1
|
Garcia-Luna GM, Bermudes-Contreras JD, Hernández-Correa S, Suarez-Ortiz JO, Diaz-Urbina D, Garfias-Ramirez SH, Vega AV, Villalobos-Molina R, Vilches-Flores A. Δ9-Tetrahydrocannabinol Treatment Modifies Insulin Secretion in Pancreatic Islets from Prediabetic Mice Under Hypercaloric Diet. Cannabis Cannabinoid Res 2024; 9:1277-1290. [PMID: 37267277 DOI: 10.1089/can.2023.0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023] Open
Abstract
Background: The endocannabinoid system over-activation is associated with type-2 diabetes mellitus onset, involving physiological, metabolic, and genetic alterations in pancreatic islets. The use of Δ9-Tetrahydrocannabinol (THC) as treatment is still controversial since its effects and mechanisms on insulin secretion are unclear. The aim of this study was to evaluate the effects of THC treatment in pancreatic islets from prediabetic mice. Methods: Prediabetes was induced in mice by hypercaloric diet, and then treated with THC for 3 weeks. Blood glucose and body weight were determined, after behavior tests. Histological changes were evaluated in whole pancreas; in isolated islets we analyzed the effect of THC exposure in glucose-stimulated insulin secretion (GSIS), gene expression, intracellular cyclic adenosine monophosphate (cAMP), and cytosolic calcium changes. Results: THC treatment in prediabetic mice enhanced anxiety and antidepressive behavior without changes in food ingestion, decreased oral-glucose tolerance test, plasma insulin and weight, with small alterations on pancreatic histology. In isolated islets from healthy mice THC increased GSIS, cAMP, and CB1 receptor (CB1r) expression, meanwhile calcium release was diminished. Small changes were observed in islets from prediabetic mice. Conclusions: THC treatment improves some clinical parameters in prediabetic mice, however, in isolated islets, modifies GSIS, intracellular calcium and gene expression, suggesting specific effects related to diabetes evolution.
Collapse
Affiliation(s)
- Guadalupe M Garcia-Luna
- FES Iztacala, Department of Medical Research, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - J David Bermudes-Contreras
- FES Iztacala, Department of Medical Research, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Samantha Hernández-Correa
- FES Iztacala, Department of Medical Research, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Josue O Suarez-Ortiz
- FES Iztacala, Department of Medical Research, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Daniel Diaz-Urbina
- FES Iztacala, Department of Medical Research, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Sergio H Garfias-Ramirez
- FES Iztacala, Department of Medical Research, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Ana V Vega
- FES Iztacala, Department of Medical Research, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Rafael Villalobos-Molina
- FES Iztacala, Department of Medical Research, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Alonso Vilches-Flores
- FES Iztacala, Department of Medical Research, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| |
Collapse
|
2
|
Baral A, Liu J, Garcia-Davis S, Diggs BNA, Ayala L, Aka A, Agrawal YS, Messiah SE, Vidot DC. Prevalence of Metabolic Syndrome Among Emerging Adult Cannabis Users by Race/Ethnicity: Analysis of the 2009-2018 National Health and Nutrition Examination Surveys. AMERICAN JOURNAL OF MEDICINE OPEN 2024; 11:100069. [PMID: 39034940 PMCID: PMC11256325 DOI: 10.1016/j.ajmo.2024.100069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 03/02/2024] [Accepted: 03/24/2024] [Indexed: 07/23/2024]
Abstract
Background Association between cannabis use and metabolic syndrome (MetS) has been documented; yet variation by race/ethnicity is understudied. We examined cannabis use and MetS by race/ethnicity among emerging adults (18-25 years old), the age group with the highest prevalence of cannabis use. Methods Data from 18- to 25-year-olds who completed the National Health and Nutrition Examination Survey (2009-2018) were analyzed. Current cannabis use was defined as ≥1 day of use in the last 30 days. MetS was defined using standardized guidelines as ≥3 of the following: elevated fasting glucose, triglycerides, systolic (SBP) and/or diastolic blood pressure (DPB), waist circumference, and/or low high-density lipoprotein (HDL) cholesterol. Logistic regression was used to examine the association between current cannabis use (CCU) and MetS, adjusting for covariates. Results Of 3974 respondents, 48.8% were female, mean age 21.1 years (SD = 2.4), 56.7% non-Hispanic white, 20.4% Hispanic, and 14.0% non-Hispanic black (NHB). Hispanics had the highest MetS prevalence (7.9%) and lowest CCU prevalence (23.5%). NHB had highest CCU prevalence (33.4%, P < .0001) and lowest MetS prevalence (4.8%, P = .2543). CCUs had a higher mean SBP (P = .020) and Hispanics (P = .002) than never users. Conversely, NHB CCUs exhibited lower mean SBP than NHB never users (P = .008). CCUs had 42% reduced odds of MetS than never users (AOR: 0.58, 95% CI: 0.35-0.95). Among NHB, CCUs had 78% lower likelihood of having MetS than never users (AOR: 0.22, 95% CI: 0.06-0.81). Conclusions Cannabis use impacts MetS and blood pressure differently by race/ethnicity. Current cannabis use was associated with lower odds of MetS overall and among NHB. Further research is warranted to investigate how administration routes, dosages, and usage duration affect MetS.
