1
|
Lorenc F, Dupuis L, Cassel R. Impairments of inhibitory neurons in amyotrophic lateral sclerosis and frontotemporal dementia. Neurobiol Dis 2024; 203:106748. [PMID: 39592063 DOI: 10.1016/j.nbd.2024.106748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024] Open
Abstract
Amyotrophic lateral sclerosis and frontotemporal dementia are two fatal neurodegenerative disorders. They are part of a pathophysiological continuum, displaying clinical, neuropathological, and genetic overlaps. There is compelling evidence that neuronal circuit dysfunction is an early feature of both diseases. Impaired neuronal excitability, imbalanced excitatory and inhibitory influences, and altered functional connectivity have been reported. These phenomena are likely due to combined alterations in the various cellular components involved in the functioning of neuronal networks. This review focuses on one of these cellular components: inhibitory neurons. We assess the evidence for inhibitory neuron impairments in amyotrophic lateral sclerosis and frontotemporal dementia, as well as the mechanisms leading to the loss of inhibition. We also discuss the contributions of these alterations to symptoms, and the potential therapeutic strategies for targeting inhibitory neuron deficits.
Collapse
Affiliation(s)
- Félicie Lorenc
- Université de Strasbourg, INSERM, UMR-S 1329, Strasbourg Translational Neuroscience and Psychiatry, CRBS, Strasbourg, France.
| | - Luc Dupuis
- Université de Strasbourg, INSERM, UMR-S 1329, Strasbourg Translational Neuroscience and Psychiatry, CRBS, Strasbourg, France.
| | - Raphaelle Cassel
- Université de Strasbourg, INSERM, UMR-S 1329, Strasbourg Translational Neuroscience and Psychiatry, CRBS, Strasbourg, France.
| |
Collapse
|
2
|
Bonthron C, Burley S, Broadhead MJ, Metodieva V, Grant SGN, Chandran S, Miles GB. Excitatory to inhibitory synaptic ratios are unchanged at presymptomatic stages in multiple models of ALS. PLoS One 2024; 19:e0306423. [PMID: 39088455 PMCID: PMC11293752 DOI: 10.1371/journal.pone.0306423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/17/2024] [Indexed: 08/03/2024] Open
Abstract
Hyperexcitability of motor neurons and spinal cord motor circuitry has been widely reported in the early stages of Amyotrophic Lateral Sclerosis (ALS). Changes in the relative amount of excitatory to inhibitory inputs onto a neuron (E:I synaptic ratio), possibly through a developmental shift in synapse formation in favour of excitatory transmission, could underlie pathological hyperexcitability. Given that astrocytes play a major role in early synaptogenesis and are implicated in ALS pathogenesis, their potential contribution to disease mechanisms involving synaptic imbalances and subsequent hyperexcitability is also of great interest. In order to assess E:I ratios in ALS, we utilised a novel primary spinal neuron / astrocyte co-culture system, derived from neonatal mice, in which synapses are formed in vitro. Using multiple ALS mouse models we found that no combination of astrocyte or neuron genotype produced alterations in E:I synaptic ratios assessed using pre- and post-synaptic anatomical markers. Similarly, we observed that ephrin-B1, a major contact-dependent astrocytic synaptogenic protein, was not differentially expressed by ALS primary astrocytes. Further to this, analysis of E:I ratios across the entire grey matter of the lumbar spinal cord in young (post-natal day 16-19) ALS mice revealed no differences versus controls. Finally, analysis in co-cultures of human iPSC-derived motor neurons and astrocytes harbouring the pathogenic C9orf72 hexanucleotide repeat expansion showed no evidence of a bias toward excitatory versus inhibitory synapse formation. We therefore conclude, utilising multiple ALS models, that we do not observe significant changes in the relative abundance of excitatory versus inhibitory synapses as would be expected if imbalances in synaptic inputs contribute to early hyperexcitability.
