1
|
Pickles SR, Gonzalez Bejarano J, Narayan A, Daughrity L, Maroto Cidfuentes C, Reeves MM, Yue M, Castellanos Otero P, Estades Ayuso V, Dunmore J, Song Y, Tong J, DeTure M, Rawlinson B, Castanedes‐Casey M, Dulski J, Cerquera‐Cleves C, Zhang Y, Josephs KA, Dickson DW, Petrucelli L, Wszolek ZK, Prudencio M. TDP-43 Cryptic RNAs in Perry Syndrome: Differences across Brain Regions and TDP-43 Proteinopathies. Mov Disord 2025; 40:662-671. [PMID: 39788898 PMCID: PMC12006891 DOI: 10.1002/mds.30104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Perry syndrome (PS) is a rare and fatal hereditary autosomal dominant neurodegenerative disorder caused by mutations in dynactin (DCTN1). PS brains accumulate inclusions positive for ubiquitin, transactive-response DNA-binding protein of 43 kDa (TDP-43), and to a lesser extent dynactin. OBJECTIVES Little is known regarding the contributions of TDP-43, an RNA binding protein that represses cryptic exon inclusion, in PS. Therefore, we sought to identify the degree of TDP-43 dysfunction in two regions of PS brains. METHODS We evaluated the levels of insoluble pTDP-43 and TDP-43-regulated cryptic RNAs and protein in the caudate nucleus and substantia nigra of 7 PS cases, 12 cases of frontotemporal lobar degeneration (FTLD) with TDP-43 pathology, and 11 cognitively healthy controls without TDP-43 pathology. RESULTS Insoluble pTDP-43 protein levels were detected in PS brains to a similar extent in the caudate nucleus and substantia nigra but lower than those in FTLD brains. The caudate nucleus of PS showed accumulation of eight TDP-43-regulated cryptic RNAs (ACTL6B, CAMK2B, STMN2, UNC13A, KCNQ2, ATG4B, GPSM2, and HDGFL2) and cryptic protein (HDGFL2) characteristic of FTLD. Conversely, only one cryptic target, UNC13A, reached significance in the substantia nigra despite similar pTDP-43 levels. CONCLUSION We detected TDP-43 cryptic RNAs and protein in PS caudate nucleus. Given the importance of cryptic exon biology in the development of biomarkers, and the identification of novel targets for therapeutic intervention, it is imperative we understand the consequences of TDP-43 dysfunction across different brain regions and determine the targets that are specific and common to TDP-43 proteinopathies. © 2025 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Sarah R. Pickles
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Neurobiology of Disease Graduate Program, Mayo Graduate SchoolMayo Clinic College of MedicineJacksonvilleFloridaUSA
| | | | - Anand Narayan
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | | | | | | | - Mei Yue
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | | | - Virginia Estades Ayuso
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Neurobiology of Disease Graduate Program, Mayo Graduate SchoolMayo Clinic College of MedicineJacksonvilleFloridaUSA
| | - Judy Dunmore
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | - Yuping Song
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | - Jimei Tong
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | - Michael DeTure
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | | | | | - Jaroslaw Dulski
- Department of NeurologyMayo ClinicJacksonvilleFloridaUSA
- Division of Neurological and Psychiatric Nursing, Faculty of Health SciencesMedical University of GdanskGdanskPoland
- Neurology DepartmentSt Adalbert Hospital, Copernicus PL Ltd.GdanskPoland
| | - Catalina Cerquera‐Cleves
- Department of Neurosciences, Neurology UnitHospital Universitario San IgnacioBogotaColombia
- CHU de Québec Research Center, Axe NeurosciencesUniversité LavalQuebec CityQuebecCanada
| | - Yongjie Zhang
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Neurobiology of Disease Graduate Program, Mayo Graduate SchoolMayo Clinic College of MedicineJacksonvilleFloridaUSA
| | | | - Dennis W. Dickson
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Neurobiology of Disease Graduate Program, Mayo Graduate SchoolMayo Clinic College of MedicineJacksonvilleFloridaUSA
| | - Leonard Petrucelli
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Neurobiology of Disease Graduate Program, Mayo Graduate SchoolMayo Clinic College of MedicineJacksonvilleFloridaUSA
| | | | - Mercedes Prudencio
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Neurobiology of Disease Graduate Program, Mayo Graduate SchoolMayo Clinic College of MedicineJacksonvilleFloridaUSA
| |
Collapse
|
2
|
Santiago J, Pocevičiūtė D, Wennström M. Perivascular phosphorylated TDP-43 inclusions are associated with Alzheimer's disease pathology and loss of CD146 and Aquaporin-4. Brain Pathol 2025; 35:e13304. [PMID: 39251230 PMCID: PMC11835440 DOI: 10.1111/bpa.13304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/16/2024] [Indexed: 09/11/2024] Open
Abstract
The majority of patients with Alzheimer's disease (AD) exhibit aggregates of Trans-active response DNA binding protein 43 (TDP-43) in their hippocampus, which is associated with a more aggressive disease progression. The TDP-43 inclusions are commonly found in neurons, but also in astrocytes. The impact of the inclusions in astrocytes is less known. In the current study, we investigate the presence of phosphorylated TDP-43 (pTDP-43) inclusions in astrocytic endfeet and their potential association with blood-brain barrier (BBB) damage, glymphatic system dysfunction, and AD pathology. By staining postmortem hippocampal sections from AD patients and non-demented controls against TDP-43 and pTDP-43 together with the astrocytic markers glial fibrillary acidic protein (GFAP), astrocytic endfeet marker Aquaporin-4 (AQP4), and markers for BBB alterations (CD146) and leakiness (Immunoglobulin A), we demonstrate a close association between perivascular pTDP-43 or TDP-43 inclusions and GFAP or AQP4. These perivascular inclusions were more prominent in AD and correlated with the disease severity and loss of CD146 and AQP4. The findings indicate a relationship between pTDP-43 accumulation in astrocytic endfeet and BBB and glymphatic system dysfunction, which may contribute to the downstream pathological events seen in AD patients and the aggressive disease progression.
Collapse
Affiliation(s)
- Jessica Santiago
- Cognitive Disorder Research Unit, Department of Clinical Sciences MalmöLund UniversityMalmöSweden
| | - Dovilė Pocevičiūtė
- Cognitive Disorder Research Unit, Department of Clinical Sciences MalmöLund UniversityMalmöSweden
| | | | - Malin Wennström
- Cognitive Disorder Research Unit, Department of Clinical Sciences MalmöLund UniversityMalmöSweden
| |
Collapse
|
3
|
Wisse LEM, Wuestefeld A, Murray ME, Jagust W, La Joie R. Role of tau versus TDP-43 pathology on medial temporal lobe atrophy in aging and Alzheimer's disease. Alzheimers Dement 2025; 21:e14582. [PMID: 39985478 PMCID: PMC11846482 DOI: 10.1002/alz.14582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/16/2024] [Accepted: 01/12/2025] [Indexed: 02/24/2025]
Abstract
Hippocampal atrophy on magnetic resonance imaging is an important biomarker in Alzheimer's disease (AD). While hippocampal atrophy was thought to result from tau tangles in AD, different neuropathologies can lead to hippocampal atrophy, especially TAR DNA-binding protein 43 (TDP-43) pathology. In this narrative review, we evaluate existing studies on the relative contribution of tau and TDP-43 pathology to medial temporal lobe (MTL) atrophy. We report a clear association of both tau and TDP-43 neuropathology with MTL atrophy, even after correcting for other neuropathologies. Next, we discuss a potential synergism between tau and TDP-43 and the relative timing of the effects of both neuropathologies. Finally, avenues for future research will be discussed. A better understanding of the interplay between tau and TDP-43 neuropathologies and their effect on atrophy will help with the development of more specific biomarkers for limbic-predominant age-related TDP-43 encephalopathy and pinpointing of the optimal timing for testing anti-tau and anti-TDP-43 treatments in trials. HIGHLIGHTS: Both tau and TAR DNA-binding protein 43 (TDP-43) pathology contribute to medial temporal lobe atrophy. There is a positive association between tau and TDP-43 and potentially a synergism. It is unclear if tau and TDP-43 have an additive or synergistic effect on atrophy. The relative timing of the tau and TDP-43 effects on atrophy remains unclear. Clarifying the interplay between tau and TDP-43 will help improve magnetic resonance imaging biomarkers.
Collapse
Affiliation(s)
| | - Anika Wuestefeld
- Clinical Memory Research Unit, Department of Clinical Sciences MalmöLund UniversityLundSweden
| | - Melissa E. Murray
- Department of NeuroscienceMayo Clinic FloridaJacksonvilleFloridaUSA
- Department of Laboratory Medicine and PathologyMayo Clinic FloridaJacksonvilleFloridaUSA
| | - William Jagust
- Department of NeuroscienceUniversity of California BerkeleyBerkeleyCaliforniaUSA
- Molecular Biophysics and Integrated BioimagingLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
4
|
Garcia FJ, Heiman M. Molecular and cellular characteristics of cerebrovascular cell types and their contribution to neurodegenerative diseases. Mol Neurodegener 2025; 20:13. [PMID: 39881338 PMCID: PMC11780804 DOI: 10.1186/s13024-025-00799-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/07/2025] [Indexed: 01/31/2025] Open
Abstract
Many diseases and disorders of the nervous system suffer from a lack of adequate therapeutics to halt or slow disease progression, and to this day, no cure exists for any of the fatal neurodegenerative diseases. In part this is due to the incredible diversity of cell types that comprise the brain, knowledge gaps in understanding basic mechanisms of disease, as well as a lack of reliable strategies for delivering new therapeutic modalities to affected areas. With the advent of single cell genomics, it is now possible to interrogate the molecular characteristics of diverse cell populations and their alterations in diseased states. More recently, much attention has been devoted to cell populations that have historically been difficult to profile with bulk single cell technologies. In particular, cell types that comprise the cerebrovasculature have become increasingly better characterized in normal and neurodegenerative disease contexts. In this review, we describe the current understanding of cerebrovasculature structure, function, and cell type diversity and its role in the mechanisms underlying various neurodegenerative diseases. We focus on human and mouse cerebrovasculature studies and discuss both origins and consequences of cerebrovascular dysfunction, emphasizing known cell type-specific vulnerabilities in neuronal and cerebrovascular cell populations. Lastly, we highlight how novel insights into cerebrovascular biology have impacted the development of modern therapeutic approaches and discuss outstanding questions in the field.
Collapse
Affiliation(s)
- Francisco J Garcia
- The Picower Institute for Learning and Memory, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Myriam Heiman
- The Picower Institute for Learning and Memory, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA.
| |
Collapse
|
5
|
Olofsson HE, Englund E. Increased frontocortical microvascular raspberry density in frontotemporal lobar degeneration compared to Lewy body disease and control cases: a neuropathological study. FREE NEUROPATHOLOGY 2025; 6:7. [PMID: 40052111 PMCID: PMC11884261 DOI: 10.17879/freeneuropathology-2025-6178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 02/20/2025] [Indexed: 03/09/2025]
Abstract
Background: Brain raspberries are histologically defined microvascular entities that are highly prevalent in the neocortex. Increased cortical raspberry density occurs in vascular dementia, but also with advancing age. Here, we examined the raspberry density in two neurodegenerative diseases, wherein vascular alterations distinct from conventional vascular risk factors have been indicated: frontotemporal lobar degeneration (FTLD) and Lewy body disease (LBD). Methods: This retrospective study included 283 clinically autopsied individuals: 105 control cases without neurodegenerative disease, 98 FTLD cases (mainly FTLD-tau and FTLD-TDP), and 80 LBD cases (mainly neocortical). The raspberry density was quantified on haematoxylin-eosin-stained tissue sections from the frontal cortex, and the frontocortical atrophy was ranked 0-3. Results: There was a higher raspberry density in the FTLD group compared to both other groups (P ≤ 0.001; Games-Howell post hoc test). The difference between the FTLD and LBD groups remained significant in multiple linear regression models that included age, sex, and either brain weight (P = 0.034) or cortical atrophy (P = 0.012). The difference between the FTLD and control groups remained significant when including age, sex, and brain weight in the model (P = 0.004), while a trend towards significance was demonstrated when including age, sex, and cortical atrophy (P = 0.054). Further analyses of the FTLD group revealed a trend towards a positive correlation between raspberry density and cortical atrophy (P = 0.062; Spearman rank correlation). Comparisons of FTLD subgroups were inconclusive. Conclusion: The frontocortical raspberry density is increased in FTLD. An examination of the raspberry density in relation to a quantitative measure of cortical atrophy is motivated to validate the results. Future studies are needed to determine whether increased raspberry density in FTLD could function as a marker for more widespread vascular alterations, and to elucidate the relation between microvascular alterations and neurodegenerative disease.
Collapse
Affiliation(s)
- Henric Ek Olofsson
- Division of Pathology, Department of Clinical Sciences
Lund, Lund University, Lund, Sweden
| | - Elisabet Englund
- Division of Pathology, Department of Clinical Sciences
Lund, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Kloske CM, Mahinrad S, Barnum CJ, Batista AF, Bradshaw EM, Butts B, Carrillo MC, Chakrabarty P, Chen X, Craft S, Da Mesquita S, Dabin LC, Devanand D, Duran‐Laforet V, Elyaman W, Evans EE, Fitzgerald‐Bocarsly P, Foley KE, Harms AS, Heneka MT, Hong S, Huang YA, Jackvony S, Lai L, Guen YL, Lemere CA, Liddelow SA, Martin‐Peña A, Orr AG, Quintana FJ, Ramey GD, Rexach JE, Rizzo SJS, Sexton C, Tang AS, Torrellas JG, Tsai AP, van Olst L, Walker KA, Wharton W, Tansey MG, Wilcock DM. Advancements in Immunity and Dementia Research: Highlights from the 2023 AAIC Advancements: Immunity Conference. Alzheimers Dement 2025; 21:e14291. [PMID: 39692624 PMCID: PMC11772715 DOI: 10.1002/alz.14291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/23/2024] [Accepted: 09/07/2024] [Indexed: 12/19/2024]
Abstract
The immune system is a key player in the onset and progression of neurodegenerative disorders. While brain resident immune cell-mediated neuroinflammation and peripheral immune cell (eg, T cell) infiltration into the brain have been shown to significantly contribute to Alzheimer's disease (AD) pathology, the nature and extent of immune responses in the brain in the context of AD and related dementias (ADRD) remain unclear. Furthermore, the roles of the peripheral immune system in driving ADRD pathology remain incompletely elucidated. In March of 2023, the Alzheimer's Association convened the Alzheimer's Association International Conference (AAIC), Advancements: Immunity, to discuss the roles of the immune system in ADRD. A wide range of topics were discussed, such as animal models that replicate human pathology, immune-related biomarkers and clinical trials, and lessons from other fields describing immune responses in neurodegeneration. This manuscript presents highlights from the conference and outlines avenues for future research on the roles of immunity in neurodegenerative disorders. HIGHLIGHTS: The immune system plays a central role in the pathogenesis of Alzheimer's disease. The immune system exerts numerous effects throughout the brain on amyloid-beta, tau, and other pathways. The 2023 AAIC, Advancements: Immunity, encouraged discussions and collaborations on understanding the role of the immune system.
Collapse
|
7
|
Folloso MC, Villaraza SG, Yi-Wen L, Pek-Lan K, Tanaka T, Hilal S, Venketasubramanian N, Li-Hsian Chen C. The AHA/ASA and DSM-V diagnostic criteria for vascular cognitive impairment identify cases with predominant vascular pathology. Int J Stroke 2024; 19:925-934. [PMID: 38651759 PMCID: PMC11408959 DOI: 10.1177/17474930241252556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
BACKGROUND There are major challenges in determining the etiology of vascular cognitive impairment (VCI) clinically, especially in the presence of mixed pathologies, such as vascular and amyloid. Most recently, two criteria (American Heart Association/American Stroke Association (AHA/ASA) and Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-V)) have been proposed for the clinical diagnosis of VCI but have not as yet been validated using neuroimaging. AIMS This study aims to determine whether the AHA/ASA and DSM-V criteria for VCI can distinguish between cases with predominantly vascular pathology and cases with mixed pathology. METHODS A total of 186 subjects were recruited from a cross-sectional memory clinic-based study at the National University Hospital, Singapore. All subjects underwent clinical and neuropsychological assessment, magnetic resonance imaging (MRI) and carbon 11-labeled Pittsburgh Compound B ([11C] PiB) positron emission tomography (PET) scans. Diagnosis of the etiological subtypes of VCI (probable vascular mild cognitive impairment (VaMCI), possible VaMCI, non-VaMCI, probable vascular dementia (VaD), possible VaD, non-VaD) were performed following AHA/ASA and DSM-V criteria. Brain amyloid burden was determined for each subject with standardized uptake value ratio (SUVR) values ⩾1.5 classified as amyloid positive. RESULTS Using κ statistics, both criteria had excellent agreement for probable VaMCI, probable VaD, and possible VaD (κ = 1.00), and good for possible VaMCI (κ = 0.71). Using the AHA/ASA criteria, the amyloid positivity of probable VaMCI (3.8%) and probable VaD (15%) was significantly lower compared to possible VaMCI (26.7%), non-VaMCI (33.3%), possible VaD (73.3%), and non-VaD (76.2%) (p < 0.001). Similarly, using the DSM-V criteria, the amyloid positivity of probable VaMCI (3.8%) and probable VaD (15%) was significantly lower compared to possible VaMCI (26.3%), non-VaMCI (32.1%), possible VaD (73.3%), and non-VaD (76.2%) (p < 0.001). In both criteria, there was good agreement in differentiating individuals with non-VaD and possible VaD, with significantly higher (p < 0.001) global [11C]-PiB SUVR, from individuals with probable VaMCI and probable VaD, who had predominant vascular pathology. CONCLUSION The AHA/ASA and DSM-V criteria for VCI can identify VCI cases with little to no concomitant amyloid pathology, hence supporting the utility of AHA/ASA and DSM-V criteria in diagnosing patients with predominant vascular pathology. DATA ACCESS STATEMENT Data supporting this study are available from the Memory Aging and Cognition Center, National University of Singapore. Access to the data is subject to approval and a data sharing agreement due to University policy.
