1
|
Fan S, Wang J, Hou Y, Cui X, Feng Z, Qi L, Liu J, Bian K, Liang J, Ye Z, Zheng S, Ma W. MRI-based multiregional radiomics for desmoplastic reaction classification and prognosis stratification in stage II rectal cancer: A bicenter study. Eur J Radiol 2025; 183:111888. [PMID: 39705910 DOI: 10.1016/j.ejrad.2024.111888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/22/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
PURPOSE To develop an MRI-based multiregional radiomics model for the noninvasive desmoplastic reaction (DR) classification and prognosis stratification in stage II rectal cancer (RC) patients. MATERIALS AND METHODS This study retrospectively involved 336 patients with RC from two centers, with 239 from Center 1 divided into training (n = 191) and internal validation (n = 48) datasets at an 8:2 ratio, and 97 from Center 2 serving as external validation dataset. Radiomics features were extracted, and a multiregional radiomics DR (M-RDR) signature was established using multi-level feature selection procedure. The cut-off value for M-RDR was determined using Youden's index. We further evaluated the predictive values of M-RDR on prognosis and adjuvant chemotherapy stratification. The primary outcome was 3-year disease-free survival (DFS), and cox model performance was assessed using AUCs and 95 % confidence intervals. RESULTS M-RDR demonstrated a high accuracy in DR classification with AUCs of 0.778 and 0.798 in the training and internal validation datasets. Multivariable analysis confirmed M-RDR as an independent prognostic factor after adjusting for clinicopathological factors.The combined model incorporating M-RDR and clinicopathological factors showed good performance in predicting 3-year DFS, with AUCs of 0.923, 0.908, and 0.891 in the training, internal validation and external validation datasets, respectively. Additionally, patients in the M-RDR-high group who received adjuvant chemotherapy had significantly better DFS compared with those who did not (P < 0.05). CONCLUSION The MRI-based multiregional radiomics model could effectively improve non-invasive DR classification, and was able to enhance postoperative risk stratification and treatment decision-making in stage II RC patients.
Collapse
Affiliation(s)
- Shuxuan Fan
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Jing Wang
- School of Public Health, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan Hou
- Department of Radiology, Affiliated Hospital of Hebei University, Hebei Key Laboratory of Precise Imaging of Inflammation - Related Tumors, Hebei, China
| | - Xiaonan Cui
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Ziwei Feng
- Department of Epidemiology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin, China
| | - Lisha Qi
- Department of Pathology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin, China
| | - Jiaxin Liu
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Keyi Bian
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Jing Liang
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Zhaoxiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Sunyi Zheng
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
| | - Wenjuan Ma
- Department of Breast Imaging, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Tianjin, China.
| |
Collapse
|
2
|
Xiong J, Lu Y, Liu H, Ji M, Zhang Z, Li Y, Liang H. Extracellular Volume Derived from Equilibrium CT for the Prediction of Survival Outcomes in Patients with Pancreatic Ductal Adenocarcinoma. Technol Cancer Res Treat 2025; 24:15330338251336032. [PMID: 40261321 DOI: 10.1177/15330338251336032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025] Open
Abstract
ObjectiveTo assess the efficiency of extracellular volume (ECV) derived from equilibrium computed tomography (CT) in predicting recurrence-free survival (RFS) and overall survival (OS) after R0 resection of pancreatic ductal adenocarcinoma (PDAC).MethodsThis retrospective study included 83 patients who underwent CT and R0 resection between January 2016 and September 2023. The pattern of tumor recurrence and prognosis were recorded for each patient. Tumor recurrence was classified into three groups: isolated local recurrence group, distant recurrence group and censored group. The associations between the CT-ECV and clinicopathological features and recurrence pattern of PDAC were evaluated by chi-squared test. Multivariable Cox proportional-hazards models were conducted to evaluate the effects of clinical factors, CT features and CT-ECV on RFS and OS.ResultsThe median RFS and OS were 10.7 and 17.1 months, respectively. On multivariate analysis, the CT-ECV and adjacent organ invasion were found to be associated with RFS (HR, 0.968, P = .017; HR, 0.453; P = .006), and only the CT-ECV was an independent prognostic factor for OS (HR, 0.968; P = .022). Low CT-ECV group was significantly associated with elevated CA19-9, larger tumor size, G3 (tumor grade) and II/III (AJCC tumor stage) (P < .05). In the recurrence pattern analysis, the CT-ECV did not exhibit an association between local recurrence and non-local recurrence groups (P = .455), while patients in the low CT-ECV group were more inclined to experience distant recurrence after curative surgery (P = .037).ConclusionsCT-ECV determined by equilibrium contrast-enhanced CT was a useful imaging biomarker for predicting distant recurrence and survival in resectable PDAC patients, which may facilitate further risk stratification and personalized care.
Collapse
Affiliation(s)
- Ju Xiong
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunfeng Lu
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haotian Liu
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mengchu Ji
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiwei Zhang
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yongmei Li
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongwei Liang
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Monteiro MV, Rocha M, Carvalho MT, Freitas I, Amaral AJR, Sousa FL, Gaspar VM, Mano JF. Embedded Bioprinting of Tumor-Scale Pancreatic Cancer-Stroma 3D Models for Preclinical Drug Screening. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56718-56729. [PMID: 39388391 DOI: 10.1021/acsami.4c11188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The establishment of organotypic preclinical models that accurately resemble the native tumor microenvironment at an anatomic human scale is highly desirable to level up in vitro platforms potential for screening candidate therapies. The bioengineering of anatomic-scaled three-dimensional (3D) models that emulate native tumor scale while recapitulating their cellular and matrix components remains, however, to be fully realized. In this focus, herein, we leveraged embedded 3D bioprinting for biofabricating pancreatic ductal adenocarcinoma (PDAC) in vitro models combining gelatin-methacryloyl and hyaluronic acid methacrylate extracellular matrix (ECM)-mimetic biomaterials with human pancreatic cancer cells and cancer-associated fibroblasts to generate in vitro models capable of emulating native tumor size (∼6 mm) and stromal elements. By using a viscoelastic continuous polymeric supporting bath, tumor-scale 3D models were rapidly generated (∼50 constructs/h) and easily recovered following in-bath visible light photocrosslinking. As a proof-of-concept, tissue-scale constructs displaying physiomimetic designs were biofabricated. These models also encompass the incorporation of a stromal compartment to better emulate the cellular components of the PDAC native tumor microenvironment (TME) and its stratified spatial organization. Cell-laden tumor-size constructs remained viable for up to 14 days and were responsive to Gemcitabine in a dose-dependent mode. Cancer-stroma models also exhibited increased drug resistance compared to their monotypic counterparts, highlighting the key role of stromal cells in chemotherapeutic resistance. Overall, we report for the first time the freeform biofabrication of PDAC models exhibiting anatomic scale, different structural complexities, and engineered cancer-stromal compartments, being highly valuable for preclinical screening of therapeutics.
