1
|
Amoroso L, Fagioli F, Tondo A, Conte M, Badino C, Di Cataldo A, Viscardi E, De Leonardis F, De Ioris MA, Luksch R. Strategies to manage the adverse effects of immunotherapy with dinutuximab beta in neuroblastoma: an Italian experience and literature review. Support Care Cancer 2025; 33:153. [PMID: 39907793 DOI: 10.1007/s00520-024-09135-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 12/30/2024] [Indexed: 02/06/2025]
Abstract
PURPOSE Patients with high-risk neuroblastoma (HR NB) frequently present with metastases in the bone marrow and bone. Approximately 15% of these patients are refractory to induction therapy, and 50% relapse. Dinutuximab beta is an anti-GD2 monoclonal antibody approved in Europe for maintenance therapy of pediatric patients with HR NB. Immunotherapy with anti-GD2 antibodies improves the survival of children with HR NB and relapsed or refractory disease. It is associated with adverse events, such as pain, fever, allergic reactions, capillary leak syndrome, and diarrhea. This manuscript aims to propose a practical guide in support and prevention treatment of adverse events. METHODS MEDLINE was searched using the terms "GD2," "ch14.18/CHO," "anti-GD2 antibody," "dinutuximab beta," and "neuroblastoma." The experts reappraised available evidence discussing different clinical Italian experiences. RESULTS Neuropathic pain is the main toxicity associated with dinutuximab beta and can be prevented with analgesics, including intravenous opioids and gabapentin by mouth. The intensity of the supportive treatment decreases from course to course. CONCLUSION In the experience of the authors, adverse events associated with dinutuximab beta may be prevented and managed in experienced centers. The supportive therapy may be reduced after the first cycle to improve the quality of life.
Collapse
Affiliation(s)
- Loredana Amoroso
- UOC Oncology, IRCCS Istituto G. Gaslini, UOC Oncology, Genova, Italy.
- Pediatric Oncology and Oncohematology Unit, Department of Maternal Infantile and Urological Sciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy.
| | - Franca Fagioli
- Pediatric Oncology Department, Regina Margherita Children's HospitalA.O.U. Città Della Salute E Della Scienza Di Torino, Turin, Italy
| | - Annalisa Tondo
- Centro Di Eccellenza Di Oncologia Ed Ematologia Pediatrica, SOC "Oncologia, Ematologia, TCSE E Terapia Genica" IRCCS, AUO A. Meyer, Florence, Italy
| | - Massimo Conte
- UOC Oncology, IRCCS Istituto G. Gaslini, UOC Oncology, Genova, Italy
| | - Clara Badino
- UOC Oncology, IRCCS Istituto G. Gaslini, UOC Oncology, Genova, Italy
| | - Andrea Di Cataldo
- Department of Clinical and Experimental Medicine Unit of Pediatric Hematology and Oncology, Policlinico Hospital University of Catania, Catania, Italy
| | - Elisabetta Viscardi
- UOC Oncoematologia Pediatrica, DIDAS Salute Della Donna E del Bambino Azienda Ospedale-Università Padova, Padova, Italy
| | - Francesco De Leonardis
- UOC Di Pediatria Ad Indirizzo Onco Ematologico. Azienda Ospedaliero Universitaria Policlinico Di Bari, Bari, Italy
| | - Maria Antonietta De Ioris
- Dipartimento Di Onco-Ematologia E Terapia Cellulare E Genica, Ospedale Pediatrico Bambino Gesù, Roma, Italy
| | - Roberto Luksch
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milano, Italy
| |
Collapse
|
2
|
Jain A, Barge A, Parris CN. Combination strategies with PARP inhibitors in BRCA-mutated triple-negative breast cancer: overcoming resistance mechanisms. Oncogene 2025; 44:193-207. [PMID: 39572842 PMCID: PMC11746151 DOI: 10.1038/s41388-024-03227-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 01/22/2025]
Abstract
Triple-negative breast cancer (TNBC) is a particularly aggressive breast cancer subtype, characterised by a higher incidence in younger women, rapid metastasis, and a generally poor prognosis. Patients with TNBC and BRCA mutations face additional therapeutic challenges due to the cancer's intrinsic resistance to conventional therapies. Poly (ADP-ribose) polymerase inhibitors (PARPis) have emerged as a promising targeted treatment for BRCA-mutated TNBC, exploiting vulnerabilities in the homologous recombination repair (HRR) pathway. However, despite initial success, the efficacy of PARPis is often compromised by the development of resistance mechanisms, including HRR restoration, stabilisation of replication forks, reduced PARP1 trapping, and drug efflux. This review explores latest breakthroughs in overcoming PARPi resistance through combination therapies. These strategies include the integration of PARPis with chemotherapy, immunotherapy, antibody-drug conjugates, and PI3K/AKT pathway inhibitors. These combinations aim to enhance the therapeutic efficacy of PARPis by targeting multiple cancer progression pathways. The review also discusses the evolving role of PARPis within the broader treatment paradigm for BRCA-mutated TNBC, emphasising the need for ongoing research and clinical trials to optimise combination strategies. By tackling the challenges associated with PARPi resistance and exploring novel combination therapies, this review sheds light on the future possibilities for improving outcomes for patients with BRCA-mutated TNBC.
Collapse
Affiliation(s)
- Aditi Jain
- Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, UK.
| | | | | |
Collapse
|
3
|
King E, Struck R, Piskareva O. The triad in current neuroblastoma challenges: Targeting antigens, enhancing effective cytotoxicity and accurate 3D in vitro modelling. Transl Oncol 2025; 51:102176. [PMID: 39489087 PMCID: PMC11565549 DOI: 10.1016/j.tranon.2024.102176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/05/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024] Open
Abstract
Neuroblastoma is an embryonic tumour originating from neural crest cells and accounts for nearly 15 % of all childhood cancer deaths. Despite the implementation of intense multimodal therapy for neuroblastoma, half of the high-risk cohort will relapse with metastatic foci resistant to conventional therapies. There is an urgent need for novel precision medicine approaches to improve patient survival and ensure healthy post-treatment lives for these children. Immunotherapy holds promise for such therapeutics; however, developing effective options has been disappointing despite decades of research. The immunosuppressive tumour-immune microenvironment presents a significant challenge amplified with low mutational burden in neuroblastoma, even with the new discovered tumour antigens. Innovative, practical, and comprehensive approaches are crucial for designing and testing immunotherapies capable of passing clinical trials. Replacing animal models with physiologically relevant in vitro systems will expedite this process and provide new insights into exploitable tumour-immune cell interactions. This review examines this three-pronged approach in neuroblastoma immunotherapy: tumour antigen discovery, immunomodulation, and 3D in vitro tumour models, and discusses current and emerging insights into these strategies to address neuroblastoma immunotherapy challenges.
Collapse
Affiliation(s)
- Ellen King
- Cancer Bioengineering Group & Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland; School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Ronja Struck
- Cancer Bioengineering Group & Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland; School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Olga Piskareva
- Cancer Bioengineering Group & Tissue Engineering Research Group (TERG), Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin, Ireland; School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI University of Medicine and Health Sciences and Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
4
|
Bonine N, Zanzani V, Van Hemelryk A, Vanneste B, Zwicker C, Thoné T, Roelandt S, Bekaert SL, Koster J, Janoueix-Lerosey I, Thirant C, Van Haver S, Roberts SS, Mus LM, De Wilde B, Van Roy N, Everaert C, Speleman F, Vermeirssen V, Scott CL, De Preter K. NBAtlas: A harmonized single-cell transcriptomic reference atlas of human neuroblastoma tumors. Cell Rep 2024; 43:114804. [PMID: 39368085 DOI: 10.1016/j.celrep.2024.114804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/11/2024] [Accepted: 09/12/2024] [Indexed: 10/07/2024] Open
Abstract
Neuroblastoma, a rare embryonic tumor arising from neural crest development, is responsible for 15% of pediatric cancer-related deaths. Recently, several single-cell transcriptome studies were performed on neuroblastoma patient samples to investigate the cell of origin and tumor heterogeneity. However, these individual studies involved a small number of tumors and cells, limiting the conclusions that could be drawn. To overcome this limitation, we integrated seven single-cell or single-nucleus datasets into a harmonized cell atlas covering 362,991 cells across 61 patients. We use this atlas to decipher the transcriptional landscape of neuroblastoma at single-cell resolution, revealing associations between transcriptomic profiles and clinical outcomes within the tumor compartment. In addition, we characterize the complex immune-cell landscape and uncover considerable heterogeneity among tumor-associated macrophages. Finally, we showcase the utility of our atlas as a resource by expanding it with additional data and using it as a reference for data-driven cell-type annotation.
Collapse
Affiliation(s)
- Noah Bonine
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Vittorio Zanzani
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Laboratory for Computational Biology, Integromics and Gene Regulation (CBIGR), Ghent University, Ghent, Belgium
| | - Annelies Van Hemelryk
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Bavo Vanneste
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Christian Zwicker
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Tinne Thoné
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Sofie Roelandt
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Sarah-Lee Bekaert
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Jan Koster
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Isabelle Janoueix-Lerosey
- Inserm U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Center, Paris, France
| | - Cécile Thirant
- Inserm U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Center, Paris, France
| | - Stéphane Van Haver
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stephen S Roberts
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Liselot M Mus
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Bram De Wilde
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Nadine Van Roy
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Celine Everaert
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Frank Speleman
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Vanessa Vermeirssen
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Laboratory for Computational Biology, Integromics and Gene Regulation (CBIGR), Ghent University, Ghent, Belgium
| | - Charlotte L Scott
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium.
| | - Katleen De Preter
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; VIB-UGent Center for Medical Biotechnology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
5
|
Sanni A, Bennett AI, Huang Y, Gidi I, Adeniyi M, Nwaiwu J, Kang MH, Keyel ME, Gao C, Reynolds CP, Haab B, Mechref Y. An Optimized Liquid Chromatography-Mass Spectrometry Method for Ganglioside Analysis in Cell Lines. Cells 2024; 13:1640. [PMID: 39404403 PMCID: PMC11476222 DOI: 10.3390/cells13191640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Gangliosides are glycosphingolipids composed of a sialylated glycan head group and a ceramide backbone. These anionic lipids form lipid rafts and play crucial roles in regulating various proteins involved in signal transduction, adhesion, and cell-cell recognition. Neuroblastoma, a pediatric cancer of the sympathetic nervous system, is treated with intensive chemotherapy, radiation, and an antibody targeting the GD2 ganglioside. Gangliosides are critical in neuroblastoma development and serve as therapeutic targets, making it essential to establish a reliable, rapid, and cost-effective method for profiling gangliosides, particularly one capable of isomeric separation of intact species. In this study, liquid chromatography-mass spectrometry (LC-MS) was optimized using standard gangliosides, followed by the optimization of sphingolipid extraction methods from cell lines by comparing Folch and absolute methanol extraction techniques. Percent recovery and the number of identified sphingolipids were used to evaluate the analytical merits of these methods. A standard gangliosides calibration curve demonstrated excellent linearity (R2 = 0.9961-0.9975). The ZIC-HILIC column provided the best separation of ganglioside GD1 isomers with a 25 min runtime. GD1a elutes before GD1b on the ZIC-HILIC column. Absolute methanol yielded better percent recovery (96 ± 7) and identified 121 different sphingolipids, the highest number between the two extraction methods. The optimized method was applied to profile gangliosides in neuroblastoma (COG-N-683), pancreatic cancer (PSN1), breast cancer (MDA-MB-231BR), and brain tumor (CRL-1620) cell lines. The ganglioside profile of the neuroblastoma cell line COG-N-683 showed an inverse relationship between GD1 and GD2. Ceramide, Hex1Cer, GM1, and GM3 were highly abundant in CRL-1620, PSN1, and MDA-MB-231BR, respectively. These results suggest that our method provides a sensitive, reliable, and high-throughput workflow for ganglioside profiling across different cell types.
