-obese diabetic mice. Stem Cell Res Ther 2023; 14:172. [PMID: 37400916 DOI: 10.1186/s13287-023-03347-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/18/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Islet transplantation is used therapeutically in a minority of patients with type 1 diabetes (T1D). However, successful outcomes are hampered by early islet β-cell loss caused by immune rejection and autoimmunity. Recent studies have demonstrated that mesenchymal stromal cells can enhance islet function both in vitro and in vivo by secreting ligands that activate islet G-protein coupled receptors (GPCRs). Stromal cell-derived factor 1 (SDF-1) is an MSC-secreted GPCR ligand, whereas the suppressor of cytokine signaling 3 (SOCS3) is a negative regulator of STAT3-activating cytokines. Here, we determined whether improvement in islet function mediated by exogenous SDF-1 is impaired by SOCS3 in experimental models of T1D. METHODS Isolated islets were cultured for 48 h with SDF-1. Cytokine-induced apoptosis was measured immediately. Islets from Socs3-/- mice were pre-cultured with exogenous SDF-1 and transplanted underneath the kidney capsule of C57BL/6 mice with streptozotocin-induced diabetes. Blood glucose levels were monitored for 28 days. AMD3100, an antagonist of the SDF-1 ligand CXCR4, was administered subcutaneously to islet transplanted mice to inhibit CXCR4 before and after transplantation. RESULTS SDF-1 protected islet cells from cytokine-induced apoptosis in vitro. SOCS3-knockout (KO) islets pretreated with SDF-1 were effective in reducing blood glucose in non-obese diabetic mice in vivo. We found that SDF-1 elicits localized immunosuppression in transplanted SOCS3-KO islets. Immunomodulation was observed when SOCS-KO islets were preconditioned with SDF-1. Gene expression and flow cytometric analyses revealed significantly decreased immune cell infiltration, inflammatory cytokines, and concomitant increases in FOXP3+ regulatory T cells, alternatively activated M2 macrophages, and dendritic cell phenotypes. Administration of AMD3100 impaired the SDF-1-mediated improvement in SOCS3-KO islet function and local immune suppression. CONCLUSION SDF-1 improves the function of islet grafts in autoimmune diabetes through regulation by CXCR4; however, the presence of SOCS3 reverses the protective effect of SDF-1 on islet grafts. These data reveal a molecular pathway that can elicit localized immunosuppression and delay graft destruction in transplanted islets.
Collapse
Affiliation(s)
- Mingxing Sui
- Department of Organ Transplantation, Shanghai Changhai Hospital, Navy Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Tuo Li
- Department of Endocrinology, Changzheng Hospital, Navy Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Hanlan Lu
- Department of Organ Transplantation, Shanghai Changhai Hospital, Navy Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Yanhua Li
- Department of Organ Transplantation, Shanghai Changhai Hospital, Navy Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Juan Huang
- Department of Organ Transplantation, Shanghai Changhai Hospital, Navy Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Pei Zhang
- Department of Organ Transplantation, Shanghai Changhai Hospital, Navy Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Shusen Wang
- Organ Transplant Center, Tianjin First Central Hospital, Tianjin, China.
| | - Li Zeng
- Department of Organ Transplantation, Shanghai Changhai Hospital, Navy Medical University, 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
2
|
Li F, Crumley K, Bealer E, King JL, Saito E, Grimany-Nuno O, Yolcu ES, Shirwan H, Shea LD. Fas Ligand-Modified Scaffolds Protect Stem Cell Derived β-Cells by Modulating Immune Cell Numbers and Polarization. ACS APPLIED MATERIALS & INTERFACES 2022; 15:50549-50559. [PMID: 36533683 DOI: 10.1021/acsami.2c12939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Stem cell derived β-cells have demonstrated the potential to control blood glucose levels and represent a promising treatment for Type 1 diabetes (T1D). Early engraftment post-transplantation and subsequent maturation of these β-cells are hypothesized to be limited by the initial inflammatory response, which impacts the ability to sustain normoglycemia for long periods. We investigated the survival and development of immature hPSC-derived β-cells transplanted on poly(lactide-co-glycolide) (PLG) microporous scaffolds into the peritoneal fat, a site being considered for clinical translation. The scaffolds were modified with biotin for binding of a streptavidin-FasL (SA-FasL) chimeric protein to modulate the local immune cell responses. The presence of FasL impacted infiltration of monocytes and neutrophils and altered the immune cell polarization. Conditioned media generated from SA-FasL scaffolds explanted at day 4 post-transplant did not impact hPSC-derived β-cell survival and maturation in vitro, while these responses were reduced with conditioned media from control scaffolds. Following transplantation, β-cell viability and differentiation were improved with SA-FasL modification. A sustained increase in insulin positive cell ratio was observed with SA-FasL-modified scaffolds relative to control scaffolds. These results highlight that the initial immune response can significantly impact β-cell engraftment, and modulation of cell infiltration and polarization may be a consideration for supporting long-term function at an extrahepatic site.