Collapse
Affiliation(s)
- Maria V Monteiro
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Marta Rocha
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Mariana T Carvalho
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Inês Freitas
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Adérito J R Amaral
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Filipa L Sousa
- Department of Physics, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Vítor M Gaspar
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - João F Mano
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| |
Collapse
|
4
|
Muilenburg KM, Ehrhorn EG, Olson MT, Isder CC, Klute KA, Talmon GA, Carlson MA, Ly QP, Mohs AM. MUC16 Retention after Neoadjuvant Chemotherapy in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2024; 16:3439. [PMID: 39456534 PMCID: PMC11506185 DOI: 10.3390/cancers16203439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis. Currently, surgical resection is the only potentially curative treatment. Unfortunately, less than 20% of PDAC patients are eligible for surgical resection at diagnosis. In the past few decades, neoadjuvant chemotherapy treatment (NCT) has been investigated as a way to downstage PDAC tumors for surgical resection. Fluorescence-guided surgery (FGS) is a technique that can aid in increasing complete resection rates by enhancing the tumor through passive or active targeting of a contrast agent. In active targeting, a probe (e.g., antibody) binds a protein differentially upregulated in the tumor compared to normal tissue. Mucin 16 (MUC16), a transmembrane glycoprotein, has recently been explored as an FGS target in preclinical tumor models. However, the impact of chemotherapy on MUC16 expression is unknown. Methods: To investigate this issue, immunohistochemistry was performed on PDAC patient samples. Results: We found that MUC16 expression was retained after NCT in patient samples (mean expression = 5.7) with minimal change in expression between the matched diagnostic (mean expression = 3.66) and PDAC NCT patient samples (mean expression = 4.5). Conclusions: This study suggests that MUC16 is a promising target for FGS and other targeted therapies in PDAC patients treated with NCT.
Collapse
Affiliation(s)
- Kathryn M. Muilenburg
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; (K.M.M.); (C.C.I.)
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; (E.G.E.); (M.T.O.); (K.A.K.); (G.A.T.); (M.A.C.); (Q.P.L.)
| | - Evie G. Ehrhorn
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; (E.G.E.); (M.T.O.); (K.A.K.); (G.A.T.); (M.A.C.); (Q.P.L.)
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA
| | - Madeline T. Olson
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; (E.G.E.); (M.T.O.); (K.A.K.); (G.A.T.); (M.A.C.); (Q.P.L.)
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA
| | - Carly C. Isder
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; (K.M.M.); (C.C.I.)
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; (E.G.E.); (M.T.O.); (K.A.K.); (G.A.T.); (M.A.C.); (Q.P.L.)
| | - Kelsey A. Klute
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; (E.G.E.); (M.T.O.); (K.A.K.); (G.A.T.); (M.A.C.); (Q.P.L.)
- Department of Internal Medicine, University of Nebraska Medical Center, 42nd and Emile, Omaha, NE 68198, USA
| | - Geoffrey A. Talmon
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; (E.G.E.); (M.T.O.); (K.A.K.); (G.A.T.); (M.A.C.); (Q.P.L.)
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mark A. Carlson
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; (E.G.E.); (M.T.O.); (K.A.K.); (G.A.T.); (M.A.C.); (Q.P.L.)
- Department of Surgery, University of Nebraska Medical Center, 983280 Nebraska Medical Center, Omaha, NE 68198, USA
| | - Quan P. Ly
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; (E.G.E.); (M.T.O.); (K.A.K.); (G.A.T.); (M.A.C.); (Q.P.L.)
- Department of Surgery, University of Nebraska Medical Center, 983280 Nebraska Medical Center, Omaha, NE 68198, USA
| | - Aaron M. Mohs
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; (K.M.M.); (C.C.I.)
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45 St, Omaha, NE 68198, USA; (E.G.E.); (M.T.O.); (K.A.K.); (G.A.T.); (M.A.C.); (Q.P.L.)
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, S 45th St, Omaha, NE 68198, USA
| |
Collapse
|
5
|
Mo CK, Liu J, Chen S, Storrs E, Targino da Costa ALN, Houston A, Wendl MC, Jayasinghe RG, Iglesia MD, Ma C, Herndon JM, Southard-Smith AN, Liu X, Mudd J, Karpova A, Shinkle A, Goedegebuure SP, Abdelzaher ATMA, Bo P, Fulghum L, Livingston S, Balaban M, Hill A, Ippolito JE, Thorsson V, Held JM, Hagemann IS, Kim EH, Bayguinov PO, Kim AH, Mullen MM, Shoghi KI, Ju T, Reimers MA, Weimholt C, Kang LI, Puram SV, Veis DJ, Pachynski R, Fuh KC, Chheda MG, Gillanders WE, Fields RC, Raphael BJ, Chen F, Ding L. Tumour evolution and microenvironment interactions in 2D and 3D space. Nature 2024; 634:1178-1186. [PMID: 39478210 PMCID: PMC11525187 DOI: 10.1038/s41586-024-08087-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 09/19/2024] [Indexed: 11/02/2024]
Abstract
To study the spatial interactions among cancer and non-cancer cells1, we here examined a cohort of 131 tumour sections from 78 cases across 6 cancer types by Visium spatial transcriptomics (ST). This was combined with 48 matched single-nucleus RNA sequencing samples and 22 matched co-detection by indexing (CODEX) samples. To describe tumour structures and habitats, we defined 'tumour microregions' as spatially distinct cancer cell clusters separated by stromal components. They varied in size and density among cancer types, with the largest microregions observed in metastatic samples. We further grouped microregions with shared genetic alterations into 'spatial subclones'. Thirty five tumour sections exhibited subclonal structures. Spatial subclones with distinct copy number variations and mutations displayed differential oncogenic activities. We identified increased metabolic activity at the centre and increased antigen presentation along the leading edges of microregions. We also observed variable T cell infiltrations within microregions and macrophages predominantly residing at tumour boundaries. We reconstructed 3D tumour structures by co-registering 48 serial ST sections from 16 samples, which provided insights into the spatial organization and heterogeneity of tumours. Additionally, using an unsupervised deep-learning algorithm and integrating ST and CODEX data, we identified both immune hot and cold neighbourhoods and enhanced immune exhaustion markers surrounding the 3D subclones. These findings contribute to the understanding of spatial tumour evolution through interactions with the local microenvironment in 2D and 3D space, providing valuable insights into tumour biology.