Collapse
Affiliation(s)
- Amrit Baral
- University of Miami Miller School of Medicine, Department of Public Health Sciences, Miami, FL
- University of Miami School of Nursing and Health Studies, Miami, FL
| | - Jingxin Liu
- University of Miami Miller School of Medicine, Department of Public Health Sciences, Miami, FL
| | - Sandra Garcia-Davis
- University of Miami Miller School of Medicine, Department of Public Health Sciences, Miami, FL
| | - Bria-Necole A. Diggs
- University of Miami Miller School of Medicine, Department of Public Health Sciences, Miami, FL
- University of Miami School of Nursing and Health Studies, Miami, FL
| | - Lizelh Ayala
- University of Miami Miller School of Medicine, Department of Public Health Sciences, Miami, FL
| | - Anurag Aka
- University of Miami School of Nursing and Health Studies, Miami, FL
| | - Yash S. Agrawal
- University of Miami School of Nursing and Health Studies, Miami, FL
| | - Sarah E. Messiah
- University of Texas Health Science Center at Houston, School of Public Health, Houston, TX
- Center for Pediatric Population Health, University of Texas Health Science Center at Houston School of Public Health, Houston, TX
| | - Denise C. Vidot
- University of Miami Miller School of Medicine, Department of Public Health Sciences, Miami, FL
- University of Miami School of Nursing and Health Studies, Miami, FL
| |
Collapse
|
3
|
Cortes-Justo E, Garfias-Ramírez SH, Vilches-Flores A. The function of the endocannabinoid system in the pancreatic islet and its implications on metabolic syndrome and diabetes. Islets 2023; 15:1-11. [PMID: 36598083 PMCID: PMC9815253 DOI: 10.1080/19382014.2022.2163826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The following review focuses on the scientific studies related to the role of endocannabinoid system (ECS) in pancreatic islet physiology and dysfunction. Different natural or synthetic agonists and antagonists have been suggested as an alternative treatment for diabetes, obesity and metabolic syndrome. Therapeutic use of Cannabis led to the discovery and characterization of the ECS, a signaling complex involved in regulation of various physiological processes, including food intake and metabolism. After the development of different agonists and antagonists, evidence have demonstrated the presence and activity of cannabinoid receptors in several organs and tissues, including pancreatic islets. Insulin and glucagon expression, stimulated secretion, and the development of diabetes and other metabolic disorders have been associated with the activity and modulation of ECS in pancreatic islets. However, according to the animal model and experimental design, either endogenous or pharmacological ligands of cannabinoid receptors have guided to contradictory and paradoxical results that suggest a complex physiological interaction. In consensus, ECS activity modulates insulin and glucagon secretions according to glucose in media; over-stimulation of cannabinoid receptors affects islets negatively, leading to glucose intolerance, meanwhile the treatment with antagonists in diabetic models and humans suggests an improvement in islets function.