Collapse
Affiliation(s)
- Feiran Li
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kelly Crumley
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Elizabeth Bealer
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jessica L King
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Eiji Saito
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Orlando Grimany-Nuno
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky 40202, United States
| | - Esma S Yolcu
- Department of Child Health and Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri 65211, United States
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky 40202, United States
| | - Haval Shirwan
- Department of Child Health and Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri 65211, United States
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, Kentucky 40202, United States
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
3
|
Preferences for Risks and Benefits of Islet Cell Transplantation for Persons With Type 1 Diabetes With History of Episodes of Severe Hypoglycemia: A Discrete-Choice Experiment to Inform Regulatory Decisions. Transplantation 2022; 106:e368-e379. [PMID: 35655355 DOI: 10.1097/tp.0000000000004189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The advisory panel for US Food and Drug Administration (FDA) recently endorsed pancreatic islet cell transplantation (ICT) therapy for suboptimally controlled type 1 diabetes (T1D), and FDA approval is under consideration. An important part of regulatory approval includes the patient perspective, through discrete choice. We developed a discrete-choice instrument and used it to determine how 90 people with T1D weigh the risks and benefits of ICT to inform regulatory decisions. METHODS Sawtooth software created a random, full-profile, balanced-overlap experimental design for a measure with 8 attributes of ICT risks/benefits, each with 3 to 5 levels. We asked 18 random task pairs, sociodemographics, diabetes management, and hypoglycemia questions. Analysis was performed using random parameters logistic regression technique. RESULTS The strongest preference was for avoiding the highest chance (15%) of serious procedure-related complications (β = -2.03, P < 0.001). The strongest positive preference was for gaining 5-y insulin independence (β = 1.75, P < 0.001). The desire for 5-y HbA1C-defined clinical treatment success was also strong (β = 1.39, P < 0.001). Subgroup analysis suggested strong gender differences with women showing much higher preferences for all benefits (68% higher for 5-y insulin independence), and men were generally more risk averse than women. Those with high versus low diabetes distress showed 3 times stronger preference for 5-y insulin independence but also twice preference to avoid risks of serious complications. CONCLUSION Despite showing the most preference for avoiding serious ICT complications, people with T1D had a strong preference for achieving ICT benefits, especially insulin independence. We identified important attributes of ICT and demonstrated that patients are willing to make these trade-offs, showing support for the introduction of ICT.
Collapse
|
4
|
Bhagchandani P, Chang CA, Zhao W, Ghila L, Herrera PL, Chera S, Kim SK. Islet cell replacement and transplantation immunology in a mouse strain with inducible diabetes. Sci Rep 2022; 12:9033. [PMID: 35641781 PMCID: PMC9156753 DOI: 10.1038/s41598-022-13087-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/04/2022] [Indexed: 11/09/2022] Open
Abstract
Improved models of experimental diabetes are needed to develop cell therapies for diabetes. Here, we introduce the B6 RIP-DTR mouse, a model of experimental diabetes in fully immunocompetent animals. These inbred mice harbor the H2b major histocompatibility complex (MHC), selectively express high affinity human diphtheria toxin receptor (DTR) in islet β-cells, and are homozygous for the Ptprca (CD45.1) allele rather than wild-type Ptprcb (CD45.2). 100% of B6 RIP-DTR mice rapidly became diabetic after a single dose of diphtheria toxin, and this was reversed indefinitely after transplantation with islets from congenic C57BL/6 mice. By contrast, MHC-mismatched islets were rapidly rejected, and this allotransplant response was readily monitored via blood glucose and graft histology. In peripheral blood of B6 RIP-DTR with mixed hematopoietic chimerism, CD45.2 BALB/c donor blood immune cells were readily distinguished from host CD45.1 cells by flow cytometry. Reliable diabetes induction and other properties in B6 RIP-DTR mice provide an important new tool to advance transplant-based studies of islet replacement and immunomodulation to treat diabetes.
Collapse
Affiliation(s)
- Preksha Bhagchandani
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Charles A Chang
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Weichen Zhao
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Luiza Ghila
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Pedro L Herrera
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Simona Chera
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA. .,Department of Medicine (Endocrinology Division), Stanford University School of Medicine, Stanford, CA, 94305, USA. .,Department of Pediatrics (Endocrinology Division), Stanford University School of Medicine, Stanford, CA, 94305, USA. .,Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, 94305, USA. .,JDRF Center of Excellence, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
5
|
Koduru SV, Leberfinger AN, Ozbolat IT, Ravnic DJ. Navigating the Genomic Landscape of Human Adipose Stem Cell-Derived β-Cells. Stem Cells Dev 2021; 30:1153-1170. [PMID: 34514867 DOI: 10.1089/scd.2021.0160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Diabetes is a pandemic manifested through glucose dysregulation mediated by inadequate insulin secretion by beta cells. A beta cell replacement strategy would transform the treatment paradigm from pharmacologic glucose modulation to a genuine cure. Stem cells have emerged as a potential source for beta cell (β-cell) engineering. The detailed generation of functional β-cells from both embryonic and induced pluripotent stem cells has recently been described. Adult stem cells, including adipose derived, may also offer a therapeutic approach, but remain ill defined. In our study, we performed an in-depth assessment of insulin-producing beta cells generated from human adipose, irrespective of donor patient age, gender, and health status. Cellular transformation was confirmed using flow cytometry and single-cell imaging. Insulin secretion was observed with glucose stimulation and abrogated following palmitate exposure, a common free fatty acid implicated in human beta cell dysfunction. We used next-generation sequencing to explore gene expression changes before and after differentiation of patient-matched samples, which revealed more than 5,000 genes enriched. Adipose-derived beta cells displayed comparable gene expression to native β-cells. Pathway analysis demonstrated relevance to stem cell differentiation and pancreatic developmental processes, which are vital to cellular function, structural development, and regulation. We conclude that the functions associated with adipose derived beta cells are mediated through relevant changes in the transcriptome, which resemble those seen in native β-cell morphogenesis and maturation. Therefore, they may represent a viable option for the clinical translation of stem cell-based therapies in diabetes.