Collapse
Affiliation(s)
- Chia-Kuei Mo
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA
| | - Jingxian Liu
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA
| | - Siqi Chen
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA
| | - Erik Storrs
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA
| | - Andre Luiz N Targino da Costa
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA
| | - Andrew Houston
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA
| | - Michael C Wendl
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA
| | - Reyka G Jayasinghe
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA
| | - Michael D Iglesia
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA
| | - Cong Ma
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - John M Herndon
- Department of Surgery, Washington University in St Louis, St Louis, MO, USA
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, USA
| | - Austin N Southard-Smith
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA
| | - Xinhao Liu
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Jacqueline Mudd
- Department of Surgery, Washington University in St Louis, St Louis, MO, USA
| | - Alla Karpova
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA
| | - Andrew Shinkle
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA
| | - S Peter Goedegebuure
- Department of Surgery, Washington University in St Louis, St Louis, MO, USA
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, USA
| | - Abdurrahman Taha Mousa Ali Abdelzaher
- Department of Surgery, Washington University in St Louis, St Louis, MO, USA
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, USA
| | - Peng Bo
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, USA
| | - Lauren Fulghum
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA
| | - Samantha Livingston
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA
| | - Metin Balaban
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Angela Hill
- Department of Surgery, Washington University in St Louis, St Louis, MO, USA
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, USA
| | - Joseph E Ippolito
- Department of Radiology, Washington University in St Louis, St Louis, MO, USA
| | | | - Jason M Held
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, USA
- Division of Medical Oncology, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Ian S Hagemann
- Department of Pathology and Immunology, Washington University in St Louis, St Louis, MO, USA
- Department of Obstetrics and Gynecology, Washington University in St Louis, St Louis, MO, USA
| | - Eric H Kim
- Division of Urological Surgery, Department of Surgery, Washington University, St Louis, MO, USA
| | - Peter O Bayguinov
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, USA
| | - Albert H Kim
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, USA
- Department of Neurosurgery, Washington University School of Medicine, St Louis, MO, USA
| | - Mary M Mullen
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University, St Louis, MO, USA
| | - Kooresh I Shoghi
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, USA
- Department of Radiology, Washington University in St Louis, St Louis, MO, USA
| | - Tao Ju
- Department of Computer Science and Engineering, Washington University in St Louis, St Louis, MO, USA
| | - Melissa A Reimers
- Division of Medical Oncology, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Cody Weimholt
- Department of Pathology and Immunology, Washington University in St Louis, St Louis, MO, USA
| | - Liang-I Kang
- Department of Pathology and Immunology, Washington University in St Louis, St Louis, MO, USA
| | - Sidharth V Puram
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, USA
- Department of Genetics, Washington University in St Louis, St Louis, MO, USA
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - Deborah J Veis
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St Louis, St Louis, MO, USA
| | - Russell Pachynski
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, USA
| | - Katherine C Fuh
- Department of Obstetrics and Gynecology, Washington University in St Louis, St Louis, MO, USA
- Department of Obstetrics and Gynecology, University of California, San Francisco, San Francisco, CA, USA
| | - Milan G Chheda
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, USA
| | - William E Gillanders
- Department of Surgery, Washington University in St Louis, St Louis, MO, USA.
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, USA.
| | - Ryan C Fields
- Department of Surgery, Washington University in St Louis, St Louis, MO, USA.
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, USA.
| | - Benjamin J Raphael
- Department of Computer Science, Princeton University, Princeton, NJ, USA.
| | - Feng Chen
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA.
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, USA.
| | - Li Ding
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA.
- McDonnell Genome Institute, Washington University in St Louis, St Louis, MO, USA.
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO, USA.
- Department of Genetics, Washington University in St Louis, St Louis, MO, USA.
| |
Collapse
|
6
|
Ma J, Chen Z, Hou L. Revealing a cancer-associated fibroblast-based risk signature for pancreatic adenocarcinoma through single-cell and bulk RNA-seq analysis. Aging (Albany NY) 2024; 16:12525-12542. [PMID: 39332020 PMCID: PMC11466480 DOI: 10.18632/aging.206043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/15/2024] [Indexed: 09/29/2024]
Abstract
PURPOSE Proliferation of stromal connective tissue is a hallmark of pancreatic adenocarcinoma (PAAD). The engagement of activated cancer-associated fibroblasts (CAFs) contributes to the progression of PAAD through their involvement in tumor fibrogenesis. However, the prognostic significance of CAF-based risk signature in PAAD has not been explored. METHODS The single-cell RNA sequencing (scRNA-seq) data sourced from GSE155698 within the Gene Expression Omnibus (GEO) database was supplemented by bulk RNA sequencing data from The Cancer Genome Atlas (TCGA) and microarray data retrieved from the GEO database. The scRNA-seq data underwent processing via the Seurat package to identify distinct CAF clusters utilizing specific CAF markers. Differential gene expression analysis between normal and tumor samples was conducted within the TCGA-PAAD cohort. Univariate Cox regression analysis pinpointed genes associated with CAF clusters, identifying prognostic CAF-related genes. These genes were utilized in LASSO regression to craft a predictive risk signature. Subsequently, integrating clinicopathological traits and the risk signature, a nomogram model was constructed. RESULTS Our scRNA-seq analysis unveiled four distinct CAF clusters in PAAD, with two linked to PAAD prognosis. Among 207 identified DEGs, 148 exhibited significant correlation with these CAF clusters, forming the basis of a seven-gene risk signature. This signature emerged as an independent predictor in multivariate analysis for PAAD and demonstrated predictive efficacy in immunotherapeutic outcomes. Additionally, a novel nomogram, integrating age and the CAF-based risk signature, exhibited robust predictability and reliability in prognosticating PAAD. Moreover, the risk signature displayed substantial correlations with stromal and immune scores, as well as specific immune cell types. CONCLUSIONS The prognosis of PAAD can be accurately predicted using the CAF-based risk signature, and a thorough analysis of the PAAD CAF signature may aid in deciphering the patient's immunotherapy response and presenting fresh cancer treatment options.