Collapse
Affiliation(s)
- Melmar C Folloso
- Memory, Ageing and Cognition Centre, National University Health System, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University Hospital, Singapore
| | - Steven G Villaraza
- Memory, Ageing and Cognition Centre, National University Health System, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University Hospital, Singapore
| | - Lo Yi-Wen
- Clinical Imaging Research Centre, National University of Singapore, Singapore
| | - Khong Pek-Lan
- Clinical Imaging Research Centre, National University of Singapore, Singapore
| | - Tomotaka Tanaka
- Memory, Ageing and Cognition Centre, National University Health System, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Saima Hilal
- Memory, Ageing and Cognition Centre, National University Health System, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | | | - Christopher Li-Hsian Chen
- Memory, Ageing and Cognition Centre, National University Health System, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University Hospital, Singapore
| |
Collapse
|
8
|
Shahidehpour RK, Nelson PT, Bachstetter AD. A pathologic study of Perivascular pTDP-43 Lin bodies in LATE-NC. Acta Neuropathol Commun 2024; 12:114. [PMID: 38997773 PMCID: PMC11241908 DOI: 10.1186/s40478-024-01826-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND TAR DNA-Binding Protein 43 (TDP-43) pathological inclusions are a distinctive feature in dozens of neurodegenerative pathologies, including limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC). Prior investigations identified vascular-associated TDP-43-positive micro-lesions, known as "Lin bodies," located on or near the brain capillaries of some individuals with LATE-NC. This study aimed to investigate the relationship between the accumulation of Lin bodies and glial cells in LATE-NC and the potential co-localization with ferritin, a protein associated with iron storage. Using multiplexed immunohistochemistry and digital pathology tools, we conducted pathological analyses to investigate the relationship between Lin bodies and glial markers (GFAP for astrocytes, IBA1 for microglia) and ferritin. Analyses were conducted on post-mortem brain tissues collected from individuals with pathologically confirmed Alzheimer's disease neuropathological changes (ADNC) and LATE-NC. RESULTS As shown previously, there was a robust association between Lin bodies and GFAP-positive astrocyte processes. Moreover, we also observed Lin bodies frequently co-localizing with ferritin, suggesting a potential link to compromised vascular integrity. Subsequent analyses demonstrated increased astrocytosis near Lin body-positive vessels compared to those without Lin bodies, particularly in ADNC cases. These results suggest that the accumulation of Lin bodies may elicit an increased glial response, particularly among astrocytes, possibly related to impaired vascular integrity. CONCLUSIONS Lin bodies are associated with a local reactive glial response. The strong association of Lin bodies with ferritin suggests that the loss of vascular integrity may be either a cause or a consequence of the pTDP-43 pathology. The reactive glia surrounding the affected vessels could further compromise vascular function.
Collapse
Affiliation(s)
- Ryan K Shahidehpour
- Spinal cord and brain injury research center, Sander-Brown Center on Aging, Department of Neuroscience, University of Kentucky, 741 S. Limestone St, Lexington, KY, 40536, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, University of Kentucky, Lexington, KY, USA
| | - Adam D Bachstetter
- Spinal cord and brain injury research center, Sander-Brown Center on Aging, Department of Neuroscience, University of Kentucky, 741 S. Limestone St, Lexington, KY, 40536, USA.
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA.
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
9
|
Nelson PT, Fardo DW, Wu X, Aung KZ, Cykowski MD, Katsumata Y. Limbic-predominant age-related TDP-43 encephalopathy (LATE-NC): Co-pathologies and genetic risk factors provide clues about pathogenesis. J Neuropathol Exp Neurol 2024; 83:396-415. [PMID: 38613823 PMCID: PMC11110076 DOI: 10.1093/jnen/nlae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2024] Open
Abstract
Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) is detectable at autopsy in more than one-third of people beyond age 85 years and is robustly associated with dementia independent of other pathologies. Although LATE-NC has a large impact on public health, there remain uncertainties about the underlying biologic mechanisms. Here, we review the literature from human studies that may shed light on pathogenetic mechanisms. It is increasingly clear that certain combinations of pathologic changes tend to coexist in aging brains. Although "pure" LATE-NC is not rare, LATE-NC often coexists in the same brains with Alzheimer disease neuropathologic change, brain arteriolosclerosis, hippocampal sclerosis of aging, and/or age-related tau astrogliopathy (ARTAG). The patterns of pathologic comorbidities provide circumstantial evidence of mechanistic interactions ("synergies") between the pathologies, and also suggest common upstream influences. As to primary mediators of vulnerability to neuropathologic changes, genetics may play key roles. Genes associated with LATE-NC include TMEM106B, GRN, APOE, SORL1, ABCC9, and others. Although the anatomic distribution of TDP-43 pathology defines the condition, important cofactors for LATE-NC may include Tau pathology, endolysosomal pathways, and blood-brain barrier dysfunction. A review of the human phenomenology offers insights into disease-driving mechanisms, and may provide clues for diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Peter T Nelson
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky, USA
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - David W Fardo
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| | - Xian Wu
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| | - Khine Zin Aung
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| | - Matthew D Cykowski
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Yuriko Katsumata
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
10
|
Chang K, Ling JP, Redding-Ochoa J, An Y, Li L, Dean SA, Blanchard TG, Pylyukh T, Barrett A, Irwin KE, Moghekar A, Resnick SM, Wong PC, Troncoso JC. Loss of TDP-43 splicing repression occurs early in the aging population and is associated with Alzheimer's disease neuropathologic changes and cognitive decline. Acta Neuropathol 2023; 147:4. [PMID: 38133681 DOI: 10.1007/s00401-023-02653-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 12/23/2023]
Abstract
LATE-NC, the neuropathologic changes of limbic-predominant age-related TAR DNA-binding protein 43 kDa (TDP-43) encephalopathy are frequently associated with Alzheimer's disease (AD) and cognitive impairment in older adults. The association of TDP-43 proteinopathy with AD neuropathologic changes (ADNC) and its impact on specific cognitive domains are not fully understood and whether loss of TDP-43 function occurs early in the aging brain remains unknown. Here, using a large set of autopsies from the Baltimore Longitudinal Study of Aging (BLSA) and another younger cohort, we were able to study brains from subjects 21-109 years of age. Examination of these brains show that loss of TDP-43 splicing repression, as judged by TDP-43 nuclear clearance and expression of a cryptic exon in HDGFL2, first occurs during the 6th decade, preceding by a decade the appearance of TDP-43+ neuronal cytoplasmic inclusions (NCIs). We corroborated this observation using a monoclonal antibody to demonstrate a cryptic exon-encoded neoepitope within HDGFL2 in neurons exhibiting nuclear clearance of TDP-43. TDP-43 nuclear clearance is associated with increased burden of tau pathology. Age at death, female sex, high CERAD neuritic plaque score, and high Braak neurofibrillary stage significantly increase the odds of LATE-NC. Faster rates of cognitive decline on verbal memory (California Verbal Learning Test immediate recall), visuospatial ability (Card Rotations Test), mental status (MMSE) and semantic fluency (Category Fluency Test) were associated with LATE-NC. Notably, the effects of LATE-NC on verbal memory and visuospatial ability are independent of ADNC. However, the effects of TDP-43 nuclear clearance in absence of NCI on the longitudinal trajectories and levels of cognitive measures are not significant. These results establish that loss of TDP-43 splicing repression is an early event occurring in the aging population during the development of TDP-43 proteinopathy and is associated with increased tau pathology. Furthermore, LATE-NC correlates with high levels of ADNC but also has an impact on specific memory and visuospatial functions in aging that is independent of AD.
Collapse
Affiliation(s)
- Koping Chang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department and Graduate Institute of Pathology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, 100225, Taiwan
| | - Jonathan P Ling
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Javier Redding-Ochoa
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Ling Li
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Office of the Chief Medical Examiner, State of Maryland, Baltimore, MD, 21223, USA
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Stephanie A Dean
- Office of the Chief Medical Examiner, State of Maryland, Baltimore, MD, 21223, USA
| | - Thomas G Blanchard
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Tatiana Pylyukh
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Alexander Barrett
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Katherine E Irwin
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Philip C Wong
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Juan C Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
11
|
Carlos AF, Sekiya H, Koga S, Gatto RG, Casey MC, Pham NTT, Sintini I, Machulda MM, Jack CR, Lowe VJ, Whitwell JL, Petrucelli L, Reichard RR, Petersen RC, Dickson DW, Josephs KA. Clinicopathologic features of a novel star-shaped transactive response DNA-binding protein 43 (TDP-43) pathology in the oldest old. J Neuropathol Exp Neurol 2023; 83:36-52. [PMID: 38086178 PMCID: PMC10746697 DOI: 10.1093/jnen/nlad105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023] Open
Abstract
Transactive response DNA-binding protein 43 (TDP-43) pathology is categorized as type A-E in frontotemporal lobar degeneration and as type α-β in Alzheimer disease (AD) based on inclusion type. We screened amygdala slides of 131 cases with varying ages at death, clinical/neuroimaging findings, and AD neuropathologic changes for TDP-43 pathology using anti-phospho-TDP-43 antibodies. Seven cases (5%) only showed atypical TDP-43 inclusions that could not be typed. Immunohistochemistry and immunofluorescence assessed the atypical star-shaped TDP-43 pathology including its distribution, species, cellular localization, and colocalization with tau. All 7 had died at an extremely old age (median: 100 years [IQR: 94-101]) from nonneurological causes and none had dementia (4 cognitively unimpaired, 3 with amnestic mild cognitive impairment). Neuroimaging showed mild medial temporal involvement. Pathologically, the star-shaped TDP-43-positive inclusions were found in medial (subpial) amygdala and, occasionally, in basolateral regions. Hippocampus only showed TDP-43-positive neurites in the fimbria and subiculum while the frontal lobe was free of TDP-43 inclusions. The star-shaped inclusions were better detected with antibodies against N-terminal than C-terminal TDP-43. Double-labeling studies confirmed deposition of TDP-43 within astrocytes and colocalization with tau. We have identified a novel TDP-43 pathology with star-shaped morphology associated with superaging, with a homogeneous clinicopathologic picture, possibly representing a novel, true aging-related TDP-43 pathology.
Collapse
Affiliation(s)
- Arenn F Carlos
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Hiroaki Sekiya
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Rodolfo G Gatto
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Irene Sintini
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mary M Machulda
- Department of Psychiatry (Psychology), Mayo Clinic, Rochester, Minnesota, USA
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - R Ross Reichard
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Keith A Josephs
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
12
|
Licht-Murava A, Meadows SM, Palaguachi F, Song SC, Jackvony S, Bram Y, Zhou C, Schwartz RE, Froemke RC, Orr AL, Orr AG. Astrocytic TDP-43 dysregulation impairs memory by modulating antiviral pathways and interferon-inducible chemokines. SCIENCE ADVANCES 2023; 9:eade1282. [PMID: 37075107 PMCID: PMC10115456 DOI: 10.1126/sciadv.ade1282] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Transactivating response region DNA binding protein 43 (TDP-43) pathology is prevalent in dementia, but the cell type-specific effects of TDP-43 pathology are not clear, and therapeutic strategies to alleviate TDP-43-linked cognitive decline are lacking. We found that patients with Alzheimer's disease or frontotemporal dementia have aberrant TDP-43 accumulation in hippocampal astrocytes. In mouse models, induction of widespread or hippocampus-targeted accumulation in astrocytic TDP-43 caused progressive memory loss and localized changes in antiviral gene expression. These changes were cell-autonomous and correlated with impaired astrocytic defense against infectious viruses. Among the changes, astrocytes had elevated levels of interferon-inducible chemokines, and neurons had elevated levels of the corresponding chemokine receptor CXCR3 in presynaptic terminals. CXCR3 stimulation altered presynaptic function and promoted neuronal hyperexcitability, akin to the effects of astrocytic TDP-43 dysregulation, and blockade of CXCR3 reduced this activity. Ablation of CXCR3 also prevented TDP-43-linked memory loss. Thus, astrocytic TDP-43 dysfunction contributes to cognitive impairment through aberrant chemokine-mediated astrocytic-neuronal interactions.
Collapse
Affiliation(s)
- Avital Licht-Murava
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Samantha M. Meadows
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Fernando Palaguachi
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Soomin C. Song
- Skirball Institute, Neuroscience Institute, Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA
| | - Stephanie Jackvony
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Yaron Bram
- Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY, USA
| | - Constance Zhou
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Medicine–Rockefeller–Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY USA
| | - Robert E. Schwartz
- Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY, USA
| | - Robert C. Froemke
- Skirball Institute, Neuroscience Institute, Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA
| | - Adam L. Orr
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Anna G. Orr
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Medicine–Rockefeller–Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY USA
| |
Collapse
|
13
|
Nelson PT, Lee EB, Cykowski MD, Alafuzoff I, Arfanakis K, Attems J, Brayne C, Corrada MM, Dugger BN, Flanagan ME, Ghetti B, Grinberg LT, Grossman M, Grothe MJ, Halliday GM, Hasegawa M, Hokkanen SRK, Hunter S, Jellinger K, Kawas CH, Keene CD, Kouri N, Kovacs GG, Leverenz JB, Latimer CS, Mackenzie IR, Mao Q, McAleese KE, Merrick R, Montine TJ, Murray ME, Myllykangas L, Nag S, Neltner JH, Newell KL, Rissman RA, Saito Y, Sajjadi SA, Schwetye KE, Teich AF, Thal DR, Tomé SO, Troncoso JC, Wang SHJ, White CL, Wisniewski T, Yang HS, Schneider JA, Dickson DW, Neumann M. LATE-NC staging in routine neuropathologic diagnosis: an update. Acta Neuropathol 2023; 145:159-173. [PMID: 36512061 PMCID: PMC9849315 DOI: 10.1007/s00401-022-02524-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022]
Abstract
An international consensus report in 2019 recommended a classification system for limbic-predominant age-related TDP-43 encephalopathy neuropathologic changes (LATE-NC). The suggested neuropathologic staging system and nomenclature have proven useful for autopsy practice and dementia research. However, some issues remain unresolved, such as cases with unusual features that do not fit with current diagnostic categories. The goal of this report is to update the neuropathologic criteria for the diagnosis and staging of LATE-NC, based primarily on published data. We provide practical suggestions about how to integrate available genetic information and comorbid pathologies [e.g., Alzheimer's disease neuropathologic changes (ADNC) and Lewy body disease]. We also describe recent research findings that have enabled more precise guidance on how to differentiate LATE-NC from other subtypes of TDP-43 pathology [e.g., frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS)], and how to render diagnoses in unusual situations in which TDP-43 pathology does not follow the staging scheme proposed in 2019. Specific recommendations are also made on when not to apply this diagnostic term based on current knowledge. Neuroanatomical regions of interest in LATE-NC are described in detail and the implications for TDP-43 immunohistochemical results are specified more precisely. We also highlight questions that remain unresolved and areas needing additional study. In summary, the current work lays out a number of recommendations to improve the precision of LATE-NC staging based on published reports and diagnostic experience.
Collapse
Affiliation(s)
- Peter T Nelson
- University of Kentucky, Rm 575 Todd Building, Lexington, KY, USA.
| | - Edward B Lee
- University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Konstantinos Arfanakis
- Rush University Medical Center, Chicago, IL, USA
- Illinois Institute of Technology, Chicago, IL, USA
| | | | | | | | | | | | | | | | | | - Michel J Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología Y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | | | - Masato Hasegawa
- Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | | | | | | | | | | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Laboratory Medicine Program, University Health Network, Toronto, Canada
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | | | | | | | - Qinwen Mao
- University of Utah, Salt Lake City, UT, USA
| | | | | | | | | | - Liisa Myllykangas
- University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sukriti Nag
- Rush University Medical Center, Chicago, IL, USA
| | - Janna H Neltner
- University of Kentucky, Rm 575 Todd Building, Lexington, KY, USA
| | | | | | - Yuko Saito
- Tokyo Metropolitan Geriatric Hospital & Institute of Gerontology, Tokyo, Japan
| | | | | | | | - Dietmar R Thal
- Laboratory for Neuropathology, Department of Imaging and Pathoogy, and Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Pathology, University Hospital Leuven, Leuven, Belgium
| | - Sandra O Tomé
- Laboratory for Neuropathology, Department of Imaging and Pathoogy, and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | | | | | - Charles L White
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Hyun-Sik Yang
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, BostonBoston, MAMA, USA
| | | | | | | |
Collapse
|
14
|
Josephs KA, Koga S, Tosakulwong N, Weigand SD, Nha Pham TT, Baker M, Whitwell JL, Rademakers R, Petrucelli L, Dickson DW. Molecular fragment characteristics and distribution of tangle associated TDP-43 (TATs) and other TDP-43 lesions in Alzheimer's disease. FREE NEUROPATHOLOGY 2023; 4:22. [PMID: 38093787 PMCID: PMC10716685 DOI: 10.17879/freeneuropathology-2023-5192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/03/2023] [Indexed: 03/07/2024]
Abstract
TAR DNA binding protein 43 (TDP-43) pathology is a defining feature of frontotemporal lobar degeneration (FTLD). In FTLD-TDP there is a moderate-to-high burden of morphologically distinctive TDP-43 immunoreactive inclusions distributed throughout the brain. In Alzheimer's disease (AD), similar TDP-43 immunoreactive inclusions are observed. In AD, however, there is a unique phenomenon of neurofibrillary tangle-associated TDP-43 (TATs) whereby TDP-43 intermingles with neurofibrillary tangles. Little is known about the characteristics and distribution of TATs, or how burden and distribution of TATs compares to burden and distribution of other FTLD-TDP-like lesions observed in AD. Here we characterize molecular fragment characteristics, burden and distribution of TATs and assess how these features compare to features of other TDP-43 lesions. We performed TDP-43 immunohistochemistry with anti-phosphorylated, C- and N-terminal TDP-43 antibodies in 20 high-probability AD cases and semi-quantitative burden of seven inclusion types within five brain regions (entorhinal cortex, subiculum, CA1 and dentate gyrus of hippocampus, occipitotemporal cortex). Hierarchical cluster analysis was used to analyze the dataset that consisted of 75 different combinations of neuropathological features. TATs were nonspherical with heterogeneous staining patterns and present in all regions except hippocampal dentate. All three antibodies detected TATs although N-terminal antibody sensitivity was low. Three clusters were identified: Cluster-1 had mild-moderate TATs, moderate-frequent neuronal cytoplasmic inclusions, dystrophic neurites, neuronal intranuclear inclusions and fine neurites, and perivascular and granular inclusions identified only with the N-terminal antibody throughout the brain; Cluster-2 had scant TATs in limbic regions and Cluster-3 mild-moderate TATs and mild-moderate neuronal cytoplasmic inclusions and dystrophic neurites throughout the brain and moderate fine neurites. Only 17% of cluster 1 cases had the TMEM106b GG (protective) haplotype and 83% had hippocampal sclerosis. Both features differed across clusters (p=0.03 & p=0.01). TATs have molecular characteristics, distribution and burden, and genetic and pathologic associations like FTLD-TDP lesions.