Collapse
Affiliation(s)
- Srinivas V Koduru
- Irvin S. Zubar Plastic Surgery Research Laboratory, Penn State College of Medicine, Hershey, Pennsylvania, USA.,Division of Plastic Surgery, Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA.,Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Ashley N Leberfinger
- Irvin S. Zubar Plastic Surgery Research Laboratory, Penn State College of Medicine, Hershey, Pennsylvania, USA.,Division of Plastic Surgery, Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Ibrahim T Ozbolat
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of Life Sciences, Penn State University, University Park, Pennsylvania, USA.,Engineering Science and Mechanics Department, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Dino J Ravnic
- Irvin S. Zubar Plastic Surgery Research Laboratory, Penn State College of Medicine, Hershey, Pennsylvania, USA.,Division of Plastic Surgery, Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| |
Collapse
|
6
|
Lau HH, Gan SU, Lickert H, Shapiro AMJ, Lee KO, Teo AKK. Charting the next century of insulin replacement with cell and gene therapies. MED 2021; 2:1138-1162. [DOI: 10.1016/j.medj.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/24/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
|
7
|
Abstract
This review focuses on the human pancreatic islet-including its structure, cell composition, development, function, and dysfunction. After providing a historical timeline of key discoveries about human islets over the past century, we describe new research approaches and technologies that are being used to study human islets and how these are providing insight into human islet physiology and pathophysiology. We also describe changes or adaptations in human islets in response to physiologic challenges such as pregnancy, aging, and insulin resistance and discuss islet changes in human diabetes of many forms. We outline current and future interventions being developed to protect, restore, or replace human islets. The review also highlights unresolved questions about human islets and proposes areas where additional research on human islets is needed.
Collapse
Affiliation(s)
- John T Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Diane C Saunders
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Marcela Brissova
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Alvin C Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
8
|
Soetedjo AAP, Lee JM, Lau HH, Goh GL, An J, Koh Y, Yeong WY, Teo AKK. Tissue engineering and 3D printing of bioartificial pancreas for regenerative medicine in diabetes. Trends Endocrinol Metab 2021; 32:609-622. [PMID: 34154916 DOI: 10.1016/j.tem.2021.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 02/08/2023]
Abstract
Diabetes is a severe chronic disease worldwide. In various types of diabetes, the pancreatic beta cells fail to secrete sufficient insulin, at some point, to regulate blood glucose levels. Therefore, the replacement of dysfunctional pancreas, islets of Langerhans, or even the insulin-secreting beta cells facilitates physiological regulation of blood glucose levels. However, the current lack of sufficient donor human islets for cell replacement therapy precludes a routine and absolute cure for most of the existing diabetes cases globally. It is envisioned that tissue engineering of a bioartificial pancreas will revolutionize regenerative medicine and the treatment of diabetes. In this review, we discuss the anatomy and physiology of the pancreas, and identify the clinical considerations for engineering a bioartificial pancreas. Subsequently, we dissect the bioengineering problem based on the design of the device, the biomaterial used, and the cells involved. Last but not least, we highlight current tissue engineering challenges and explore potential directions for future work.
Collapse
Affiliation(s)
- Andreas Alvin Purnomo Soetedjo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore; Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore
| | - Jia Min Lee
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| | - Hwee Hui Lau
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore
| | - Guo Liang Goh
- Singapore Centre for 3D Printing (SC3DP), School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| | - Jia An
- Singapore Centre for 3D Printing (SC3DP), School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| | - Yexin Koh
- Department of Hepatopancreatobiliary and Transplant Surgery, Singapore General Hospital, Singapore
| | - Wai Yee Yeong
- Singapore Centre for 3D Printing (SC3DP), School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| | - Adrian Kee Keong Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore; Department of Biochemistry and Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
9
|
Abstract
As part of the centennial celebration of insulin's discovery, this review summarizes the current understanding of the genetics, pathogenesis, treatment, and outcomes in type 1 diabetes (T1D). T1D results from an autoimmune response that leads to destruction of the β cells in the pancreatic islet and requires lifelong insulin therapy. While much has been learned about T1D, it is now clear that there is considerable heterogeneity in T1D with regard to genetics, pathology, response to immune-based therapies, clinical course, and susceptibility to diabetes-related complications. This Review highlights knowledge gaps and opportunities to improve the understanding of T1D pathogenesis and outlines emerging therapies to treat or prevent T1D and reduce the burden of T1D.