Collapse
Affiliation(s)
- Jing Ma
- Department of Emergency Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhinan Chen
- Department of Emergency Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Limin Hou
- Department of Emergency Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
7
|
Long AW, Xu H, Santich BH, Guo H, Hoseini SS, de Stanchina E, Cheung NKV. Heterodimerization of T cell engaging bispecific antibodies to enhance specificity against pancreatic ductal adenocarcinoma. J Hematol Oncol 2024; 17:20. [PMID: 38650005 PMCID: PMC11036555 DOI: 10.1186/s13045-024-01538-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/22/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND EGFR and/or HER2 expression in pancreatic cancers is correlated with poor prognoses. We generated homodimeric (EGFRxEGFR or HER2xHER2) and heterodimeric (EGFRxHER2) T cell-engaging bispecific antibodies (T-BsAbs) to direct polyclonal T cells to these antigens on pancreatic tumors. METHODS EGFR and HER2 T-BsAbs were constructed using the 2 + 2 IgG-[L]-scFv T-BsAbs format bearing two anti-CD3 scFvs attached to the light chains of an IgG to engage T cells while retaining bivalent binding to tumor antigens with both Fab arms. A Fab arm exchange strategy was used to generate EGFRxHER2 heterodimeric T-BsAb carrying one Fab specific for EGFR and one for HER2. EGFR and HER2 T-BsAbs were also heterodimerized with a CD33 control T-BsAb to generate 'tumor-monovalent' EGFRxCD33 and HER2xCD33 T-BsAbs. T-BsAb avidity for tumor cells was studied by flow cytometry, cytotoxicity by T-cell mediated 51Chromium release, and in vivo efficacy against cell line-derived xenografts (CDX) or patient-derived xenografts (PDX). Tumor infiltration by T cells transduced with luciferase reporter was quantified by bioluminescence. RESULTS The EGFRxEGFR, HER2xHER2, and EGFRxHER2 T-BsAbs demonstrated high avidity and T cell-mediated cytotoxicity against human pancreatic ductal adenocarcinoma (PDAC) cell lines in vitro with EC50s in the picomolar range (0.17pM to 18pM). They were highly efficient in driving human polyclonal T cells into subcutaneous PDAC xenografts and mediated potent T cell-mediated anti-tumor effects. Both EGFRxCD33 and HER2xCD33 tumor-monovalent T-BsAbs displayed substantially reduced avidity by SPR when compared to homodimeric EGFRxEGFR or HER2xHER2 T-BsAbs (∼150-fold and ∼6000-fold respectively), tumor binding by FACS (8.0-fold and 63.6-fold), and T-cell mediated cytotoxicity (7.7-fold and 47.2-fold), while showing no efficacy against CDX or PDX. However, if either EGFR or HER2 was removed from SW1990 by CRISPR-mediated knockout, the in vivo efficacy of heterodimeric EGFRxHER2 T-BsAb was lost. CONCLUSION EGFR and HER2 were useful targets for driving T cell infiltration and tumor ablation. Two arm Fab binding to either one or both targets was critical for robust anti-tumor effect in vivo. By engaging both targets, EGFRxHER2 heterodimeric T-BsAb exhibited potent anti-tumor effects if CDX or PDX were EGFR+HER2+ double-positive with the potential to spare single-positive normal tissue.
Collapse
Affiliation(s)
- Alan W Long
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Hong Xu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Brian H Santich
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Hongfen Guo
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | | | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA.
| |
Collapse
|
8
|
Storrs EP, Chati P, Usmani A, Sloan I, Krasnick BA, Babbra R, Harris PK, Sachs CM, Qaium F, Chatterjee D, Wetzel C, Goedegebuure SP, Hollander T, Anthony H, Ponce J, Khaliq AM, Badiyan S, Kim H, Denardo DG, Lang GD, Cosgrove ND, Kushnir VM, Early DS, Masood A, Lim KH, Hawkins WG, Ding L, Fields RC, Das KK, Chaudhuri AA. High-dimensional deconstruction of pancreatic cancer identifies tumor microenvironmental and developmental stemness features that predict survival. NPJ Precis Oncol 2023; 7:105. [PMID: 37857854 PMCID: PMC10587349 DOI: 10.1038/s41698-023-00455-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/26/2023] [Indexed: 10/21/2023] Open
Abstract
Numerous cell states are known to comprise the pancreatic ductal adenocarcinoma (PDAC) tumor microenvironment (TME). However, the developmental stemness and co-occurrence of these cell states remain poorly defined. Here, we performed single-cell RNA sequencing (scRNA-seq) on a cohort of treatment-naive PDAC time-of-diagnosis endoscopic ultrasound-guided fine needle biopsy (EUS-FNB) samples (n = 25). We then combined these samples with surgical resection (n = 6) and publicly available samples to increase statistical power (n = 80). Following annotation into 25 distinct cell states, cells were scored for developmental stemness, and a customized version of the Ecotyper tool was used to identify communities of co-occurring cell states in bulk RNA-seq samples (n = 268). We discovered a tumor microenvironmental community comprised of aggressive basal-like malignant cells, tumor-promoting SPP1+ macrophages, and myofibroblastic cancer-associated fibroblasts associated with especially poor prognosis. We also found a developmental stemness continuum with implications for survival that is present in both malignant cells and cancer-associated fibroblasts (CAFs). We further demonstrated that high-dimensional analyses predictive of survival are feasible using standard-of-care, time-of-diagnosis EUS-FNB specimens. In summary, we identified tumor microenvironmental and developmental stemness characteristics from a high-dimensional gene expression analysis of PDAC using human tissue specimens, including time-of-diagnosis EUS-FNB samples. These reveal new connections between tumor microenvironmental composition, CAF and malignant cell stemness, and patient survival that could lead to better upfront risk stratification and more personalized upfront clinical decision-making.
Collapse
Affiliation(s)
- Erik P Storrs
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Prathamesh Chati
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Abul Usmani
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ian Sloan
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Bradley A Krasnick
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Ramandeep Babbra
- Division of Hematology & Oncology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Peter K Harris
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Chloe M Sachs
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Faridi Qaium
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Deyali Chatterjee
- Division of Laboratory Medicine, Department of Pathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Chris Wetzel
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - S Peter Goedegebuure
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Thomas Hollander
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Hephzibah Anthony
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jennifer Ponce
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Ateeq M Khaliq
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shahed Badiyan
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Hyun Kim
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - David G Denardo
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Gabriel D Lang
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Natalie D Cosgrove
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Vladimir M Kushnir
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Dayna S Early
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Ashiq Masood
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kian-Huat Lim
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - William G Hawkins
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Li Ding
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ryan C Fields
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Koushik K Das
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.
| | - Aadel A Chaudhuri
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA.
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
9
|
Muilenburg KM, Isder CC, Radhakrishnan P, Batra SK, Ly QP, Carlson MA, Bouvet M, Hollingsworth MA, Mohs AM. Mucins as contrast agent targets for fluorescence-guided surgery of pancreatic cancer. Cancer Lett 2023; 561:216150. [PMID: 36997106 PMCID: PMC10150776 DOI: 10.1016/j.canlet.2023.216150] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/16/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023]
Abstract
Pancreatic cancer is difficult to resect due to its unique challenges, often leading to incomplete tumor resections. Fluorescence-guided surgery (FGS), also known as intraoperative molecular imaging and optical surgical navigation, is an intraoperative tool that can aid surgeons in complete tumor resection through an increased ability to detect the tumor. To target the tumor, FGS contrast agents rely on biomarkers aberrantly expressed in malignant tissue compared to normal tissue. These biomarkers allow clinicians to identify the tumor and its stage before surgical resection and provide a contrast agent target for intraoperative imaging. Mucins, a family of glycoproteins, are upregulated in malignant tissue compared to normal tissue. Therefore, these proteins may serve as biomarkers for surgical resection. Intraoperative imaging of mucin expression in pancreatic cancer can potentially increase the number of complete resections. While some mucins have been studied for FGS, the potential ability to function as a biomarker target extends to the entire mucin family. Therefore, mucins are attractive proteins to investigate more broadly as FGS biomarkers. This review summarizes the biomarker traits of mucins and their potential use in FGS for pancreatic cancer.