Collapse
Affiliation(s)
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Nirubol Tosakulwong
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Stephen D Weigand
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Matt Baker
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | | | |
Collapse
|
15
|
Pattle SB, O'Shaughnessy J, Kantelberg O, Rifai OM, Pate J, Nellany K, Hays N, Arends MJ, Horrocks MH, Waldron FM, Gregory JM. pTDP-43 aggregates accumulate in non-central nervous system tissues prior to symptom onset in amyotrophic lateral sclerosis: a case series linking archival surgical biopsies with clinical phenotypic data. J Pathol Clin Res 2023; 9:44-55. [PMID: 36226890 PMCID: PMC9732680 DOI: 10.1002/cjp2.297] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/09/2022] [Accepted: 09/26/2022] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases such as Parkinson's disease (PD), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS) are traditionally considered strictly neurological disorders. However, clinical presentation is not restricted to neurological systems, and non-central nervous system (CNS) manifestations, particularly gastrointestinal (GI) symptoms, are common. Our objective was to understand the systemic distribution of pathology in archived non-CNS tissues, taken as part of routine clinical practice during life from people with ALS. We examined tissue from 13 people who went on to develop ALS; including sporadic ALS (n = 12) and C9orf72 hexanucleotide repeat expansion (n = 1). The tissue cohort consisted of 68 formalin-fixed paraffin embedded samples from 21 surgical cases (some patients having more than one case over their lifetimes), from 8 organ systems, which we examined for evidence of phosphorylated TDP-43 (pTDP-43) pathology. We identified pTDP-43 aggregates in multiple cell types of the GI tract, including macrophages and dendritic cells within the lamina propria; as well as ganglion/neuronal and glial cells of the myenteric plexus. Aggregates were also noted within lymph node parenchyma, blood vessel endothelial cells, and chondrocytes. We note that in all cases with non-CNS pTDP-43 pathology, aggregates were present prior to ALS diagnosis and in some instances preceded neurological symptom onset by more than 10 years. These data imply that patients with microscopically unexplained non-CNS symptoms could have occult protein aggregation that could be detected many years prior to neurological involvement.
Collapse
Affiliation(s)
| | - Judi O'Shaughnessy
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
- EaStCHEM School of ChemistryUniversity of EdinburghEdinburghUK
| | - Owen Kantelberg
- EaStCHEM School of ChemistryUniversity of EdinburghEdinburghUK
| | - Olivia M Rifai
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
- EaStCHEM School of ChemistryUniversity of EdinburghEdinburghUK
- Translational Neuroscience PhD Program, Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | - Judith Pate
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| | - Kristine Nellany
- Department of PathologyNHS GrampianAberdeenUK
- NHS Grampian BiorepositoryAberdeenUK
| | - Nadine Hays
- Department of PathologyNHS GrampianAberdeenUK
- NHS Grampian BiorepositoryAberdeenUK
| | - Mark J Arends
- NHS Lothian Department of PathologyEdinburghUK
- Edinburgh Pathology, Institute of Genetics & CancerUniversity of EdinburghEdinburghUK
| | | | | | - Jenna M Gregory
- NHS Lothian Department of PathologyEdinburghUK
- Department of PathologyNHS GrampianAberdeenUK
- Institute of Medical SciencesUniversity of AberdeenAberdeenUK
| |
Collapse
|
16
|
Scotter EL, Cao MC, Jansson D, Rustenhoven J, Smyth LCD, Aalderink MC, Siemens A, Fan V, Wu J, Mee EW, Faull RLM, Dragunow M. The amyotrophic lateral sclerosis-linked protein TDP-43 regulates interleukin-6 cytokine production by human brain pericytes. Mol Cell Neurosci 2022; 123:103768. [PMID: 36038081 DOI: 10.1016/j.mcn.2022.103768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/02/2022] [Accepted: 08/12/2022] [Indexed: 12/30/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal movement disorder involving degeneration of motor neurons through dysfunction of the RNA-binding protein TDP-43. Pericytes, the perivascular cells of the blood-brain, blood-spinal cord, and blood-CSF barriers also degenerate in ALS. Indeed, pericytes are among the earliest cell types to show gene expression changes in pre-symptomatic animal models of ALS. This suggests that pericyte degeneration precedes neurodegeneration and may involve pericyte cell-autonomous TDP-43 dysfunction. Here we determined the effect of TDP-43 dysfunction in human brain pericytes on interleukin 6 (IL-6), a critical secreted inflammatory mediator reported to be regulated by TDP 43. Primary human brain pericytes were cultured from biopsy tissue from epilepsy surgeries and TDP-43 was silenced using siRNA. TDP-43 silencing of pericytes stimulated with pro-inflammatory cytokines, interleukin-1β or tumour necrosis factor alpha, robustly suppressed the induction of IL-6 transcript and protein. IL-6 regulation by TDP-43 did not involve the assembly of TDP-43 nuclear splicing bodies, and did not occur via altered splicing of IL6. Instead, transcriptome-wide analysis by RNA-Sequencing identified a poison exon in the IL6 destabilising factor HNRNPD (AUF1) as a splicing target of TDP-43. Our data support a model whereby TDP-43 silencing favours destabilisation of IL6 mRNA, via enhanced AU-rich element-mediated decay by HNRNP/AUF1. This suggests that cell-autonomous deficits in TDP-43 function in human brain pericytes would suppress their production of IL-6. Given the importance of the blood-brain and blood-spinal cord barriers in maintaining motor neuron health, TDP-43 in human brain pericytes may represent a cellular target for ALS therapeutics.
Collapse
Affiliation(s)
- Emma L Scotter
- Centre for Brain Research, University of Auckland, New Zealand; School of Biological Sciences, University of Auckland, New Zealand; Department of Pharmacology and Clinical Pharmacology, University of Auckland, New Zealand.
| | - Maize C Cao
- Centre for Brain Research, University of Auckland, New Zealand; School of Biological Sciences, University of Auckland, New Zealand; Department of Pharmacology and Clinical Pharmacology, University of Auckland, New Zealand.
| | - Deidre Jansson
- Centre for Brain Research, University of Auckland, New Zealand; School of Biological Sciences, University of Auckland, New Zealand; Department of Pharmacology and Clinical Pharmacology, University of Auckland, New Zealand.
| | - Justin Rustenhoven
- Centre for Brain Research, University of Auckland, New Zealand; Department of Pharmacology and Clinical Pharmacology, University of Auckland, New Zealand.
| | - Leon C D Smyth
- Centre for Brain Research, University of Auckland, New Zealand; Department of Pharmacology and Clinical Pharmacology, University of Auckland, New Zealand.
| | - Miranda C Aalderink
- Centre for Brain Research, University of Auckland, New Zealand; Department of Pharmacology and Clinical Pharmacology, University of Auckland, New Zealand.
| | - Andrew Siemens
- Centre for Brain Research, University of Auckland, New Zealand; Department of Pharmacology and Clinical Pharmacology, University of Auckland, New Zealand.
| | - Vicky Fan
- Bioinformatics Institute, University of Auckland, Auckland, New Zealand.
| | - Jane Wu
- Centre for Brain Research, University of Auckland, New Zealand; Department of Anatomy and Medical Imaging, University of Auckland, New Zealand.
| | - Edward W Mee
- Department of Neurosurgery, Auckland City Hospital, Auckland, New Zealand.
| | - Richard L M Faull
- Centre for Brain Research, University of Auckland, New Zealand; Department of Anatomy and Medical Imaging, University of Auckland, New Zealand.
| | - Mike Dragunow
- Centre for Brain Research, University of Auckland, New Zealand; Department of Pharmacology and Clinical Pharmacology, University of Auckland, New Zealand.
| |
Collapse
|
17
|
Lachner C, Day GS, Camsari GB, Kouri N, Ertekin-Taner N, Boeve BF, Labuzan SA, Lucas JA, Thompson EA, Siddiqui H, Crook JE, Cabrera-Rodriguez JN, Josephs KA, Petersen RC, Dickson DW, Reichard RR, Mielke MM, Knopman DS, Graff-Radford NR, Murray ME. Cancer and Vascular Comorbidity Effects on Dementia Risk and Neuropathology in the Oldest-Old. J Alzheimers Dis 2022; 90:405-417. [PMID: 36213996 PMCID: PMC9661335 DOI: 10.3233/jad-220440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Dementia, vascular disease, and cancer increase with age, enabling complex comorbid interactions. Understanding vascular and cancer contributions to dementia risk and neuropathology in oldest-old may improve risk modification and outcomes. OBJECTIVE Investigate the contributions of vascular factors and cancer to dementia and neuropathology. METHODS Longitudinal clinicopathologic study of prospectively followed Mayo Clinic participants dying≥95 years-old who underwent autopsy. Participants were stratified by dementia status and compared according to demographics, vascular risk factors, cancer, and neuropathology. RESULTS Participants (n = 161; 83% female; 99% non-Hispanic whites)≥95 years (95-106 years-old) with/without dementia did not differ based on demographics. APOE ɛ2 frequency was higher in no dementia (20/72 [28%]) versus dementia (11/88 [12%]; p = 0.03), but APOE ɛ4 frequency did not differ. Coronary artery disease was more frequent in no dementia (31/72 [43%]) versus dementia (23/89 [26%]; p = 0.03) associated with 56% lower dementia odds (odds ratio [OR] = 0.44 [confidence interval (CI) = 0.19-0.98]; p = 0.04) and fewer neuritic/diffuse plaques. Diabetes had an 8-fold increase in dementia odds (OR = 8.42 [CI = 1.39-163]; p = 0.02). Diabetes associated with higher cerebrovascular disease (Dickson score; p = 0.05). Cancer associated with 63% lower dementia odds (OR = 0.37 [CI = 0.17-0.78]; p < 0.01) and lower Braak stage (p = 0.01). CONCLUSION Cancer exposure in the oldest-old was associated with lower odds of dementia and tangle pathology, whereas history of coronary artery disease was associated with lower odds of dementia and amyloid-β plaque pathology. History of diabetes mellitus was associated with increased odds of dementia and cerebrovascular disease pathology. Cancer-related mechanisms and vascular risk factor reduction strategies may alter dementia risk and neuropathology in oldest-old.
Collapse
Affiliation(s)
- Christian Lachner
- Departments of Neurology, Mayo Clinic, Jacksonville, FL, USA,
Departments of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, USA
| | - Gregory S. Day
- Departments of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Naomi Kouri
- Departments of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Nilüfer Ertekin-Taner
- Departments of Neurology, Mayo Clinic, Jacksonville, FL, USA,
Departments of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - John A. Lucas
- Departments of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Habeeba Siddiqui
- Departments of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Julia E. Crook
- Departments of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | | | | | | | | | - R. Ross Reichard
- Departments of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Michelle M. Mielke
- Departments of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | | | - Melissa E. Murray
- Departments of Neuroscience, Mayo Clinic, Jacksonville, FL, USA,Correspondence to: Melissa E. Murray, PhD, Associate Professor, Translational Neuropathology Laboratory, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224, USA. Tel.: +1 904 953 1083; Fax: +1 904 953 7117; E-mail:
| |
Collapse
|
18
|
Raghavan S, Przybelski SA, Reid RI, Lesnick TG, Ramanan VK, Botha H, Matchett BJ, Murray ME, Reichard RR, Knopman DS, Graff-Radford J, Jones DT, Lowe VJ, Mielke MM, Machulda MM, Petersen RC, Kantarci K, Whitwell JL, Josephs KA, Jack CR, Vemuri P. White matter damage due to vascular, tau, and TDP-43 pathologies and its relevance to cognition. Acta Neuropathol Commun 2022; 10:16. [PMID: 35123591 PMCID: PMC8817561 DOI: 10.1186/s40478-022-01319-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 12/27/2022] Open
Abstract
Multi-compartment modelling of white matter microstructure using Neurite Orientation Dispersion and Density Imaging (NODDI) can provide information on white matter health through neurite density index and free water measures. We hypothesized that cerebrovascular disease, Alzheimer's disease, and TDP-43 proteinopathy would be associated with distinct NODDI readouts of white matter damage which would be informative for identifying the substrate for cognitive impairment. We identified two independent cohorts with multi-shell diffusion MRI, amyloid and tau PET, and cognitive assessments: specifically, a population-based cohort of 347 elderly randomly sampled from the Olmsted county, Minnesota, population and a clinical research-based cohort of 61 amyloid positive Alzheimer's dementia participants. We observed an increase in free water and decrease in neurite density using NODDI measures in the genu of the corpus callosum associated with vascular risk factors, which we refer to as the vascular white matter component. Tau PET signal reflective of 3R/4R tau deposition was associated with worsening neurite density index in the temporal white matter where we measured parahippocampal cingulum and inferior temporal white matter bundles. Worsening temporal white matter neurite density was associated with (antemortem confirmed) FDG TDP-43 signature. Post-mortem neuropathologic data on a small subset of this sample lend support to our findings. In the community-dwelling cohort where vascular disease was more prevalent, the NODDI vascular white matter component explained variability in global cognition (partial R2 of free water and neurite density = 8.3%) and MMSE performance (8.2%) which was comparable to amyloid PET (7.4% for global cognition and 6.6% for memory). In the AD dementia cohort, tau deposition was the greatest contributor to cognitive performance (9.6%), but there was also a non-trivial contribution of the temporal white matter component (8.5%) to cognitive performance. The differences observed between the two cohorts were reflective of their distinct clinical composition. White matter microstructural damage assessed using advanced diffusion models may add significant value for distinguishing the underlying substrate (whether cerebrovascular disease versus neurodegenerative disease caused by tau deposition or TDP-43 pathology) for cognitive impairment in older adults.