Collapse
Affiliation(s)
- Akeem Sanni
- Chemistry and Biochemistry Department, Texas Tech University, Lubbock, TX 79409, USA; (A.S.); (A.I.B.); (Y.H.); (I.G.); (J.N.)
| | - Andrew I. Bennett
- Chemistry and Biochemistry Department, Texas Tech University, Lubbock, TX 79409, USA; (A.S.); (A.I.B.); (Y.H.); (I.G.); (J.N.)
| | - Yifan Huang
- Chemistry and Biochemistry Department, Texas Tech University, Lubbock, TX 79409, USA; (A.S.); (A.I.B.); (Y.H.); (I.G.); (J.N.)
| | - Isabella Gidi
- Chemistry and Biochemistry Department, Texas Tech University, Lubbock, TX 79409, USA; (A.S.); (A.I.B.); (Y.H.); (I.G.); (J.N.)
| | - Moyinoluwa Adeniyi
- Chemistry and Biochemistry Department, Texas Tech University, Lubbock, TX 79409, USA; (A.S.); (A.I.B.); (Y.H.); (I.G.); (J.N.)
| | - Judith Nwaiwu
- Chemistry and Biochemistry Department, Texas Tech University, Lubbock, TX 79409, USA; (A.S.); (A.I.B.); (Y.H.); (I.G.); (J.N.)
| | - Min H. Kang
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center (TTUHSC), Lubbock, TX 79416, USA; (M.H.K.); (C.P.R.)
| | - Michelle E. Keyel
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center (TTUHSC), Lubbock, TX 79416, USA; (M.H.K.); (C.P.R.)
| | - ChongFeng Gao
- Van Andel Institute, Grand Rapids, MI 49503, USA; (C.G.); (B.H.)
| | - C. Patrick Reynolds
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center (TTUHSC), Lubbock, TX 79416, USA; (M.H.K.); (C.P.R.)
| | - Brian Haab
- Van Andel Institute, Grand Rapids, MI 49503, USA; (C.G.); (B.H.)
| | - Yehia Mechref
- Chemistry and Biochemistry Department, Texas Tech University, Lubbock, TX 79409, USA; (A.S.); (A.I.B.); (Y.H.); (I.G.); (J.N.)
| |
Collapse
|
6
|
Yang L, Huang K, Cao L, Ma Y, Li S, Zhou J, Zhao Z, Wang S. Molecular profiling of core immune-escape genes highlights TNFAIP3 as an immune-related prognostic biomarker in neuroblastoma. Inflamm Res 2024; 73:1529-1545. [PMID: 39028490 DOI: 10.1007/s00011-024-01914-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Neuroblastoma (NB) is the most prevalent and deadliest pediatric solid tumor. With of over 50% of high-risk neuroblastoma cases relapse, the imperative for novel drug targets and therapeutic strategies is accentuated. In neuroblastoma, the existence of tumor-associated macrophages (TAMs) correlates with an unfavorable patient prognosis. However, the clinical relevance and prognostic implications of regulatory genes linked to TAMs infiltration in neuroblastoma remain unclear, and further study is required. METHODS We conducted a comprehensive analysis utilizing transcriptome expression profiles from three primary datasets associated with neuroblastoma (GSE45547, GSE49710, TARGET) to identify hub genes implicated in immune evasion within neuroblastoma. Subsequently, we utilized single-cell RNA sequencing analysis on 17 clinical neuroblastoma samples to investigate the expression and distribution of these hub genes, leading to the identification of TNFAIP3. The above three public databases were merged to allowed for the validation of TNFAIP3's molecular functions through GO and KEGG analysis. Furthermore, we assessed TNFAIP3's correlation with immune infiltration and its potential immunotherapeutic impact by multiple algorithms. Our single-cell transcriptome data revealed the role of TNFAIP3 in macrophage polarization. Finally, preliminary experimental verifications to confirm the biological functions of TNFAIP3-mediated TAMs in NB. RESULTS A total of 6 genes related to immune evasion were screened and we found that TNFAIP3 exhibited notably higher expression in macrophages than other immune cell types, based on the scRNA-sequencing data. GO and KEGG analysis showed that low expression of TNFAIP3 significantly correlated with the activation of multiple oncogenic pathways as well as immune-related pathways. Then validation affirmed that individuals within the TNFAIP3 high-expression cohort could potentially derive greater advantages from immunotherapeutic interventions, alongside exhibiting heightened immune responsiveness. Deciphering the pseudotime trajectory of macrophages, we revealed the potential of TNFAIP3 in inducing the polarization of macrophages towards the M1 phenotype. Finally, we confirmed that patients in the TNFAIP3 high expression group might benefit more from immunotherapy or chemotherapy as substantiated by RT-qPCR and immunofluorescence examinations. Moreover, the role of TNFAIP3 in macrophage polarization was validated. Preliminary experiment showed that TNFAIP3-mediated TAMs inhibit the proliferation, migration and invasion capabilities of NB cells. CONCLUSIONS Our results suggest that TNFAIP3 was first identified as a promising biomarker for immunotherapy and potential molecular target in NB. Besides, the presence of TNFAIP3 within TAMs may offer a novel therapeutic strategy for NB.
Collapse
Affiliation(s)
- Linyu Yang
- Department of Pediatric Surgical Oncology Children's Hospitial of Chongqinng Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Kai Huang
- Department of Pediatric Surgical Oncology Children's Hospitial of Chongqinng Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lijian Cao
- Department of Pediatric Surgical Oncology Children's Hospitial of Chongqinng Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Ma
- Department of Pediatric Surgical Oncology Children's Hospitial of Chongqinng Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Suwen Li
- Department of Pediatric Surgical Oncology Children's Hospitial of Chongqinng Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jianwu Zhou
- Department of Pediatric Surgical Oncology Children's Hospitial of Chongqinng Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhenzhen Zhao
- Department of Pediatric Surgical Oncology Children's Hospitial of Chongqinng Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Shan Wang
- Department of Pediatric Surgical Oncology Children's Hospitial of Chongqinng Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
7
|
Schengrund CL. Sphingolipids: Less Enigmatic but Still Many Questions about the Role(s) of Ceramide in the Synthesis/Function of the Ganglioside Class of Glycosphingolipids. Int J Mol Sci 2024; 25:6312. [PMID: 38928016 PMCID: PMC11203820 DOI: 10.3390/ijms25126312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
While much has been learned about sphingolipids, originally named for their sphinx-like enigmatic properties, there are still many unanswered questions about the possible effect(s) of the composition of ceramide on the synthesis and/or behavior of a glycosphingolipid (GSL). Over time, studies of their ceramide component, the sphingoid base containing the lipid moiety of GSLs, were frequently distinct from those performed to ascertain the roles of the carbohydrate moieties. Due to the number of classes of GSLs that can be derived from ceramide, this review focuses on the possible role(s) of ceramide in the synthesis/function of just one GSL class, derived from glucosylceramide (Glc-Cer), namely sialylated ganglio derivatives, initially characterized and named gangliosides (GGs) due to their presence in ganglion cells. While much is known about their synthesis and function, much is still being learned. For example, it is only within the last 15-20 years or so that the mechanism by which the fatty acyl component of ceramide affected its transport to different sites in the Golgi, where it is used for the synthesis of Glu- or galactosyl-Cer (Gal-Cer) and more complex GSLs, was defined. Still to be fully addressed are questions such as (1) whether ceramide composition affects the transport of partially glycosylated GSLs to sites where their carbohydrate chain can be elongated or affects the activity of glycosyl transferases catalyzing that elongation; (2) what controls the differences seen in the ceramide composition of GGs that have identical carbohydrate compositions but vary in that of their ceramide and vice versa; (3) how alterations in ceramide composition affect the function of membrane GGs; and (4) how this knowledge might be applied to the development of therapies for treating diseases that correlate with abnormal expression of GGs. The availability of an updatable data bank of complete structures for individual classes of GSLs found in normal tissues as well as those associated with disease would facilitate research in this area.
Collapse
Affiliation(s)
- Cara-Lynne Schengrund
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
8
|
Thomas M, Nguyen TH, Drnevich J, D’Souza AM, de Alarcon PA, Gnanamony M. Hu14.18K.322A Causes Direct Cell Cytotoxicity and Synergizes with Induction Chemotherapy in High-Risk Neuroblastoma. Cancers (Basel) 2024; 16:2064. [PMID: 38893185 PMCID: PMC11171330 DOI: 10.3390/cancers16112064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
The disialoganglioside, GD2, is a promising therapeutic target due to its overexpression in certain tumors, particularly neuroblastoma (NB), with limited expression in normal tissues. Despite progress, the intricate mechanisms of action and the full spectrum of the direct cellular responses to anti-GD2 antibodies remain incompletely understood. In this study, we examined the direct cytotoxic effects of the humanized anti-GD2 antibody hu14.18K322A (hu14) on NB cell lines, by exploring the associated cell-death pathways. Additionally, we assessed the synergy between hu14 and conventional induction chemotherapy drugs. Our results revealed that hu14 treatment induced direct cytotoxic effects in CHLA15 and SK-N-BE1 cell lines, with a pronounced impact on proliferation and colony formation. Apoptosis emerged as the predominant cell-death pathway triggered by hu14. Furthermore, we saw a reduction in GD2 surface expression in response to hu14 treatment. Hu14 demonstrated synergy with induction chemotherapy drugs with alterations in GD2 expression. Our comprehensive investigation provides valuable insights into the multifaceted effects of hu14 on NB cells, shedding light on its direct cytotoxicity, cell-death pathways, and interactions with induction chemotherapy drugs. This study contributes to the evolving understanding of anti-GD2 antibody therapy and its potential synergies with conventional treatments in the context of NB.
Collapse
Affiliation(s)
- Maria Thomas
- Department of Pediatrics, University of Illinois College of Medicine Peoria, One Illini Drive, Peoria, IL 61605, USA; (M.T.); (T.H.N.); (A.M.D.); (P.A.d.A.)
| | - Thu Hien Nguyen
- Department of Pediatrics, University of Illinois College of Medicine Peoria, One Illini Drive, Peoria, IL 61605, USA; (M.T.); (T.H.N.); (A.M.D.); (P.A.d.A.)
| | - Jenny Drnevich
- Roy J. Carver Biotechnology Center, The University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL 61801, USA;
| | - Amber M. D’Souza
- Department of Pediatrics, University of Illinois College of Medicine Peoria, One Illini Drive, Peoria, IL 61605, USA; (M.T.); (T.H.N.); (A.M.D.); (P.A.d.A.)
| | - Pedro A. de Alarcon
- Department of Pediatrics, University of Illinois College of Medicine Peoria, One Illini Drive, Peoria, IL 61605, USA; (M.T.); (T.H.N.); (A.M.D.); (P.A.d.A.)
| | - Manu Gnanamony
- Department of Pediatrics, University of Illinois College of Medicine Peoria, One Illini Drive, Peoria, IL 61605, USA; (M.T.); (T.H.N.); (A.M.D.); (P.A.d.A.)
| |
Collapse
|
9
|
Dhamdhere MR, Spiegelman VS. Extracellular vesicles in neuroblastoma: role in progression, resistance to therapy and diagnostics. Front Immunol 2024; 15:1385875. [PMID: 38660306 PMCID: PMC11041043 DOI: 10.3389/fimmu.2024.1385875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid pediatric cancer, and is one of the leading causes of cancer-related deaths in children. Despite the current multi-modal treatment regimens, majority of patients with advanced-stage NBs develop therapeutic resistance and relapse, leading to poor disease outcomes. There is a large body of knowledge on pathophysiological role of small extracellular vesicles (EVs) in progression and metastasis of multiple cancer types, however, the importance of EVs in NB was until recently not well understood. Studies emerging in the last few years have demonstrated the involvement of EVs in various aspects of NB pathogenesis. In this review we summarize these recent findings and advances on the role EVs play in NB progression, such as tumor growth, metastasis and therapeutic resistance, that could be helpful for future investigations in NB EV research. We also discuss different strategies for therapeutic targeting of NB-EVs as well as utilization of NB-EVs as potential biomarkers.
Collapse
Affiliation(s)
| | - Vladimir S. Spiegelman
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
10
|
Wang G, Wang J, Du R, Wang Y, Li Z. Toxicity Spectrum of Anti-GD2 Immunotherapy: A Real-World Study Leveraging the US Food and Drug Administration Adverse Event Reporting System. Paediatr Drugs 2024; 26:175-185. [PMID: 38153627 DOI: 10.1007/s40272-023-00613-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/08/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Anti-disialoganglioside (anti-GD2) monoclonal antibodies are effective immunotherapeutic drugs for treating neuroblastoma, yet their toxicity spectrum is unclear. OBJECTIVE This study aimed to assess the toxicity profiles of three anti-GD2 monoclonal antibodies (dinutuximab, dinutuximab β, and naxitamab) in clinical applications by mining and evaluating the adverse drug reaction (ADR) signals from the US Food and Drug Administration Adverse Event Reporting System. METHODS Data in the US Food and Drug Administration Adverse Event Reporting System from the time anti-GD2 monoclonal antibodies became available in the market to the first quarter of 2023 were searched. The signals of anti-GD2 monoclonal antibody-associated ADRs were quantified using four types of algorithms, including the reporting odds ratio, the proportional reporting ratio, the combination of the proportional reporting ratio and χ2 statistic method used by the UK Medicines and Healthcare Products Regulatory Agency, and the Bayesian confidence propagation neural network. The ADRs were categorized by System Organ Class based on the Medical Dictionary for Regulatory Activities, and were sorted according to the frequency and signal strength of ADRs. RESULTS A total of 370 adverse drug event reports with anti-GD2 monoclonal antibodies listed as the 'primary suspected drugs' were identified, with 116 ADR signals detected, of which 22 were not in the drug labels. Among the adverse drug event reports, 276 reports concerned dinutuximab/dinutuximab β as primary suspected drugs with 90 ADR signals, involving 19 System Organ Classes, of which 21 signals were not in the label; 94 adverse drug event reports concerned naxitamab as the primary suspected drug with 26 ADR signals, involving 11 System Organ Classes, of which one was not in the label. For dinutuximab/dinutuximab β-related ADRs, the top five most frequent were "fever", "abdominal pain", "elevated aspartate aminotransferase (AST)", "elevated alanine aminotransferase (ALT)" and "hypotension"; the top five most intensive signals were "hypoalbuminemia", "elevated AST", "capillary leakage syndrome", "hypoxia" and "elevated ALT". For naxitamab-related ADRs, the top five most frequent were "hypotension", "pain", "urticarial", "hypertension" and "rash"; the top five most intensive signals were "hypotension", "urticaria", "hypoxemia", "bronchospasm" and "hypertension". Involved System Organ Classes included "investigations" and "respiratory, thoracic and mediastinal disorders" containing the most types of ADR signals in dinutuximab/dintuximab β-related ADRs and naxitamab-related ADRs, respectively. CONCLUSIONS Our study comprehensively analyzed the toxicity profiles of anti-GD2 monoclonal antibodies and provides an important reference for clinical monitoring and ADR identification of these drugs.