Collapse
Affiliation(s)
- Kathryn M Muilenburg
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA.
| | - Carly C Isder
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA.
| | - Prakash Radhakrishnan
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, S 45th St, Omaha, NE, 68198, USA.
| | - Quan P Ly
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Department of Surgery, University of Nebraska Medical Center, 983280 Nebraska Medical Center, Omaha, NE, 68198-3280, USA.
| | - Mark A Carlson
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Department of Surgery, University of Nebraska Medical Center, 983280 Nebraska Medical Center, Omaha, NE, 68198-3280, USA.
| | - Michael Bouvet
- Department of Surgery, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA; VA San Diego Healthcare System, 3350 La Jolla Village Dr, San Diego, CA, 92161, USA.
| | - Michael A Hollingsworth
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA.
| | - Aaron M Mohs
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, 505 S 45th St, Omaha, NE, 68198, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, S 45th St, Omaha, NE, 68198, USA.
| |
Collapse
|
10
|
Naik A, Leask A. Tumor-Associated Fibrosis Impairs the Response to Immunotherapy. Matrix Biol 2023; 119:125-140. [PMID: 37080324 DOI: 10.1016/j.matbio.2023.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
Previously, impaired responses to immunotherapy in cancer had been attributed mainly to inherent tumor characteristics (tumor cell intrinsic factors) such as low immunogenicity, (low) mutational burden, weak host immune system, etc. However, mapping the responses of immunotherapeutic regimes in clinical trials for different types of cancer has pointed towards an obvious commonality - that tumors with a rich fibrotic stroma respond poorly or not at all. This has prompted a harder look on tumor cell extrinsic factors such as the surrounding tumor microenvironment (TME), and specifically, the fibrotic stroma as a potential enabler of immunotherapy failure. Indeed, the role of cancer-associated fibrosis in impeding efficacy of immunotherapy is now well-established. In fact, recent studies reveal a complex interconnection between fibrosis and treatment efficacy. Accordingly, in this review we provide a general overview of what a tumor associated fibrotic reaction is and how it interacts with the members of immune system that are frequently seen to be modulated in a failed immunotherapeutic regime.
Collapse
Affiliation(s)
- Angha Naik
- University of Saskatchewan, College of Dentistry, 105 Wiggins Road, Saskatoon, SK, Canada
| | - Andrew Leask
- University of Saskatchewan, College of Dentistry, 105 Wiggins Road, Saskatoon, SK, Canada.
| |
Collapse
|
11
|
Aziz HM, Saida L, de Koning W, Stubbs AP, Li Y, Sideras K, Palacios E, Feliu J, Mendiola M, van Eijck CHJ, Mustafa DAM. Spatial genomics reveals a high number and specific location of B cells in the pancreatic ductal adenocarcinoma microenvironment of long-term survivors. Front Immunol 2023; 13:995715. [PMID: 36685537 PMCID: PMC9846531 DOI: 10.3389/fimmu.2022.995715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 11/04/2022] [Indexed: 01/06/2023] Open
Abstract
Background and aim Only 10% of pancreatic ductal adenocarcinoma (PDAC) patients survive longer than five years. Factors underlining long-term survivorship in PDAC are not well understood. Therefore, we aimed to identify the key players in the tumor immune microenvironment (TIME) associated with long-term survivorship in PDAC patients. Methods The immune-related gene expression profiles of resected PDAC tumors of patients who survived and remained recurrence-free of disease for ≥36 months (long-term survivors, n=10) were compared to patients who had survived ≤6 months (short-term survivors, n=10) due to tumor recurrence. Validation was performed by the spatial protein expression profile of immune cells using the GeoMx™ Digital Spatial Profiler. An independent cohort of samples consisting of 12 long-term survivors and 10 short-term survivors, was used for additional validation. The independent validation was performed by combining qualitative immunohistochemistry and quantitative protein expression profiling. Results B cells were found to be significantly increased in the TIME of long-term survivors by gene expression profiling (p=0.018). The high tumor infiltration of B cells was confirmed by spatial protein profiling in the discovery and the validation cohorts (p=0.002 and p=0.01, respectively). The higher number of infiltrated B cells was found mainly in the stromal compartments of PDAC samples and was exclusively found within tumor cells in long-term survivors. Conclusion This is the first comprehensive study that connects the immune landscape of gene expression profiles and protein spatial infiltration with the survivorship of PDAC patients. We found a higher number and a specific location of B cells in TIME of long-term survivors which emphasizes the importance of B cells and B cell-based therapy for future personalized immunotherapy in PDAC patients.
Collapse
Affiliation(s)
- Hosein M. Aziz
- Department of Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Lawlaw Saida
- Department of Pathology & Clinical Bioinformatics, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Willem de Koning
- Department of Pathology & Clinical Bioinformatics, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Rotterdam, Netherlands,Department of Pathology & Clinical Bioinformatics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Andrew P. Stubbs
- Department of Pathology & Clinical Bioinformatics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Yunlei Li
- Department of Pathology & Clinical Bioinformatics, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Rotterdam, Netherlands,Department of Pathology & Clinical Bioinformatics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Kostandinos Sideras
- Divisions of Medical Oncology and Hematology, Mayo Clinic, Rochester, MN, United States
| | - Elena Palacios
- Department of Pathology, La Paz University Hospital, IdiPAZ, Madrid, Spain
| | - Jaime Feliu
- Department of Medical Oncology, La Paz University Hospital, IdiPAZ, Madrid, Spain,Cátedra UAM-ANGEM, Madrid, Spain,Centro de Investigación Biomédica en red de Cáncer, CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Mendiola
- Centro de Investigación Biomédica en red de Cáncer, CIBERONC, Instituto de Salud Carlos III, Madrid, Spain,Molecular Pathology and therapeutic Targets Group, La Paz University Hospital, IdiPAZ, Madrid, Spain
| | - Casper H. J. van Eijck
- Department of Surgery, Erasmus University Medical Center, Rotterdam, Netherlands,Department of Pathology & Clinical Bioinformatics, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Dana A. M. Mustafa
- Department of Pathology & Clinical Bioinformatics, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Rotterdam, Netherlands,*Correspondence: Dana A. M. Mustafa,
| |
Collapse
|
12
|
Zhao G, Wang C, Jiao J, Zhang W, Yang H. The novel subclusters based on cancer-associated fibroblast for pancreatic adenocarcinoma. Front Oncol 2022; 12:1045477. [PMID: 36544710 PMCID: PMC9762551 DOI: 10.3389/fonc.2022.1045477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/09/2022] [Indexed: 12/08/2022] Open
Abstract
Introduction Pancreatic adenocarcinoma (PAAD) is a fatal disease characterized by promoting connective tissue proliferation in the stroma. Activated cancer-associated fibroblasts (CAFs) play a key role in fibrogenesis in PAAD. CAF-based tumor typing of PAAD has not been explored. Methods We extracted single-cell sequence transcriptomic data from GSE154778 and CRA001160 datasets from Gene Expression Omnibus or Tumor Immune Single-cell Hub to collect CAFs in PAAD. On the basis of Seurat packages and new algorithms in machine learning, CAF-related subtypes and their top genes for PAAD were analyzed and visualized. We used CellChat package to perform cell-cell communication analysis. In addition, we carried out functional enrichment analysis based on clusterProfiler package. Finally, we explored the prognostic and immunotherapeutic value of these CAF-related subtypes for PAAD. Results CAFs were divided into five new subclusters (CAF-C0, CAF-C1, CAF-C2, CAF-C3, and CAF-C4) based on their marker genes. The five CAF subclusters exhibited distinct signaling patterns, immune status, metabolism features, and enrichment pathways and validated in the pan-cancer datasets. In addition, we found that both CAF-C2 and CAF-C4 subgroups were negatively correlated with prognosis. With their top genes of each subclusters, the sub-CAF2 had significantly relations to immunotherapy response in the patients with pan-cancer and immunotherapy. Discussion We explored the heterogeneity of five subclusters based on CAF in signaling patterns, immune status, metabolism features, enrichment pathways, and prognosis for PAAD.