Collapse
Affiliation(s)
| | - Scott A. Przybelski
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905 USA
| | - Robert I. Reid
- Department of Information Technology, Mayo Clinic, Rochester, MN 55905 USA
| | - Timothy G. Lesnick
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905 USA
| | | | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | | | | | - R. Ross Reichard
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905 USA
| | | | | | - David T. Jones
- Department of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | - Val J. Lowe
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - Michelle M. Mielke
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905 USA
- Department of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | - Mary M. Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905 USA
| | | | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - Jennifer L. Whitwell
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | | | - Clifford R. Jack
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - Prashanthi Vemuri
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| |
Collapse
|
19
|
Gelpi E, Aldecoa I, Lopez-Villegas D, Abellan-Vidal MT, Mercadel-Fañanas P, Fortea J, Ribosa R, Morenas E, Gomez-Anson B, Molina-Porcel L, Ximelis T, Borrego S, Antonell A, Rovelet-Lecrux A, Klotz S, Andres-Benito P, Sanchez-Valle R, Ferrer I. Atypical astroglial pTDP-43 pathology in astroglial predominant tauopathy. Neuropathol Appl Neurobiol 2021; 47:1109-1113. [PMID: 33730418 PMCID: PMC9292602 DOI: 10.1111/nan.12707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/27/2021] [Accepted: 03/07/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Ellen Gelpi
- Neurological Tissue Bank of the Biobank-Hospital Clinic-IDIBAPS, Barcelona, Spain.,Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Iban Aldecoa
- Neurological Tissue Bank of the Biobank-Hospital Clinic-IDIBAPS, Barcelona, Spain.,Department of Pathology, Biomedical Diagnostic Centre (CDB), Hospital Clinic - University of Barcelona, Barcelona, Spain
| | - Dolores Lopez-Villegas
- Cognitive Disorders and Psychogeriatry, Institut de Neuropsiquiatria i Addiccions, Centre Emili Mira, Parc de Salut Mar, Barcelona, Spain
| | - Maria Teresa Abellan-Vidal
- Cognitive Disorders and Psychogeriatry, Institut de Neuropsiquiatria i Addiccions, Centre Emili Mira, Parc de Salut Mar, Barcelona, Spain
| | - Pilar Mercadel-Fañanas
- Cognitive Disorders and Psychogeriatry, Institut de Neuropsiquiatria i Addiccions, Centre Emili Mira, Parc de Salut Mar, Barcelona, Spain
| | - Juan Fortea
- Neurology Department, Hospital de la Santa Creu i St Pau, St Pau research Institute, Barcelona, Spain
| | - Roser Ribosa
- Neurology Department, Hospital de la Santa Creu i St Pau, St Pau research Institute, Barcelona, Spain
| | - Estrella Morenas
- Neurology Department, Hospital de la Santa Creu i St Pau, St Pau research Institute, Barcelona, Spain
| | | | - Laura Molina-Porcel
- Neurological Tissue Bank of the Biobank-Hospital Clinic-IDIBAPS, Barcelona, Spain.,Alzheimer's disease and other cognitive disorders unit, Neurology Department, Hospital Clinic I Provincial de Barcelona and Institut d'Investigacions Biomediques August Pi I Sunyer, Barcelona, Spain
| | - Teresa Ximelis
- Neurological Tissue Bank of the Biobank-Hospital Clinic-IDIBAPS, Barcelona, Spain
| | - Sergi Borrego
- Neurological Tissue Bank of the Biobank-Hospital Clinic-IDIBAPS, Barcelona, Spain.,Alzheimer's disease and other cognitive disorders unit, Neurology Department, Hospital Clinic I Provincial de Barcelona and Institut d'Investigacions Biomediques August Pi I Sunyer, Barcelona, Spain
| | - Anna Antonell
- Alzheimer's disease and other cognitive disorders unit, Neurology Department, Hospital Clinic I Provincial de Barcelona and Institut d'Investigacions Biomediques August Pi I Sunyer, Barcelona, Spain
| | - Anne Rovelet-Lecrux
- Université de Rouen, Institut de Recherche et d'Innovation Biomédicale (IRIB), Mont-Saint-Aignan, France
| | - Sigrid Klotz
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Pol Andres-Benito
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Bellvitge University Hospital-IDIBELL, CIBERNED, Hospitalet de Llobregat, Spain
| | - Raquel Sanchez-Valle
- Neurological Tissue Bank of the Biobank-Hospital Clinic-IDIBAPS, Barcelona, Spain.,Alzheimer's disease and other cognitive disorders unit, Neurology Department, Hospital Clinic I Provincial de Barcelona and Institut d'Investigacions Biomediques August Pi I Sunyer, Barcelona, Spain
| | - Isidre Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Bellvitge University Hospital-IDIBELL, CIBERNED, Hospitalet de Llobregat, Spain
| |
Collapse
|
20
|
Robinson JL, Porta S, Garrett FG, Zhang P, Xie SX, Suh E, Van Deerlin VM, Abner EL, Jicha GA, Barber JM, Lee VMY, Lee EB, Trojanowski JQ, Nelson PT. Limbic-predominant age-related TDP-43 encephalopathy differs from frontotemporal lobar degeneration. Brain 2021; 143:2844-2857. [PMID: 32830216 DOI: 10.1093/brain/awaa219] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/01/2020] [Accepted: 05/21/2020] [Indexed: 12/12/2022] Open
Abstract
TAR-DNA binding protein-43 (TDP-43) proteinopathy is seen in multiple brain diseases. A standardized terminology was recommended recently for common age-related TDP-43 proteinopathy: limbic-predominant, age-related TDP-43 encephalopathy (LATE) and the underlying neuropathological changes, LATE-NC. LATE-NC may be co-morbid with Alzheimer's disease neuropathological changes (ADNC). However, there currently are ill-defined diagnostic classification issues among LATE-NC, ADNC, and frontotemporal lobar degeneration with TDP-43 (FTLD-TDP). A practical challenge is that different autopsy cohorts are composed of disparate groups of research volunteers: hospital- and clinic-based cohorts are enriched for FTLD-TDP cases, whereas community-based cohorts have more LATE-NC cases. Neuropathological methods also differ across laboratories. Here, we combined both cases and neuropathologists' diagnoses from two research centres-University of Pennsylvania and University of Kentucky. The study was designed to compare neuropathological findings between FTLD-TDP and pathologically severe LATE-NC. First, cases were selected from the University of Pennsylvania with pathological diagnoses of either FTLD-TDP (n = 33) or severe LATE-NC (mostly stage 3) with co-morbid ADNC (n = 30). Sections from these University of Pennsylvania cases were cut from amygdala, anterior cingulate, superior/mid-temporal, and middle frontal gyrus. These sections were stained for phospho-TDP-43 immunohistochemically and evaluated independently by two University of Kentucky neuropathologists blinded to case data. A simple set of criteria hypothesized to differentiate FTLD-TDP from LATE-NC was generated based on density of TDP-43 immunoreactive neuronal cytoplasmic inclusions in the neocortical regions. Criteria-based sensitivity and specificity of differentiating severe LATE-NC from FTLD-TDP cases with blind evaluation was ∼90%. Another proposed neuropathological feature related to TDP-43 proteinopathy in aged individuals is 'Alpha' versus 'Beta' in amygdala. Alpha and Beta status was diagnosed by neuropathologists from both universities (n = 5 raters). There was poor inter-rater reliability of Alpha/Beta classification (mean κ = 0.31). We next tested a separate cohort of cases from University of Kentucky with either FTLD-TDP (n = 8) or with relatively 'pure' severe LATE-NC (lacking intermediate or severe ADNC; n = 14). The simple criteria were applied by neuropathologists blinded to the prior diagnoses at University of Pennsylvania. Again, the criteria for differentiating LATE-NC from FTLD-TDP was effective, with sensitivity and specificity ∼90%. If more representative cases from each cohort (including less severe TDP-43 proteinopathy) had been included, the overall accuracy for identifying LATE-NC was estimated at >98% for both cohorts. Also across both cohorts, cases with FTLD-TDP died younger than those with LATE-NC (P < 0.0001). We conclude that in most cases, severe LATE-NC and FTLD-TDP can be differentiated by applying simple neuropathological criteria.
Collapse
Affiliation(s)
- John L Robinson
- Alzheimer's Disease Core Center, University of Pennsyvania, Philadelphia, PA, USA.,Center for Neurodegenerative Disease Research, University of Pennsyvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsyvania, Philadelphia, PA, USA
| | - Sílvia Porta
- Alzheimer's Disease Core Center, University of Pennsyvania, Philadelphia, PA, USA.,Center for Neurodegenerative Disease Research, University of Pennsyvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsyvania, Philadelphia, PA, USA
| | - Filip G Garrett
- Department of Pathology, University of Kentucky, Lexington, KY, USA
| | - Panpan Zhang
- Alzheimer's Disease Core Center, University of Pennsyvania, Philadelphia, PA, USA.,Department of Biostatistics, Epidemiology and Informatics, University of Pennsyvania, Philadelphia, PA, USA
| | - Sharon X Xie
- Alzheimer's Disease Core Center, University of Pennsyvania, Philadelphia, PA, USA.,Department of Biostatistics, Epidemiology and Informatics, University of Pennsyvania, Philadelphia, PA, USA
| | - EunRan Suh
- Alzheimer's Disease Core Center, University of Pennsyvania, Philadelphia, PA, USA.,Center for Neurodegenerative Disease Research, University of Pennsyvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsyvania, Philadelphia, PA, USA
| | - Vivianna M Van Deerlin
- Alzheimer's Disease Core Center, University of Pennsyvania, Philadelphia, PA, USA.,Center for Neurodegenerative Disease Research, University of Pennsyvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsyvania, Philadelphia, PA, USA
| | - Erin L Abner
- Department of Epidemiology, University of Kentucky, Lexington, KY, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Gregory A Jicha
- Department of Neurology, University of Kentucky, Lexington, KY, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Justin M Barber
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Virginia M-Y Lee
- Alzheimer's Disease Core Center, University of Pennsyvania, Philadelphia, PA, USA.,Center for Neurodegenerative Disease Research, University of Pennsyvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsyvania, Philadelphia, PA, USA
| | - Edward B Lee
- Alzheimer's Disease Core Center, University of Pennsyvania, Philadelphia, PA, USA.,Center for Neurodegenerative Disease Research, University of Pennsyvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsyvania, Philadelphia, PA, USA
| | - John Q Trojanowski
- Alzheimer's Disease Core Center, University of Pennsyvania, Philadelphia, PA, USA.,Center for Neurodegenerative Disease Research, University of Pennsyvania, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of Pennsyvania, Philadelphia, PA, USA
| | - Peter T Nelson
- Department of Pathology, University of Kentucky, Lexington, KY, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
21
|
Ferrer I, Andrés-Benito P, Carmona M, Assialioui A, Povedano M. TDP-43 Vasculopathy in the Spinal Cord in Sporadic Amyotrophic Lateral Sclerosis (sALS) and Frontal Cortex in sALS/FTLD-TDP. J Neuropathol Exp Neurol 2021; 80:229-239. [PMID: 33421065 PMCID: PMC7899266 DOI: 10.1093/jnen/nlaa162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sporadic amyotrophic lateral sclerosis (sALS) and FTLD-TDP are neurodegenerative diseases within the spectrum of TDP-43 proteinopathies. Since abnormal blood vessels and altered blood-brain barrier have been described in sALS, we wanted to know whether TDP-43 pathology also occurs in blood vessels in sALS/FTLD-TDP. TDP-43 deposits were identified in association with small blood vessels of the spinal cord in 7 of 14 cases of sALS and in small blood vessels of frontal cortex area 8 in 6 of 11 FTLD-TDP and sALS cases, one of them carrying a GRN mutation. This was achieved using single and double-labeling immunohistochemistry, and double-labeling immunofluorescence and confocal microscopy. In the sALS spinal cord, P-TDP43 Ser403-404 deposits were elongated and parallel to the lumen, whereas others were granular, seldom forming clusters. In the frontal cortex, the inclusions were granular, or elongated and parallel to the lumen, or forming small globules within or in the external surface of the blood vessel wall. Other deposits were localized in the perivascular space. The present findings are in line with previous observations of TDP-43 vasculopathy in a subset of FTLD-TDP cases and identify this pathology in the spinal cord and frontal cortex in a subset of cases within the sALS/FTLD-TDP spectrum.
Collapse
Affiliation(s)
- Isidro Ferrer
- From the Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Biomedical Network Research Center on Neurodegenerative Diseases (CIBERNED), Institute Carlos III, L'Hospitalet de Llobregat, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Neuropathology, Pathologic Anatomy Service, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Pol Andrés-Benito
- From the Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Biomedical Network Research Center on Neurodegenerative Diseases (CIBERNED), Institute Carlos III, L'Hospitalet de Llobregat, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Margarita Carmona
- From the Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain.,Biomedical Network Research Center on Neurodegenerative Diseases (CIBERNED), Institute Carlos III, L'Hospitalet de Llobregat, Barcelona, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Abdelilah Assialioui
- Functional Unit of Amyotrophic Lateral Sclerosis (UFELA), Service of Neurology, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Mónica Povedano
- Functional Unit of Amyotrophic Lateral Sclerosis (UFELA), Service of Neurology, Bellvitge University Hospital, L'Hospitalet de Llobregat, Barcelona, Spain.,International Initiative for Treatment and Research Initiative to Cure ALS (TRICALS), Utrecht, The Netherlands
| |
Collapse
|
22
|
Blevins BL, Vinters HV, Love S, Wilcock DM, Grinberg LT, Schneider JA, Kalaria RN, Katsumata Y, Gold BT, Wang DJJ, Ma SJ, Shade LMP, Fardo DW, Hartz AMS, Jicha GA, Nelson KB, Magaki SD, Schmitt FA, Teylan MA, Ighodaro ET, Phe P, Abner EL, Cykowski MD, Van Eldik LJ, Nelson PT. Brain arteriolosclerosis. Acta Neuropathol 2021; 141:1-24. [PMID: 33098484 PMCID: PMC8503820 DOI: 10.1007/s00401-020-02235-6] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022]
Abstract
Brain arteriolosclerosis (B-ASC), characterized by pathologic arteriolar wall thickening, is a common finding at autopsy in aged persons and is associated with cognitive impairment. Hypertension and diabetes are widely recognized as risk factors for B-ASC. Recent research indicates other and more complex risk factors and pathogenetic mechanisms. Here, we describe aspects of the unique architecture of brain arterioles, histomorphologic features of B-ASC, relevant neuroimaging findings, epidemiology and association with aging, established genetic risk factors, and the co-occurrence of B-ASC with other neuropathologic conditions such as Alzheimer's disease and limbic-predominant age-related TDP-43 encephalopathy (LATE). There may also be complex physiologic interactions between metabolic syndrome (e.g., hypertension and inflammation) and brain arteriolar pathology. Although there is no universally applied diagnostic methodology, several classification schemes and neuroimaging techniques are used to diagnose and categorize cerebral small vessel disease pathologies that include B-ASC, microinfarcts, microbleeds, lacunar infarcts, and cerebral amyloid angiopathy (CAA). In clinical-pathologic studies that factored in comorbid diseases, B-ASC was independently associated with impairments of global cognition, episodic memory, working memory, and perceptual speed, and has been linked to autonomic dysfunction and motor symptoms including parkinsonism. We conclude by discussing critical knowledge gaps related to B-ASC and suggest that there are probably subcategories of B-ASC that differ in pathogenesis. Observed in over 80% of autopsied individuals beyond 80 years of age, B-ASC is a complex and under-studied contributor to neurologic disability.
Collapse
Affiliation(s)
- Brittney L Blevins
- Department of Neuroscience, University Kentucky, Lexington, KY, 40536, USA
| | - Harry V Vinters
- Department of Pathology and Laboratory Medicine, David Geffen SOM at UCLA and Ronald Reagan UCLA Medical Center, Los Angeles, CA, 90095-1732, USA
| | - Seth Love
- University of Bristol and Southmead Hospital, Bristol, BS10 5NB, UK
| | - Donna M Wilcock
- Sanders-Brown Center on Aging, Department of Neuroscience, University Kentucky, Lexington, KY, 40536, USA
| | - Lea T Grinberg
- Department of Neurology and Pathology, UCSF, San Francisco, CA, USA
- Global Brain Health Institute, UCSF, San Francisco, CA, USA
- LIM-22, Department of Pathology, University of Sao Paulo Medical School, São Paulo, Brazil
| | - Julie A Schneider
- Departments of Neurology and Pathology, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Rajesh N Kalaria
- Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Yuriko Katsumata
- Sanders-Brown Center on Aging, Department of Biostatistics, University Kentucky, Lexington, KY, 40536, USA
| | - Brian T Gold
- Sanders-Brown Center on Aging, Department of Neuroscience, University Kentucky, Lexington, KY, 40536, USA
| | - Danny J J Wang
- Laboratory of FMRI Technology (LOFT), USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Samantha J Ma
- Laboratory of FMRI Technology (LOFT), USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Lincoln M P Shade
- Sanders-Brown Center on Aging, Department of Biostatistics, University Kentucky, Lexington, KY, 40536, USA
| | - David W Fardo
- Sanders-Brown Center on Aging, Department of Biostatistics, University Kentucky, Lexington, KY, 40536, USA
| | - Anika M S Hartz
- Sanders-Brown Center on Aging, Department of Pharmacology and Nutritional Sciences, University Kentucky, Lexington, KY, 40536, USA
| | - Gregory A Jicha
- Sanders-Brown Center on Aging, Department of Neurology, University Kentucky, Lexington, KY, 40536, USA
| | | | - Shino D Magaki
- Department of Pathology and Laboratory Medicine, David Geffen SOM at UCLA and Ronald Reagan UCLA Medical Center, Los Angeles, CA, 90095-1732, USA
| | - Frederick A Schmitt
- Sanders-Brown Center on Aging, Department of Neurology, University Kentucky, Lexington, KY, 40536, USA
| | - Merilee A Teylan
- Department of Epidemiology, University Washington, Seattle, WA, 98105, USA
| | | | - Panhavuth Phe
- Sanders-Brown Center on Aging, University Kentucky, Lexington, KY, 40536, USA
| | - Erin L Abner
- Sanders-Brown Center on Aging, Department of Epidemiology, University Kentucky, Lexington, KY, 40536, USA
| | - Matthew D Cykowski
- Departments of Pathology and Genomic Medicine and Neurology, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging, Department of Neuroscience, University Kentucky, Lexington, KY, 40536, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging, Department of Pathology, University of Kentucky, Lexington, KY, 40536, USA.
- Rm 311 Sanders-Brown Center on Aging, University of Kentucky, 800 S. Limestone Avenue, Lexington, KY, 40536, USA.
| |
Collapse
|
23
|
Zhang L, Chen Y, Liu M, Wang Y, Peng G. TDP-43 and Limbic-Predominant Age-Related TDP-43 Encephalopathy. Front Aging Neurosci 2020; 11:376. [PMID: 31992981 PMCID: PMC6971113 DOI: 10.3389/fnagi.2019.00376] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 12/23/2019] [Indexed: 12/14/2022] Open
Abstract
Through a number of an extensive autopsy, biomarker, and genomics studies, researchers have recently defined a novel type of dementia known as limbic-predominant age-related TDP-43 encephalopathy (LATE). LATE is perhaps best characterized by the presence of hyperphosphorylated TDP-43, which plays multi-functional roles through interactions with DNA and RNA, leading to significant alterations in the transcription and translation of particular genes. As individuals of advanced age represent a rapidly growing demographic group globally, there is a steadily increasing rate of LATE incidence that has to date received insufficient recognition despite its serious implications for public health. TDP-43 is the common pathology of various age-related dementia, therefore, it may be a potential and promising therapeutic target for such diseases. In the present review, we discuss the pathways regulating TDP-43 expression, metabolism, and disease activity in order to better understand the link between TDP-43 proteinopathy and LATE at the genetic, pathological, and clinical levels.