Collapse
Affiliation(s)
- Edgardo Cortes-Justo
- Posgrado e Investigación, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico NacionalMexico CityMexico
| | - Sergio H Garfias-Ramírez
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Coyoacán, Mexico
| | - Alonso Vilches-Flores
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Coyoacán, Mexico
- CONTACT Alonso Vilches-Flores Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Iztacala. Edif.A4 Lab 4, Los Reyes Iztacala, Tlalnepantla54090, Mexico
| |
Collapse
|
4
|
Aseer KR, Egan JM. An Autonomous Cannabinoid System in Islets of Langerhans. Front Endocrinol (Lausanne) 2021; 12:699661. [PMID: 34290671 PMCID: PMC8287299 DOI: 10.3389/fendo.2021.699661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/08/2021] [Indexed: 12/31/2022] Open
Abstract
While endocannabinoids (ECs) and cannabis were primarily studied for their nervous system effects, it is now clear that ECs are also produced in the periphery where they regulate several physiological processes, including energy storage, glucose and lipid metabolism, insulin secretion and synthesis, and hepatocyte function. Within islet of Langerhans there is an autonomous EC system (ECS). Beta (β)-cells contain all the enzymes necessary for EC synthesis and degradation; ECs are generated in response to cellular depolarization; their paracrine influence on β-cells is mostly through the cannabinoid 1 receptor (CB1R) that is present on all β-cells; they modulate basal and glucose- and incretin-induced insulin secretion, and β-cell responses to various stressors. Furthermore, there is now accumulating evidence from preclinical studies that the autonomous islet ECS is a key player in obesity-induced inflammation in islets, and β-cell damage and apoptosis from many causes can be mitigated by CB1R blockers. We will thoroughly review the literature relevant to the effects of ECs and their receptors on β-cells and the other cell types within islets. Therapeutic potential of agents targeting EC/CB1R and CB2R is highly relevant because the receptors belong to the druggable G protein-coupled receptor superfamily. Present research in the ECS must be considered preliminary, especially with regards to human islet physiology, and further research is needed in order to translate basic cellular findings into clinical practice and the use of safe, clinically approved CBR modulators with and without glucose lowering combinations presently in therapeutic use for diabetes and obesity needs to be studied.
Collapse
|
5
|
Barajas-Martínez A, Bermeo K, de la Cruz L, Martínez-Vargas M, Martínez-Tapia RJ, García DE, Navarro L. Cannabinoid receptors are differentially regulated in the pancreatic islets during the early development of metabolic syndrome. Islets 2020; 12:134-144. [PMID: 33289595 PMCID: PMC7751681 DOI: 10.1080/19382014.2020.1849927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The endocannabinoid system is found in tissues that regulate the glycemia, including adipose tissue, muscle, and pancreatic islets. Diet-induced metabolic syndrome changes the expression of the CB receptors in muscle, adipose tissue, and liver. However, it is poorly understood whether metabolic syndrome (MetS) affects the expression of CB receptors in pancreatic β cells. We analyzed the expression of CB receptors in pancreatic β cells under chronic high-sucrose diet (HSD)-induced MetS. Wistar rats fed an HSD as a model of MetS were used to investigate changes in cannabinoid receptors. After 8 weeks of treatment, we evaluated the appearance of the following MetS biomarkers: glucose intolerance, hyperinsulinemia, insulin resistance, hypertriglyceridemia, and an increase in visceral adiposity. To determine the presence of CB1 and CB2 receptors in pancreatic β cells, immunofluorescence of primary cell cultures and pancreatic sections was performed. For whole-islet quantification of membrane-bound CB1 and CB2 receptors, western-blotting following differential centrifugation was conducted. Our results revealed that an HSD treatment closely mimics the alterations seen in MetS. We observed that in primary cell culture, CB1 and CB2 receptors were expressed at a higher level in pancreatic β cells compared with non-β cells. MetS resulted in a reduction of CB1 in the islet, whereas abundant CB2 was observed after the treatment. CB1 and CB2 receptors are differentially expressed in pancreatic β cells during MetS development.