Collapse
Affiliation(s)
- Guojie Zhao
- The Seventh Department of General Surgery, HanDan Central Hospital, Handan, Hebei, China
| | - Changjing Wang
- The Department of Gastrointestinal surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jian Jiao
- The Seventh Department of General Surgery, HanDan Central Hospital, Handan, Hebei, China
| | - Wei Zhang
- The Seventh Department of General Surgery, HanDan Central Hospital, Handan, Hebei, China
| | - Hongwei Yang
- The First Department of Oncology, HanDan Central Hospital, Handan, Hebei, China,*Correspondence: Hongwei Yang,
| |
Collapse
|
13
|
Masugi Y. The Desmoplastic Stroma of Pancreatic Cancer: Multilayered Levels of Heterogeneity, Clinical Significance, and Therapeutic Opportunities. Cancers (Basel) 2022; 14:cancers14133293. [PMID: 35805064 PMCID: PMC9265767 DOI: 10.3390/cancers14133293] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Pancreatic cancer is a highly malignant disease with treatment resistance to standardized chemotherapies. In addition, only a small fraction of patients with pancreatic cancer has, to date, actionable genetic aberrations, leading to a narrow therapeutic window for molecularly targeted therapies or immunotherapies. A lot of preclinical and translational studies are ongoing to discover potential vulnerabilities to treat pancreatic cancer. Histologically, human pancreatic cancer is characterized by abundant cancer-associated fibrotic stroma, called “desmoplastic stroma”. Recent technological advances have revealed that desmoplastic stroma in pancreatic cancer is much more complicated than previously thought, playing pleiotropic roles in manipulating tumor cell fate and anti-tumor immunity. Moreover, real-world specimen-based analyses of pancreatic cancer stroma have also uncovered spatial heterogeneity and an intertumoral variety associated with molecular alterations, clinicopathological factors, and patient outcomes. This review describes an overview of the current efforts in the field of pancreatic cancer stromal biology and discusses treatment opportunities of stroma-modifying therapies against this hard-to-treat cancer. Abstract Pancreatic cancer remains one of the most lethal malignancies and is becoming a dramatically increasing cause of cancer-related mortality worldwide. Abundant desmoplastic stroma is a histological hallmark of pancreatic ductal adenocarcinoma. Emerging evidence suggests a promising therapeutic effect of several stroma-modifying therapies that target desmoplastic stromal elements in the pancreatic cancer microenvironment. The evidence also unveils multifaceted roles of cancer-associated fibroblasts (CAFs) in manipulating pancreatic cancer progression, immunity, and chemotherapeutic response. Current state-of-the-art technologies, including single-cell transcriptomics and multiplexed tissue imaging techniques, have provided a more profound knowledge of CAF heterogeneity in real-world specimens from pancreatic cancer patients, as well as in genetically engineered mouse models. In this review, we describe recent advances in the understanding of the molecular pathology bases of pancreatic cancer desmoplastic stroma at multilayered levels of heterogeneity, namely, (1) variations in cellular and non-cellular members, including CAF subtypes and extracellular matrix (ECM) proteins; (2) geographical heterogeneity in relation to cell–cell interactions and signaling pathways at niche levels and spatial heterogeneity at locoregional levels or organ levels; and (3) intertumoral stromal heterogeneity at individual levels. This review further discusses the clinicopathological significance of desmoplastic stroma and the potential opportunities for stroma-targeted therapies against this lethal malignancy.
Collapse
Affiliation(s)
- Yohei Masugi
- Division of Diagnostic Pathology, Keio University School of Medicine, Tokyo 1608582, Japan; ; Tel.: +81-3-5363-3764; Fax: +81-3-3353-3290
- Department of Pathology, Keio University School of Medicine, Tokyo 1608582, Japan
| |
Collapse
|
14
|
Monteiro MV, Rocha M, Gaspar VM, Mano JF. Programmable Living Units for Emulating Pancreatic Tumor-Stroma Interplay. Adv Healthc Mater 2022; 11:e2102574. [PMID: 35426253 DOI: 10.1002/adhm.202102574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/02/2022] [Indexed: 12/19/2022]
Abstract
Bioengineering close-to-native in vitro models that emulate tumors bioarchitecture and microenvironment is highly appreciable for improving disease modeling toolboxes. Herein, pancreatic cancer living units-so termed cancer-on-a-bead models-are generated. Such user-programmable in vitro platforms exhibit biomimetic multicompartmentalization and tunable integration of cancer associated stromal elements. These stratified units can be rapidly assembled in-air, exhibit reproducible morphological features, tunable size, and recapitulate spatially resolved tumor-stroma extracellular matrix (ECM) niches. Compartmentalization of pancreatic cancer and stromal cells in well-defined ECM microenvironments stimulates the secretion of key biomolecular effectors including transforming growth factor β and Interleukin 1-β, closely emulating the signatures of human pancreatic tumors. Cancer-on-a-bead models also display increased drug resistance to chemotherapeutics when compared to their reductionistic counterparts, reinforcing the importance to differentially model ECM components inclusion and their spatial stratification as observed in vivo. Beyond providing a universal technology that enables spatial modularity in tumor-stroma elements bioengineering, a scalable, in-air fabrication of ECM-tunable 3D platforms that can be leveraged for recapitulating differential matrix composition occurring in other human neoplasias is provided here.