Collapse
Affiliation(s)
- Lumi Zhang
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Chen
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Liu
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurology, Zhejiang University ShuLan International Hospital, Hangzhou, China
| | - Yunyun Wang
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurology, Shengzhou People's Hospital, Shengzhou, China
| | - Guoping Peng
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
24
|
Sakae N, Roemer SF, Bieniek KF, Murray ME, Baker MC, Kasanuki K, Graff-Radford NR, Petrucelli L, Van Blitterswijk M, Rademakers R, Dickson DW. Microglia in frontotemporal lobar degeneration with progranulin or C9ORF72 mutations. Ann Clin Transl Neurol 2019; 6:1782-1796. [PMID: 31448566 PMCID: PMC6764493 DOI: 10.1002/acn3.50875] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 12/12/2022] Open
Abstract
Objective To identify clinicopathological differences between frontotemporal lobar degeneration (FTLD) due to mutations in progranulin (FTLD‐GRN) and chromosome 9 open reading frame 72 (FTLD‐C9ORF72). Methods We performed quantitative neuropathologic comparison of 17 FTLD‐C9ORF72 and 15 FTLD‐GRN with a focus on microglia. For clinical comparisons, only cases with high quality medical documentation and concurring diagnoses by at least two neurologists were included (14 FTLD‐GRN and 13 FTLD‐C9ORF72). Neuropathological analyses were limited to TDP‐43 Type A to assure consistent assessment between the groups, acknowledging that Type A is a minority of C9ORF72 patients. Furthermore, only cases with sufficient tissue from all regions were studied (11 FTLD‐GRN and 11 FTLD‐C9ORF72). FTLD cases were also compared to age– and sex–matched normal controls. Immunohistochemistry was performed for pTDP‐43, IBA‐1, CD68, and GFAP. Morphological characterization of microglia was performed in sections of cortex blinded to clinical and genetic information. Results FTLD‐GRN patients had frequent asymmetric clinical features, including aphasia and apraxia, as well as more asymmetric cortical atrophy. Neuropathologically, FTLD‐C9ORF72 had greater hippocampal tau pathology and more TDP‐43 neuronal cytoplasmic inclusions. FTLD‐GRN had more neocortical microvacuolation, as well as more IBA‐1–positive ameboid microglia in superficial cortical layers and in subcortical white matter. FTLD‐GRN also had more microglia with nuclear condensation, possibly indicating apoptosis. Microglial morphology with CD68 immunohistochemistry in FTLD‐GRN and FTLD‐C9ORF72 differed from controls. Interpretation Our findings underscore differences in microglial response in FTLD‐C9ORF72 and FTLD‐GRN as shown by significant differences in ameboid microglia in gray and white matter. These results suggest the differential contribution of microglial dysfunction in FTLD‐GRN and FTLD‐C9ORF72 and suggest that clinical, neuroimaging and pathologic differences could in part be related to differences in microglia response.
Collapse
Affiliation(s)
- Nobutaka Sakae
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida
| | - Shanu F Roemer
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida
| | - Kevin F Bieniek
- Department of Pathology & Laboratory Medicine, University of Texas Health Science Center, San Antonio, Texas
| | | | - Matthew C Baker
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida
| | - Koji Kasanuki
- Juntendo Tokyo Koto Geriatric Medical Center, Tokyo, Japan
| | | | | | | | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida
| | | |
Collapse
|
25
|
Josephs KA, Zhang YJ, Baker M, Rademakers R, Petrucelli L, Dickson DW. C-terminal and full length TDP-43 specie differ according to FTLD-TDP lesion type but not genetic mutation. Acta Neuropathol Commun 2019; 7:100. [PMID: 31266542 PMCID: PMC6607585 DOI: 10.1186/s40478-019-0755-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 12/13/2022] Open
Abstract
The transactive response DNA binding protein of 43 kDa (TDP-43) is an intranuclear protein involved in RNA splicing. Abnormally deposited TDP-43 is found in the brains of patients with frontotemporal lobar degeneration (FTLD). Different morphological characteristics of TDP-43 immunoreactive inclusions define the different variants of FTLD-TDP. Little is known about the relationships between TDP-43 specie (phosphorylated TDP-43, C-terminal fragments and full length TDP-43) and lesion types. Using novel antibodies that recognize phosphorylated TDP-43 (pTDP-43), a neoepitope in the C-terminal fragment of TDP-43 (cTDP-43) and the N-terminal, i.e. full length (nTDP-43) we assess the relative burden of pTDP-43, cTDP-43 and nTDP-43 in 8 different lesion types across FTLD-TDP type A-C. These include neuronal cytoplasmic inclusions, dystrophic neurites, neuronal intranuclear inclusions, fine neurites of the hippocampus, peri-vascular inclusions, Pick body-like inclusions, long thick dystrophic neurites and granular pre-inclusions. We also assess for associations with progranulin (GRN) and C9ORF72 genetic mutations. For all eight lesion types, the highest burden was observed for pTDP-43. In six of the eight lesions studied, cTDP-43 burden was greater than nTDP-43 burden. However, we observed a higher burden of nTDP-43 to cTDP-43 for pre-inclusions. We also noted an equal-to-slightly higher burden of nTDP-43 to cTDP-43 for peri-vascular inclusions. There was not strong evidence for associations to be driven by mutation status although for neuronal cytoplasmic inclusions and dystrophic neurites GRN+ cases had higher burden of pTDP-43, cTDP-43 and nTDP-43 compared to GRN- cases, with nTDP-43 inclusions only observed in GRN+ cases. In addition, for pre-inclusions, cTDP-43 and nTDP-43 burden tended to be higher in C9ORF72- cases compared to C9ORF72+ cases, although this was not the case for pTDP-43. There is clear evidence that phosphorylation and C terminal fragments play an important role in lesion formation in FTLD-TDP. However, for some inclusions, particularly pre-inclusions, full-length TDP-43 appears to be playing a role.
Collapse
|
26
|
Nelson PT, Dickson DW, Trojanowski JQ, Jack CR, Boyle PA, Arfanakis K, Rademakers R, Alafuzoff I, Attems J, Brayne C, Coyle-Gilchrist ITS, Chui HC, Fardo DW, Flanagan ME, Halliday G, Hokkanen SRK, Hunter S, Jicha GA, Katsumata Y, Kawas CH, Keene CD, Kovacs GG, Kukull WA, Levey AI, Makkinejad N, Montine TJ, Murayama S, Murray ME, Nag S, Rissman RA, Seeley WW, Sperling RA, White III CL, Yu L, Schneider JA. Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain 2019; 142:1503-1527. [PMID: 31039256 PMCID: PMC6536849 DOI: 10.1093/brain/awz099] [Citation(s) in RCA: 953] [Impact Index Per Article: 158.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/10/2019] [Accepted: 02/25/2019] [Indexed: 12/18/2022] Open
Abstract
We describe a recently recognized disease entity, limbic-predominant age-related TDP-43 encephalopathy (LATE). LATE neuropathological change (LATE-NC) is defined by a stereotypical TDP-43 proteinopathy in older adults, with or without coexisting hippocampal sclerosis pathology. LATE-NC is a common TDP-43 proteinopathy, associated with an amnestic dementia syndrome that mimicked Alzheimer's-type dementia in retrospective autopsy studies. LATE is distinguished from frontotemporal lobar degeneration with TDP-43 pathology based on its epidemiology (LATE generally affects older subjects), and relatively restricted neuroanatomical distribution of TDP-43 proteinopathy. In community-based autopsy cohorts, ∼25% of brains had sufficient burden of LATE-NC to be associated with discernible cognitive impairment. Many subjects with LATE-NC have comorbid brain pathologies, often including amyloid-β plaques and tauopathy. Given that the 'oldest-old' are at greatest risk for LATE-NC, and subjects of advanced age constitute a rapidly growing demographic group in many countries, LATE has an expanding but under-recognized impact on public health. For these reasons, a working group was convened to develop diagnostic criteria for LATE, aiming both to stimulate research and to promote awareness of this pathway to dementia. We report consensus-based recommendations including guidelines for diagnosis and staging of LATE-NC. For routine autopsy workup of LATE-NC, an anatomically-based preliminary staging scheme is proposed with TDP-43 immunohistochemistry on tissue from three brain areas, reflecting a hierarchical pattern of brain involvement: amygdala, hippocampus, and middle frontal gyrus. LATE-NC appears to affect the medial temporal lobe structures preferentially, but other areas also are impacted. Neuroimaging studies demonstrated that subjects with LATE-NC also had atrophy in the medial temporal lobes, frontal cortex, and other brain regions. Genetic studies have thus far indicated five genes with risk alleles for LATE-NC: GRN, TMEM106B, ABCC9, KCNMB2, and APOE. The discovery of these genetic risk variants indicate that LATE shares pathogenetic mechanisms with both frontotemporal lobar degeneration and Alzheimer's disease, but also suggests disease-specific underlying mechanisms. Large gaps remain in our understanding of LATE. For advances in prevention, diagnosis, and treatment, there is an urgent need for research focused on LATE, including in vitro and animal models. An obstacle to clinical progress is lack of diagnostic tools, such as biofluid or neuroimaging biomarkers, for ante-mortem detection of LATE. Development of a disease biomarker would augment observational studies seeking to further define the risk factors, natural history, and clinical features of LATE, as well as eventual subject recruitment for targeted therapies in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | - Konstantinos Arfanakis
- Rush University Medical Center, Chicago, IL, USA
- Illinois Institute of Technology, Chicago, IL, USA
| | | | | | | | | | | | - Helena C Chui
- University of Southern California, Los Angeles, CA, USA
| | | | | | - Glenda Halliday
- The University of Sydney Brain and Mind Centre and Central Clinical School Faculty of Medicine and Health, Sydney, Australia
| | | | | | | | | | | | | | - Gabor G Kovacs
- Institute of Neurology Medical University of Vienna, Vienna, Austria
| | | | | | | | | | - Shigeo Murayama
- Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | | | - Sukriti Nag
- Rush University Medical Center, Chicago, IL, USA
| | | | | | | | | | - Lei Yu
- Rush University Medical Center, Chicago, IL, USA
| | | |
Collapse
|
27
|
Brain atrophy in primary age-related tauopathy is linked to transactive response DNA-binding protein of 43 kDa. Alzheimers Dement 2019; 15:799-806. [PMID: 31056344 DOI: 10.1016/j.jalz.2019.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/04/2019] [Accepted: 03/04/2019] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Primary age-related tauopathy (PART) is characterized by the presence of neurofibrillary tangles and absent-minimal β-amyloid deposition. Transactive response DNA-binding protein of 43 kDa (TDP-43), a third protein, has recently garnished a lot of attention in Alzheimer's disease where it is associated with memory loss and amygdala and hippocampal atrophy. We aimed to determine whether TDP-43 is associated with brain atrophy in PART. METHODS We assessed the frequency of TDP-43 in PART and performed voxel-level analysis in SPM12, as well as region-of-interest analysis using linear regression modeling, controlling for variables of interest, to assess for associations between TDP-43 and brain atrophy. RESULTS Of 116 PART cases, 31 (26.7%) had TDP-43. The presence of TDP-43 was associated with significantly greater amygdala, hippocampal, and anterior temporal atrophy in both the region-of-interest and the voxel level analyses. DISCUSSION TDP-43 is associated with greater brain atrophy in PART.
Collapse
|
28
|
TDP-43 proteinopathy in aging: Associations with risk-associated gene variants and with brain parenchymal thyroid hormone levels. Neurobiol Dis 2019; 125:67-76. [PMID: 30682540 DOI: 10.1016/j.nbd.2019.01.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/13/2019] [Accepted: 01/19/2019] [Indexed: 02/08/2023] Open
Abstract
TDP-43 proteinopathy is very prevalent among the elderly (affecting at least 25% of individuals over 85 years of age) and is associated with substantial cognitive impairment. Risk factors implicated in age-related TDP-43 proteinopathy include commonly inherited gene variants, comorbid Alzheimer's disease pathology, and thyroid hormone dysfunction. To test parameters that are associated with aging-related TDP-43 pathology, we performed exploratory analyses of pathologic, genetic, and biochemical data derived from research volunteers in the University of Kentucky Alzheimer's Disease Center autopsy cohort (n = 136 subjects). Digital pathologic methods were used to discriminate and quantify both neuritic and intracytoplasmic TDP-43 pathology in the hippocampal formation. Overall, 46.4% of the cases were positive for TDP-43 intracellular inclusions, which is consistent with results in other prior community-based cohorts. The pathologies were correlated with hippocampal sclerosis of aging (HS-Aging) linked genotypes. We also assayed brain parenchymal thyroid hormone (triiodothyronine [T3] and thyroxine [T4]) levels. In cases with SLCO1A2/IAPP or ABCC9 risk associated genotypes, the T3/T4 ratio tended to be reduced (p = .051 using 2-tailed statistical test), and in cases with low T3/T4 ratios (bottom quintile), there was a higher likelihood of HS-Aging pathology (p = .025 using 2-tailed statistical test). This is intriguing because the SLCO1A2/IAPP and ABCC9 risk associated genotypes have been associated with altered expression of the astrocytic thyroid hormone receptor (protein product of the nearby gene SLCO1C1). These data indicate that dysregulation of thyroid hormone signaling may play a role in age-related TDP-43 proteinopathy.
Collapse
|
29
|
Kovacs GG, Lee VM, Trojanowski JQ. Protein astrogliopathies in human neurodegenerative diseases and aging. Brain Pathol 2018; 27:675-690. [PMID: 28805003 DOI: 10.1111/bpa.12536] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases are characterized by progressive dysfunction and loss of neurons associated with depositions of pathologically altered proteins showing hierarchical involvement of brain regions. The role of astrocytes in the pathogenesis of neurodegenerative diseases is explored as contributors to neuronal degeneration or neuroprotection pathways, and also as potential mediators of the transcellular spreading of disease-associated proteins. Protein astrogliopathy (PAG), including deposition of amyloid-β, prion protein, tau, α-synuclein, and very rarely transactive response DNA-binding protein 43 (TDP-43) is not unprecedented or unusual in neurodegenerative diseases. Morphological characterization of PAG is considered, however, only for the neuropathological diagnosis and classification of tauopathies. Astrocytic tau pathology is seen in primary frontotemporal lobar degeneration (FTLD) associated with tau pathologies (FTLD-Tau), and also in the form of aging-related tau astrogliopathy (ARTAG). Importantly, ARTAG shares common features with primary FTLD-Tau as well as with the astroglial tau pathologies that are thought to be hallmarks of a brain injury-related tauopathy known as chronic traumatic encephalopathy (CTE). Supported by experimental observations, the morphological variability of PAG might reflect distinct pathogenic involvement of different astrocytic populations. PAG might indicate astrocytic contribution to spreading or clearance of disease-associated proteins, however, this might lead to astrocytic dysfunction and eventually contribute to the degeneration of neurons. Here, we review recent advances in understanding ARTAG and other related forms of PAG.
Collapse
Affiliation(s)
- Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Virginia M Lee
- Center for Neurodegenerative Disease Research, Institute on Aging and Department of Pathology and Laboratory Medicine of the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Institute on Aging and Department of Pathology and Laboratory Medicine of the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
30
|
Koga S, Lin WL, Walton RL, Ross OA, Dickson DW. TDP-43 pathology in multiple system atrophy: colocalization of TDP-43 and α-synuclein in glial cytoplasmic inclusions. Neuropathol Appl Neurobiol 2018; 44:707-721. [PMID: 29660838 DOI: 10.1111/nan.12485] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/17/2018] [Indexed: 12/13/2022]
Abstract
AIMS This study aimed to assess clinicopathologic features of transactive response DNA-binding protein of 43 kDa (TDP-43) pathology and its risk factors in multiple system atrophy (MSA). METHODS Paraffin-embedded sections of the amygdala and basal forebrain from 186 autopsy-confirmed MSA cases were screened with immunohistochemistry for phospho-TDP-43. In cases having TDP-43 pathology, additional brain regions were assessed. Immunohistochemical and immunofluorescence double-staining and immunogold electron microscopy (IEM) were performed to evaluate colocalization of TDP-43 and α-synuclein. Genetic risk factors for TDP-43 pathology were also analysed. RESULTS Immunohistochemistry showed various morphologies of TDP-43 pathology in 13 cases (7%), such as subpial astrocytic inclusions, neuronal inclusions, dystrophic neurites, perivascular inclusions and glial cytoplasmic inclusions (GCIs). Multivariable logistic regression models revealed that only advanced age, but not concurrent Alzheimer's disease, argyrophilic grain disease or hippocampal sclerosis, was an independent risk factor for TDP-43 pathology in MSA (OR: 1.11, 95% CI: 1.04-1.19, P = 0.002). TDP-43 pathology was restricted to the amygdala in eight cases and extended to the hippocampus in two cases. The remaining three cases had widespread TDP-43 pathology. Immunohistochemical and immunofluorescence double-staining and IEM revealed colocalization of α-synuclein and TDP-43 in GCIs with granule-coated filaments. Pilot genetic studies failed to show associations between risk variants of TMEM106B or GRN and TDP-43 pathology. CONCLUSIONS TDP-43 pathology is rare in MSA and occurs mainly in the medial temporal lobe. Advanced age is a risk factor for TDP-43 pathology in MSA. Colocalization of TDP-43 and α-synuclein in GCIs suggests possible direct interaction between the two molecules.
Collapse
Affiliation(s)
- S Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - W-L Lin
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - R L Walton
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - O A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - D W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
31
|
Abstract
The term vascular cognitive impairment (VCI) was introduced around the start of the new millennium and refers to the contribution of vascular pathology to any severity of cognitive impairment, ranging from subjective cognitive decline and mild cognitive impairment to dementia. Although vascular pathology is common in elderly individuals with cognitive decline, pure vascular dementia (that is, dementia caused solely by vascular pathology) is uncommon. Indeed, most patients with vascular dementia also have other types of pathology, the most common of which is Alzheimer disease (specifically, the diffuse accumulation of amyloid-β plaques and neurofibrillary tangles composed of tau). At present, the main treatment for VCI is prevention by treating vascular diseases and other risk factors for VCI, such as hypertension and diabetes mellitus. Despite the current paucity of disease-modifying pharmacological treatments, we foresee that eventually, we might be able to target specific brain diseases to prevent cognitive decline and dementia.