Collapse
Affiliation(s)
- Antonio Barajas-Martínez
- Departamento de Fisiología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Karina Bermeo
- Departamento de Fisiología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Lizbeth de la Cruz
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Marina Martínez-Vargas
- Departamento de Fisiología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Ricardo Jesús Martínez-Tapia
- Departamento de Fisiología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - David Erasmo García
- Departamento de Fisiología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Luz Navarro
- Departamento de Fisiología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
- CONTACT Luz Navarro Departamento de Fisiología, Universidad Nacional Autónoma de México (UNAM), Ciudad de MéxicoC.P. 04510, México
| |
Collapse
|
6
|
Influence of Cannabinoid Receptor Deficiency on Parameters Involved in Blood Glucose Regulation in Mice. Int J Mol Sci 2020; 21:ijms21093168. [PMID: 32365865 PMCID: PMC7246639 DOI: 10.3390/ijms21093168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/20/2020] [Accepted: 04/26/2020] [Indexed: 02/07/2023] Open
Abstract
Cannabinoids are known to influence hormone secretion of pancreatic islets via G protein-coupled cannabinoid receptor type 1 and 2 (CB1 and CB2). The present study was designed to further investigate the impact of cannabinoid receptors on the parameters involved in insulin secretion and blood glucose recognition. To this end, CB1 and CB2 receptor knockout mice (10–12 week old, both sexes) were characterised at basal state and compared to wild-type mice. The elimination of cannabinoid receptor signalling resulted in alterations of blood glucose concentrations, body weights and insulin levels. Changes were dependent on the deleted receptor type and on the sex. Analyses at mRNA and protein levels provided evidence for the impact of cannabinoid receptor deficiency on the glucose sensing apparatus in the pancreas. Both receptor knockout mouse lines showed decreased mRNA and protein amounts of glucose transporters Glut1 and Glut2, combined with alterations in immunostaining. In addition, pancreatic glucokinase expression was elevated and immunohistochemical labelling was modified in the pancreatic islets. Taken together, CB1 and CB2 signalling pathways seem to influence glucose sensing in β-cells by affecting glucose transporters and glucokinase. These alterations were more pronounced in CB2 knockout mice, resulting in higher blood glucose and lower plasma insulin levels.
Collapse
|
7
|
Nava-Molina L, Uchida-Fuentes T, Ramos-Tovar H, Fregoso-Padilla M, Rodríguez-Monroy MA, Vega AV, Navarrete-Vázquez G, Andrade-Jorge E, Villalobos-Molina R, Ortiz-Ortega R, Vilches-Flores A. Novel CB1 receptor antagonist BAR-1 modifies pancreatic islet function and clinical parameters in prediabetic and diabetic mice. Nutr Diabetes 2020; 10:7. [PMID: 32132523 PMCID: PMC7055595 DOI: 10.1038/s41387-020-0110-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 01/02/2020] [Accepted: 01/16/2020] [Indexed: 01/24/2023] Open
Abstract
BACKGROUDS Cannabinoid receptor antagonists have been suggested as a novel treatment for obesity and diabetes. We have developed a synthetic cannabinoid receptor antagonist denominated BAR-1. As the function and integrity of a β-cell cellular structure are important keys for diabetes onset, we evaluated the effects of pharmacological administration of BAR-1 on prediabetic and diabetic rodents. METHODS CD-1 mice fed a hypercaloric diet or treated with streptozotocin were treated with 10 mg/kg BAR-1 for 2, 4 or 8 weeks. Body weight, oral glucose tolerance test, HbA1c, triglycerides and insulin in serum were measured. In isolated islets, we evaluated stimulated secretion and mRNA expression, and relative area of islets in fixed pancreases. Docking analysis of BAR-1 was complemented. RESULTS BAR-1 treatment slowed down weight gain in prediabetic mice. Fasting glucose-insulin relation also decreased in BAR-1-treated mice and glucose-stimulated insulin secretion was increased in isolated islets, without effects in oral test. Diabetic mice treated with BAR-1 showed a reduced glucose and a partial recovery of islet integrity. Gene expression of insulin and glucagon showed biphasic behaviour, increasing after 4 weeks of BAR-1 administration; however, after 8 weeks, mRNA abundance decreased significantly. Administration of BAR-1 also prevents changes in endocannabinoid element expression observed in prediabetic mice. No changes were detected in other parameters studied, including the histological structure. A preliminary in-silico study suggests a close interaction with CB1 receptor. CONCLUSIONS BAR-1 induces improvement of islet function, isolated from both prediabetic and diabetic mice. Effects of BAR-1 suggest a possible interaction with other cannabinoid receptors.