Collapse
Affiliation(s)
- Maria V Monteiro
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Marta Rocha
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Vítor M Gaspar
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| |
Collapse
|
15
|
Maneshi P, Mason J, Dongre M, Öhlund D. Targeting Tumor-Stromal Interactions in Pancreatic Cancer: Impact of Collagens and Mechanical Traits. Front Cell Dev Biol 2021; 9:787485. [PMID: 34901028 PMCID: PMC8656238 DOI: 10.3389/fcell.2021.787485] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has one of the worst outcomes among cancers with a 5-years survival rate of below 10%. This is a result of late diagnosis and the lack of effective treatments. The tumor is characterized by a highly fibrotic stroma containing distinct cellular components, embedded within an extracellular matrix (ECM). This ECM-abundant tumor microenvironment (TME) in PDAC plays a pivotal role in tumor progression and resistance to treatment. Cancer-associated fibroblasts (CAFs), being a dominant cell type of the stroma, are in fact functionally heterogeneous populations of cells within the TME. Certain subtypes of CAFs are the main producer of the ECM components of the stroma, with the most abundant one being the collagen family of proteins. Collagens are large macromolecules that upon deposition into the ECM form supramolecular fibrillar structures which provide a mechanical framework to the TME. They not only bring structure to the tissue by being the main structural proteins but also contain binding domains that interact with surface receptors on the cancer cells. These interactions can induce various responses in the cancer cells and activate signaling pathways leading to epithelial-to-mesenchymal transition (EMT) and ultimately metastasis. In addition, collagens are one of the main contributors to building up mechanical forces in the tumor. These forces influence the signaling pathways that are involved in cell motility and tumor progression and affect tumor microstructure and tissue stiffness by exerting solid stress and interstitial fluid pressure on the cells. Taken together, the TME is subjected to various types of mechanical forces and interactions that affect tumor progression, metastasis, and drug response. In this review article, we aim to summarize and contextualize the recent knowledge of components of the PDAC stroma, especially the role of different collagens and mechanical traits on tumor progression. We furthermore discuss different experimental models available for studying tumor-stromal interactions and finally discuss potential therapeutic targets within the stroma.
Collapse
Affiliation(s)
- Parniyan Maneshi
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - James Mason
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Mitesh Dongre
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Daniel Öhlund
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
16
|
Truong LH, Pauklin S. Pancreatic Cancer Microenvironment and Cellular Composition: Current Understandings and Therapeutic Approaches. Cancers (Basel) 2021; 13:5028. [PMID: 34638513 PMCID: PMC8507722 DOI: 10.3390/cancers13195028] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal human solid tumors, despite great efforts in improving therapeutics over the past few decades. In PDAC, the distinct characteristic of the tumor microenvironment (TME) is the main barrier for developing effective treatments. PDAC TME is characterized by a dense stroma, cancer-associated fibroblasts, and immune cells populations that crosstalk to the subpopulations of neoplastic cells that include cancer stem cells (CSCs). The heterogeneity in TME is also exhibited in the diversity and dynamics of acellular components, including the Extracellular matrix (ECM), cytokines, growth factors, and secreted ligands to signaling pathways. These contribute to drug resistance, metastasis, and relapse in PDAC. However, clinical trials targeting TME components have often reported unexpected results and still have not benefited patients. The failures in those trials and various efforts to understand the PDAC biology demonstrate the highly heterogeneous and multi-faceted TME compositions and the complexity of their interplay within TME. Hence, further functional and mechanistic insight is needed. In this review, we will present a current understanding of PDAC biology with a focus on the heterogeneity in TME and crosstalk among its components. We also discuss clinical challenges and the arising therapeutic opportunities in PDAC research.
Collapse
Affiliation(s)
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Old Road, University of Oxford, Oxford OX3 7LD, UK;
| |
Collapse
|
17
|
Cancer: a mirrored room between tumor bulk and tumor microenvironment. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:217. [PMID: 34183054 PMCID: PMC8240272 DOI: 10.1186/s13046-021-02022-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022]
Abstract
It has been well documented that the tumor microenvironment (TME) plays a key role in the promotion of drug resistance, the support of tumor progression, invasiveness, metastasis, and even the maintenance of a cancer stem-like phenotype. Here, we reviewed TME formation presenting it as a reflection of a tumor’s own organization during the different stages of tumor development. Interestingly, functionally different groups of stromal cells seem to have specific spatial distributions within the TME that change as the tumor evolves into advanced stage progression which correlates with the fact that cancer stem-like cells (CSCs) are located in the edges of solid tumor masses in advanced tumors. We also focus on the continuos feedback that is established between a tumor and its surroundings. The “talk” between tumor mass cells and TME stromal cells, marks the evolution of both interlocuting cell types. For instance, the metabolic and functional transformations that stromal cells undergo due to tumor corrupting activity. Moreover, the molecular basis of metastatic spread is also approached, making special emphasis on the site-specific pre-metastatic niche formation as another reflection of the primary tumor molecular signature. Finally, several therapeutic approaches targeting primary TME and pre-metastatic niche are suggested. For instance, a systematic analysis of the TME just adjacent to the tumor mass to establish the proportion of myofibroblasts-like cancer-associated fibroblasts (CAFs) which may in turn correspond to stemness and metastases-promotion. Or the implementation of “re-education” therapies consisting of switching tumor-supportive stromal cells into tumor-suppressive ones. In summary, to improve our clinical management of cancer, it is crucial to understand and learn how to manage the close interaction between TME and metastasis.
Collapse
|
18
|
Sato H, Liss AS, Mizukami Y. Large-duct pattern invasive adenocarcinoma of the pancreas-a variant mimicking pancreatic cystic neoplasms: A minireview. World J Gastroenterol 2021; 27:3262-3278. [PMID: 34163110 PMCID: PMC8218369 DOI: 10.3748/wjg.v27.i23.3262] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/09/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer currently has no subtypes that inform clinical decisions; hence, there exists an opportunity to rearrange the morphological and molecular taxonomy that guides a better understanding of tumor characteristics. Nonetheless, accumulating studies to date have revealed the large-duct type variant, a unique subtype of pancreatic ductal adenocarcinoma (PDA) with cystic features. This subtype often radiographically mimics intraductal papillary mucinous neoplasms (IPMNs) and involves multiple small cysts occasionally associated with solid masses. The "bunch-of-grapes" sign, an imaging characteristic of IPMNs, is absent in large-duct PDA. Large-duct PDA defines the mucin profile, and genetic alterations are useful in distinguishing large-duct PDA from IPMNs. Histologically, neoplastic ducts measure over 0.5 mm, forming large ductal elements. Similar to classic PDAs, this subtype is frequently accompanied by perineural invasion and abundant desmoplastic reactions, and KRAS mutations in codon 12 are nearly ubiquitous. Despite such morphological similarities with IPMNs, the prognosis of large-duct PDA is equivalent to that of classic PDA. Differential diagnosis is therefore essential.