Collapse
Affiliation(s)
- Guangfei Wang
- Department of Clinical Pharmacy, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Jinglin Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China
| | - Ruxiang Du
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yi Wang
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China.
| | - Zhiping Li
- Department of Clinical Pharmacy, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China.
| |
Collapse
|
11
|
Mohd AB, Mohd OB, Alabdallat YJ, Al Dwairy SY, Ghannam RA, Hanaqtah BM, Albakri KA. Safety and efficacy of dinutuximab in the treatment of neuroblastoma: A review. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2023; 28:71. [PMID: 38116487 PMCID: PMC10729685 DOI: 10.4103/jrms.jrms_727_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 07/11/2023] [Accepted: 08/07/2023] [Indexed: 12/21/2023]
Abstract
Dinutuximab, which is a monoclonal antibody targeting GD2 expressed in neuroblasts, improves survival when included in the therapy regimen. This article reviews the importance of dinutuximab in managing neuroblastoma (NB). Dinutuximab targets high levels of GD2 expression in NB cells, thus increasing event-free survival when used in the maintenance therapy of high-risk patients with NB. Although several collaborative studies have set the standard of care for maintenance therapy, the long-term follow-up and continuous evaluation of the use of antibodies and the co-administration of other pharmacological or immunomodulatory drugs remain to be studied. Trials have shown that the use of dinutuximab for maintenance therapy can prolong the time before the first relapse and improve overall survival. However, there is uncertainty in the function of cytokines co-administered with dinutuximab, which may lead to increased toxicity without additional benefits. Recent studies on relapsed and refractory NB have shown the potential efficacy of dinutuximab. Further research is required to properly incorporate Dinutuximab in current treatment modalities.
Collapse
Affiliation(s)
- Ahmed Bassam Mohd
- Medicine, Faculty of Medicine, The Hashemite University, P.O.Box 330127, Zarqa, 13133, Jordan
| | - Omar B Mohd
- Medicine, Faculty of Medicine, The Hashemite University, P.O.Box 330127, Zarqa, 13133, Jordan
| | - Yasmeen J Alabdallat
- Medicine, Faculty of Medicine, The Hashemite University, P.O.Box 330127, Zarqa, 13133, Jordan
| | - Salem Yousef Al Dwairy
- Department of Special Surgery, Faculty of Medicine, The Hashemite University, P.O.Box 330127, Zarqa, 13133, Jordan
- Neurosurgery Division, Department of Surgery, Prince Hamzah Hospital, Prince Hamzah Street, Al-Rewaq, Amman, 11732, Jordan
| | - Reem A Ghannam
- Medicine, Faculty of Medicine, The Hashemite University, P.O.Box 330127, Zarqa, 13133, Jordan
| | - Balqees M Hanaqtah
- Medicine, Faculty of Medicine, The Hashemite University, P.O.Box 330127, Zarqa, 13133, Jordan
| | - Khaled A Albakri
- Medicine, Faculty of Medicine, The Hashemite University, P.O.Box 330127, Zarqa, 13133, Jordan
| |
Collapse
|
12
|
Cupit-Link M, Federico SM. Treatment of High-Risk Neuroblastoma with Dinutuximab and Chemotherapy Administered in all Cycles of Induction. Cancers (Basel) 2023; 15:4609. [PMID: 37760578 PMCID: PMC10527563 DOI: 10.3390/cancers15184609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Administration of chemoimmunotherapy using concurrent chemotherapy and an anti-GD2 monoclonal antibody (mAb), dinutuximab (DIN), demonstrated efficacy for the treatment of relapsed and refractory neuroblastoma. Chemoimmunotherapy, using a humanized anti-GD2 mAb, demonstrated a signal of activity in a phase 2 study for the treatment of patients with newly diagnosed high-risk neuroblastoma (HRNBL). In this single-institution retrospective study, patients with HRNBL received an Induction chemotherapy regimen plus DIN in all Induction cycles. Toxicity and response data were abstracted from the electronic medical record. Toxicities were graded by CTCAE v.5.0. The end of Induction (EOI) objective response rate was determined using the Revised International Neuroblastoma Response Criteria. Twenty-seven patients with HRNBL (23 newly diagnosed, 16 females, median age 3.9 years) started Induction chemoimmunotherapy from 27 January 2017 to 28 December 2022. All patients received DIN with all cycles of Induction therapy, and all but one patient completed Induction therapy. The most common non-hematologic grade ≥ 3 toxicities included fever (44%), hypoxemia (20%), and hypoalbuminemia (11%). End of Induction responses included eighteen with a complete response (CR), seven with a partial response (PR), one with progressive disease (PD), and zero with a minor response or stable disease. Twenty-six of twenty-seven patients (96%) completed all Induction cycles and were evaluable for a response. The EOI response of PR or better in the evaluable cohort was 96%. Dinutuximab was well tolerated with all Induction cycles, demonstrated an encouraging EOI response rate, and should be evaluated in a randomized study.
Collapse
|
13
|
Yuan Y, Alzrigat M, Rodriguez-Garcia A, Wang X, Bexelius TS, Johnsen JI, Arsenian-Henriksson M, Liaño-Pons J, Bedoya-Reina OC. Target Genes of c-MYC and MYCN with Prognostic Power in Neuroblastoma Exhibit Different Expressions during Sympathoadrenal Development. Cancers (Basel) 2023; 15:4599. [PMID: 37760568 PMCID: PMC10527308 DOI: 10.3390/cancers15184599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Deregulation of the MYC family of transcription factors c-MYC (encoded by MYC), MYCN, and MYCL is prevalent in most human cancers, with an impact on tumor initiation and progression, as well as response to therapy. In neuroblastoma (NB), amplification of the MYCN oncogene and over-expression of MYC characterize approximately 40% and 10% of all high-risk NB cases, respectively. However, the mechanism and stage of neural crest development in which MYCN and c-MYC contribute to the onset and/or progression of NB are not yet fully understood. Here, we hypothesized that subtle differences in the expression of MYCN and/or c-MYC targets could more accurately stratify NB patients in different risk groups rather than using the expression of either MYC gene alone. We employed an integrative approach using the transcriptome of 498 NB patients from the SEQC cohort and previously defined c-MYC and MYCN target genes to model a multigene transcriptional risk score. Our findings demonstrate that defined sets of c-MYC and MYCN targets with significant prognostic value, effectively stratify NB patients into different groups with varying overall survival probabilities. In particular, patients exhibiting a high-risk signature score present unfavorable clinical parameters, including increased clinical risk, higher INSS stage, MYCN amplification, and disease progression. Notably, target genes with prognostic value differ between c-MYC and MYCN, exhibiting distinct expression patterns in the developing sympathoadrenal system. Genes associated with poor outcomes are mainly found in sympathoblasts rather than in chromaffin cells during the sympathoadrenal development.
Collapse
Affiliation(s)
- Ye Yuan
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Mohammad Alzrigat
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Aida Rodriguez-Garcia
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Xueyao Wang
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Tomas Sjöberg Bexelius
- Paediatric Oncology Unit, Astrid Lindgren’s Children Hospital, SE-171 64 Solna, Sweden
- Department of Women’s and Children’s Health, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - John Inge Johnsen
- Department of Women’s and Children’s Health, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Marie Arsenian-Henriksson
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Judit Liaño-Pons
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-171 65 Stockholm, Sweden
| | - Oscar C. Bedoya-Reina
- Department of Microbiology, Tumor and Cell Biology (MTC), Biomedicum, Karolinska Institutet, SE-171 65 Stockholm, Sweden
| |
Collapse
|
14
|
Nysom K, Morad AG, Rafael MS, Zier J, Marachelian A, Watt T, Morgenstern DA. Pain mitigation and management strategies for anti-GD2 infusions: An expert consensus. Pediatr Blood Cancer 2023; 70:e30217. [PMID: 36772891 DOI: 10.1002/pbc.30217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 02/12/2023]
Abstract
Monoclonal antibodies (mAbs) targeting disialoganglioside 2 (GD2) are an important treatment advance for high-risk neuroblastoma, including in patients with refractory or relapsed disease. Dinutuximab and dinutuximab beta are administered for ≥8 hours (and up to 10 days for dinutuximab beta), whereas naxitamab is administered over 0.5 to 2 hours as tolerated. As acute pain is a class effect of anti-GD2 mAbs, effective pain management is crucial to successful treatment. Here, we provide an overview of current pain-management strategies for anti-GD2 mAb infusions, with a focus on strategies suitable for naxitamab infusions, which cause a more rapid onset of often severe pain. We discuss opioid analgesics, ketamine, gabapentin, and other similar agents and nonpharmacologic approaches. Potential future pain-management options are also discussed, in addition to the use of sedatives to reduce the anxiety that may be associated with infusion-related pain. In this expert consensus paper, specific guidance for pain management during naxitamab infusions is provided, as these infusions are administered over 0.5 to 2 hours and may not need overnight hospitalization based on the physician's assessment, and require rapid-onset analgesia options suitable for potential outpatient administration.
Collapse
Affiliation(s)
| | | | - Margarida Simão Rafael
- The Hospital for Sick Children, Toronto, Ontario, Canada
- Sant Joan de Déu Barcelona Children's Hospital, Barcelona, Spain
| | - Judith Zier
- Children's Respiratory and Critical Care Specialists PA, Minneapolis, Minnesota, USA
| | | | - Tanya Watt
- UT Southwestern Medical Center, Dallas-Fort Worth, Texas, USA
| | | |
Collapse
|
15
|
Ash S, Askenasy N. Immunotherapy for neuroblastoma by hematopoietic cell transplantation and post-transplant immunomodulation. Crit Rev Oncol Hematol 2023; 185:103956. [PMID: 36893946 DOI: 10.1016/j.critrevonc.2023.103956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/14/2022] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Neuroblastoma represents a relatively common childhood tumor that imposes therapeutic difficulties. High risk neuroblastoma patients have poor prognosis, display limited response to radiochemotherapy and may be treated by hematopoietic cell transplantation. Allogeneic and haploidentical transplants have the distinct advantage of reinstitution of immune surveillance, reinforced by antigenic barriers. The key factors favorable to ignition of potent anti-tumor reactions are transition to adaptive immunity, recovery from lymphopenia and removal of inhibitory signals that inactivate immune cells at the local and systemic levels. Post-transplant immunomodulation may further foster anti-tumor reactivity, with positive but transient impact of infusions of lymphocytes and natural killer cells both from the donor, the recipient or third party. The most promising approaches include introduction of antigen-presenting cells in early post-transplant stages and neutralization of inhibitory signals. Further studies will likely shed light on the nature and actions of suppressor factors within tumor stroma and at the systemic level.
Collapse
Affiliation(s)
- Shifra Ash
- Department of Pediatric Hematology-Oncology, Rambam Medical Center, Haifa, Israel; Frankel Laboratory of Bone Marrow Transplantation, Schneider Children's Medical Center of Israel, Petach Tikva, Israel.
| | - Nadir Askenasy
- Frankel Laboratory of Bone Marrow Transplantation, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| |
Collapse
|
16
|
The New Frontier of Immunotherapy: Chimeric Antigen Receptor T (CAR-T) Cell and Macrophage (CAR-M) Therapy against Breast Cancer. Cancers (Basel) 2023; 15:cancers15051597. [PMID: 36900394 PMCID: PMC10000829 DOI: 10.3390/cancers15051597] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Breast cancer represents one of the most common tumor histologies. To date, based on the specific histotype, different therapeutic strategies, including immunotherapies, capable of prolonging survival are used. More recently, the astonishing results that were obtained from CAR-T cell therapy in haematological neoplasms led to the application of this new therapeutic strategy in solid tumors as well. Our article will deal with chimeric antigen receptor-based immunotherapy (CAR-T cell and CAR-M therapy) in breast cancer.
Collapse
|
17
|
Dang H, Khan AB, Gadgil N, Sharma H, Trandafir C, Malbari F, Weiner HL. Behavioral Improvements following Lesion Resection for Pediatric Epilepsy: Pediatric Psychosurgery? Pediatr Neurosurg 2023; 58:80-88. [PMID: 36787706 PMCID: PMC10233708 DOI: 10.1159/000529683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
INTRODUCTION Resection of brain lesions associated with refractory epilepsy to achieve seizure control is well accepted. However, concurrent behavioral effects of these lesions such as changes in mood, personality, and cognition and the effects of surgery on behavior have not been well characterized. We describe 5 such children with epileptogenic lesions and significant behavioral abnormalities which improved after surgery. CASE DESCRIPTIONS Five children (ages 3-14 years) with major behavioral abnormalities and lesional epilepsy were identified and treated at our center. Behavioral problems included academic impairment, impulsivity, self-injurious behavior, and decreased social interaction with diagnoses of ADHD, oppositional defiant disorder, and autism. Pre-operative neuropsychiatric testing was performed in 4/5 patients and revealed low-average cognitive and intellectual abilities for their age, attentional difficulties, and poor memory. Lesions were located in the temporal (2 gangliogliomas, 1 JPA, 1 cavernoma) and parietal (1 DNET) lobes. Gross total resection was achieved in all cases. At mean 1-year follow-up, seizure freedom (Engel 1a in 3 patients, Engel 1c in 2 patients) and significant behavioral improvements (academic performance, attention, socialization, and aggression) were achieved in all. Two patients manifested violence pre-operatively; one had extreme behavior with violence toward teachers and peers despite low seizure burden. Since surgery, his behavior has normalized. CONCLUSION We identified 5 patients with severe behavioral disorders in the setting of lesional epilepsy, all of whom demonstrated improvement after surgery. The degree of behavioral abnormality was disproportionate to epilepsy severity, suggesting a more complicated mechanism by which lesional epilepsy impacts behavior. We propose a novel paradigm in which lesionectomy may offer behavioral benefit even when seizures are not refractory. Thus, behavioral improvement may be an important novel goal for neurosurgical resection in children with epileptic brain lesions.