Collapse
Affiliation(s)
- Lesly Nava-Molina
- Unidad de Biomedicina, FES Iztacala, Universidad Nacional Autónoma de México. Av. de Los Barrios 1, Los Reyes Iztacala, C.P., 54090, Tlalnepantla, Mexico
| | - Toyokazu Uchida-Fuentes
- Unidad de Biomedicina, FES Iztacala, Universidad Nacional Autónoma de México. Av. de Los Barrios 1, Los Reyes Iztacala, C.P., 54090, Tlalnepantla, Mexico
| | - Héctor Ramos-Tovar
- Unidad de Biomedicina, FES Iztacala, Universidad Nacional Autónoma de México. Av. de Los Barrios 1, Los Reyes Iztacala, C.P., 54090, Tlalnepantla, Mexico
| | - Martha Fregoso-Padilla
- Unidad de Biomedicina, FES Iztacala, Universidad Nacional Autónoma de México. Av. de Los Barrios 1, Los Reyes Iztacala, C.P., 54090, Tlalnepantla, Mexico
| | - Marco Aurelio Rodríguez-Monroy
- Unidad de Biomedicina, FES Iztacala, Universidad Nacional Autónoma de México. Av. de Los Barrios 1, Los Reyes Iztacala, C.P., 54090, Tlalnepantla, Mexico
| | - Ana V Vega
- Unidad de Biomedicina, FES Iztacala, Universidad Nacional Autónoma de México. Av. de Los Barrios 1, Los Reyes Iztacala, C.P., 54090, Tlalnepantla, Mexico
| | - Gabriel Navarrete-Vázquez
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos. Av. Universidad 1001, Chamilpa, C.P., 62209, Cuernavaca, Morelos, Mexico
| | - Erik Andrade-Jorge
- Unidad de Biomedicina, FES Iztacala, Universidad Nacional Autónoma de México. Av. de Los Barrios 1, Los Reyes Iztacala, C.P., 54090, Tlalnepantla, Mexico
| | - Rafael Villalobos-Molina
- Unidad de Biomedicina, FES Iztacala, Universidad Nacional Autónoma de México. Av. de Los Barrios 1, Los Reyes Iztacala, C.P., 54090, Tlalnepantla, Mexico
| | - Ricardo Ortiz-Ortega
- Unidad de Biomedicina, FES Iztacala, Universidad Nacional Autónoma de México. Av. de Los Barrios 1, Los Reyes Iztacala, C.P., 54090, Tlalnepantla, Mexico
| | - Alonso Vilches-Flores
- Unidad de Biomedicina, FES Iztacala, Universidad Nacional Autónoma de México. Av. de Los Barrios 1, Los Reyes Iztacala, C.P., 54090, Tlalnepantla, Mexico.
| |
Collapse
|
8
|
Farokhnia M, McDiarmid GR, Newmeyer MN, Munjal V, Abulseoud OA, Huestis MA, Leggio L. Effects of oral, smoked, and vaporized cannabis on endocrine pathways related to appetite and metabolism: a randomized, double-blind, placebo-controlled, human laboratory study. Transl Psychiatry 2020; 10:71. [PMID: 32075958 PMCID: PMC7031261 DOI: 10.1038/s41398-020-0756-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/17/2019] [Accepted: 01/08/2020] [Indexed: 12/24/2022] Open
Abstract
As perspectives on cannabis continue to shift, understanding the physiological and behavioral effects of cannabis use is of paramount importance. Previous data suggest that cannabis use influences food intake, appetite, and metabolism, yet human research in this regard remains scant. The present study investigated the effects of cannabis administration, via different routes, on peripheral concentrations of appetitive and metabolic hormones in a sample of cannabis users. This was a randomized, crossover, double-blind, placebo-controlled study. Twenty participants underwent four experimental sessions during which oral cannabis, smoked cannabis, vaporized cannabis, or placebo was administered. Active compounds contained 6.9 ± 0.95% (~50.6 mg) ∆9-tetrahydrocannabinol (THC). Repeated blood samples were obtained, and the following endocrine markers were measured: total ghrelin, acyl-ghrelin, leptin, glucagon-like peptide-1 (GLP-1), and insulin. Results showed a significant drug main effect (p = 0.001), as well as a significant drug × time-point interaction effect (p = 0.01) on insulin. The spike in blood insulin concentrations observed under the placebo condition (probably due to the intake of brownie) was blunted by cannabis administration. A significant drug main effect (p = 0.001), as well as a trend-level drug × time-point interaction effect (p = 0.08) was also detected for GLP-1, suggesting that GLP-1 concentrations were lower under cannabis, compared to the placebo condition. Finally, a significant drug main effect (p = 0.01) was found for total ghrelin, suggesting that total ghrelin concentrations during the oral cannabis session were higher than the smoked and vaporized cannabis sessions. In conclusion, cannabis administration in this study modulated blood concentrations of some appetitive and metabolic hormones, chiefly insulin, in cannabis users. Understanding the mechanisms underpinning these effects may provide additional information on the cross-talk between cannabinoids and physiological pathways related to appetite and metabolism.