Collapse
Affiliation(s)
- Hiroki Sato
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 0788510, Hokkaido, Japan
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Andrew Scott Liss
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Yusuke Mizukami
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 0788510, Hokkaido, Japan
- Institute of Biomedical Research, Sapporo Higashi Tokushukai Hospital, Sapporo 0650033, Hokkaido, Japan
| |
Collapse
|
19
|
Coban B, Bergonzini C, Zweemer AJM, Danen EHJ. Metastasis: crosstalk between tissue mechanics and tumour cell plasticity. Br J Cancer 2021; 124:49-57. [PMID: 33204023 PMCID: PMC7782541 DOI: 10.1038/s41416-020-01150-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/06/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the fact that different genetic programmes drive metastasis of solid tumours, the ultimate outcome is the same: tumour cells are empowered to pass a series of physical hurdles to escape the primary tumour and disseminate to other organs. Epithelial-to-mesenchymal transition (EMT) has been proposed to drive the detachment of individual cells from primary tumour masses and facilitate the subsequent establishment of metastases in distant organs. However, this concept has been challenged by observations from pathologists and from studies in animal models, in which partial and transient acquisition of mesenchymal traits is seen but tumour cells travel collectively rather than as individuals. In this review, we discuss how crosstalk between a hybrid E/M state and variations in the mechanical aspects of the tumour microenvironment can provide tumour cells with the plasticity required for strategies to navigate surrounding tissues en route to dissemination. Targeting such plasticity provides therapeutic opportunities to combat metastasis.
Collapse
Affiliation(s)
- Bircan Coban
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Cecilia Bergonzini
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Annelien J M Zweemer
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Erik H J Danen
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
20
|
Bulle A, Lim KH. Beyond just a tight fortress: contribution of stroma to epithelial-mesenchymal transition in pancreatic cancer. Signal Transduct Target Ther 2020; 5:249. [PMID: 33122631 PMCID: PMC7596088 DOI: 10.1038/s41392-020-00341-1] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/31/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Novel effective treatment is direly needed for patients with pancreatic ductal adenocarcinoma (PDAC). Therapeutics that target the driver mutations, especially the KRAS oncoprotein and its effector cascades, have been ineffective. It is increasing clear that the extensive fibro-inflammatory stroma (or desmoplasia) of PDAC plays an active role in the progression and therapeutic resistance of PDAC. The desmoplastic stroma is composed of dense extracellular matrix (ECM) deposited mainly by the cancer-associated-fibroblasts (CAFs) and infiltrated with various types of immune cells. The dense ECM functions as a physical barrier that limits tumor vasculatures and distribution of therapeutics to PDAC cells. In addition, mounting evidence have demonstrated that both CAFs and ECM promote PDAC cells aggressiveness through multiple mechanisms, particularly engagement of the epithelial-mesenchymal transition (EMT) program. Acquisition of a mesenchymal-like phenotype renders PDAC cells more invasive and resistant to therapy-induced apoptosis. Here, we critically review seminal and recent articles on the signaling mechanisms by which each stromal element promotes EMT in PDAC. We discussed the experimental models that are currently employed and best suited to study EMT in PDAC, which are instrumental in increasing the chance of successful clinical translation.
Collapse
Affiliation(s)
- Ashenafi Bulle
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kian-Huat Lim
- Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
21
|
Li B, Wang Y, Jiang H, Li B, Shi X, Gao S, Ni C, Zhang Z, Guo S, Xu J, Jin G. Pros and Cons: High Proportion of Stromal Component Indicates Better Prognosis in Patients With Pancreatic Ductal Adenocarcinoma-A Research Based on the Evaluation of Whole-Mount Histological Slides. Front Oncol 2020; 10:1472. [PMID: 32974173 PMCID: PMC7471248 DOI: 10.3389/fonc.2020.01472] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
The study aimed to investigate the potential of tumor–stroma ratio (TSR) on digitalized whole-mount histopathology to predict prognosis in patients with pancreatic ductal adenocarcinoma (PDAC). The effectiveness were evaluated through internal validation. Data were retrospectively collected from consecutive patients who underwent primary pancreatic resection from December 2016 to August 2017 (developing cohort) and from September 2017 to April 2018 (validation cohort). Digitalized whole-mount slide images were used to evaluate TSR by both pathologists and a computerized model based on Conditional Generative Adversarial Model (cGAN), respectively. TSR>1 and ≤ 1 denoted low and high stromal component. Logistic regression analysis revealed intratumoral necrosis and R1 independently associated with low stromal component in the developing cohort. Cox regression analysis revealed tumor–node–metastasis (TNM) stage [II vs. I: hazard ratio (HR), 2.584; 95% CI, 1.386–4.819; P = 0.003; III vs. I: HR, 4.384; 95% CI, 2.285–8.411; P < 0.001], stromal component (low vs. high: HR, 1.876; 95% CI, 1.227–2.870; P = 0.004), tumor grade (G3 vs. G1/2: HR, 2.124; 95% CI, 1.419–3.179; P < 0.001), and perineural invasion (with vs. without: HR, 2.147; 95% CI, 1.187–3.883; P = 0.011) were independent prognostic factors in the developing cohort. Stromal component categories could classify patients into subgroups within TNM stages I, II, and III based on over survival. All results were validated in the validation cohort. The weighted kappa value for categorical assessments between pathologists' evaluation and computer-aided evaluation was 0.804 (95% CI, 0.573–0.951). TSR represents a simple and reliable metric for combining the prognostic value of TNM stage in patients with PDAC.
Collapse
Affiliation(s)
- Bo Li
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital Affiliated to Navy Medical University (Second Military Medical University), Shanghai, China.,Department of General Surgery, Beidaihe Rehabilitation and Recuperation Center of Joint Logistics Support Force, Qinhuangdao, China
| | - Yang Wang
- Department of Pathology, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Hui Jiang
- Department of Pathology, Changhai Hospital Affiliated to Navy Medical University (Second Military Medical University), Shanghai, China
| | - Baoming Li
- Jiangsu Key Laboratory of Big Data Analysis Technique and CICAEET, Nanjing University of Information Science and Technology, Nanjing, China
| | - Xiaohan Shi
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital Affiliated to Navy Medical University (Second Military Medical University), Shanghai, China
| | - Suizhi Gao
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital Affiliated to Navy Medical University (Second Military Medical University), Shanghai, China
| | - Canrong Ni
- Department of Pathology, Changhai Hospital Affiliated to Navy Medical University (Second Military Medical University), Shanghai, China
| | - Zelin Zhang
- Jiangsu Key Laboratory of Big Data Analysis Technique and CICAEET, Nanjing University of Information Science and Technology, Nanjing, China
| | - Shiwei Guo
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital Affiliated to Navy Medical University (Second Military Medical University), Shanghai, China
| | - Jun Xu
- Jiangsu Key Laboratory of Big Data Analysis Technique and CICAEET, Nanjing University of Information Science and Technology, Nanjing, China
| | - Gang Jin
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital Affiliated to Navy Medical University (Second Military Medical University), Shanghai, China
| |
Collapse
|