Collapse
|
32
|
Nelson PT, Abner EL, Patel E, Anderson S, Wilcock DM, Kryscio RJ, Van Eldik LJ, Jicha GA, Gal Z, Nelson RS, Nelson BG, Gal J, Azam MT, Fardo DW, Cykowski MD. The Amygdala as a Locus of Pathologic Misfolding in Neurodegenerative Diseases. J Neuropathol Exp Neurol 2018; 77:2-20. [PMID: 29186501 DOI: 10.1093/jnen/nlx099] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Indexed: 12/14/2022] Open
Abstract
Over the course of most common neurodegenerative diseases the amygdala accumulates pathologically misfolded proteins. Misfolding of 1 protein in aged brains often is accompanied by the misfolding of other proteins, suggesting synergistic mechanisms. The multiplicity of pathogenic processes in human amygdalae has potentially important implications for the pathogenesis of Alzheimer disease, Lewy body diseases, chronic traumatic encephalopathy, primary age-related tauopathy, and hippocampal sclerosis, and for the biomarkers used to diagnose those diseases. Converging data indicate that the amygdala may represent a preferential locus for a pivotal transition from a relatively benign clinical condition to a more aggressive disease wherein multiple protein species are misfolded. Thus, understanding of amygdalar pathobiology may yield insights relevant to diagnoses and therapies; it is, however, a complex and imperfectly defined brain region. Here, we review aspects of amygdalar anatomy, connectivity, vasculature, and pathologic involvement in neurodegenerative diseases with supporting data from the University of Kentucky Alzheimer's Disease Center autopsy cohort. Immunohistochemical staining of amygdalae for Aβ, Tau, α-synuclein, and TDP-43 highlight the often-coexisting pathologies. We suggest that the amygdala may represent an "incubator" for misfolded proteins and that it is possible that misfolded amygdalar protein species are yet to be discovered.
Collapse
Affiliation(s)
- Peter T Nelson
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Erin L Abner
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Ela Patel
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Sonya Anderson
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Donna M Wilcock
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Richard J Kryscio
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Linda J Van Eldik
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Gregory A Jicha
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Zsombor Gal
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Ruth S Nelson
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Bela G Nelson
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Jozsef Gal
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Md Tofial Azam
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - David W Fardo
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Matthew D Cykowski
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| |
Collapse
|
33
|
Mishima T, Koga S, Lin WL, Kasanuki K, Castanedes-Casey M, Wszolek ZK, Oh SJ, Tsuboi Y, Dickson DW. Perry Syndrome: A Distinctive Type of TDP-43 Proteinopathy. J Neuropathol Exp Neurol 2017; 76:676-682. [PMID: 28789478 DOI: 10.1093/jnen/nlx049] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Perry syndrome is a rare atypical parkinsonism with depression, apathy, weight loss, and central hypoventilation caused by mutations in dynactin p150glued (DCTN1). A rare distal hereditary motor neuropathy, HMN7B, also has mutations in DCTN1. Perry syndrome has TAR DNA-binding protein of 43 kDa (TDP-43) inclusions as a defining feature. Other TDP-43 proteinopathies include amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) with and without motor neuron disease (FTLD-MND). TDP-43 forms aggregates in neuronal cytoplasmic inclusions (NCIs), neuronal intranuclear inclusions, dystrophic neurites (DNs), as well as axonal spheroids, oligodendroglial cytoplasmic inclusions, and perivascular astrocytic inclusions (PVIs). We performed semiquantitative assessment of these lesions and presence of dynactin subunit p50 lesions in 3 cases of Perry syndrome and one of HMN7B. We compared them with 3 cases of FTLD-MND, 3 of ALS, and 3 of hippocampal sclerosis (HpScl). Perry syndrome had NCIs, DNs, and frequent PVIs and spheroids. Perry syndrome cases were similar, but different from ALS, FTLD-MND, and HpScl. TDP-43 pathology was not detected in HMN7B. Dynactin p50 inclusions were observed in both Perry syndrome and HMN7B, but not in the other conditions. These results suggest that Perry syndrome may be distinctive type of TDP-43 proteinopathy.
Collapse
Affiliation(s)
- Takayasu Mishima
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida (TM, SK, W-LL, KK, MC-C, DWD); Department of Neurology, Fukuoka University, Fukuoka, Japan (TM, YT); Department of Neurology, Mayo Clinic, Jacksonville, Florida (ZKW); and Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama (SJO)
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida (TM, SK, W-LL, KK, MC-C, DWD); Department of Neurology, Fukuoka University, Fukuoka, Japan (TM, YT); Department of Neurology, Mayo Clinic, Jacksonville, Florida (ZKW); and Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama (SJO)
| | - Wen-Lang Lin
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida (TM, SK, W-LL, KK, MC-C, DWD); Department of Neurology, Fukuoka University, Fukuoka, Japan (TM, YT); Department of Neurology, Mayo Clinic, Jacksonville, Florida (ZKW); and Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama (SJO)
| | - Koji Kasanuki
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida (TM, SK, W-LL, KK, MC-C, DWD); Department of Neurology, Fukuoka University, Fukuoka, Japan (TM, YT); Department of Neurology, Mayo Clinic, Jacksonville, Florida (ZKW); and Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama (SJO)
| | - Monica Castanedes-Casey
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida (TM, SK, W-LL, KK, MC-C, DWD); Department of Neurology, Fukuoka University, Fukuoka, Japan (TM, YT); Department of Neurology, Mayo Clinic, Jacksonville, Florida (ZKW); and Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama (SJO)
| | - Zbigniew K Wszolek
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida (TM, SK, W-LL, KK, MC-C, DWD); Department of Neurology, Fukuoka University, Fukuoka, Japan (TM, YT); Department of Neurology, Mayo Clinic, Jacksonville, Florida (ZKW); and Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama (SJO)
| | - Shin J Oh
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida (TM, SK, W-LL, KK, MC-C, DWD); Department of Neurology, Fukuoka University, Fukuoka, Japan (TM, YT); Department of Neurology, Mayo Clinic, Jacksonville, Florida (ZKW); and Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama (SJO)
| | - Yoshio Tsuboi
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida (TM, SK, W-LL, KK, MC-C, DWD); Department of Neurology, Fukuoka University, Fukuoka, Japan (TM, YT); Department of Neurology, Mayo Clinic, Jacksonville, Florida (ZKW); and Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama (SJO)
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida (TM, SK, W-LL, KK, MC-C, DWD); Department of Neurology, Fukuoka University, Fukuoka, Japan (TM, YT); Department of Neurology, Mayo Clinic, Jacksonville, Florida (ZKW); and Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama (SJO)
| |
Collapse
|
34
|
Josephs KA, Murray ME, Tosakulwong N, Whitwell JL, Knopman DS, Machulda MM, Weigand SD, Boeve BF, Kantarci K, Petrucelli L, Lowe VJ, Jack CR, Petersen RC, Parisi JE, Dickson DW. Tau aggregation influences cognition and hippocampal atrophy in the absence of beta-amyloid: a clinico-imaging-pathological study of primary age-related tauopathy (PART). Acta Neuropathol 2017; 133:705-715. [PMID: 28160067 DOI: 10.1007/s00401-017-1681-2] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/20/2017] [Accepted: 01/22/2017] [Indexed: 12/13/2022]
Abstract
We investigate whether there is any association between the Braak neurofibrillary tangle (NFT) stage and clinical and MRI features in definite primary age-related tauopathy (PART). We analysed 52 cases with a Braak NFT tangle stage >0 and ≤IV, and a Thal phase of 0 (no beta-amyloid present). Twenty-nine (56%) were female. Median age at death was 88 years (IQR 82-92 years). Fifteen (29%) were TDP-positive (75% TDP stage I), 16 (31%) had argyrophilic grain disease and three (6%) had alpha-synuclein-positive Lewy bodies. TDP-43 inclusion when present were rare and predominantly perivascular. Of the 15 with TDP-43, three showed a moderate number of inclusions and also had hippocampal sclerosis, neuronal intranuclear inclusions and fine neurites of the CA1 region of the hippocampus. Four cases (8%) had an apolipoprotein epsilon 4 (APOE4) allele. There was a significant correlation between age at death and Braak NFT stage (r = 0.32, p = 0.02). After accounting for age at clinical examination, there were significant associations between Braak NFT stage, and WAIS-R Block Design and Trail Making Tests A and B, with higher Braak stage associated with poorer performances. Thirty of the 52 cases had completed an antemortem volumetric head MRI. Two separate MRI analyses revealed an association between higher Braak NFT stage and grey matter atrophy in the head of the left hippocampus. There were no significant clinical or radiologic associations with TDP-43. Findings from this study demonstrate that aggregated tau distribution is associated with poorer cognitive performance, as well as atrophy, in the absence of beta-amyloid. These findings support the parcellation of definite PART as a useful construct. The relatively low frequencies of APOE4, TDP-43, Lewy bodies, and hippocampal sclerosis, and the rarity and morphology of TDP-43 lesions are noted contrasts to what is typically observed in Alzheimer's disease of the old.
Collapse
Affiliation(s)
- Keith A Josephs
- Behavioral Neurology, Department of Neurology, Mayo Clinic, Rochester, MN, USA.
- Movement Disorders, Department of Neurology, Mayo Clinic, College of Medicine, Rochester, MN, USA.
| | | | - Nirubol Tosakulwong
- Biostatistics, Department of Health Science Research, Mayo Clinic, Rochester, MN, USA
| | - Jennifer L Whitwell
- Radiology Research, Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - David S Knopman
- Behavioral Neurology, Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Stephen D Weigand
- Biostatistics, Department of Health Science Research, Mayo Clinic, Rochester, MN, USA
| | - Bradley F Boeve
- Behavioral Neurology, Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Kejal Kantarci
- Radiology Research, Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Val J Lowe
- Radiology Research, Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Clifford R Jack
- Radiology Research, Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Ronald C Petersen
- Behavioral Neurology, Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Joseph E Parisi
- Neuropathology, Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
35
|
Spina S, Schonhaut DR, Boeve BF, Seeley WW, Ossenkoppele R, O'Neil JP, Lazaris A, Rosen HJ, Boxer AL, Perry DC, Miller BL, Dickson DW, Parisi JE, Jagust WJ, Murray ME, Rabinovici GD. Frontotemporal dementia with the V337M MAPT mutation: Tau-PET and pathology correlations. Neurology 2017; 88:758-766. [PMID: 28130473 DOI: 10.1212/wnl.0000000000003636] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/30/2016] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To assess the efficacy of [18F]AV1451 PET in visualizing tau pathology in vivo in a patient with frontotemporal dementia (FTD) associated with the V337M microtubule-associated protein tau (MAPT) mutation. METHODS MAPT mutations are associated with the deposition of hyperphosphorylated tau protein in neurons and glia. The PET tracer [18F]AV1451 binds with high affinity to paired helical filaments tau that comprises neurofibrillary tangles in Alzheimer disease (AD), while postmortem studies suggest lower or absent binding to the tau filaments of the majority of non-AD tauopathies. We describe clinical, structural MRI, and [18F]AV1451 PET findings in a V337M MAPT mutation carrier affected by FTD and pathologic findings in his affected mother and in an unrelated V337M MAPT carrier also affected with FTD. The biochemical similarity between paired helical filament tau in AD and MAPT V337M predicts that the tau pathology associated with this mutation constitutes a compelling target for [18F]AV1451 imaging. RESULTS We found a strong association between topography and degree of [18F]AV1451 tracer retention in the proband and distribution of tau pathology in the brain of the proband's mother and the unrelated V337M mutation carrier. We also found a significant correlation between the degree of regional MRI brain atrophy and the extent of [18F]AV1451 binding in the proband and a strong association between the proband's clinical presentation and the extent of regional brain atrophy and tau accumulation as assessed by structural brain MRI and [18F]AV1451PET. CONCLUSION Our study supports the usefulness of [18F]AV1451 to characterize tau pathology in at least a subset of pathogenic MAPT mutations.
Collapse
Affiliation(s)
- Salvatore Spina
- From the Memory and Aging Center (S.S., D.R.S., W.W.S., R.O., A.L., H.J.R., A.L.B., D.C.P., B.L.M., G.D.R.), Department of Neurology, and Department of Pathology (W.W.S), University of California, San Francisco; Department of Neurology (B.F.B., J.E.P.), Mayo Clinic, Rochester, MN; Helen Wills Neuroscience Institute (R.O., W.J.J., G.D.R.), University of California Berkeley; Alzheimercenter (R.O.), VU University Medical Center, Amsterdam, the Netherlands; Lawrence Berkeley National Laboratory (J.P.O., W.J.J., M.E.M., G.D.R.), Berkeley, CA; and Department of Pathology (D.W.D.), Mayo Clinic, Jacksonville, FL.
| | - Daniel R Schonhaut
- From the Memory and Aging Center (S.S., D.R.S., W.W.S., R.O., A.L., H.J.R., A.L.B., D.C.P., B.L.M., G.D.R.), Department of Neurology, and Department of Pathology (W.W.S), University of California, San Francisco; Department of Neurology (B.F.B., J.E.P.), Mayo Clinic, Rochester, MN; Helen Wills Neuroscience Institute (R.O., W.J.J., G.D.R.), University of California Berkeley; Alzheimercenter (R.O.), VU University Medical Center, Amsterdam, the Netherlands; Lawrence Berkeley National Laboratory (J.P.O., W.J.J., M.E.M., G.D.R.), Berkeley, CA; and Department of Pathology (D.W.D.), Mayo Clinic, Jacksonville, FL
| | - Bradley F Boeve
- From the Memory and Aging Center (S.S., D.R.S., W.W.S., R.O., A.L., H.J.R., A.L.B., D.C.P., B.L.M., G.D.R.), Department of Neurology, and Department of Pathology (W.W.S), University of California, San Francisco; Department of Neurology (B.F.B., J.E.P.), Mayo Clinic, Rochester, MN; Helen Wills Neuroscience Institute (R.O., W.J.J., G.D.R.), University of California Berkeley; Alzheimercenter (R.O.), VU University Medical Center, Amsterdam, the Netherlands; Lawrence Berkeley National Laboratory (J.P.O., W.J.J., M.E.M., G.D.R.), Berkeley, CA; and Department of Pathology (D.W.D.), Mayo Clinic, Jacksonville, FL
| | - William W Seeley
- From the Memory and Aging Center (S.S., D.R.S., W.W.S., R.O., A.L., H.J.R., A.L.B., D.C.P., B.L.M., G.D.R.), Department of Neurology, and Department of Pathology (W.W.S), University of California, San Francisco; Department of Neurology (B.F.B., J.E.P.), Mayo Clinic, Rochester, MN; Helen Wills Neuroscience Institute (R.O., W.J.J., G.D.R.), University of California Berkeley; Alzheimercenter (R.O.), VU University Medical Center, Amsterdam, the Netherlands; Lawrence Berkeley National Laboratory (J.P.O., W.J.J., M.E.M., G.D.R.), Berkeley, CA; and Department of Pathology (D.W.D.), Mayo Clinic, Jacksonville, FL
| | - Rik Ossenkoppele
- From the Memory and Aging Center (S.S., D.R.S., W.W.S., R.O., A.L., H.J.R., A.L.B., D.C.P., B.L.M., G.D.R.), Department of Neurology, and Department of Pathology (W.W.S), University of California, San Francisco; Department of Neurology (B.F.B., J.E.P.), Mayo Clinic, Rochester, MN; Helen Wills Neuroscience Institute (R.O., W.J.J., G.D.R.), University of California Berkeley; Alzheimercenter (R.O.), VU University Medical Center, Amsterdam, the Netherlands; Lawrence Berkeley National Laboratory (J.P.O., W.J.J., M.E.M., G.D.R.), Berkeley, CA; and Department of Pathology (D.W.D.), Mayo Clinic, Jacksonville, FL
| | - James P O'Neil
- From the Memory and Aging Center (S.S., D.R.S., W.W.S., R.O., A.L., H.J.R., A.L.B., D.C.P., B.L.M., G.D.R.), Department of Neurology, and Department of Pathology (W.W.S), University of California, San Francisco; Department of Neurology (B.F.B., J.E.P.), Mayo Clinic, Rochester, MN; Helen Wills Neuroscience Institute (R.O., W.J.J., G.D.R.), University of California Berkeley; Alzheimercenter (R.O.), VU University Medical Center, Amsterdam, the Netherlands; Lawrence Berkeley National Laboratory (J.P.O., W.J.J., M.E.M., G.D.R.), Berkeley, CA; and Department of Pathology (D.W.D.), Mayo Clinic, Jacksonville, FL
| | - Andreas Lazaris
- From the Memory and Aging Center (S.S., D.R.S., W.W.S., R.O., A.L., H.J.R., A.L.B., D.C.P., B.L.M., G.D.R.), Department of Neurology, and Department of Pathology (W.W.S), University of California, San Francisco; Department of Neurology (B.F.B., J.E.P.), Mayo Clinic, Rochester, MN; Helen Wills Neuroscience Institute (R.O., W.J.J., G.D.R.), University of California Berkeley; Alzheimercenter (R.O.), VU University Medical Center, Amsterdam, the Netherlands; Lawrence Berkeley National Laboratory (J.P.O., W.J.J., M.E.M., G.D.R.), Berkeley, CA; and Department of Pathology (D.W.D.), Mayo Clinic, Jacksonville, FL
| | - Howard J Rosen
- From the Memory and Aging Center (S.S., D.R.S., W.W.S., R.O., A.L., H.J.R., A.L.B., D.C.P., B.L.M., G.D.R.), Department of Neurology, and Department of Pathology (W.W.S), University of California, San Francisco; Department of Neurology (B.F.B., J.E.P.), Mayo Clinic, Rochester, MN; Helen Wills Neuroscience Institute (R.O., W.J.J., G.D.R.), University of California Berkeley; Alzheimercenter (R.O.), VU University Medical Center, Amsterdam, the Netherlands; Lawrence Berkeley National Laboratory (J.P.O., W.J.J., M.E.M., G.D.R.), Berkeley, CA; and Department of Pathology (D.W.D.), Mayo Clinic, Jacksonville, FL
| | - Adam L Boxer