Collapse
Affiliation(s)
- Huy Dang
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA,
| | - Abdul Basit Khan
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Nisha Gadgil
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
- Division of Pediatric Neurosurgery, Department of Surgery, Texas Children's Hospital, Houston, Texas, USA
| | - Himanshu Sharma
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Cristina Trandafir
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Texas Children's Hospital, Houston, Texas, USA
| | - Fatema Malbari
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Texas Children's Hospital, Houston, Texas, USA
| | - Howard L Weiner
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
- Division of Pediatric Neurosurgery, Department of Surgery, Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
18
|
El-Hajjar M, Gerhardt L, Hong MMY, Krishnamoorthy M, Figueredo R, Zheng X, Koropatnick J, Maleki Vareki S. Inducing mismatch repair deficiency sensitizes immune-cold neuroblastoma to anti-CTLA4 and generates broad anti-tumor immune memory. Mol Ther 2023; 31:535-551. [PMID: 36068918 PMCID: PMC9931548 DOI: 10.1016/j.ymthe.2022.08.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/16/2022] [Accepted: 08/30/2022] [Indexed: 02/07/2023] Open
Abstract
Immune checkpoint blockade can induce potent and durable responses in patients with highly immunogenic mismatch repair-deficient tumors; however, these drugs are ineffective against immune-cold neuroblastoma tumors. To establish a role for a T cell-based therapy against neuroblastoma, we show that T cell and memory T cell-dependent gene expression are associated with improved survival in high-risk neuroblastoma patients. To stimulate anti-tumor immunity and reproduce this immune phenotype in neuroblastoma tumors, we used CRISPR-Cas9 to knockout MLH1-a crucial molecule in the DNA mismatch repair pathway-to induce mismatch repair deficiency in a poorly immunogenic murine neuroblastoma model. Induced mismatch repair deficiency increased the expression of proinflammatory genes and stimulated T cell infiltration into neuroblastoma tumors. In contrast to adult cancers with induced mismatch repair deficiency, neuroblastoma tumors remained unresponsive to anti-PD1 treatment. However, anti-CTLA4 therapy was highly effective against these tumors. Anti-CTLA4 therapy promoted immune memory and T cell epitope spreading in cured animals. Mechanistically, the effect of anti-CTLA4 therapy against neuroblastoma tumors with induced mismatch repair deficiency is CD4+ T cell dependent, as depletion of these cells abolished the effect. Therefore, a therapeutic strategy involving mismatch repair deficiency-based T cell infiltration of neuroblastoma tumors combined with anti-CTLA4 can serve as a novel T cell-based treatment strategy for neuroblastoma.
Collapse
Affiliation(s)
- Mikal El-Hajjar
- Department of Microbiology and Immunology, Western University, London, ON, Canada; London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada
| | - Lara Gerhardt
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Megan M Y Hong
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | | | - Rene Figueredo
- Department of Oncology, Western University, London, ON, Canada
| | - Xiufen Zheng
- Department of Microbiology and Immunology, Western University, London, ON, Canada; Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada; Department of Oncology, Western University, London, ON, Canada; Department of Surgery, Western University, London, ON, Canada
| | - James Koropatnick
- Department of Microbiology and Immunology, Western University, London, ON, Canada; Department of Oncology, Western University, London, ON, Canada; London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada
| | - Saman Maleki Vareki
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada; Department of Oncology, Western University, London, ON, Canada; London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada.
| |
Collapse
|
19
|
Bhavanandan VP, Gowda DC. Introduction to the Complexity of Cell Surface and Tissue Matrix Glycoconjugates. ADVANCES IN NEUROBIOLOGY 2023; 29:1-39. [PMID: 36255670 DOI: 10.1007/978-3-031-12390-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This chapter provides an overview of structures and functions of complex carbohydrates (commonly called glycans) that are covalently linked to proteins or lipids to form glycoconjugates known as glycoproteins, glycolipids, and proteoglycans. To understand the complexity of the glycan structures, the nature of their monosaccharide building blocks, how the monomeric units are covalently linked to each other, and how the resulting glycans are attached to proteins or lipids are discussed. Then, the classification, nomenclature, structural features, and functions of the glycan moieties of animal glycoconjugates are briefly described. All three classes of glycoconjugates are constituents of plasma membranes of all animal cells, including those of the nervous system. Glycoproteins and proteoglycans are also found abundantly as constituents of tissue matrices. Additionally, glycan-rich mucin glycoproteins are the major constituents of mucus secretions of epithelia of various organs. Furthermore, the chapter draws attention to the incredible structural complexity and diversity of the glycan moieties of cell surface and extracellular glycoconjugates. Finally, the involvement of glycans as informational molecules in a wide range of essential functions in almost all known biological processes, which are crucial for development, differentiation, and normal functioning of animals, is discussed.
Collapse
Affiliation(s)
- Veer P Bhavanandan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA.
- , Wellington, FL, USA.
| | - D Channe Gowda
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|
20
|
Estevez-Ordonez D, Gary SE, Atchley TJ, Maleknia PD, George JA, Laskay NMB, Gross EG, Devulapalli RK, Johnston JM. Immunotherapy for Pediatric Brain and Spine Tumors: Current State and Future Directions. Pediatr Neurosurg 2022; 58:313-336. [PMID: 36549282 PMCID: PMC10233708 DOI: 10.1159/000528792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Brain tumors are the most common solid tumors and the leading cause of cancer-related deaths in children. Incidence in the USA has been on the rise for the last 2 decades. While therapeutic advances in diagnosis and treatment have improved survival and quality of life in many children, prognosis remains poor and current treatments have significant long-term sequelae. SUMMARY There is a substantial need for the development of new therapeutic approaches, and since the introduction of immunotherapy by immune checkpoint inhibitors, there has been an exponential increase in clinical trials to adopt these and other immunotherapy approaches in children with brain tumors. In this review, we summarize the current immunotherapy landscape for various pediatric brain tumor types including choroid plexus tumors, embryonal tumors (medulloblastoma, AT/RT, PNETs), ependymoma, germ cell tumors, gliomas, glioneuronal and neuronal tumors, and mesenchymal tumors. We discuss the latest clinical trials and noteworthy preclinical studies to treat these pediatric brain tumors using checkpoint inhibitors, cellular therapies (CAR-T, NK, T cell), oncolytic virotherapy, radioimmunotherapy, tumor vaccines, immunomodulators, and other targeted therapies. KEY MESSAGES The current landscape for immunotherapy in pediatric brain tumors is still emerging, but results in certain tumors have been promising. In the age of targeted therapy, genetic tumor profiling, and many ongoing clinical trials, immunotherapy will likely become an increasingly effective tool in the neuro-oncologist armamentarium.
Collapse
Affiliation(s)
- Dagoberto Estevez-Ordonez
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA,
- Division of Pediatric Neurosurgery, Children's of Alabama, Birmingham, Alabama, USA,
| | - Sam E Gary
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Travis J Atchley
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Pediatric Neurosurgery, Children's of Alabama, Birmingham, Alabama, USA
| | - Pedram D Maleknia
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jordan A George
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nicholas M B Laskay
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Pediatric Neurosurgery, Children's of Alabama, Birmingham, Alabama, USA
| | - Evan G Gross
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rishi K Devulapalli
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - James M Johnston
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Pediatric Neurosurgery, Children's of Alabama, Birmingham, Alabama, USA
| |
Collapse
|
21
|
Qiao J, Liu J, Jacobson JC, Clark RA, Lee S, Liu L, An Z, Zhang N, Chung DH. Anti-GRP-R monoclonal antibody antitumor therapy against neuroblastoma. PLoS One 2022; 17:e0277956. [PMID: 36525420 PMCID: PMC9757561 DOI: 10.1371/journal.pone.0277956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 11/07/2022] [Indexed: 12/23/2022] Open
Abstract
Standard treatment for patients with high-risk neuroblastoma remains multimodal therapy including chemoradiation, surgical resection, and autologous stem cell rescue. Immunotherapy has demonstrated success in treating many types of cancers; however, its use in pediatric solid tumors has been limited by low tumor mutation burdens. Gastrin-releasing peptide receptor (GRP-R) is overexpressed in numerous malignancies, including poorly-differentiated neuroblastoma. Monoclonal antibodies (mAbs) to GRP-R have yet to be developed but could serve as a potential novel immunotherapy. This preclinical study aims to evaluate the efficacy of a novel GRP-R mAb immunotherapy against neuroblastoma. We established four candidate anti-GRP-R mAbs by screening a single-chain variable fragment (scFv) library. GRP-R mAb-1 demonstrated the highest efficacy with the lowest EC50 at 4.607 ng/ml against GRP-R expressing neuroblastoma cells, blocked the GRP-ligand activation of GRP-R and its downstream PI3K/AKT signaling. This resulted in functional inhibition of cell proliferation and anchorage-independent growth, indicating that mAb-1 has an antagonist inhibitory role on GRP-R. To examine the antibody-dependent cellular cytotoxicity (ADCC) of GRP-R mAb-1 on neuroblastoma, we co-cultured neuroblastoma cells with natural killer (NK) cells versus GRP-R mAb-1 treatment alone. GRP-R mAb-1 mediated ADCC effects on neuroblastoma cells and induced release of IFNγ by NK cells under co-culture conditions in vitro. The cytotoxic effects of mAb-1 were confirmed with the secretion of cytotoxic granzyme B from NK cells and the reduction of mitotic tumor cells in vivo using a murine tumor xenograft model. In summary, GRP-R mAb-1 demonstrated efficacious anti-tumor effects on neuroblastoma cells in preclinical models. Importantly, GRP-R mAb-1 may be an efficacious, novel immunotherapy in the treatment of high-risk neuroblastoma patients.
Collapse
Affiliation(s)
- Jingbo Qiao
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Junquan Liu
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Jillian C. Jacobson
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Rachael A. Clark
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Sora Lee
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Li Liu
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Dai H. Chung
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Surgery, Children’s Health, Dallas, Texas, United States of America
| |
Collapse
|
22
|
Nasiri F, Kazemi M, Mirarefin SMJ, Mahboubi Kancha M, Ahmadi Najafabadi M, Salem F, Dashti Shokoohi S, Evazi Bakhshi S, Safarzadeh Kozani P, Safarzadeh Kozani P. CAR-T cell therapy in triple-negative breast cancer: Hunting the invisible devil. Front Immunol 2022; 13. [DOI: https:/doi.org/10.3389/fimmu.2022.1018786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is known as the most intricate and hard-to-treat subtype of breast cancer. TNBC cells do not express the well-known estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 (HER2) expressed by other breast cancer subtypes. This phenomenon leaves no room for novel treatment approaches including endocrine and HER2-specific antibody therapies. To date, surgery, radiotherapy, and systemic chemotherapy remain the principal therapy options for TNBC treatment. However, in numerous cases, these approaches either result in minimal clinical benefit or are nonfunctional, resulting in disease recurrence and poor prognosis. Nowadays, chimeric antigen receptor T cell (CAR-T) therapy is becoming more established as an option for the treatment of various types of hematologic malignancies. CAR-Ts are genetically engineered T lymphocytes that employ the body’s immune system mechanisms to selectively recognize cancer cells expressing tumor-associated antigens (TAAs) of interest and efficiently eliminate them. However, despite the clinical triumph of CAR-T therapy in hematologic neoplasms, CAR-T therapy of solid tumors, including TNBC, has been much more challenging. In this review, we will discuss the success of CAR-T therapy in hematological neoplasms and its caveats in solid tumors, and then we summarize the potential CAR-T targetable TAAs in TNBC studied in different investigational stages.
Collapse
|
23
|
Nasiri F, Kazemi M, Mirarefin SMJ, Mahboubi Kancha M, Ahmadi Najafabadi M, Salem F, Dashti Shokoohi S, Evazi Bakhshi S, Safarzadeh Kozani P, Safarzadeh Kozani P. CAR-T cell therapy in triple-negative breast cancer: Hunting the invisible devil. Front Immunol 2022; 13:1018786. [PMID: 36483567 PMCID: PMC9722775 DOI: 10.3389/fimmu.2022.1018786] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/24/2022] [Indexed: 11/23/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is known as the most intricate and hard-to-treat subtype of breast cancer. TNBC cells do not express the well-known estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 (HER2) expressed by other breast cancer subtypes. This phenomenon leaves no room for novel treatment approaches including endocrine and HER2-specific antibody therapies. To date, surgery, radiotherapy, and systemic chemotherapy remain the principal therapy options for TNBC treatment. However, in numerous cases, these approaches either result in minimal clinical benefit or are nonfunctional, resulting in disease recurrence and poor prognosis. Nowadays, chimeric antigen receptor T cell (CAR-T) therapy is becoming more established as an option for the treatment of various types of hematologic malignancies. CAR-Ts are genetically engineered T lymphocytes that employ the body's immune system mechanisms to selectively recognize cancer cells expressing tumor-associated antigens (TAAs) of interest and efficiently eliminate them. However, despite the clinical triumph of CAR-T therapy in hematologic neoplasms, CAR-T therapy of solid tumors, including TNBC, has been much more challenging. In this review, we will discuss the success of CAR-T therapy in hematological neoplasms and its caveats in solid tumors, and then we summarize the potential CAR-T targetable TAAs in TNBC studied in different investigational stages.