Collapse
Affiliation(s)
- Mehdi Farokhnia
- grid.94365.3d0000 0001 2297 5165Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD USA ,grid.94365.3d0000 0001 2297 5165Center on Compulsive Behaviors, National Institutes of Health, Bethesda, MD USA ,grid.21107.350000 0001 2171 9311Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD USA
| | - Gray R. McDiarmid
- grid.94365.3d0000 0001 2297 5165Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD USA
| | - Matthew N. Newmeyer
- grid.21107.350000 0001 2171 9311Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD USA ,grid.94365.3d0000 0001 2297 5165Chemistry and Drug Metabolism Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD USA
| | - Vikas Munjal
- grid.94365.3d0000 0001 2297 5165Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD USA
| | - Osama A. Abulseoud
- grid.94365.3d0000 0001 2297 5165Chemistry and Drug Metabolism Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD USA
| | - Marilyn A. Huestis
- grid.94365.3d0000 0001 2297 5165Chemistry and Drug Metabolism Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD USA ,grid.265008.90000 0001 2166 5843Lambert Center for the Study of Medicinal Cannabis and Hemp, Thomas Jefferson University, Philadelphia, PA USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD, USA. .,Center on Compulsive Behaviors, National Institutes of Health, Bethesda, MD, USA. .,Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA. .,Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, USA.
| |
Collapse
|
9
|
González-Mariscal I, Egan JM. Endocannabinoids in the Islets of Langerhans: the ugly, the bad, and the good facts. Am J Physiol Endocrinol Metab 2018; 315:E174-E179. [PMID: 29631361 PMCID: PMC6139496 DOI: 10.1152/ajpendo.00338.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The endocannabinoid system (ECS) regulates cellular homeostasis and whole-body metabolism. There is an autonomous ECS in the endocrine pancreas, including the cannabinoid 1 receptor (CB1R) that is present in β-cells. Here, we discuss conflicts that have arisen with regard to the function(s) of the ECs in the endocrine pancreas and that have caused confusion when defining the role of the ECS in islets of Langerhans, especially the role(s) of CB1R in β-cells. We also discuss the latest data published concerning the ECS in islets. CB1R in particular is not simply a negative modulator of insulin secretion as it is also involved in intra-islet inflammation during high fat-high sugar intake and it is a negative regulator of β-cell viability and turnover. We also discuss the feasibility of using CB1R as a target for the treatment of diabetes.
Collapse
Affiliation(s)
- Isabel González-Mariscal
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health , Baltimore, Maryland
| | - Josephine M Egan
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health , Baltimore, Maryland
| |
Collapse
|
10
|
Jourdan T, Godlewski G, Kunos G. Endocannabinoid regulation of β-cell functions: implications for glycaemic control and diabetes. Diabetes Obes Metab 2016; 18:549-57. [PMID: 26880114 PMCID: PMC5045244 DOI: 10.1111/dom.12646] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/08/2016] [Accepted: 02/11/2016] [Indexed: 01/11/2023]
Abstract
Visceral obesity is a major risk factor for the development of insulin resistance which can progress to overt type 2 diabetes (T2D) with loss of β-cell function and, ultimately, loss of β-cells. Insulin secretion by β-cells of the pancreatic islets is tightly coupled to blood glucose concentration and modulated by a large number of blood-borne or locally released mediators, including endocannabinoids. Obesity and its complications, including T2D, are associated with increased activity of the endocannabinoid/CB1 receptor (CB1 R) system, as indicated by the therapeutic effects of CB1 R antagonists. Similar beneficial effects of CB1 R antagonists with limited brain penetrance indicate the important role of CB1 R in peripheral tissues, including the endocrine pancreas. Pancreatic β-cells express all of the components of the endocannabinoid system, and endocannabinoids modulate their function via both autocrine and paracrine mechanisms, which influence basal and glucose-induced insulin secretion and also affect β-cell proliferation and survival. The present brief review will survey available information on the modulation of these processes by endocannabinoids and their receptors, with an attempt to assess the contribution of such effects to glycaemic control in T2D and insulin resistance.