Collapse
|
10
|
Chung WY, Pollard CA, Kumar R, Drogemuller CJ, Naziruddin B, Stover C, Issa E, Isherwood J, Cooke J, Levy MF, Coates PTH, Garcea G, Dennison AR. A comparison of the inflammatory response following autologous compared with allogenic islet cell transplantation. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:98. [PMID: 33569400 PMCID: PMC7867892 DOI: 10.21037/atm-20-3519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background The initial response to islet transplantation and the subsequent acute inflammation is responsible for significant attrition of islets following both autologous and allogenic procedures. This multicentre study compares this inflammatory response using cytokine profiles and complement activation. Methods Inflammatory cytokine and complement pathway activity were examined in two cohorts of patients undergoing total pancreatectomy followed either by autologous (n=11) or allogenic (n=6) islet transplantation. Two patients who underwent total pancreatectomy alone (n=2) served as controls. Results The peak of cytokine production occurred immediately following induction of anaesthesia and during surgery. There was found to be a greater elevation of the following cytokines: TNF-alpha (P<0.01), MCP-1 (P=0.0013), MIP-1α (P=0.001), MIP-1β (P=0.00020), IP-10 (P=0.001), IL-8 (P=0.004), IL-1α (P=0.001), IL-1ra (0.0018), IL-10 (P=0.001), GM-CSF (P=0.001), G-CSF (P=0.0198), and Eotaxin (P=0.01) in the allogenic group compared to autografts and controls. Complement activation and consumption was observed in all three pathways, and there were no significant differences in between the groups although following allogenic transplantation ∆IL-10 and ∆VEGF levels were significantly elevated those patients who became insulin-independent compared with those who were insulin-dependent. Conclusions The cytokine profiles following islet transplantation suggests a significantly greater acute inflammatory response following allogenic islet transplantation compared with auto-transplantation although a significant, non-specific inflammatory response occurs following both forms of islet transplantation.
Collapse
Affiliation(s)
- Wen Yuan Chung
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK
| | - Cristina A Pollard
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK
| | - Rohan Kumar
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK
| | | | | | - Cordula Stover
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Eyad Issa
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK
| | - John Isherwood
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK
| | - Jill Cooke
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK
| | - Marlon F Levy
- Baylor Research Institute, Dallas & Fort Worth, TX, USA
| | - P Toby H Coates
- Australian Islet Consortium, Royal Adelaide Hospital, South Australia, Australia
| | - Giuseppe Garcea
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK
| | - Ashley R Dennison
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK
| |
Collapse
|
11
|
Cayabyab F, Nih LR, Yoshihara E. Advances in Pancreatic Islet Transplantation Sites for the Treatment of Diabetes. Front Endocrinol (Lausanne) 2021; 12:732431. [PMID: 34589059 PMCID: PMC8473744 DOI: 10.3389/fendo.2021.732431] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/13/2021] [Indexed: 01/08/2023] Open
Abstract
Diabetes is a complex disease that affects over 400 million people worldwide. The life-long insulin injections and continuous blood glucose monitoring required in type 1 diabetes (T1D) represent a tremendous clinical and economic burdens that urges the need for a medical solution. Pancreatic islet transplantation holds great promise in the treatment of T1D; however, the difficulty in regulating post-transplantation immune reactions to avoid both allogenic and autoimmune graft rejection represent a bottleneck in the field of islet transplantation. Cell replacement strategies have been performed in hepatic, intramuscular, omentum, and subcutaneous sites, and have been performed in both animal models and human patients. However more optimal transplantation sites and methods of improving islet graft survival are needed to successfully translate these studies to a clinical relevant therapy. In this review, we summarize the current progress in the field as well as methods and sites of islet transplantation, including stem cell-derived functional human islets. We also discuss the contribution of immune cells, vessel formation, extracellular matrix, and nutritional supply on islet graft survival. Developing new transplantation sites with emerging technologies to improve islet graft survival and simplify immune regulation will greatly benefit the future success of islet cell therapy in the treatment of diabetes.
Collapse
Affiliation(s)
- Fritz Cayabyab
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Lina R. Nih
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
- David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| | - Eiji Yoshihara
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
- David Geffen School of Medicine at University of California, Los Angeles, CA, United States
- *Correspondence: Eiji Yoshihara,
| |
Collapse
|
12
|
Tahbaz M, Yoshihara E. Immune Protection of Stem Cell-Derived Islet Cell Therapy for Treating Diabetes. Front Endocrinol (Lausanne) 2021; 12:716625. [PMID: 34447354 PMCID: PMC8382875 DOI: 10.3389/fendo.2021.716625] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022] Open
Abstract
Insulin injection is currently the main therapy for type 1 diabetes (T1D) or late stage of severe type 2 diabetes (T2D). Human pancreatic islet transplantation confers a significant improvement in glycemic control and prevents life-threatening severe hypoglycemia in T1D patients. However, the shortage of cadaveric human islets limits their therapeutic potential. In addition, chronic immunosuppression, which is required to avoid rejection of transplanted islets, is associated with severe complications, such as an increased risk of malignancies and infections. Thus, there is a significant need for novel approaches to the large-scale generation of functional human islets protected from autoimmune rejection in order to ensure durable graft acceptance without immunosuppression. An important step in addressing this need is to strengthen our understanding of transplant immune tolerance mechanisms for both graft rejection and autoimmune rejection. Engineering of functional human pancreatic islets that can avoid attacks from host immune cells would provide an alternative safe resource for transplantation therapy. Human pluripotent stem cells (hPSCs) offer a potentially limitless supply of cells because of their self-renewal ability and pluripotency. Therefore, studying immune tolerance induction in hPSC-derived human pancreatic islets will directly contribute toward the goal of generating a functional cure for insulin-dependent diabetes. In this review, we will discuss the current progress in the immune protection of stem cell-derived islet cell therapy for treating diabetes.