Collapse
Affiliation(s)
- Fatemeh Nasiri
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC, Canada
| | - Mehrasa Kazemi
- Department of Laboratory Medicine, Thalassemia Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Maral Mahboubi Kancha
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Milad Ahmadi Najafabadi
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Faeze Salem
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Setareh Dashti Shokoohi
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sahar Evazi Bakhshi
- Department of Anatomical Sciences, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
24
|
Fiz F, Bottoni G, Bini F, Cerroni F, Marinozzi F, Conte M, Treglia G, Morana G, Sorrentino S, Garaventa A, Siri G, Piccardo A. Prognostic value of texture analysis of the primary tumour in high-risk neuroblastoma: An 18 F-DOPA PET study. Pediatr Blood Cancer 2022; 69:e29910. [PMID: 35920594 DOI: 10.1002/pbc.29910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/22/2022] [Accepted: 07/14/2022] [Indexed: 01/01/2023]
Abstract
PURPOSE To evaluate the prognostic value of texture analysis of the primary tumour with 18 fluorine-dihydroxyphenylalanine positron emission tomography/X-ray computed tomography (18 F-DOPA PET/CT) in patients affected by high-risk neuroblastoma (HR-NBL). METHODS We retrospectively analysed 18 patients with HR-NBL, which had been prospectively enrolled in the course of a previous trial investigating the diagnostic role of 18 F-DOPA PET/CT at the time of the first onset. Texture analysis of the primary tumour was carried out on the PET images using LifeX. Conventional indices, histogram parameters, grey level co-occurrence (GLCM), run-length (GLRLM), neighbouring difference (NGLDM) and zone-length (GLZLM) matrices parameter were extracted; their values were compared with the overall metastatic load, expressed by means of whole-body metabolic burden (WBMB) score and the progression-free/overall survival (PFS and OS). RESULTS There was a direct correlation between WBMB and radiomics parameter describing uptake intensity (SUVmean : p = .004) and voxel heterogeneity (entropy: p = .026; GLCM_Contrast: p = .001). Conversely, texture indices of homogeneity showed an inverse correlation with WBMB (energy: p = .026; GLCM_Homogeneity: p = .006). On the multivariate model, WBMB (p < .01) and the first standardised uptake value (SUV) quartile (p < .001) predicted PFS; OS was predicted by WBMB and the N-myc proto-oncogene protein (MYCN) amplification (p < .05) for both. CONCLUSIONS Textural parameters describing heterogeneity and metabolic intensity of the primary HR-NBL are closely associated with its overall metastatic burden. In turn, the whole-body tumour load appears to be one of the most relevant predictors of progression-free and overall survival.
Collapse
Affiliation(s)
- Francesco Fiz
- Department of Nuclear Medicine, E.O. 'Ospedali Galliera', Genoa, Italy
| | - Gianluca Bottoni
- Department of Nuclear Medicine, E.O. 'Ospedali Galliera', Genoa, Italy
| | - Fabiano Bini
- Department of Mechanical and Aerospace Engineering, 'Sapienza' University of Rome, Rome, Italy
| | - Francesca Cerroni
- Department of Mechanical and Aerospace Engineering, 'Sapienza' University of Rome, Rome, Italy
| | - Franco Marinozzi
- Department of Mechanical and Aerospace Engineering, 'Sapienza' University of Rome, Rome, Italy
| | - Massimo Conte
- Oncology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Giorgio Treglia
- Clinic of Nuclear Medicine, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera italiana, Lugano, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Giovanni Morana
- Pediatric Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Neurosciences, University of Turin, Turin, Italy
| | | | | | - Giacomo Siri
- Scientific Directorate, E.O. 'Ospedali Galliera', Genoa, Italy
| | - Arnoldo Piccardo
- Department of Nuclear Medicine, E.O. 'Ospedali Galliera', Genoa, Italy
| |
Collapse
|
25
|
Sha YL, Liu Y, Yang JX, Wang YY, Gong BC, Jin Y, Qu TY, Xia FT, Han L, Zhao Q. B3GALT4 remodels the tumor microenvironment through GD2-mediated lipid raft formation and the c-met/AKT/mTOR/IRF-1 axis in neuroblastoma. J Exp Clin Cancer Res 2022; 41:314. [PMID: 36284313 PMCID: PMC9594894 DOI: 10.1186/s13046-022-02523-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Beta-1,3-galactosyltransferase-4 (B3GALT4) plays a critical regulatory role in tumor biology. However, the role of B3GALT4 in modulating the tumor microenvironment (TME) of neuroblastoma (NB) remains unknown. METHODS Public datasets and clinical NB samples were collected to evaluate the expression and clinical significance of GD2 and B3GALT4 in NB patients. CCK-8, colony formation, and transwell assays and experiments in tumor-bearing mouse models were conducted to investigate the function of B3GALT4. Flow cytometry, ELISA, immunohistochemistry, immunofluorescence, western blotting, and chemotaxis assays were conducted to ascertain the immunomodulatory mechanism of B3GALT4. The combined therapeutic effect of the lipid raft inhibitor MβCD and anti-GD2 mAb was validated in a murine model of NB. RESULTS GD2 was overexpressed in NB tissues and high expression of GD2 was associated with poor prognosis in NB patients. B3GALT4 was downregulated in NB tissues, and low expression of B3GALT4 indicated poor prognosis in NB patients. Silencing B3GALT4 significantly enhanced tumor progression both in vitro and in vivo. Meanwhile, the overexpression of B3GALT4 increased the recruitment of CD8+ T lymphocytes via the chemokines CXCL9 and CXCL10. Additionally, B3GALT4 regulated NB-cell GD2 expression and lipid raft formation. Mechanistically, B3GALT4 regulated the expression of CXCL9 and CXCL10 via the c-Met signaling in the lipid rafts and the downstream AKT/mTOR/IRF-1 pathway. The lipid raft inhibitor, MβCD, attenuated B3GALT4 deficiency-induced tumor progression and immune evasion. Last, MβCD combined with anti-GD2 mAb treatment significantly enhanced the antitumor effect and the infiltration of CD8+ T cells. CONCLUSIONS Upregulation of B3GALT4 promotes the secretion of CXCL9 and CXCL10 to recruit CD8+ T lymphocytes via the GD2-mediated lipid rafts and the c-Met/AKT/mTOR/IRF-1 pathway. Moreover, lipid raft inhibitors may enhance the efficacy of anti-GD2 immunotherapy for NB.
Collapse
Affiliation(s)
- Yong-Liang Sha
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yun Liu
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jia-Xing Yang
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yang-Yang Wang
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Bao-Cheng Gong
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yan Jin
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Tong-Yuan Qu
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Fan-Tong Xia
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lei Han
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| | - Qiang Zhao
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| |
Collapse
|
26
|
Horwacik I. The Extracellular Matrix and Neuroblastoma Cell Communication-A Complex Interplay and Its Therapeutic Implications. Cells 2022; 11:cells11193172. [PMID: 36231134 PMCID: PMC9564247 DOI: 10.3390/cells11193172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
Neuroblastoma (NB) is a pediatric neuroendocrine neoplasm. It arises from the sympatho-adrenal lineage of neural-crest-derived multipotent progenitor cells that fail to differentiate. NB is the most common extracranial tumor in children, and it manifests undisputed heterogeneity. Unsatisfactory outcomes of high-risk (HR) NB patients call for more research to further inter-relate treatment and molecular features of the disease. In this regard, it is well established that in the tumor microenvironment (TME), malignant cells are engaged in complex and dynamic interactions with the extracellular matrix (ECM) and stromal cells. The ECM can be a source of both pro- and anti-tumorigenic factors to regulate tumor cell fate, such as survival, proliferation, and resistance to therapy. Moreover, the ECM composition, organization, and resulting signaling networks are vastly remodeled during tumor progression and metastasis. This review mainly focuses on the molecular mechanisms and effects of interactions of selected ECM components with their receptors on neuroblastoma cells. Additionally, it describes roles of enzymes modifying and degrading ECM in NB. Finally, the article gives examples on how the knowledge is exploited for prognosis and to yield new treatment options for NB patients.
Collapse
Affiliation(s)
- Irena Horwacik
- Laboratory of Molecular Genetics and Virology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
27
|
Costa A, Thirant C, Kramdi A, Pierre-Eugène C, Louis-Brennetot C, Blanchard O, Surdez D, Gruel N, Lapouble E, Pierron G, Sitbon D, Brisse H, Gauthier A, Fréneaux P, Bohec M, Raynal V, Baulande S, Leclere R, Champenois G, Nicolas A, Meseure D, Bellini A, Marabelle A, Geoerger B, Mechta-Grigoriou F, Schleiermacher G, Menger L, Delattre O, Janoueix-Lerosey I. Single-cell transcriptomics reveals shared immunosuppressive landscapes of mouse and human neuroblastoma. J Immunother Cancer 2022; 10:jitc-2022-004807. [PMID: 36054452 PMCID: PMC9362821 DOI: 10.1136/jitc-2022-004807] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND High-risk neuroblastoma is a pediatric cancer with still a dismal prognosis, despite multimodal and intensive therapies. Tumor microenvironment represents a key component of the tumor ecosystem the complexity of which has to be accurately understood to define selective targeting opportunities, including immune-based therapies. METHODS We combined various approaches including single-cell transcriptomics to dissect the tumor microenvironment of both a transgenic mouse neuroblastoma model and a cohort of 10 biopsies from neuroblastoma patients, either at diagnosis or at relapse. Features of related cells were validated by multicolor flow cytometry and functional assays. RESULTS We show that the immune microenvironment of MYCN-driven mouse neuroblastoma is characterized by a low content of T cells, several phenotypes of macrophages and a population of cells expressing signatures of myeloid-derived suppressor cells (MDSCs) that are molecularly distinct from the various macrophage subsets. We document two cancer-associated fibroblasts (CAFs) subsets, one of which corresponding to CAF-S1, known to have immunosuppressive functions. Our data unravel a complex content in myeloid cells in patient tumors and further document a striking correspondence of the microenvironment populations between both mouse and human tumors. We show that mouse intratumor T cells exhibit increased expression of inhibitory receptors at the protein level. Consistently, T cells from patients are characterized by features of exhaustion, expressing inhibitory receptors and showing low expression of effector cytokines. We further functionally demonstrate that MDSCs isolated from mouse neuroblastoma have immunosuppressive properties, impairing the proliferation of T lymphocytes. CONCLUSIONS Our study demonstrates that neuroblastoma tumors have an immunocompromised microenvironment characterized by dysfunctional T cells and accumulation of immunosuppressive cells. Our work provides a new and precious data resource to better understand the neuroblastoma ecosystem and suggest novel therapeutic strategies, targeting both tumor cells and components of the microenvironment.
Collapse
Affiliation(s)
- Ana Costa
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France.,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Cécile Thirant
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France.,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Amira Kramdi
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France.,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Cécile Pierre-Eugène
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France.,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Caroline Louis-Brennetot
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France.,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Orphée Blanchard
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France.,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Didier Surdez
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France.,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Nadege Gruel
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France.,Department of Translational Research, Institut Curie, Paris, France
| | - Eve Lapouble
- Unité de Génétique Somatique, Institut Curie, Paris, France
| | - Gaëlle Pierron
- Unité de Génétique Somatique, Institut Curie, Paris, France
| | - Deborah Sitbon
- Unité de Génétique Somatique, Institut Curie, Paris, France
| | - Hervé Brisse
- Department of Imaging, PSL Research University, Institut Curie, Paris, France
| | | | - Paul Fréneaux
- Department of Biopathology, Institut Curie, Paris, France
| | - Mylène Bohec
- Genomics of Excellence (ICGex) Platform, Institut Curie, Paris, France
| | - Virginie Raynal
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France.,Genomics of Excellence (ICGex) Platform, Institut Curie, Paris, France
| | - Sylvain Baulande
- Genomics of Excellence (ICGex) Platform, Institut Curie, Paris, France
| | - Renaud Leclere
- Department of Biopathology, Institut Curie, Paris, France
| | | | - Andre Nicolas
- Department of Biopathology, Institut Curie, Paris, France
| | - Didier Meseure
- Department of Biopathology, Institut Curie, Paris, France
| | - Angela Bellini
- SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France.,Department of Translational Research, Institut Curie, Paris, France.,Laboratory Recherche Translationnelle en Oncologie Pédiatrique (RTOP), Laboratoire "Gilles Thomas", Institut Curie, Paris, France
| | - Aurelien Marabelle
- Inserm U1015 & CIC1428, Université Paris Saclay, Gustave Roussy, Villejuif, France
| | - Birgit Geoerger
- Inserm U1015, Department of Pediatric and Adolescent Oncology, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Fatima Mechta-Grigoriou
- Inserm U830, Equipe labelisée LNCC, Stress and Cancer Laboratory, PSL Research University, Institut Curie Research Centre, Paris, France
| | - Gudrun Schleiermacher
- SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France.,Department of Translational Research, Institut Curie, Paris, France.,Laboratory Recherche Translationnelle en Oncologie Pédiatrique (RTOP), Laboratoire "Gilles Thomas", Institut Curie, Paris, France
| | - Laurie Menger
- Inserm U932, PSL Research University, Institut Curie, Paris, France
| | - Olivier Delattre
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France.,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Isabelle Janoueix-Lerosey
- Inserm U830, Equipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Centre, Paris, France .,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| |
Collapse
|
28
|
Hensel J, Metts J, Gupta A, Ladle BH, Pilon-Thomas S, Mullinax J. Adoptive Cellular Therapy for Pediatric Solid Tumors: Beyond Chimeric Antigen Receptor-T Cell Therapy. Cancer J 2022; 28:322-327. [PMID: 35880942 PMCID: PMC9847472 DOI: 10.1097/ppo.0000000000000603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
ABSTRACT Children and adolescents with high-risk (metastatic and relapsed) solid tumors have poor outcomes despite intensive multimodal therapy, and there is a pressing need for novel therapeutic strategies. Adoptive cellular therapy (ACT) has demonstrated activity in multiple adult cancer types, and opportunity exists to expand the use of this therapy in children. Employment of immunotherapy in the pediatric population has realized only modest overall clinical trial results, with success thus far restricted mainly to antibody-based therapies and chimeric antigen receptor T-cell therapies for lymphoid malignancy. As we improve our understanding of the orchestrated cellular and molecular mechanisms involved in ACT, this will provide biologic insight and improved ACT strategies for pediatric malignancies. This review focuses on ACT strategies outside of chimeric antigen receptor T-cell therapy, including completed and ongoing clinical trials, and highlights promising preclinical data in tumor-infiltrating lymphocytes that enhance the clinical efficacy of ACT for high-risk pediatric solid tumors.