- From the Memory and Aging Center (S.S., D.R.S., W.W.S., R.O., A.L., H.J.R., A.L.B., D.C.P., B.L.M., G.D.R.), Department of Neurology, and Department of Pathology (W.W.S), University of California, San Francisco; Department of Neurology (B.F.B., J.E.P.), Mayo Clinic, Rochester, MN; Helen Wills Neuroscience Institute (R.O., W.J.J., G.D.R.), University of California Berkeley; Alzheimercenter (R.O.), VU University Medical Center, Amsterdam, the Netherlands; Lawrence Berkeley National Laboratory (J.P.O., W.J.J., M.E.M., G.D.R.), Berkeley, CA; and Department of Pathology (D.W.D.), Mayo Clinic, Jacksonville, FL
| | - David C Perry
- From the Memory and Aging Center (S.S., D.R.S., W.W.S., R.O., A.L., H.J.R., A.L.B., D.C.P., B.L.M., G.D.R.), Department of Neurology, and Department of Pathology (W.W.S), University of California, San Francisco; Department of Neurology (B.F.B., J.E.P.), Mayo Clinic, Rochester, MN; Helen Wills Neuroscience Institute (R.O., W.J.J., G.D.R.), University of California Berkeley; Alzheimercenter (R.O.), VU University Medical Center, Amsterdam, the Netherlands; Lawrence Berkeley National Laboratory (J.P.O., W.J.J., M.E.M., G.D.R.), Berkeley, CA; and Department of Pathology (D.W.D.), Mayo Clinic, Jacksonville, FL
| | - Bruce L Miller
- From the Memory and Aging Center (S.S., D.R.S., W.W.S., R.O., A.L., H.J.R., A.L.B., D.C.P., B.L.M., G.D.R.), Department of Neurology, and Department of Pathology (W.W.S), University of California, San Francisco; Department of Neurology (B.F.B., J.E.P.), Mayo Clinic, Rochester, MN; Helen Wills Neuroscience Institute (R.O., W.J.J., G.D.R.), University of California Berkeley; Alzheimercenter (R.O.), VU University Medical Center, Amsterdam, the Netherlands; Lawrence Berkeley National Laboratory (J.P.O., W.J.J., M.E.M., G.D.R.), Berkeley, CA; and Department of Pathology (D.W.D.), Mayo Clinic, Jacksonville, FL
| | - Dennis W Dickson
- From the Memory and Aging Center (S.S., D.R.S., W.W.S., R.O., A.L., H.J.R., A.L.B., D.C.P., B.L.M., G.D.R.), Department of Neurology, and Department of Pathology (W.W.S), University of California, San Francisco; Department of Neurology (B.F.B., J.E.P.), Mayo Clinic, Rochester, MN; Helen Wills Neuroscience Institute (R.O., W.J.J., G.D.R.), University of California Berkeley; Alzheimercenter (R.O.), VU University Medical Center, Amsterdam, the Netherlands; Lawrence Berkeley National Laboratory (J.P.O., W.J.J., M.E.M., G.D.R.), Berkeley, CA; and Department of Pathology (D.W.D.), Mayo Clinic, Jacksonville, FL
| | - Joseph E Parisi
- From the Memory and Aging Center (S.S., D.R.S., W.W.S., R.O., A.L., H.J.R., A.L.B., D.C.P., B.L.M., G.D.R.), Department of Neurology, and Department of Pathology (W.W.S), University of California, San Francisco; Department of Neurology (B.F.B., J.E.P.), Mayo Clinic, Rochester, MN; Helen Wills Neuroscience Institute (R.O., W.J.J., G.D.R.), University of California Berkeley; Alzheimercenter (R.O.), VU University Medical Center, Amsterdam, the Netherlands; Lawrence Berkeley National Laboratory (J.P.O., W.J.J., M.E.M., G.D.R.), Berkeley, CA; and Department of Pathology (D.W.D.), Mayo Clinic, Jacksonville, FL
| | - William J Jagust
- From the Memory and Aging Center (S.S., D.R.S., W.W.S., R.O., A.L., H.J.R., A.L.B., D.C.P., B.L.M., G.D.R.), Department of Neurology, and Department of Pathology (W.W.S), University of California, San Francisco; Department of Neurology (B.F.B., J.E.P.), Mayo Clinic, Rochester, MN; Helen Wills Neuroscience Institute (R.O., W.J.J., G.D.R.), University of California Berkeley; Alzheimercenter (R.O.), VU University Medical Center, Amsterdam, the Netherlands; Lawrence Berkeley National Laboratory (J.P.O., W.J.J., M.E.M., G.D.R.), Berkeley, CA; and Department of Pathology (D.W.D.), Mayo Clinic, Jacksonville, FL
| | - Melissa E Murray
- From the Memory and Aging Center (S.S., D.R.S., W.W.S., R.O., A.L., H.J.R., A.L.B., D.C.P., B.L.M., G.D.R.), Department of Neurology, and Department of Pathology (W.W.S), University of California, San Francisco; Department of Neurology (B.F.B., J.E.P.), Mayo Clinic, Rochester, MN; Helen Wills Neuroscience Institute (R.O., W.J.J., G.D.R.), University of California Berkeley; Alzheimercenter (R.O.), VU University Medical Center, Amsterdam, the Netherlands; Lawrence Berkeley National Laboratory (J.P.O., W.J.J., M.E.M., G.D.R.), Berkeley, CA; and Department of Pathology (D.W.D.), Mayo Clinic, Jacksonville, FL
| | - Gil D Rabinovici
- From the Memory and Aging Center (S.S., D.R.S., W.W.S., R.O., A.L., H.J.R., A.L.B., D.C.P., B.L.M., G.D.R.), Department of Neurology, and Department of Pathology (W.W.S), University of California, San Francisco; Department of Neurology (B.F.B., J.E.P.), Mayo Clinic, Rochester, MN; Helen Wills Neuroscience Institute (R.O., W.J.J., G.D.R.), University of California Berkeley; Alzheimercenter (R.O.), VU University Medical Center, Amsterdam, the Netherlands; Lawrence Berkeley National Laboratory (J.P.O., W.J.J., M.E.M., G.D.R.), Berkeley, CA; and Department of Pathology (D.W.D.), Mayo Clinic, Jacksonville, FL
| |
Collapse
|
36
|
Puentes F, Malaspina A, van Noort JM, Amor S. Non-neuronal Cells in ALS: Role of Glial, Immune cells and Blood-CNS Barriers. Brain Pathol 2016; 26:248-57. [PMID: 26780491 DOI: 10.1111/bpa.12352] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/14/2016] [Indexed: 12/11/2022] Open
Abstract
Neurological dysfunction and motor neuron degeneration in amyotrophic lateral sclerosis (ALS) is strongly associated with neuroinflammation reflected by activated microglia and astrocytes in the CNS. In ALS endogenous triggers in the CNS such as aggregated protein and misfolded proteins activate a pathogenic response by innate immune cells. However, there is also strong evidence for a neuroprotective immune response in ALS. Emerging evidence also reveals changes in the peripheral adaptive immune responses as well as alterations in the blood brain barrier that may aid traffic of lymphocytes and antibodies into the CNS. Understanding the triggers of neuroinflammation is key to controlling neuronal loss. Here, we review the current knowledge regarding the roles of non-neuronal cells as well as the innate and adaptive immune responses in ALS. Existing ALS animal models, in particular genetic rodent models, are very useful to study the underlying pathogenic mechanisms of motor neuron degeneration. We also discuss the approaches used to target the pathogenic immune responses and boost the neuroprotective immune pathways as novel immunotherapies for ALS.
Collapse
Affiliation(s)
- Fabiola Puentes
- Neuroimmunology Unit, Queen Mary University of London, Neuroscience Centre, Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, London, UK
| | - Andrea Malaspina
- Neuroimmunology Unit, Queen Mary University of London, Neuroscience Centre, Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, London, UK
| | | | - Sandra Amor
- Neuroimmunology Unit, Queen Mary University of London, Neuroscience Centre, Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, London, UK.,Department of Pathology, VU University Medical Centre, PO Box 7057, 1007 MB Amsterdam, The Netherlands
| |
Collapse
|
37
|
Nelson PT, Katsumata Y, Nho K, Artiushin SC, Jicha GA, Wang WX, Abner EL, Saykin AJ, Kukull WA, Fardo DW. Genomics and CSF analyses implicate thyroid hormone in hippocampal sclerosis of aging. Acta Neuropathol 2016; 132:841-858. [PMID: 27815632 DOI: 10.1007/s00401-016-1641-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 10/28/2016] [Accepted: 10/28/2016] [Indexed: 11/29/2022]
Abstract
We report evidence of a novel pathogenetic mechanism in which thyroid hormone dysregulation contributes to dementia in elderly persons. Two single nucleotide polymorphisms (SNPs) on chromosome 12p12 were the initial foci of our study: rs704180 and rs73069071. These SNPs were identified by separate research groups as risk alleles for non-Alzheimer's neurodegeneration. We found that the rs73069071 risk genotype was associated with hippocampal sclerosis (HS) pathology among people with the rs704180 risk genotype (National Alzheimer's Coordinating Center/Alzheimer's Disease Genetic Consortium data; n = 2113, including 241 autopsy-confirmed HS cases). Furthermore, both rs704180 and rs73069071 risk genotypes were associated with widespread brain atrophy visualized by MRI (Alzheimer's Disease Neuroimaging Initiative data; n = 1239). In human brain samples from the Braineac database, both rs704180 and rs73069071 risk genotypes were associated with variation in expression of ABCC9, a gene which encodes a metabolic sensor protein in astrocytes. The rs73069071 risk genotype was also associated with altered expression of a nearby astrocyte-expressed gene, SLCO1C1. Analyses of human brain gene expression databases indicated that the chromosome 12p12 locus may regulate particular astrocyte-expressed genes induced by the active form of thyroid hormone, triiodothyronine (T3). This is informative biologically, because the SLCO1C1 protein transports thyroid hormone into astrocytes from blood. Guided by the genomic data, we tested the hypothesis that altered thyroid hormone levels could be detected in cerebrospinal fluid (CSF) obtained from persons with HS pathology. Total T3 levels in CSF were elevated in HS cases (p < 0.04 in two separately analyzed groups), but not in Alzheimer's disease cases, relative to controls. No change was detected in the serum levels of thyroid hormone (T3 or T4) in a subsample of HS cases prior to death. We conclude that brain thyroid hormone perturbation is a potential pathogenetic factor in HS that may also provide the basis for a novel CSF-based clinical biomarker.
Collapse
|
38
|
Takeuchi R, Toyoshima Y, Tada M, Tanaka H, Shimizu H, Shiga A, Miura T, Aoki K, Aikawa A, Ishizawa S, Ikeuchi T, Nishizawa M, Kakita A, Takahashi H. Globular Glial Mixed Four Repeat Tau and TDP-43 Proteinopathy with Motor Neuron Disease and Frontotemporal Dementia. Brain Pathol 2016; 26:82-94. [PMID: 25787090 PMCID: PMC8029069 DOI: 10.1111/bpa.12262] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/05/2015] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) may be accompanied by frontotemporal dementia (FTD). We report a case of glial mixed tau and TDP-43 proteinopathies in a Japanese patient diagnosed clinically as having ALS-D. Autopsy revealed loss of lower motor neurons and degeneration of the pyramidal tracts in the spinal cord and brain stem. The brain showed frontotemporal lobar degeneration (FTLD), the most severe neuronal loss and gliosis being evident in the precentral gyrus. Although less severe, such changes were also observed in other brain regions, including the basal ganglia and substantia nigra. AT8 immunostaining revealed that predominant occurrence of astrocytic tau lesions termed globular astrocytic inclusions (GAIs) was a feature of the affected regions. These GAIs were Gallyas-Braak negative. Neuronal and oligodendrocytic tau lesions were comparatively scarce. pS409/410 immunostaining also revealed similar neuronal and glial TDP-43 lesions. Interestingly, occasional co-localization of tau and TDP-43 was evident in the GAIs. Immunoblot analyses revealed band patterns characteristic of a 4-repeat (4R) tauopathy, corticobasal degeneration and a TDP-43 proteinopathy, ALS/FTLD-TDP Type B. No mutations were found in the MAPT or TDP-43 genes. We consider that this patient harbored a distinct, sporadic globular glial mixed 4R tau and TDP-43 proteinopathy associated with motor neuron disease and FTD.
Collapse
Affiliation(s)
- Ryoko Takeuchi
- Department of PathologyBrain Research InstituteUniversity of NiigataNiigataJapan
- Department of NeurologyBrain Research InstituteUniversity of NiigataNiigataJapan
| | - Yasuko Toyoshima
- Department of PathologyBrain Research InstituteUniversity of NiigataNiigataJapan
| | - Mari Tada
- Department of PathologyBrain Research InstituteUniversity of NiigataNiigataJapan
| | - Hidetomo Tanaka
- Department of PathologyBrain Research InstituteUniversity of NiigataNiigataJapan
| | - Hiroshi Shimizu
- Department of PathologyBrain Research InstituteUniversity of NiigataNiigataJapan
| | - Atsushi Shiga
- Department of Molecular NeuroscienceBrain Research InstituteUniversity of NiigataNiigataJapan
| | - Takeshi Miura
- Department of NeurologyToyama Prefectural Central HospitalToyamaJapan
| | - Kenju Aoki
- Department of NeurologyToyama Prefectural Central HospitalToyamaJapan
| | - Akane Aikawa
- Department of PathologyToyama Prefectural Central HospitalToyamaJapan
| | - Shin Ishizawa
- Department of PathologyToyama Prefectural Central HospitalToyamaJapan
| | - Takeshi Ikeuchi
- Department of Molecular GeneticsBrain Research InstituteUniversity of NiigataNiigataJapan
| | - Masatoyo Nishizawa
- Department of NeurologyBrain Research InstituteUniversity of NiigataNiigataJapan
| | - Akiyoshi Kakita
- Department of PathologyBrain Research InstituteUniversity of NiigataNiigataJapan
| | - Hitoshi Takahashi
- Department of PathologyBrain Research InstituteUniversity of NiigataNiigataJapan
| |
Collapse
|
39
|
Fiesel FC, Ando M, Hudec R, Hill AR, Castanedes-Casey M, Caulfield TR, Moussaud-Lamodière EL, Stankowski JN, Bauer PO, Lorenzo-Betancor O, Ferrer I, Arbelo JM, Siuda J, Chen L, Dawson VL, Dawson TM, Wszolek ZK, Ross OA, Dickson DW, Springer W. (Patho-)physiological relevance of PINK1-dependent ubiquitin phosphorylation. EMBO Rep 2015; 16:1114-30. [PMID: 26162776 DOI: 10.15252/embr.201540514] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/25/2015] [Indexed: 11/09/2022] Open
Abstract
Mutations in PINK1 and PARKIN cause recessive, early-onset Parkinson's disease (PD). Together, these two proteins orchestrate a protective mitophagic response that ensures the safe disposal of damaged mitochondria. The kinase PINK1 phosphorylates ubiquitin (Ub) at the conserved residue S65, in addition to modifying the E3 ubiquitin ligase Parkin. The structural and functional consequences of Ub phosphorylation (pS65-Ub) have already been suggested from in vitro experiments, but its (patho-)physiological significance remains unknown. We have generated novel antibodies and assessed pS65-Ub signals in vitro and in cells, including primary neurons, under endogenous conditions. pS65-Ub is dependent on PINK1 kinase activity as confirmed in patient fibroblasts and postmortem brain samples harboring pathogenic mutations. We show that pS65-Ub is reversible and barely detectable under basal conditions, but rapidly induced upon mitochondrial stress in cells and amplified in the presence of functional Parkin. pS65-Ub accumulates in human brain during aging and disease in the form of cytoplasmic granules that partially overlap with mitochondrial, lysosomal, and total Ub markers. Additional studies are now warranted to further elucidate pS65-Ub functions and fully explore its potential for biomarker or therapeutic development.
Collapse
Affiliation(s)
| | - Maya Ando
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Roman Hudec
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | | | | | | | | | - Peter O Bauer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Isidre Ferrer
- Institut de Neuropatologia, Servei d'Anatomia Patològica Hospital Universitari de Bellvitge, Hospitalet del Llobregat, Spain CIBERNED, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Barcelona, Spain
| | - José M Arbelo
- Department of Neurology, Parkinson's and Movement Disorders Unit, Hospital Universitario Insular de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Joanna Siuda
- Department of Neurology, School of Medicine in Katowice Medical University of Silesia, Katowice, Poland
| | - Li Chen
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering Johns Hopkins University School of Medicine, Baltimore, MD, USA Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering Johns Hopkins University School of Medicine, Baltimore, MD, USA Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, USA Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering Johns Hopkins University School of Medicine, Baltimore, MD, USA Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, USA Diana Helis Henry Medical Research Foundation, New Orleans, LA, USA Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA Neurobiology of Disease, Mayo Graduate School, Jacksonville, FL, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA Neurobiology of Disease, Mayo Graduate School, Jacksonville, FL, USA
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA Neurobiology of Disease, Mayo Graduate School, Jacksonville, FL, USA
| |
Collapse
|
40
|
Hippocampal sclerosis in Lewy body disease is a TDP-43 proteinopathy similar to FTLD-TDP Type A. Acta Neuropathol 2015; 129:53-64. [PMID: 25367383 DOI: 10.1007/s00401-014-1358-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/22/2014] [Accepted: 10/23/2014] [Indexed: 02/08/2023]
Abstract
Hippocampal sclerosis (HpScl) is frequent in frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP), but it also occurs in dementia of the elderly with or without accompanying Alzheimer type pathology. HpScl has been hypothesized to be a neurodegenerative process given its association with TDP-43 pathology, but this is still controversial. TDP-43 pathology is found in Lewy body disease (LBD), but no study has focused on the pathologic and genetic characteristics of HpScl in LBD. We found HpScl in 5.2% of 669 LBD cases (289 transitional and 380 diffuse). Older age, higher Braak neurofibrillary tangle (NFT) stage, and presence of TDP-43 pathology were associated with HpScl. There was no difference in the frequency of HpScl between transitional and diffuse LBD, suggesting that Lewy-related pathology appears to have no direct association with HpScl. All HpScl cases had TDP-43 pathology consistent with Type A pattern. HpScl cases harbored genetic variation in TMEM106B that has been previously associated with FTLD-TDP. Interestingly, the severity of TDP-43-positive fine neurites in CA1 sector, a possible pathologic precursor of HpScl, was associated with the TMEM106B variant. These results demonstrate HpScl in LBD is a TDP-43 proteinopathy and is similar to FTLD-TDP Type A. Furthermore, a subset of LBD cases without HpScl ("pre-HpScl") had similar pathologic and genetic characteristics to typical HpScl, suggesting that the spectrum of HpScl pathology may be wider than previously thought. Some cases with many extracellular NFTs also had a similar profile. We suggest that HpScl is "masked" in these cases.