Collapse
Affiliation(s)
- Meghan Tahbaz
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Eiji Yoshihara
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
- David Geffen School of Medicine at University of California, Los Angeles, CA, United States
- *Correspondence: Eiji Yoshihara,
| |
Collapse
|
13
|
Magisson J, Sassi A, Xhema D, Kobalyan A, Gianello P, Mourer B, Tran N, Burcez CT, Bou Aoun R, Sigrist S. Safety and function of a new pre-vascularized bioartificial pancreas in an allogeneic rat model. J Tissue Eng 2020; 11:2041731420924818. [PMID: 32523669 PMCID: PMC7257875 DOI: 10.1177/2041731420924818] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/18/2020] [Indexed: 12/17/2022] Open
Abstract
Cell encapsulation could overcome limitations of free islets transplantation but is currently limited by inefficient cells immune protection and hypoxia. As a response to these challenges, we tested in vitro and in vivo the safety and efficacy of a new macroencapsulation device named MailPan®. Membranes of MailPan® device were tested in vitro in static conditions. Its bio-integration and level of oxygenation was assessed after implantation in non-diabetic rats. Immune protection properties were also assessed in rat with injection in the device of allogeneic islets with incompatible Major Histocompatibility Complex. Finally, function was assessed in diabetic rats with a Beta cell line injected in MailPan®. In vitro, membranes of the device showed high permeability to glucose, insulin, and rejected IgG. In rat, the device displayed good bio-integration, efficient vascularization, and satisfactory oxygenation (>5%), while positron emission tomography (PET)-scan and angiography also highlighted rapid exchanges between blood circulation and the MailPan®. The device showed its immune protection properties by preventing formation, by the rat recipient, of antibodies against encapsulated allogenic islets. Injection of a rat beta cell line into the device normalized fasting glycemia of diabetic rat with retrieval of viable cell clusters after 2 months. These data suggest that MailPan® constitutes a promising encapsulation device for widespread use of cell therapy for type 1 diabetes.
Collapse
Affiliation(s)
| | | | - Daela Xhema
- Laboratory of Experimental Surgery, Université Catholique de Louvain, Brussels, Belgium
| | | | - Pierre Gianello
- Laboratory of Experimental Surgery, Université Catholique de Louvain, Brussels, Belgium
| | - Brice Mourer
- Ecole de Chirurgie de Nancy-Lorraine, Vandoeuvre-lès-Nancy, France
| | - Nguyen Tran
- Ecole de Chirurgie de Nancy-Lorraine, Vandoeuvre-lès-Nancy, France
| | | | | | | |
Collapse
|
14
|
Flier JS. Starvation in the Midst of Plenty: Reflections on the History and Biology of Insulin and Leptin. Endocr Rev 2019; 40:1-16. [PMID: 30357355 PMCID: PMC6270967 DOI: 10.1210/er.2018-00179] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/13/2018] [Indexed: 02/08/2023]
Abstract
Insulin and leptin are critical metabolic hormones that play essential but distinct roles in regulating the physiologic switch between the fed and starved states. The discoveries of insulin and leptin, in 1922 and 1994, respectively, arose out of radically different scientific environments. Despite the dearth of scientific tools available in 1922, insulin's discovery rapidly launched a life-saving therapy for what we now know to be type I diabetes, and continually enhanced insulin therapeutics are now effectively applied to both major forms of this increasingly prevalent disease. In contrast, although the discovery of leptin provided deep insights into the regulation of central nervous system energy balance circuits, as well as an effective therapy for an extremely rare form of obesity, its therapeutic impact beyond that has been surprisingly limited. Despite an enormous accumulated body of information, many important questions remain unanswered about the mechanisms of action and role in disease of both hormones. Additionally, although many decades apart, both discoveries reveal the complexities inherent to scientific collaboration and the assignment of credit, even when the efforts are spectacularly successful.
Collapse
Affiliation(s)
- Jeffrey S Flier
- Department of Medicine and Department of Neurobiology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
15
|
Herynek V, Turnovcová K, Gálisová A, Kaman O, Mareková D, Koktan J, Vosmanská M, Kosinová L, Jendelová P. Manganese-Zinc Ferrites: Safe and Efficient Nanolabels for Cell Imaging and Tracking In Vivo. ChemistryOpen 2019; 8:155-165. [PMID: 30740290 PMCID: PMC6356160 DOI: 10.1002/open.201800261] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 12/11/2018] [Indexed: 12/16/2022] Open
Abstract
Manganese-zinc ferrite nanoparticles were synthesized by using a hydrothermal treatment, coated with silica, and then tested as efficient cellular labels for cell tracking, using magnetic resonance imaging (MRI) in vivo. A toxicity study was performed on rat mesenchymal stem cells and C6 glioblastoma cells. Adverse effects on viability and cell proliferation were observed at the highest concentration (0.55 mM) only; cell viability was not compromised at lower concentrations. Nanoparticle internalization was confirmed by transmission electron microscopy. The particles were found in membranous vesicles inside the cytoplasm. Although the metal content (0.42 pg Fe/cell) was lower compared to commercially available iron oxide nanoparticles, labeled cells reached a comparable relaxation rate R 2, owing to higher nanoparticle relaxivity. Cells from transgenic luciferase-positive rats were used for in vivo experiments. Labeled cells were transplanted into the muscles of non-bioluminescent rats and visualized by MRI. The cells produced a distinct hypointense signal in T2- or T2*-weighted MR images in vivo. Cell viability in vivo was verified by bioluminescence.