Collapse
Affiliation(s)
- Jonathan Hensel
- Sarcoma, Immunology, Cutaneous Oncology, Moffitt Cancer Center, Tampa
| | - Jonathan Metts
- Cancer and Blood Disorders Institute, Johns Hopkins All Children's Hospital, St Petersburg, FL
| | - Ajay Gupta
- Division of Pediatric Oncology, Roswell Park Comprehensive Cancer Center, Department of Pediatrics, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY
| | - Brian H. Ladle
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - John Mullinax
- Sarcoma, Immunology, Cutaneous Oncology, Moffitt Cancer Center, Tampa
| |
Collapse
|
29
|
Verhoeven BM, Mei S, Olsen TK, Gustafsson K, Valind A, Lindström A, Gisselsson D, Fard SS, Hagerling C, Kharchenko PV, Kogner P, Johnsen JI, Baryawno N. The immune cell atlas of human neuroblastoma. Cell Rep Med 2022; 3:100657. [PMID: 35688160 PMCID: PMC9245004 DOI: 10.1016/j.xcrm.2022.100657] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/26/2022] [Accepted: 05/17/2022] [Indexed: 12/03/2022]
Abstract
Understanding the complete immune cell composition of human neuroblastoma (NB) is crucial for the development of immunotherapeutics. Here, we perform single-cell RNA sequencing (scRNA-seq) on 19 human NB samples coupled with multiplex immunohistochemistry, survival analysis, and comparison with normal fetal adrenal gland data. We provide a comprehensive immune cell landscape and characterize cell-state changes from normal tissue to NB. Our analysis reveals 27 immune cell subtypes, including distinct subpopulations of myeloid, NK, B, and T cells. Several different cell types demonstrate a survival benefit. In contrast to adult cancers and previous NB studies, we show an increase in inflammatory monocyte cell state when contrasting normal and tumor tissue, while no differences in cytotoxicity and exhaustion score for T cells, nor in Treg activity, are observed. Our receptor-ligand interaction analysis reveals a highly complex interactive network of the NB microenvironment from which we highlight several interactions that we suggest for future therapeutic studies.
Collapse
Affiliation(s)
- Bronte Manouk Verhoeven
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Shenglin Mei
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Thale Kristin Olsen
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Karin Gustafsson
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Anders Valind
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, 221 85 Lund, Sweden; Department of Pediatrics, Skåne University Hospital, Lund, Sweden
| | - Axel Lindström
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, 221 85 Lund, Sweden
| | - David Gisselsson
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, 221 85 Lund, Sweden
| | - Shahrzad Shirazi Fard
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Catharina Hagerling
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, 221 85 Lund, Sweden
| | - Peter V Kharchenko
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - John Inge Johnsen
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Ninib Baryawno
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|
30
|
Kasprowicz A, Sophie GD, Lagadec C, Delannoy P. Role of GD3 Synthase ST8Sia I in Cancers. Cancers (Basel) 2022; 14:cancers14051299. [PMID: 35267607 PMCID: PMC8909605 DOI: 10.3390/cancers14051299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 12/31/2022] Open
Abstract
Simple Summary The carbohydrate moiety of cell surface glycolipids is modified in cancers of neuro–ectoderm origin, leading to the expression of more complex structures with two or more sialic acid residues. These alterations result from the upregulation of the ST8SIA1 gene that encodes GD3 synthase, the enzyme controlling the biosynthesis of complex gangliosides, and are usually associated with a more aggressive phenotype and a poor outcome for patients, making GD3 synthase an interesting target for cancer therapy. This review reports our general knowledge of GD3 synthase gene expression and regulation, its role in both epithelial–mesenchymal transition (EMT) and cancer progression, and the different approaches targeting GD3S expression in cancers. Abstract GD3 synthase controls the biosynthesis of complex gangliosides, bearing two or more sialic acid residues. Disialylated gangliosides GD3 and GD2 are tumor-associated carbohydrate antigens (TACA) in neuro–ectoderm-derived cancers, and are directly involved in cell malignant properties, i.e., migration, invasion, stemness, and epithelial–mesenchymal transition. Since GD3 and GD2 levels are directly linked to GD3 synthase expression and activity, targeting GD3 synthase appears to be a promising strategy through which to interfere with ganglioside-associated malignant properties. We review here the current knowledge on GD3 synthase expression and regulation in cancers, and the consequences of complex ganglioside expression on cancer cell signaling and properties, highlighting the relationships between GD3 synthase expression and epithelial–mesenchymal transition and stemness. Different strategies were used to modulate GD3 synthase expression in cancer cells in vitro and in animal models, such as inhibitors or siRNA/lncRNA, which efficiently reduced cancer cell malignant properties and the proportion of GD2 positive cancer stem cells, which are associated with high metastatic properties, resistance to therapy, and cancer relapse. These data show the relevance of targeting GD3 synthase in association with conventional therapies, to decrease the number of cancer stem cells in tumors.
Collapse
Affiliation(s)
- Angelina Kasprowicz
- University of Lille, CNRS, UMR 8576-UGSF-Unité de Glycosylation Structurale et Fonctionnelle, F-59000 Lille, France;
| | - Groux-Degroote Sophie
- University of Lille, CNRS, UMR 8576-UGSF-Unité de Glycosylation Structurale et Fonctionnelle, F-59000 Lille, France;
- Correspondence: (G.-D.S.); (P.D.)
| | - Chann Lagadec
- University of Lille, CNRS, Inserm, CHU Lille UMR9020-U1277-CANTHER Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000 Lille, France;
| | - Philippe Delannoy
- University of Lille, CNRS, UMR 8576-UGSF-Unité de Glycosylation Structurale et Fonctionnelle, F-59000 Lille, France;
- Correspondence: (G.-D.S.); (P.D.)
| |
Collapse
|
31
|
Sha Y, Han L, Sun B, Zhao Q. Identification of a Glycosyltransferase Signature for Predicting Prognosis and Immune Microenvironment in Neuroblastoma. Front Cell Dev Biol 2022; 9:769580. [PMID: 35071226 PMCID: PMC8773256 DOI: 10.3389/fcell.2021.769580] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/30/2021] [Indexed: 01/17/2023] Open
Abstract
Neuroblastoma (NB) is one of the most common solid tumors in children. Glycosyltransferases (GTs) play a crucial role in tumor development and immune escape and have been used as prognostic biomarkers in various tumors. However, the biological functions and prognostic significance of GTs in NB remain poorly understood. The expression data from Gene Expression Omnibus (GEO) and Therapeutically Applicable Research to Generate Effective Treatments (TARGET) were collected as training and testing data. Based on a progression status, differentially expressed GTs were identified. We constructed a GTscore through support vector machine, least absolute shrinkage and selection operator, and Cox regression in NB, which included four prognostic GTs and was an independent prognostic risk factor for NB. Patients in the high GTscore group had an older age, MYCN amplification, advanced International Neuroblastoma Staging System stage, and high risk. Samples with high GTscores revealed high disialoganglioside (GD2) and neuron-specific enolase expression levels. In addition, a lack of immune cell infiltration was observed in the high GTscore group. This GTscore was also associated with the expression of chemokines (CCL2, CXCL9, and CXCL10) and immune checkpoint genes (cytotoxic T-lymphocyte–associated protein 4, granzyme H, and granzyme K). A low GTscore was also linked to an enhanced response to anti–PD-1 immunotherapy in melanoma patients, and one type of tumor was also derived from neuroectodermal cells such as NB. In conclusion, the constructed GTscore revealed the relationship between GT expression and the NB outcome, GD2 phenotype, and immune infiltration and provided novel clues for the prediction of prognosis and immunotherapy response in NB.
Collapse
Affiliation(s)
- Yongliang Sha
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lei Han
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Bei Sun
- National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Outpatient Office, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Qiang Zhao
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
32
|
Walker SM, Selers EL, Jay MA. Intravenous opioids for chemotherapy-induced severe mucositis pain in children: Systematic review and single-center case series of management with patient- or nurse-controlled analgesia (PCA/NCA). Paediatr Anaesth 2022; 32:17-34. [PMID: 34731511 DOI: 10.1111/pan.14324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Chemotherapy-induced oral mucositis can result in severe pain. Intravenous (IV) opioids are recommended, but management protocols vary. We systematically reviewed studies reporting IV opioid use for pain related to chemotherapy-induced severe oral mucositis in children and conducted a large single-center case series. METHODS Ovid MEDLINE, PubMed, and Cochrane databases were searched for studies reporting IV opioid duration and/or dose requirements for severe mucositis. Secondly, our pain service database was interrogated to describe episodes of opioid administration by patient- or nurse-controlled analgesia (PCA/NCA) for children with mucositis and cancer treatment-related pain. RESULTS Seventeen studies (six randomized trials, two prospective observational, three retrospective cohort, six retrospective case series) included IV opioid in 618 patients (age 0.3-22.3 years), but reported parameters varied. Mucositis severity and chemotherapy indication influenced IV opioid requirements, with duration ranging from 3 to 68 days and variable dose trajectories (hourly morphine or equivalent 0-97 mcg/kg/h). Our 7-year series included PCA/NCA for 364 episodes of severe mucositis (302 patients; age 0.12-17.2 years). Duration ranged from 1 to 107 days and dose requirements in the first 3 days from 1 to 110 mcg/kg/h morphine. Longer PCA/NCA duration was associated with: higher initial morphine requirements (ρ = 0.46 [95% CI 0.35, 0.57]); subsequent increased pain and need for ketamine co-analgesia (118/364 episodes with opioid/ketamine 13.9 [9.8-22.2] days vs opioid alone 6.0 [3.9-10.8] days; median [IQR]); but not with age or sex. CONCLUSIONS Management of severe mucositis pain can require prolonged IV opioid therapy. Individual and treatment-related variability in analgesic requirements highlight the need for regular review, titration, and management by specialist services.
Collapse
Affiliation(s)
- Suellen M Walker
- Developmental Neurosciences Programme (Paediatric Pain Research Group), UCL GOS Institute of Child Health, London, UK.,Department of Paediatric Anaesthesia and Pain Medicine, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Ebony L Selers
- Department of Paediatric Anaesthesia and Pain Medicine, Great Ormond Street Hospital NHS Foundation Trust, London, UK.,Royal Melbourne Hospital, Parkville, Vic., Australia
| | - Matthew A Jay
- Department of Paediatric Anaesthesia and Pain Medicine, Great Ormond Street Hospital NHS Foundation Trust, London, UK.,Population, Policy and Practice Research and Teaching Department, UCL GOS Institute of Child Health, London, UK
| | -
- Department of Paediatric Anaesthesia and Pain Medicine, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
33
|
Ciaccio R, De Rosa P, Aloisi S, Viggiano M, Cimadom L, Zadran SK, Perini G, Milazzo G. Targeting Oncogenic Transcriptional Networks in Neuroblastoma: From N-Myc to Epigenetic Drugs. Int J Mol Sci 2021; 22:12883. [PMID: 34884690 PMCID: PMC8657550 DOI: 10.3390/ijms222312883] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/13/2022] Open
Abstract
Neuroblastoma (NB) is one of the most frequently occurring neurogenic extracranial solid cancers in childhood and infancy. Over the years, many pieces of evidence suggested that NB development is controlled by gene expression dysregulation. These unleashed programs that outline NB cancer cells make them highly dependent on specific tuning of gene expression, which can act co-operatively to define the differentiation state, cell identity, and specialized functions. The peculiar regulation is mainly caused by genetic and epigenetic alterations, resulting in the dependency on a small set of key master transcriptional regulators as the convergence point of multiple signalling pathways. In this review, we provide a comprehensive blueprint of transcriptional regulation bearing NB initiation and progression, unveiling the complexity of novel oncogenic and tumour suppressive regulatory networks of this pathology. Furthermore, we underline the significance of multi-target therapies against these hallmarks, showing how novel approaches, together with chemotherapy, surgery, or radiotherapy, can have substantial antineoplastic effects, disrupting a wide variety of tumorigenic pathways through combinations of different treatments.
Collapse
|
34
|
Haydar D, Ibañez-Vega J, Krenciute G. T-Cell Immunotherapy for Pediatric High-Grade Gliomas: New Insights to Overcoming Therapeutic Challenges. Front Oncol 2021; 11:718030. [PMID: 34760690 PMCID: PMC8573171 DOI: 10.3389/fonc.2021.718030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/08/2021] [Indexed: 01/06/2023] Open
Abstract
Despite decades of research, pediatric central nervous system (CNS) tumors remain the most debilitating, difficult to treat, and deadliest cancers. Current therapies, including radiation, chemotherapy, and/or surgery, are unable to cure these diseases and are associated with serious adverse effects and long-term impairments. Immunotherapy using chimeric antigen receptor (CAR) T cells has the potential to elucidate therapeutic antitumor immune responses that improve survival without the devastating adverse effects associated with other therapies. Yet, despite the outstanding performance of CAR T cells against hematologic malignancies, they have shown little success targeting brain tumors. This lack of efficacy is due to a scarcity of targetable antigens, interactions with the immune microenvironment, and physical and biological barriers limiting the homing and trafficking of CAR T cells to brain tumors. In this review, we summarize experiences with CAR T-cell therapy for pediatric CNS tumors in preclinical and clinical settings and focus on the current roadblocks and novel strategies to potentially overcome those therapeutic challenges.
Collapse
Affiliation(s)
| | | | - Giedre Krenciute
- Department of Bone Marrow Transplantation & Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN, United States
| |
Collapse
|
35
|
Abstract
Immunotherapy has changed the landscape of cancer treatment and has significantly improved the outcome of several cancer types including breast, lung, colorectal and prostate. Neoantigen recognition and immune checkpoint inhibitors are nowadays the milestones of different immunotherapeutic regimes; however, high cost, primary and acquired resistance and the high variability of responses make their extensive use difficult. The development of better predictive biomarkers that represent tumour diversity shows promise because there is a significant body of clinical data showing a spectrum of immunotherapeutic responses that might be related back to their specific characteristics. This article makes a conceptual and historical review to summarise the main advances in our understanding of the role of the immune system in cancer, while describing the methodological details that have been successfully implemented on cancer treatments and that may hold the key to improved therapeutic approaches.