Collapse
Affiliation(s)
- T Jourdan
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - G Godlewski
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - G Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
11
|
Vilches-Flores A, Franklin Z, Hauge-Evans AC, Liu B, Huang GC, Choudhary P, Jones PM, Persaud SJ. Prolonged activation of human islet cannabinoid receptors in vitro induces adaptation but not dysfunction. BBA CLINICAL 2016; 5:143-50. [PMID: 27114924 PMCID: PMC4832123 DOI: 10.1016/j.bbacli.2016.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/26/2016] [Accepted: 03/29/2016] [Indexed: 11/17/2022]
Abstract
BACKGROUND Although in vivo studies have implicated endocannabinoids in metabolic dysfunction, little is known about direct, chronic activation of the endocannabinoid system (ECS) in human islets. Therefore, this study investigated the effects of prolonged exposure to cannabinoid agonists on human islet gene expression and function. METHODS Human islets were maintained for 2 and 5 days in the absence or presence of CB1r (ACEA) or CB2r (JWH015) agonists. Gene expression was quantified by RT-PCR, hormone levels by radioimmunoassay and apoptosis by caspase activities. RESULTS Human islets express an ECS, with mRNAs encoding the biosynthetic and degrading enzymes NAPE-PLD, FAAH and MAGL being considerably more abundant than DAGLα, an enzyme involved in 2-AG synthesis, or CB1 and CB2 receptor mRNAs. Prolonged activation of CB1r and CB2r altered expression of mRNAs encoding ECS components, but did not have major effects on islet hormone secretion. JWH015 enhanced insulin and glucagon content at 2 days, but had no effect after 5 days. Treatment with ACEA or JWH015 for up to 5 days did not have marked effects on islet viability, as assessed by morphology and caspase activities. CONCLUSIONS Maintenance of human islets for up to 5 days in the presence of CB1 and CB2 receptor agonists causes modifications in ECS element gene expression, but does not have any major impact on islet function or viability. GENERAL SIGNIFICANCE These data suggest that the metabolic dysfunction associated with over-activation of the ECS in obesity and diabetes in humans is unlikely to be secondary to impaired islet function.
Collapse
Key Words
- 2-AG, 2-arachidonoyl glycerol
- ACEA, N-(2-Chloroethyl)-5Z,8Z,11Z,14Z-eiscosatetraenamide
- AEA, anandamide
- Apoptosis
- CB1r, cannabinoid receptor type 1
- CB2r, cannabinoid receptor type 2
- DAGL, diacylglycerol lipase
- ECS, endocannabinoid system
- Endocannabinoid system
- FAAH, fatty acid amide hydrolase
- Gene expression
- Glucagon
- Human islets
- Insulin
- JWH015, (2-methyl-1propyl-1H-indol-3-yl)-1-napthalenylmethanone
- MAGL, monoacylglycerol lipase
- NAPE-PLD, N-acyl-phosphatidyl ethanolamide-hydrolysing phospholipase D
- PPG, preproglucagon
- PPI, preproinsulin
Collapse
Affiliation(s)
- Alonso Vilches-Flores
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, King's College London, UK
- Universidad Nacional Autonoma de Mexico, FES Iztacala, Mexico
| | - Zara Franklin
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, King's College London, UK
| | - Astrid C. Hauge-Evans
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, King's College London, UK
- Department of Life Sciences, University of Roehampton, London, UK
| | - Bo Liu
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, King's College London, UK
| | - Guo C. Huang
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, King's College London, UK
| | - Pratik Choudhary
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, King's College London, UK
| | - Peter M. Jones
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, King's College London, UK
| | - Shanta J. Persaud
- Diabetes Research Group, Division of Diabetes and Nutritional Sciences, King's College London, UK
| |
Collapse
|
12
|