Collapse
|
41
|
|
42
|
Zhang YJ, Jansen-West K, Xu YF, Gendron TF, Bieniek KF, Lin WL, Sasaguri H, Caulfield T, Hubbard J, Daughrity L, Chew J, Belzil VV, Prudencio M, Stankowski JN, Castanedes-Casey M, Whitelaw E, Ash PEA, DeTure M, Rademakers R, Boylan KB, Dickson DW, Petrucelli L. Aggregation-prone c9FTD/ALS poly(GA) RAN-translated proteins cause neurotoxicity by inducing ER stress. Acta Neuropathol 2014; 128:505-24. [PMID: 25173361 PMCID: PMC4159567 DOI: 10.1007/s00401-014-1336-5] [Citation(s) in RCA: 259] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 08/20/2014] [Accepted: 08/20/2014] [Indexed: 12/13/2022]
Abstract
The occurrence of repeat-associated non-ATG (RAN) translation, an atypical form of translation of expanded repeats that results in the synthesis of homopolymeric expansion proteins, is becoming more widely appreciated among microsatellite expansion disorders. Such disorders include amyotrophic lateral sclerosis and frontotemporal dementia caused by a hexanucleotide repeat expansion in the C9ORF72 gene (c9FTD/ALS). We and others have recently shown that this bidirectionally transcribed repeat is RAN translated, and the "c9RAN proteins" thusly produced form neuronal inclusions throughout the central nervous system of c9FTD/ALS patients. Nonetheless, the potential contribution of c9RAN proteins to disease pathogenesis remains poorly understood. In the present study, we demonstrate that poly(GA) c9RAN proteins are neurotoxic and may be implicated in the neurodegenerative processes of c9FTD/ALS. Specifically, we show that expression of poly(GA) proteins in cultured cells and primary neurons leads to the formation of soluble and insoluble high molecular weight species, as well as inclusions composed of filaments similar to those observed in c9FTD/ALS brain tissues. The expression of poly(GA) proteins is accompanied by caspase-3 activation, impaired neurite outgrowth, inhibition of proteasome activity, and evidence of endoplasmic reticulum (ER) stress. Of importance, ER stress inhibitors, salubrinal and TUDCA, provide protection against poly(GA)-induced toxicity. Taken together, our data provide compelling evidence towards establishing RAN translation as a pathogenic mechanism of c9FTD/ALS, and suggest that targeting the ER using small molecules may be a promising therapeutic approach for these devastating diseases.
Collapse
Affiliation(s)
- Yong-Jie Zhang
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | - Karen Jansen-West
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | - Ya-Fei Xu
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | - Tania F. Gendron
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | - Kevin F. Bieniek
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
- Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Wen-Lang Lin
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | - Hiroki Sasaguri
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | - Thomas Caulfield
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | - Jaime Hubbard
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | - Lillian Daughrity
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | - Jeannie Chew
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
- Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | | | - Mercedes Prudencio
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | | | | | - Ena Whitelaw
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | - Peter E. A. Ash
- Department of Pharmacology, Boston University School of Medicine, Boston, MA 02118 USA
| | - Michael DeTure
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | - Kevin B. Boylan
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224 USA
| |
Collapse
|
43
|
Abstract
Alexander disease (AxD) is a rare neurodegenerative disorder characterized pathologically by the presence of eosinophilic inclusions known as Rosenthal fibers (RFs) within astrocytes, and is caused by dominant mutations in the coding region of the gene encoding glial fibrillary acidic protein (GFAP). GFAP is the major astrocytic intermediate filament, and in AxD patient brain tissue GFAP is a major component of RFs. TAR DNA binding protein of 43 kDa (TDP-43) is the major pathological protein in almost all cases of the neurodegenerative disease amyotrophic lateral sclerosis (ALS) and ∼50% of frontotemporal lobar degeneration (FTLD), designated as FTLD-TDP. In ALS and FTLD-TDP, TDP-43 becomes insoluble, ubiquitinated, and pathologically phosphorylated and accumulates in cytoplasmic inclusions in both neurons and glia of affected brain and spinal cord regions. Previously, TDP-43 was detected in RFs of human pilocytic astrocytomas; however, involvement of TDP-43 in AxD has not been determined. Here we show that TDP-43 is present in RFs in AxD patient brains, and that insoluble phosphorylated full-length and high molecular weight TDP-43 accumulates in white matter of such brains. Phosphorylated TDP-43 also accumulates in the detergent-insoluble fraction from affected brain regions of Gfap(R236H/+) knock-in mice, which harbor a GFAP mutation homologous to one that causes AxD in humans, and TDP-43 colocalizes with astrocytic RF pathology in Gfap(R236H/+) mice and transgenic mice overexpressing human wild-type GFAP. These findings suggest common pathogenic mechanisms in ALS, FTLD, and AxD, and this is the first report of TDP-43 involvement in a neurological disorder primarily affecting astrocytes.
Collapse
|
44
|
Progressive amnestic dementia, hippocampal sclerosis, and mutation in C9ORF72. Acta Neuropathol 2013; 126:545-54. [PMID: 23922030 DOI: 10.1007/s00401-013-1161-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 07/26/2013] [Indexed: 12/12/2022]
Abstract
The most common cause of familial frontotemporal lobar degeneration with TAR DNA-binding protein-43 pathology (FTLD-TDP) has been found to be an expansion of a hexanucleotide repeat (GGGGCC) in a noncoding region of the gene C9ORF72. Hippocampal sclerosis (HpScl) is a common finding in FTLD-TDP. Our objective was to screen for the presence of C9ORF72 hexanucleotide repeat expansions in a pathologically confirmed cohort of "pure" hippocampal sclerosis cases (n = 33), outside the setting of FTLD-TDP and Alzheimer's disease (AD). Using a recently described repeat-associated non-ATG (RAN) translation (C9RANT) antibody that was found to be highly specific for c9FTD/ALS, we identified a single "pure" HpScl autopsy case with a repeat expansion in C9ORF72 (c9HpScl). Mutation screening was also performed with repeat-primed polymerase chain reaction and further confirmed with Southern blotting. The c9HpScl patient had a 14-year history of a slowly progressive amnestic syndrome and a clinical diagnosis of probable AD. Neuropsychological testing revealed memory impairment, but no deficits in other cognitive domains. Autopsy showed hippocampal sclerosis with TDP-43 immunoreactive neuronal inclusions relatively limited to limbic lobe structures. Neuritic pathology immunoreactive for p62 was more frequent than TDP-43 in amygdala and hippocampus. Frequent p62-positive neuronal inclusions were present in cerebellar granule neurons as is typical of C9ORF72 mutation carriers. There was no significant FTLD or motor neuron disease. C9RANT was found to be sensitive and specific in this autopsy-confirmed series of HpScl cases. The findings in this patient suggest that the clinical and pathologic spectrum of C9ORF72 repeat expansion is wider than frontotemporal dementia and motor neuron disease, including cases of progressive amnestic dementia with restricted TDP-43 pathology associated with HpScl.
Collapse
|
45
|
Sakurai A, Makioka K, Fukuda T, Takatama M, Okamoto K. Accumulation of phosphorylated TDP-43 in the CNS of a patient with Cockayne syndrome. Neuropathology 2013; 33:673-7. [PMID: 23581709 DOI: 10.1111/neup.12038] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 03/15/2013] [Accepted: 03/16/2013] [Indexed: 11/28/2022]
Abstract
Here, we report a case of Cockayne syndrome (CS) in a Japanese man who displayed a unique pathology of phosphorylated trans-activation response (TAR) DNA-binding protein 43 (pTDP-43) with abundant Rosenthal fibers. Many round pTDP-43-positive structures were detected throughout the CNS; however, most of them were located in two regions that also exhibited neuronal depletion: the cerebellar cortex and the inferior olivary nucleus. To a lesser extent, these aggregates were also present in the cerebellar white matter, around the subependymal regions in the brain stem, and in the spinal cord. Intraneuronal pTDP-43 inclusions were only observed in a small number of neurons in the inferior olivary nucleus. Double-label immunofluorescence revealed that many of the aggregates were localized to astrocytes. The observed distribution and the morphology of the pTDP-43-positive structures were unique and have not yet been reported. Therefore, a pTDP-43-related pathology may be implicated in CS as well as in other neurodegenerative diseases such as frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Whether the pathology of these diseases reflects a primary neurodegenerative process or a secondary reaction is not known.
Collapse
Affiliation(s)
- Atsushi Sakurai
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan; Department of Neurology, Hanna-Sawarabi Ryoikuen, Takasaki, Gunma, Japan
| | | | | | | | | |
Collapse
|
46
|
Oligoclonal bands in the cerebrospinal fluid of amyotrophic lateral sclerosis patients with disease-associated mutations. J Neurol 2012; 260:85-92. [PMID: 22752089 DOI: 10.1007/s00415-012-6589-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 06/10/2012] [Accepted: 06/12/2012] [Indexed: 12/11/2022]
Abstract
In amyotrophic lateral sclerosis (ALS) cerebrospinal fluid (CSF) analysis is usually performed to exclude inflammatory processes of the central nervous system. Although in a small subset of patients an intrathecal synthesis of IgG is detectable, usually there is no clear explanation for this evidence. This study investigates the occurrence of oligoclonal bands (OCBs) in the CSF of a large series of ALS patients, attempting a correlation with genotype data. CSF was collected from 259 ALS patients. CSF parameters were measured according to standard procedures, and detection of OCBs performed by isoelectric focusing. The patients were screened for mutations in SOD1, FUS, TARDBP, ANG, OPTN, and C9ORF72. We observed the presence of OCBs in the CSF of 9/259 ALS patients (3.5 %), and of disease-associated mutations in 12 cases. OCBs were significantly more frequent in mutation carriers compared to the remaining cohort (3/12 vs 6/247; p < 0.01). Among patients with OCBs, two patients had the TARDBP p.A382T mutation (one of which in homozygous state), and one the ANG p.P-4S variant. Both patients carrying the p.A382T mutation had an atypical phenotype, one of them manifesting signs suggestive of a cerebellar involvement, and the other presenting neuroradiological findings suggestive of an inflammatory disorder of the central nervous system. Our results suggest that ALS patients with OCBs may harbor mutations in disease-causing genes. We speculate that mutations in both TARDBP and ANG genes may disrupt the blood-brain barrier (BBB), promoting local immune responses and neuroinflammation. The role of mutant TARDBP and ANG genes on BBB integrity of ALS patients warrants further investigation.
Collapse
|
47
|
Lin W, Dickson DW. Ultrastructure of ubiquitin-positive, TDP-43-negative neuronal inclusions in cerebral cortex of C9ORF72-linked frontotemporal lobar degeneration/amyotrophic lateral sclerosis. Neuropathology 2012; 32:679-81. [PMID: 22394026 DOI: 10.1111/j.1440-1789.2012.01305.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
48
|
Murray ME, DeJesus-Hernandez M, Rutherford NJ, Baker M, Duara R, Graff-Radford NR, Wszolek ZK, Ferman TJ, Josephs KA, Boylan KB, Rademakers R, Dickson DW. Clinical and neuropathologic heterogeneity of c9FTD/ALS associated with hexanucleotide repeat expansion in C9ORF72. Acta Neuropathol 2011; 122:673-90. [PMID: 22083254 DOI: 10.1007/s00401-011-0907-y] [Citation(s) in RCA: 237] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 10/31/2011] [Accepted: 11/01/2011] [Indexed: 12/30/2022]
Abstract
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are part of a disease spectrum associated with TDP-43 pathology. Strong evidence supporting this is the existence of kindreds with family members affected by FTD, ALS or mixed features of FTD and ALS, referred to as FTD-MND. Some of these families have linkage to chromosome 9, with hexanucleotide expansion mutation in a noncoding region of C9ORF72. Discovery of the mutation defines c9FTD/ALS. Prior to discovery of mutations in C9ORF72, it was assumed that TDP-43 pathology in c9FTD/ALS was uniform. In this study, we examined the neuropathology and clinical features of 20 cases of c9FTD/ALS from a brain bank for neurodegenerative disorders. Included are six patients clinically diagnosed with ALS, eight FTD, one FTD-MND and four Alzheimer-type dementia. Clinical information was unavailable for one patient. Pathologically, the cases all had TDP-43 pathology, but there were three major pathologic groups: ALS, FTLD-MND and FTLD-TDP. The ALS cases were morphologically similar to typical sporadic ALS with almost no extramotor TDP-43 pathology; all had oligodendroglial cytoplasmic inclusions. The FTLD-MND showed predominantly Mackenzie Type 3 TDP-43 pathology, and all had ALS-like pathology in motor neurons, but more extensive extramotor pathology, with oligodendroglial cytoplasmic inclusions and infrequent hippocampal sclerosis. The FTLD-TDP cases had several features similar to FTLD-TDP due to mutations in the gene for progranulin, including Mackenzie Type 1 TDP-43 pathology with neuronal intranuclear inclusions and hippocampal sclerosis. FTLD-TDP patients were older and some were thought to have Alzheimer-type dementia. In addition to the FTD and ALS clinical presentations, the present study shows that c9FTD/ALS can have other presentations, possibly related to age of onset and the presence of hippocampal sclerosis. Moreover, there is pathologic heterogeneity not only between ALS and FTLD, but also within the FTLD group. Further studies are needed to address the molecular mechanism of clinical and pathological heterogeneity of c9FTD/ALS due to mutations in C9ORF72.
Collapse
Affiliation(s)
- Melissa E Murray
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
On the development of markers for pathological TDP-43 in amyotrophic lateral sclerosis with and without dementia. Prog Neurobiol 2011; 95:649-62. [PMID: 21911035 DOI: 10.1016/j.pneurobio.2011.08.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 08/29/2011] [Accepted: 08/29/2011] [Indexed: 11/24/2022]
Abstract
Pathological 43-kDa transactive response sequence DNA-binding protein (TDP-43) has been recognized as the major disease protein in amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration with ubiquitin positive, tau and α-synuclein negative inclusions (FTLD-U) and the transitional forms between these multisystem conditions. In order to develop TDP-43 into a successful ALS biomarker, the natural history of TDP-43 pathology needs to be characterized and the underlying pathophysiology established. Here we propose a spatial and temporal "two-axes" model of central nervous system vulnerability for TDP-43 linked degeneration and review recent studies on potential biomarkers related to pathological TDP-43 in the cerebrospinal fluid (CSF), blood, and skeletal muscle. The model includes the following two arms: Firstly, a "motor neuron disease" or "spinal cord/brainstem to motor cortex" axis (with degeneration possibly ascending from the lower motor neurons to the upper motor neurons); and secondly, a "dementia" or "corticoid/allocortex to neocortex" axis (with a probable spread of TDP-43 linked degeneration from the mediotemporal lobe to wider mesocortical and neocortical brain areas). At the cellular level, there is a gradual disappearance of normal TDP-43 in the nucleus in combination with the formation of pathological aggregates in the cell body and cellular processes, which can also be used to identify the stage of the disease process. Moreover, TDP-43 lesions in subpial/subependymal or perivascular localizations have been noted, and this might account for increased CSF and blood TDP-43 levels through mechanisms that remain to be elucidated.
Collapse
|
50
|
Quadri M, Cossu G, Saddi V, Simons EJ, Murgia D, Melis M, Ticca A, Oostra BA, Bonifati V. Broadening the phenotype of TARDBP mutations: the TARDBP Ala382Thr mutation and Parkinson's disease in Sardinia. Neurogenetics 2011; 12:203-9. [PMID: 21667065 PMCID: PMC3158341 DOI: 10.1007/s10048-011-0288-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 05/24/2011] [Indexed: 12/12/2022]
Abstract
Mutations in the TARDBP gene are a cause of autosomal dominant amyotrophic lateral sclerosis (ALS) and of frontotemporal lobar degeneration (FTLD), but they have not been found so far in patients with Parkinson's disease (PD). A founder TARDBP mutation (p.Ala382Thr) was recently identified as the cause of ~30% of ALS cases in Sardinia, a Mediterranean genetic isolate. We studied 327 consecutive Sardinian patients with clinically diagnosed PD (88 familial, 239 sporadic) and 578 Sardinian controls. One family with FTLD and parkinsonism was also included. The p.Ala382Thr heterozygous mutation was detected in eight unrelated PD patients (2.5%). The three patients from the FTLD/parkinsonism family also carried this mutation. Within the control group, there were three heterozygous mutation carriers. During follow-up, one of these individuals developed motoneuron disease and another, a rapidly progressive dementia; the third remains healthy at the age of 79 but two close relatives developed motoneuron disease and dementia. The eight PD patients carrying the p.Ala382Thr mutation had all sporadic disease presentation. Their average onset age was 70.0 years (SD 9.4, range 51-79), which is later but not significantly different from that of the patients who did not carry this mutation. In conclusion, we expand the clinical spectrum associated with TARDBP mutations to FTLD with parkinsonism without motoneuron disease and to clinically definite PD. The TDP-43 protein might be directly involved in a broader neurodegenerative spectrum, including not only motoneuron disease and FTLD but also PD.
Collapse
Affiliation(s)
- Marialuisa Quadri
- Department of Clinical Genetics, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|