Collapse
|
36
|
Bahoush G. Outcome of Patients Treated with Hematopoietic Stem Cell Transplantation: Results from A Single Center. Asia Pac J Oncol Nurs 2021; 8:218-223. [PMID: 33688572 PMCID: PMC7934588 DOI: 10.4103/apjon.apjon_55_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/21/2020] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Hematopoietic stem cell transplantation (HSCT) is known as one of the most advanced and modern treatments in the world for various diseases which do not respond well to other therapies. Evaluating outcomes of these patients, especially in newly developed centers, can crucially help in developing and improving the quality of these centers. METHODS In a retrospective analytical cohort study, we statistically analyzed all patients treated with HSCT in the Bone Marrow Transplant Unit of the Ali-Asghar Pediatric Hospital affiliated to Iran University of Medical Sciences. The demographic information as well as all information concerning each patient's transplant process was extracted and statistically analyzed using SPSS Version 23. RESULTS The mean neutrophilic and platelet engraftment days were, respectively, 16 (range = 12-21) and 22 (range = 15-34) days after HSCT, while the neutrophilic engraftment occurred significantly earlier in allogeneic transplants compared to the autologous ones (P = 0.020). The total event-free survival (EFS) rate of the patients based on the median follow-up of 12 months was 11.50% ± 53.60%. Based on the total follow-up period, the estimated total EFS rate of the patients was calculated as 35.20% ± 13.50%. The estimated EFS rate was found to be better in patients who had undergone allogeneic transplantation than those who received an autologous transplant (P = 0.780). CONCLUSIONS The HSCT results at our center are comparable to those at other centers in Iran. We argue that the facility can provide adequate therapy to patients requiring HSCT, on the proviso that some organizational limitations are addressed.
Collapse
Affiliation(s)
- Gholamreza Bahoush
- Department of Pediatrics, Faculty of Medicine, Ali-Asghar Children Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Morandi F, Sabatini F, Podestà M, Airoldi I. Immunotherapeutic Strategies for Neuroblastoma: Present, Past and Future. Vaccines (Basel) 2021; 9:43. [PMID: 33450862 PMCID: PMC7828327 DOI: 10.3390/vaccines9010043] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 12/22/2022] Open
Abstract
Neuroblastoma is the most common extracranial pediatric solid tumor with a heterogeneous clinical course, ranging from spontaneous regression to metastatic disease and death, irrespective of intensive chemotherapeutic regimen. On the basis of several parameters, children affected by neuroblastoma are stratified into low, intermediate and high risk. At present, more than 50% of high-risk patients with metastatic spread display an overall poor long-term outcome also complicated by devastating long-term morbidities. Thus, novel and more effective therapies are desperately needed to improve lifespan of high-risk patients. In this regard, adoptive cell therapy holds great promise and several clinical trials are ongoing, demonstrating safety and tolerability, with no toxicities. Starting from the immunological and clinical features of neuroblastoma, we here discuss the immunotherapeutic approaches currently adopted for high-risk patients and different innovative therapeutic strategies currently under investigation. The latter are based on the infusion of natural killer (NK) cells, as support of consolidation therapy in addition to standard treatments, or chimeric antigen receptor (CAR) T cells directed against neuroblastoma associated antigens (e.g., disialoganglioside GD2). Finally, future perspectives of adoptive cell therapies represented by γδ T lymphocyes and CAR NK cells are envisaged.
Collapse
Affiliation(s)
| | | | | | - Irma Airoldi
- Laboratorio Cellule Staminali Post-Natali e Terapie Cellulari, Istituto Giannina Gaslini (Istituto di Ricerca e Cura a Carattere Scientifico—IRCCS), Via G. Gaslini 5, 16147 Genova, Italy; (F.M.); (F.S.); (M.P.)
| |
Collapse
|
38
|
Zhao J, Zhou K, Ma L, Zhang H. MicroRNA-145 overexpression inhibits neuroblastoma tumorigenesis in vitro and in vivo. Bioengineered 2020; 11:219-228. [PMID: 32083506 PMCID: PMC7039631 DOI: 10.1080/21655979.2020.1729928] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neuroblastoma (NB) is responsible for 15% of all childhood cancer deaths. Despite advances in treatment and disease management, the overall 5-year survival rates remain poor in high-risk disease (25-40%). It is well known that miR-145 functions as a tumor suppressor in several types of cancer. However, the impact of miR-145 on NB is still ambiguous. Our aim was to investigate the potential tumor suppressive role and mechanisms of miR-145 in high-risk neuroblastoma. Expression levels of miR-145 in tissues and cells were determined using RT-qPCR. The effect of miR-145 on cell viability was evaluated using MTT assays, apoptosis levels were determined using TUNEL staining, and the MTDH protein expression was determined using western blot and RT-PCR. Luciferase reporter plasmids were constructed to confirm direct targeting for MTDH. The results showed that miR-145 expression was significantly lower in high-risk MYCN amplified (MNA) tumors and low miR-145 expression was associated with worse EFS and OS in our cohort. Over-expression of miR-145 reduced cell viability and increased apoptosis in SH-SY-5Y cells. We identified MTDH as a direct target for miR-145 in SH-SY-5Y cells. Targeting MTDH has the similar results as miR-145 overexpression. Our findings suggest that low miR-145 expression was associated with poor prognosis in patients with NB, and the overexpression of miR-145 inhibited NB cells growth by down-regulating MTDH, thus providing a potential target for the development of microRNA-based approach for NB therapy.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Pediatric Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Kai Zhou
- Urology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Liang Ma
- Child Health Division, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Huanyu Zhang
- Department of Pediatric Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
39
|
Zafar A, Wang W, Liu G, Wang X, Xian W, McKeon F, Foster J, Zhou J, Zhang R. Molecular targeting therapies for neuroblastoma: Progress and challenges. Med Res Rev 2020; 41:961-1021. [PMID: 33155698 PMCID: PMC7906923 DOI: 10.1002/med.21750] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/25/2020] [Accepted: 10/28/2020] [Indexed: 01/09/2023]
Abstract
There is an urgent need to identify novel therapies for childhood cancers. Neuroblastoma is the most common pediatric solid tumor, and accounts for ~15% of childhood cancer‐related mortality. Neuroblastomas exhibit genetic, morphological and clinical heterogeneity, which limits the efficacy of existing treatment modalities. Gaining detailed knowledge of the molecular signatures and genetic variations involved in the pathogenesis of neuroblastoma is necessary to develop safer and more effective treatments for this devastating disease. Recent studies with advanced high‐throughput “omics” techniques have revealed numerous genetic/genomic alterations and dysfunctional pathways that drive the onset, growth, progression, and resistance of neuroblastoma to therapy. A variety of molecular signatures are being evaluated to better understand the disease, with many of them being used as targets to develop new treatments for neuroblastoma patients. In this review, we have summarized the contemporary understanding of the molecular pathways and genetic aberrations, such as those in MYCN, BIRC5, PHOX2B, and LIN28B, involved in the pathogenesis of neuroblastoma, and provide a comprehensive overview of the molecular targeted therapies under preclinical and clinical investigations, particularly those targeting ALK signaling, MDM2, PI3K/Akt/mTOR and RAS‐MAPK pathways, as well as epigenetic regulators. We also give insights on the use of combination therapies involving novel agents that target various pathways. Further, we discuss the future directions that would help identify novel targets and therapeutics and improve the currently available therapies, enhancing the treatment outcomes and survival of patients with neuroblastoma.
Collapse
Affiliation(s)
- Atif Zafar
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| | - Wei Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA.,Drug Discovery Institute, University of Houston, Houston, Texas, USA
| | - Gang Liu
- Department of Pharmacology and Toxicology, Chemical Biology Program, University of Texas Medical Branch, Galveston, Texas, USA
| | - Xinjie Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| | - Wa Xian
- Department of Biology and Biochemistry, Stem Cell Center, University of Houston, Houston, Texas, USA
| | - Frank McKeon
- Department of Biology and Biochemistry, Stem Cell Center, University of Houston, Houston, Texas, USA
| | - Jennifer Foster
- Department of Pediatrics, Texas Children's Hospital, Section of Hematology-Oncology Baylor College of Medicine, Houston, Texas, USA
| | - Jia Zhou
- Department of Pharmacology and Toxicology, Chemical Biology Program, University of Texas Medical Branch, Galveston, Texas, USA
| | - Ruiwen Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA.,Drug Discovery Institute, University of Houston, Houston, Texas, USA
| |
Collapse
|
40
|
Dees S, Ganesan R, Singh S, Grewal IS. Emerging CAR-T Cell Therapy for the Treatment of Triple-Negative Breast Cancer. Mol Cancer Ther 2020; 19:2409-2421. [DOI: 10.1158/1535-7163.mct-20-0385] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/06/2020] [Accepted: 10/08/2020] [Indexed: 11/16/2022]
|
41
|
Soliman RM, Elhaddad A, Oke J, Eweida W, Sidhom I, Ahmed S, Abdelrahman H, Moussa E, Fawzy M, Zamzam M, Zekri W, Hafez H, Sedky M, Abdalla A, Hammad M, Elzomor H, Ahmed S, Awad M, Abdelhameed S, Mohsen E, Shalaby L, Fouad H, Tarek N, Abouelnaga S, Heneghan C. Temporal trends in childhood cancer survival in Egypt, 2007 to 2017: A large retrospective study of 14 808 children with cancer from the Children's Cancer Hospital Egypt. Int J Cancer 2020; 148:1562-1574. [PMID: 32997796 DOI: 10.1002/ijc.33321] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/24/2020] [Accepted: 09/08/2020] [Indexed: 12/28/2022]
Abstract
Childhood cancer is a priority in Egypt due to large numbers of children with cancer, suboptimal care and insufficient resources. It is difficult to evaluate progress in survival because of paucity of data in National Cancer Registry. In this study, we studied survival rates and trends in survival of the largest available cohort of children with cancer (n = 15 779, aged 0-18 years) from Egypt between 2007 and 2017, treated at Children's Cancer Hospital Egypt-(CCHE), representing 40% to 50% of all childhood cancers across Egypt. We estimated 5-year overall survival (OS) for 14 808 eligible patients using Kaplan-Meier method, and determined survival trends using Cox regression by single year of diagnosis and by diagnosis periods. We compared age-standardized rates to international benchmarks in England and the United States, identified cancers with inferior survival and provided recommendations for improvement. Five-year OS was 72.1% (95% CI 71.3-72.9) for all cancers combined, and survival trends increased significantly by single year of diagnosis (P < .001) and by calendar periods from 69.6% to 74.2% (P < .0001) between 2007-2012 and 2013-2017. Survival trends improved significantly for leukemias, lymphomas, CNS tumors, neuroblastoma, hepatoblastoma and Ewing Sarcoma. Survival was significantly lower by 9% and 11.2% (P < .001) than England and the United States, respectively. Significantly inferior survival was observed for the majority of cancers. Although survival trends are improving for childhood cancers in Egypt/CCHE, survival is still inferior in high-income countries. We provide evidence-based recommendations to improve survival in Egypt by reflecting on current obstacles in care, with further implications on practice and policy.