Patel KN, Joharapurkar AA, Patel V, Kshirsagar SG, Bahekar R, Srivastava BK, Jain MR. Cannabinoid receptor 1 antagonist treatment induces glucagon release and shows an additive therapeutic effect with GLP-1 agonist in diet-induced obese mice. Can J Physiol Pharmacol 2014; 92:975-983. [PMID: 25361428 DOI: 10.1139/cjpp-2014-0310] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cannabinoid 1 (CB1) receptor antagonists reduce body weight and improve insulin sensitivity. Preclinical data indicates that an acute dose of CB1 antagonist rimonabant causes an increase in blood glucose. A stable analog of glucagon-like peptide 1 (GLP-1), exendin-4 improves glucose-stimulated insulin secretion in pancreas, and reduces appetite through activation of GLP-1 receptors in the central nervous system and liver. We hypothesized that the insulin secretagogue effect of GLP-1 agonist exendin-4 may synergize with the insulin-sensitizing action of rimonabant. Intraperitoneal as well as intracerebroventricular administration of rimonabant increased serum glucose upon glucose challenge in overnight fasted, diet-induced obese C57 mice, with concomitant rise in serum glucagon levels. Exendin-4 reversed the acute hyperglycemia induced by rimonabant. The combination of exendin-4 and rimonabant showed an additive effect in the food intake, and sustained body weight reduction upon repeated dosing. The acute efficacy of both the compounds was additive for inducing nausea-like symptoms in conditioned aversion test in mice, whereas exendin-4 treatment antagonized the effect of rimonabant on forced swim test upon chronic dosing. Thus, the addition of exendin-4 to rimonabant produces greater reduction in food intake owing to increased aversion, but reduces the other central nervous system side effects of rimonabant. The hyperglucagonemia induced by rimonabant is partially responsible for enhancing the antiobesity effect of exendin-4.
Collapse
Affiliation(s)
- Kartikkumar Navinchandra Patel
- a Department of Pharmacology and Toxicology, Zydus Research Centre, Cadila Healthcare Limited, Sarkhej-Bavla N.H. No. 8A, Moraiya, Ahmedabad 382210, India
| | | | | | | | | | | | | |
Collapse
|
13
|
Suijun W, Zhen Y, Ying G, Yanfang W. A role for trans-caryophyllene in the moderation of insulin secretion. Biochem Biophys Res Commun 2014; 444:451-4. [PMID: 24486541 DOI: 10.1016/j.bbrc.2013.11.136] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 11/18/2013] [Indexed: 10/25/2022]
Abstract
Glucose-stimulated insulin secretion (GSIS) is essential for the control of metabolic fuel homeostasis and its impairment is a key element in the failure of β-cells in type 2 diabetes. Trans-caryophyllene (TC), an important constituent of the essential oil of several species of plants, has been reported to activate the type 2 cannabinoid receptor (CB2R). The effects of TC on GSIS are still unknown. Our results demonstrate that administration of TC in MIN6 cells promotes GSIS in a dose dependent manner. However, inhibition of CB2R by a specific inhibitor or specific RNA interference abolished the effects of TC on GSIS, which suggests that the effects of TC on GSIS are dependent on activation of CB2R. Further study demonstrated that treatment with TC leads to the activation of small G protein Arf6 as well as Rac1 and Cdc42. Importantly, Arf6 silencing abolished the effects of TC on GSIS, which suggests that Arf6 participates in mediating the effects of TC on GSIS. We conclude from these data that TC has a novel role in regulating GSIS in pancreatic β-cells.
Collapse
Affiliation(s)
- Wang Suijun
- Department of Endocrinology and Metabolism, Henan Provincial People's Hospital, Zhengzhou University, PR China.
| | - Yang Zhen
- Department of Endocrinology and Metabolism, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, PR China
| | - Gao Ying
- Neonatal Intensive Care Unit, Henan Provincial People's Hospital, Zhengzhou University, PR China
| | - Wang Yanfang
- Department of Endocrinology and Metabolism, Henan Provincial People's Hospital, Zhengzhou University, PR China
| |
Collapse
|