Collapse
Affiliation(s)
- Vít Herynek
- Radiodiagnostic and Interventional Radiology Department Institute for Clinical and Experimental Medicine Vídeňská 1958/9 140 21 Prague Czech Republic.,Center for Advanced Preclinical Imaging First Faculty of Medicine Charles University Salmovská 3 Prague Czech Republic
| | - Karolína Turnovcová
- Department of Tissue Culture and Stem Cells Institute of Experimental Medicine, Czech Academy of Sciences Vídeňská 1083 Prague Czech Republic
| | - Andrea Gálisová
- Radiodiagnostic and Interventional Radiology Department Institute for Clinical and Experimental Medicine Vídeňská 1958/9 140 21 Prague Czech Republic
| | - Ondřej Kaman
- Institute of Physics, Czech Academy of Sciences Cukrovarnická 10 Prague Czech Republic
| | - Dana Mareková
- Department of Tissue Culture and Stem Cells Institute of Experimental Medicine, Czech Academy of Sciences Vídeňská 1083 Prague Czech Republic
| | - Jakub Koktan
- Institute of Physics, Czech Academy of Sciences Cukrovarnická 10 Prague Czech Republic.,Faculty of Chemical Engineering University of Chemistry and Technology Technická 5 Prague Czech Republic
| | - Magda Vosmanská
- Faculty of Chemical Engineering University of Chemistry and Technology Technická 5 Prague Czech Republic
| | - Lucie Kosinová
- Experimental Medicine Centre Institute for Clinical and Experimental Medicine Vídeňská 1958/9 Prague Czech Republic
| | - Pavla Jendelová
- Department of Tissue Culture and Stem Cells Institute of Experimental Medicine, Czech Academy of Sciences Vídeňská 1083 Prague Czech Republic
| |
Collapse
|
16
|
Alekberzade AV, Krylov NN, Adzhun Z, Laftavi MR, Shakhbazov RO, Zuykova KS. [Current state of the problem of allotransplantation of Langerhans cells (achievements and prospects)]. Khirurgiia (Mosk) 2018:80-88. [PMID: 30531761 DOI: 10.17116/hirurgia201811180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Literature data devoted to transplantation of Langerhans cells have been analyzed. The main stages, indications, dissection of islets, immunosuppressive therapy, complications and data of the latest clinical trials were discussed.
Collapse
Affiliation(s)
- A V Alekberzade
- Sechenov First Moscow State Medical University of Healthcare Ministry of the Russian Federation, Moscow, Russia
| | - N N Krylov
- Sechenov First Moscow State Medical University of Healthcare Ministry of the Russian Federation, Moscow, Russia
| | - Z Adzhun
- Upstate Medical University, Syracuse, NY, USA
| | - M R Laftavi
- Upstate Medical University, Syracuse, NY, USA
| | | | - K S Zuykova
- Sechenov First Moscow State Medical University of Healthcare Ministry of the Russian Federation, Moscow, Russia
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW New treatment strategies are needed for patients with type 1 diabetes (T1D). Closed loop insulin delivery and beta-cell replacement therapy are promising new strategies. This review aims to give an insight in the most relevant literature on this topic and to compare the two radically different treatment modalities. RECENT FINDINGS Multiple clinical studies have been performed with closed loop insulin delivery devices and have shown an improvement in overall glycemic control and time spent in hypoglycemia. Beta-cell transplantation has been shown to normalize or greatly improve glycemic control in T1D, but the donor organ shortage and the necessity to use immunosuppressive agents are major drawbacks. Donor organ shortage may be solved by the utilization of stem cell-derived beta cells, which has shown great promise in animal models and are now tested in clinical studies. Immunosuppression may be avoided by encapsulation. Closed loop insulin delivery devices are promising treatment strategies and are likely to be used in clinical practice in the short term. But this approach will always suffer from delays in glucose measurement and insulin action preventing it from normalizing glycemic control. In the long term, stem cell-derived beta cell transplantation may be able to achieve this, but wide implementation in clinical practice is still far away.