Collapse
Affiliation(s)
- Ranin M Soliman
- Department of Continuing Education, University of Oxford, Oxford, UK.,Health Economics and Value Unit, Children's Cancer Hospital 57357 Egypt (CCHE), Cairo, Egypt
| | - Alaa Elhaddad
- Paediatric Oncology Department, Children's Cancer Hospital 57357 Egypt (CCHE), Cairo, Egypt.,Paediatric Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Jason Oke
- Nuffield Department of Primary Care Health Sciences, Centre for Evidence Based Medicine, University of Oxford, Oxford, UK
| | - Wael Eweida
- Chief Operating Office, Children's Cancer Hospital 57357 Egypt (CCHE), Cairo, Egypt
| | - Iman Sidhom
- Paediatric Oncology Department, Children's Cancer Hospital 57357 Egypt (CCHE), Cairo, Egypt.,Paediatric Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Sonia Ahmed
- Paediatric Oncology Department, Children's Cancer Hospital 57357 Egypt (CCHE), Cairo, Egypt.,Paediatric Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Hany Abdelrahman
- Paediatric Oncology Department, Children's Cancer Hospital 57357 Egypt (CCHE), Cairo, Egypt.,Paediatric Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Emad Moussa
- Paediatric Oncology Department, Children's Cancer Hospital 57357 Egypt (CCHE), Cairo, Egypt.,Clinical Oncology Department, Menoufia University, Al Minufya, Egypt
| | - Mohamed Fawzy
- Paediatric Oncology Department, Children's Cancer Hospital 57357 Egypt (CCHE), Cairo, Egypt.,Paediatric Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Manal Zamzam
- Paediatric Oncology Department, Children's Cancer Hospital 57357 Egypt (CCHE), Cairo, Egypt.,Paediatric Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Wael Zekri
- Paediatric Oncology Department, Children's Cancer Hospital 57357 Egypt (CCHE), Cairo, Egypt.,Paediatric Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Hanafy Hafez
- Paediatric Oncology Department, Children's Cancer Hospital 57357 Egypt (CCHE), Cairo, Egypt.,Paediatric Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mohamed Sedky
- Paediatric Oncology Department, Children's Cancer Hospital 57357 Egypt (CCHE), Cairo, Egypt.,Paediatric Department, National Research Centre, Giza, Egypt
| | - Amr Abdalla
- Paediatric Oncology Department, Children's Cancer Hospital 57357 Egypt (CCHE), Cairo, Egypt.,Paediatric Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mahmoud Hammad
- Paediatric Oncology Department, Children's Cancer Hospital 57357 Egypt (CCHE), Cairo, Egypt.,Paediatric Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Hossam Elzomor
- Paediatric Oncology Department, Children's Cancer Hospital 57357 Egypt (CCHE), Cairo, Egypt.,Paediatric Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Sahar Ahmed
- Paediatric Oncology Department, Children's Cancer Hospital 57357 Egypt (CCHE), Cairo, Egypt.,Paediatric Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Madeha Awad
- Paediatric Oncology Department, Children's Cancer Hospital 57357 Egypt (CCHE), Cairo, Egypt.,Department of Paediatric Oncology, Nasser Institute for Research and Treatment, Cairo, Egypt
| | - Sayed Abdelhameed
- Paediatric Oncology Department, Children's Cancer Hospital 57357 Egypt (CCHE), Cairo, Egypt.,Paediatric Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Enas Mohsen
- Paediatric Oncology Department, Children's Cancer Hospital 57357 Egypt (CCHE), Cairo, Egypt.,Clinical Oncology Department, Beni-Suef University, Beni-Suef, Egypt
| | - Lobna Shalaby
- Paediatric Oncology Department, Children's Cancer Hospital 57357 Egypt (CCHE), Cairo, Egypt.,Paediatric Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Heba Fouad
- World Health Organization, Non-communicable Diseases Surveillance Unit, Eastern Mediterranean Regional Office (EMRO), Cairo, Egypt
| | - Nourhan Tarek
- Health Economics and Value Unit, Children's Cancer Hospital 57357 Egypt (CCHE), Cairo, Egypt
| | - Sherif Abouelnaga
- Paediatric Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt.,Chief Executive Office, Children's Cancer Hospital 57357 Egypt (CCHE), Cairo, Egypt
| | - Carl Heneghan
- Nuffield Department of Primary Care Health Sciences, Centre for Evidence Based Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
42
|
Schengrund CL. Gangliosides and Neuroblastomas. Int J Mol Sci 2020; 21:E5313. [PMID: 32726962 PMCID: PMC7432824 DOI: 10.3390/ijms21155313] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/09/2020] [Accepted: 07/18/2020] [Indexed: 12/19/2022] Open
Abstract
The focus of this review is the ganglio-series of glycosphingolipids found in neuroblastoma (NB) and the myriad of unanswered questions associated with their possible role(s) in this cancer. NB is one of the more common solid malignancies of children. Five-year survival for those diagnosed with low risk NB is 90-95%, while that for children with high-risk NB is around 40-50%. Much of the survival rate reflects age of diagnosis with children under a year having a much better prognosis than those over two. Identification of expression of GD2 on the surface of most NB cells led to studies of the effectiveness and subsequent approval of anti-GD2 antibodies as a treatment modality. Despite much success, a subset of patients, possibly those whose tumors fail to express concentrations of gangliosides such as GD1b and GT1b found in tumors from patients with a good prognosis, have tumors refractory to treatment. These observations support discussion of what is known about control of ganglioside synthesis, and their actual functions in NB, as well as their possible relationship to treatment response.
Collapse
Affiliation(s)
- Cara-Lynne Schengrund
- Department of Biochemistry and Molecular Biology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| |
Collapse
|
43
|
Schömel N, Geisslinger G, Wegner MS. Influence of glycosphingolipids on cancer cell energy metabolism. Prog Lipid Res 2020; 79:101050. [PMID: 32592726 DOI: 10.1016/j.plipres.2020.101050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022]
Abstract
A growing number of studies describe a connection between glycosphingolipids (GSLs) and glutamine metabolism, glucose metabolism and mitochondrial dysfunction in cancer cells. Since deregulated cell energy metabolism is one of cancer cells hallmarks, investigating this connection is an important step in the development of anti-cancer therapies. GSL species are often aberrantly regulated in human cancers. They cluster in signaling platforms in the plasma membrane and organelle membranes in so called glycosphingolipid enriched microdomains (GEMs), thereby regulating cell signaling pathways. The most important glutamine transporter for epithelial cells, alanine-serine-cysteine transporter 2 (ASCT2) locates in GEMs and is regulated by GEM composition. The accumulation of glucosylceramide and lactosylceramide in mitochondria associated ER membranes (MAMs) leads to increased oxidative phosphorylation. This increases mitochondrial reactive oxygen species (ROS) levels and influences mitochondrial dynamics. Here, we review current knowledge about deregulated GSL species in cancer, GSL influence on glutamine and glucose metabolism. In addition, the role of GSLs in MAMs, oxidative phosphorylation (OXPHOS) and mitochondrial dynamics with a special focus on mechanistic target of rapamycin (mTOR) signaling is discussed. mTOR seems to play a pivotal role in the connection between GSLs and glutamine metabolism as well as in mitochondrial signaling.
Collapse
Affiliation(s)
- Nina Schömel
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Gerd Geisslinger
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology (TMP), Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Marthe-Susanna Wegner
- pharmazentrum frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany; School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
44
|
Voeller J, Erbe AK, Slowinski J, Rasmussen K, Carlson PM, Hoefges A, VandenHeuvel S, Stuckwisch A, Wang X, Gillies SD, Patel RB, Farrel A, Rokita JL, Maris J, Hank JA, Morris ZS, Rakhmilevich AL, Sondel PM. Combined innate and adaptive immunotherapy overcomes resistance of immunologically cold syngeneic murine neuroblastoma to checkpoint inhibition. J Immunother Cancer 2019; 7:344. [PMID: 31810498 PMCID: PMC6898936 DOI: 10.1186/s40425-019-0823-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/13/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Unlike some adult cancers, most pediatric cancers are considered immunologically cold and generally less responsive to immunotherapy. While immunotherapy has already been incorporated into standard of care treatment for pediatric patients with high-risk neuroblastoma, overall survival remains poor. In a mouse melanoma model, we found that radiation and tumor-specific immunocytokine generate an in situ vaccination response in syngeneic mice bearing large tumors. Here, we tested whether a novel immunotherapeutic approach utilizing radiation and immunocytokine together with innate immune stimulation could generate a potent antitumor response with immunologic memory against syngeneic murine neuroblastoma. METHODS Mice bearing disialoganglioside (GD2)-expressing neuroblastoma tumors (either NXS2 or 9464D-GD2) were treated with radiation and immunotherapy (including anti-GD2 immunocytokine with or without anti-CTLA-4, CpG and anti-CD40 monoclonal antibody). Tumor growth, animal survival and immune cell infiltrate were analyzed in the tumor microenvironment in response to various treatment regimens. RESULTS NXS2 had a moderate tumor mutation burden (TMB) while N-MYC driven 9464D-GD2 had a low TMB, therefore the latter served as a better model for high-risk neuroblastoma (an immunologically cold tumor). Radiation and immunocytokine induced a potent in situ vaccination response against NXS2 tumors, but not in the 9464D-GD2 tumor model. Addition of checkpoint blockade with anti-CTLA-4 was not effective alone against 9464D-GD2 tumors; inclusion of CpG and anti-CD40 achieved a potent antitumor response with decreased T regulatory cells within the tumors and induction of immunologic memory. CONCLUSIONS These data suggest that a combined innate and adaptive immunotherapeutic approach can be effective against immunologically cold syngeneic murine neuroblastoma. Further testing is needed to determine how these concepts might translate into development of more effective immunotherapeutic approaches for the treatment of clinically high-risk neuroblastoma.
Collapse
Affiliation(s)
- Julie Voeller
- Department of Pediatrics, University of Wisconsin, 4159 WIMR Bldg., UWCCC, 1111 Highland Ave, Madison, WI, 53711, USA
| | - Amy K Erbe
- Department of Human Oncology, University of Wisconsin, 4159 WIMR Bldg., UWCCC, 1111 Highland Ave, Madison, WI, 53711, USA
| | - Jacob Slowinski
- Department of Human Oncology, University of Wisconsin, 4159 WIMR Bldg., UWCCC, 1111 Highland Ave, Madison, WI, 53711, USA
| | - Kayla Rasmussen
- Department of Human Oncology, University of Wisconsin, 4159 WIMR Bldg., UWCCC, 1111 Highland Ave, Madison, WI, 53711, USA
| | - Peter M Carlson
- Department of Human Oncology, University of Wisconsin, 4159 WIMR Bldg., UWCCC, 1111 Highland Ave, Madison, WI, 53711, USA
| | - Anna Hoefges
- Department of Human Oncology, University of Wisconsin, 4159 WIMR Bldg., UWCCC, 1111 Highland Ave, Madison, WI, 53711, USA
| | - Sabrina VandenHeuvel
- Department of Human Oncology, University of Wisconsin, 4159 WIMR Bldg., UWCCC, 1111 Highland Ave, Madison, WI, 53711, USA
| | - Ashley Stuckwisch
- Department of Human Oncology, University of Wisconsin, 4159 WIMR Bldg., UWCCC, 1111 Highland Ave, Madison, WI, 53711, USA
| | - Xing Wang
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA
| | | | - Ravi B Patel
- Department of Human Oncology, University of Wisconsin, 4159 WIMR Bldg., UWCCC, 1111 Highland Ave, Madison, WI, 53711, USA
| | - Alvin Farrel
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - John Maris
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jacquelyn A Hank
- Department of Human Oncology, University of Wisconsin, 4159 WIMR Bldg., UWCCC, 1111 Highland Ave, Madison, WI, 53711, USA
| | - Zachary S Morris
- Department of Human Oncology, University of Wisconsin, 4159 WIMR Bldg., UWCCC, 1111 Highland Ave, Madison, WI, 53711, USA
| | - Alexander L Rakhmilevich
- Department of Human Oncology, University of Wisconsin, 4159 WIMR Bldg., UWCCC, 1111 Highland Ave, Madison, WI, 53711, USA
| | - Paul M Sondel
- Department of Pediatrics, University of Wisconsin, 4159 WIMR Bldg., UWCCC, 1111 Highland Ave, Madison, WI, 53711, USA
- Department of Human Oncology, University of Wisconsin, 4159 WIMR Bldg., UWCCC, 1111 Highland Ave, Madison, WI, 53711, USA
| |
Collapse
|
45
|
Shusterman S, Naranjo A, Van Ryn C, Hank JA, Parisi MT, Shulkin BL, Servaes S, London WB, Shimada H, Gan J, Gillies SD, Maris JM, Park JR, Sondel PM. Antitumor Activity and Tolerability of hu14.18-IL2 with GMCSF and Isotretinoin in Recurrent or Refractory Neuroblastoma: A Children's Oncology Group Phase II Study. Clin Cancer Res 2019; 25:6044-6051. [PMID: 31358541 DOI: 10.1158/1078-0432.ccr-19-0798] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/03/2019] [Accepted: 07/12/2019] [Indexed: 01/12/2023]
Abstract
PURPOSE Combining anti-GD2 (disialoganglioside) mAb with GM-CSF, IL2, and isotretinoin is now FDA-approved for high-risk neuroblastoma minimal residual disease (MRD) therapy. The humanized anti-GD2 antibody conjugated to IL2 (hu14.18-IL2) has clinical activity in neuroblastoma and is more effective in neuroblastoma-bearing mice than antibody and cytokine given separately. We therefore evaluated the safety, tolerability, and antitumor activity of hu14.18-IL2 given with GM-CSF and isotretinoin in a schedule similar to standard MRD therapy. PATIENTS AND METHODS Hu14.18-IL2 was given at the recommended phase II dose of 12 mg/m2/day on days 4-6 of a 28-day cycle with GM-CSF (250 mg/m2/dose, days 1-2 and 8-14) and isotretinoin (160 mg/m2/day, days 11-25). Tolerability was determined on the basis of the number of unacceptable toxicities observed. Response was evaluated separately for patients with disease measurable by standard radiologic criteria (stratum 1), and for patients with disease evaluable only by I123-metaiodobenzylguanidine (I123-MIBG) scan and/or bone marrow histology (stratum 2). RESULTS Fifty-two patients with recurrent or refractory neuroblastoma were enrolled; 51 were evaluable for toxicity and 45 were evaluable for response. Four patients had unacceptable toxicities, well below the protocol-defined rule for tolerability. Other grade 3 and 4 nonhematologic toxicities were expected and reversible. No responses were seen in stratum 1 (n = 14). In stratum 2 (n = 31), 5 objective responses were confirmed by central review (3 complete, 2 partial). CONCLUSIONS Hu14.18-IL2 given in combination with GM-CSF and isotretinoin is safe and tolerable. Patients with MIBG and/or bone marrow-only disease had a 16.1% response rate, confirming activity of the combination.
Collapse
Affiliation(s)
- Suzanne Shusterman
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, Massachusetts.
| | - Arlene Naranjo
- Children's Oncology Group Statistics and Data Center, University of Florida, Gainesville, Florida
| | - Collin Van Ryn
- Coordinating Center for Biometric Research, University of Minnesota, Twin Cities, Minneapolis, Minnesota
| | - Jaquelyn A Hank
- Departments of Pediatrics, Human Oncology and Genetics and the University of Wisconsin, Madison, Wisconsin
| | - Marguerite T Parisi
- Seattle Children's Hospital and the University of Washington, Seattle, Washington
| | - Barry L Shulkin
- St. Jude Children's Research Hospital and the University of Tennessee Health Science Center, University of Tennessee, Memphis, Tennessee
| | - Sabah Servaes
- Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Wendy B London
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Boston, Massachusetts
| | - Hiroyuki Shimada
- Children's Hospital of Los Angeles and University of Southern California, Los Angeles, California
| | - Jacek Gan
- Departments of Pediatrics, Human Oncology and Genetics and the University of Wisconsin, Madison, Wisconsin
| | | | - John M Maris
- Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Julie R Park
- Seattle Children's Hospital and the University of Washington, Seattle, Washington
| | - Paul M Sondel
- Departments of Pediatrics, Human Oncology and Genetics and the University of Wisconsin, Madison, Wisconsin
| |
Collapse
|