Collapse
Affiliation(s)
- Michiel F. Nijhoff
- Department of Medicine, Division of Nephrology and Transplantation, Division of Endocrinology and Metabolism, Leiden University Medical Centre, PO Box 9600, 2300 RC Leiden, the Netherlands
| | - Eelco J. P. de Koning
- Department of Medicine, Division of Nephrology and Transplantation, Division of Endocrinology and Metabolism, Leiden University Medical Centre, PO Box 9600, 2300 RC Leiden, the Netherlands
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Porcine islets represent a potentially attractive beta-cell source for xenotransplantation into patients with type 1 diabetes, who are not eligible to islet allo-transplantation due to a lack of suitable human donor organs. Recent progress in genetic engineering/gene editing of donor pigs provides new opportunities to overcome rejection of xeno-islets, to improve their engraftment and insulin secretion capacity, and to reduce the risk for transmission of porcine endogenous retroviruses. This review summarizes the current issues and progress in islet xenotransplantation with special emphasis on genetically modified/gene edited donor pigs. RECENT FINDINGS Attempts to overcome acute rejection of xeno-islets, especially after intraportal transplantation into the liver, include the genetic elimination of specific carbohydrate antigens such as αGal, Neu5Gc, and Sd(a) for which humans and-in part-non-human primates have natural antibodies that bind to these targets leading to activation of complement and coagulation. A complementary approach is the expression of one or more human complement regulatory proteins (hCD46, hCD55, hCD59). Transgenic attempts to overcome cellular rejection of islet xenotransplants include the expression of proteins that inhibit co-stimulation of T cells. Expression of glucagon-like peptide-1 and M3 muscarinic receptors has been shown to increase the insulin secretion of virally transduced porcine islets in vitro and it will be interesting to see the effects of these modifications in transgenic pigs and islet products derived from them. Genome-wide inactivation of porcine endogenous retrovirus (PERV) integrants by mutating their pol genes using CRISPR/Cas9 is a recent approach to reduce the risk for PERV transmission by xeno-islets. Genetic engineering/gene editing of xeno-islet donor pigs facilitated major progress towards clinical islet xenotransplantation. The required set of genetic modifications will depend on the source of islets (fetal/neonatal vs. adult), the mode of delivery (encapsulated vs. free), and the transplantation site.
Collapse
Affiliation(s)
- Elisabeth Kemter
- Gene Center, and Center for Innovative Medical Models (CiMM), LMU Munich, Feodor-Lynen-Str. 25, 81377, Munich, Germany
| | - Joachim Denner
- Robert Koch Institute, Nordufer 20, 13353, Berlin, Germany
| | - Eckhard Wolf
- Gene Center, and Center for Innovative Medical Models (CiMM), LMU Munich, Feodor-Lynen-Str. 25, 81377, Munich, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
19
|
|
20
|
Venturini M, Sallemi C, Marra P, Palmisano A, Agostini G, Lanza C, Balzano G, Falconi M, Secchi A, Fiorina P, Piemonti L, Maffi P, Esposito A, De Cobelli F, Del Maschio A. Allo- and auto-percutaneous intra-portal pancreatic islet transplantation (PIPIT) for diabetes cure and prevention: the role of imaging and interventional radiology. Gland Surg 2018; 7:117-131. [PMID: 29770308 DOI: 10.21037/gs.2017.11.12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Although the life expectancy of patients with type 1 diabetes mellitus (T1DM) has improved since the introduction of insulin therapy, the acute life-threatening and long-term complications from diabetes mellitus are significant causes of both mortality and morbidity. Percutaneous intra-portal pancreatic islet transplantation (PIPIT) is a minimally invasive, repeatable procedure which allows a β-cell replacement therapy through a liver islet engraftment, leading to insulin release and glycaemic control restoration in patients with diabetes. Allo-PIPIT, in which isolated and purified islets from cadaveric donor are used, does not require major surgery, and is potentially less expensive for the recipient. In case of long-term T1DM, islet-after-kidney (IAK) transplantation can simultaneously cure diabetes and chronic renal failure, while islet-transplant-alone (ITA) is performed in brittle, short-term T1DM, based on the infusion of an adequate islet mass and on a steroid-free immunosuppressive regimen according to the Edmonton protocol. Results of the Collaborative Islet Transplant Registry (CITR) demonstrate that allo-PIPIT reduces episodes of hypoglycemia and diabetic complications, and improves quality of life of diabetic patients. Auto-PIPIT, in which the own patient's islets are used, has been investigated as a preventive treatment for pancreatogenic diabetes in patients who undergo extensive pancreatectomy for malignant and non-malignant disease. This Review outlines the role of imaging and interventional radiology in allo- and auto-PIPIT.
Collapse
Affiliation(s)
- Massimo Venturini
- Department of Radiology, San Raffaele Scientific Institute, Milan, Italy
| | - Claudio Sallemi
- Department of Radiology, San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Marra
- Department of Radiology, San Raffaele Scientific Institute, Milan, Italy
| | - Anna Palmisano
- Department of Radiology, San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Agostini
- Department of Radiology, San Raffaele Scientific Institute, Milan, Italy
| | - Carolina Lanza
- Department of Radiology, San Raffaele Scientific Institute, Milan, Italy
| | - Gianpaolo Balzano
- Department of Pancreatic Surgery, San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Falconi
- Department of Pancreatic Surgery, San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Secchi
- Vita-Salute San Raffaele University, Milan, Italy.,Department of Internal Medicine, Transplant Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Fiorina
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lorenzo Piemonti
- Vita-Salute San Raffaele University, Milan, Italy.,Diabetes Research Institute, San Raffaele Scientific Institute, Milan, Italy
| | - Paola Maffi
- Department of Internal Medicine, Transplant Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Esposito
- Department of Radiology, San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Francesco De Cobelli
- Department of Radiology, San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Alessandro Del Maschio
- Department of Radiology, San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
21
|
Wu D, Zou S, Chen H, Li X, Xu Y, Zuo Q, Pan Y, Jiang SW, Huang H, Sun L. Transplantation routes affect the efficacy of human umbilical cord mesenchymal stem cells in a rat GDM model. Clin Chim Acta 2017; 475:137-146. [PMID: 29050787 DOI: 10.1016/j.cca.2017.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 10/15/2017] [Accepted: 10/15/2017] [Indexed: 02/05/2023]
Abstract
Gestational diabetes mellitus (GDM) is harmful to both the mother and fetus. Although transplantation of human umbilical cord mesenchymal stem cells (HUMSCs) could be a useful therapy for GDM, the influences of different transplantation routes on the therapeutic effects remain unclear. In this study, we isolated and cultured the HUMSCs for transplantation, and the biological activity of HUMSCs was verified by flow cytometric analysis (the positive markers, CD44, CD73, CD105 and CD90, the negative markers, CD45, CD34, CD19, HLA-DR, and CD11b) and potency of osteogenic, adipogenic and chondrogenic differentiation. Streptozotocin (STZ)-induced diabetes mellitus (DM)/GDM rats were transplanted with HUMSCs by different routes: single or multiple tail vein injection, liver parenchyma, and renal capsule transplantation. These were compared to positive controls (STZ-induced, untreated) and negative controls (non-induced, untreated) to determine the effect of the transplant on the control of DM/GDM. The blood glucose level and body weight of rats in each group were determined and showed different effects. Transplantation of HUMSCs to GDM rats can increase the number of offspring in comparison to the negative controls. The weight of the offspring in the transplantation groups also increased due to the therapeutic effect of HUMSCs. Based on results, we concluded that transplanting HUMSCs could effectively alleviate the symptoms of elevated blood glucose and weight loss and improve the body weight and survival rate of offspring. Injections of HUMSCs were required to persistently decrease the blood glucose of DM and GDM rats. Transplanting HUMSCs into the liver or renal capsule of GDM rats led to a similar efficiency of controlling blood glucose and compensation for body weight. HUMSCs therapy increased the number and body weight of offspring and improved their activity. In summary, this study has enabled progress toward determining the optimal route for GDM therapy.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Biomarkers/metabolism
- Blood Glucose/metabolism
- Body Weight
- Cell Differentiation
- Cord Blood Stem Cell Transplantation/methods
- Diabetes, Gestational/chemically induced
- Diabetes, Gestational/metabolism
- Diabetes, Gestational/pathology
- Diabetes, Gestational/therapy
- Disease Models, Animal
- Female
- Gene Expression
- HLA-DR Antigens/genetics
- HLA-DR Antigens/metabolism
- Humans
- Infusions, Intravenous
- Kidney
- Litter Size
- Liver
- Mesenchymal Stem Cells/cytology
- Mesenchymal Stem Cells/physiology
- Pregnancy
- Primary Cell Culture
- Rats
- Rats, Sprague-Dawley
- Streptozocin
- Transplantation, Heterologous/methods
- Transplantation, Heterotopic/methods
- Umbilical Cord/cytology
- Umbilical Cord/physiology
Collapse
Affiliation(s)
- Dan Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Shan Zou
- Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Haibin Chen
- Department of Histology and Embryology, Shantou University Medical College, Shantou, Guangdong 515000, China
| | - Xiaoyan Li
- Wuxi Maternal and Child Health Hospital, Jiangsu Province, China
| | - Yetao Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Qing Zuo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Yi Pan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Shi-Wen Jiang
- Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA 31404, USA
| | - Huan Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.
| | - Lizhou Sun
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China.
| |
Collapse
|
22
|
Burrack AL, Martinov T, Fife BT. T Cell-Mediated Beta Cell Destruction: Autoimmunity and Alloimmunity in the Context of Type 1 Diabetes. Front Endocrinol (Lausanne) 2017; 8:343. [PMID: 29259578 PMCID: PMC5723426 DOI: 10.3389/fendo.2017.00343] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/21/2017] [Indexed: 12/20/2022] Open
Abstract
Type 1 diabetes (T1D) results from destruction of pancreatic beta cells by T cells of the immune system. Despite improvements in insulin analogs and continuous blood glucose level monitoring, there is no cure for T1D, and some individuals develop life-threatening complications. Pancreas and islet transplantation have been attractive therapeutic approaches; however, transplants containing insulin-producing cells are vulnerable to both recurrent autoimmunity and conventional allograft rejection. Current immune suppression treatments subdue the immune system, but not without complications. Ideally a successful approach would target only the destructive immune cells and leave the remaining immune system intact to fight foreign pathogens. This review discusses the autoimmune diabetes disease process, diabetic complications that warrant a transplant, and alloimmunity. First, we describe the current understanding of autoimmune destruction of beta cells including the roles of CD4 and CD8 T cells and several possibilities for antigen-specific tolerance induction. Second, we outline diabetic complications necessitating beta cell replacement. Third, we discuss transplant recognition, potential sources for beta cell replacement, and tolerance-promoting therapies under development. We hypothesize that a better understanding of autoreactive T cell targets during disease pathogenesis and alloimmunity following transplant destruction could enhance attempts to re-establish tolerance to beta cells.
Collapse
Affiliation(s)
- Adam L. Burrack
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Tijana Martinov
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Brian T. Fife
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
- *Correspondence: Brian T. Fife,
| |
Collapse
|