Collapse
Affiliation(s)
- Calum Bonthron
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
| | - Sarah Burley
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
- School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Matthew J. Broadhead
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
| | - Vanya Metodieva
- School of Biology, University of St Andrews, St Andrews, United Kingdom
- Centre of Biophotonics, University of St Andrews, St Andrews, United Kingdom
| | - Seth G. N. Grant
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Siddharthan Chandran
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
- Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Gareth B. Miles
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
| |
Collapse
|
3
|
Calvo PM, de la Cruz RR, Pastor AM, Alvarez FJ. Preservation of KCC2 expression in axotomized abducens motoneurons and its enhancement by VEGF. Brain Struct Funct 2023; 228:967-984. [PMID: 37005931 PMCID: PMC10428176 DOI: 10.1007/s00429-023-02635-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/23/2023] [Indexed: 04/04/2023]
Abstract
The potassium chloride cotransporter 2 (KCC2) is the main Cl- extruder in neurons. Any alteration in KCC2 levels leads to changes in Cl- homeostasis and, consequently, in the polarity and amplitude of inhibitory synaptic potentials mediated by GABA or glycine. Axotomy downregulates KCC2 in many different motoneurons and it is suspected that interruption of muscle-derived factors maintaining motoneuron KCC2 expression is in part responsible. In here, we demonstrate that KCC2 is expressed in all oculomotor nuclei of cat and rat, but while trochlear and oculomotor motoneurons downregulate KCC2 after axotomy, expression is unaltered in abducens motoneurons. Exogenous application of vascular endothelial growth factor (VEGF), a neurotrophic factor expressed in muscle, upregulated KCC2 in axotomized abducens motoneurons above control levels. In parallel, a physiological study using cats chronically implanted with electrodes for recording abducens motoneurons in awake animals, demonstrated that inhibitory inputs related to off-fixations and off-directed saccades in VEGF-treated axotomized abducens motoneurons were significantly higher than in control, but eye-related excitatory signals in the on direction were unchanged. This is the first report of lack of KCC2 regulation in a motoneuron type after injury, proposing a role for VEGF in KCC2 regulation and demonstrating the link between KCC2 and synaptic inhibition in awake, behaving animals.
Collapse
Affiliation(s)
- Paula M Calvo
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012, Seville, Spain
- Department of Cell Biology, Emory University, Atlanta, GA, 30322, USA
| | - Rosa R de la Cruz
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012, Seville, Spain
| | - Angel M Pastor
- Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, 41012, Seville, Spain
| | | |
Collapse
|
4
|
NKCC1 to KCC2 mRNA Ratio in Schizophrenia and Its Psychopathology: a Case-Control Study. J Mol Neurosci 2022; 72:1670-1681. [PMID: 35624355 DOI: 10.1007/s12031-021-01879-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 06/21/2021] [Indexed: 10/18/2022]
Abstract
Schizophrenia (SCZ) is a debilitating, destructive, and chronic mental disorder and affects approximately one percent of the human population. Diagnosis in psychiatry is based on the patient's descriptions of his/her symptoms, interviewer's observations, history of disorder over time, and response to treatment. All of these data measure phenotype-based functions. But it appears that accurate diagnosis of such a complex disorder must be based on valid and reliable factors. In the present study, gene selection was based on the possible role of γ-aminobutyric acid (GABA) in psychopathology of SCZ and expression in blood. We evaluated the association of Na+-K+-Cl- co-transporter 1 (NKCC1) and K+-Cl- co-transporter 2 (KCC2) genes' messenger ribonucleic acid (mRNA) levels, and also the NKCC1/KCC2 ratio with positive and negative syndrome scale (PANSS) and brief psychiatric rating scale (BPRS) scores in an SCZ group. By using real-time PCR (RT-PCR), the present study is the first attempt to explore levels of NKCC1 and KCC2 expression at mRNA level and their relative expression in human peripheral blood of patients with SCZ. Our results showed that the NKCC1 to KCC2 mRNA ratio is significantly increased (but based on the delta cycle of threshold [∆Ct] is significantly lower) in the total sample of cases rather than controls (p = 0.045) and also higher in male sample cases rather than male controls (p = 0.016). In female samples, we found a trend toward a significant effect between the case and control participants (p = 0.075). We also found statistically significant association between mRNA of NKCC1 and KCC2 genes and NKCC1/KCC2 mRNA ratio with the positive and negative syndrome scale (PANSS) and brief psychiatric rating scale (BPRS) scores.
Collapse
|
5
|
González-Ruiz V, Cores Á, Caja MM, Sridharan V, Villacampa M, Martín MA, Olives AI, Menéndez JC. Fluorescence Sensors Based on Hydroxycarbazole for the Determination of Neurodegeneration-Related Halide Anions. BIOSENSORS 2022; 12:175. [PMID: 35323445 PMCID: PMC8946780 DOI: 10.3390/bios12030175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 11/21/2022]
Abstract
The environmental presence of anions of natural origin or anthropogenic origin is gradually increasing. As a tool to tackle this problem, carbazole derivatives are an attractive gateway to the development of luminescent chemosensors. Considering the different mechanisms proposed for anion recognition, the fluorescence properties and anion-binding response of several newly synthesised carbazole derivatives were studied. Potential anion sensors were designed so that they combined the native fluorescence of carbazole with the presence of hydrogen bonding donor groups in critical positions for anion recognition. These compounds were synthesised by a feasible and non-expensive procedure using palladium-promoted cyclodehydrogenation of suitable diarylamine under microwave irradiation. In comparison to the other carbazole derivatives studied, 1-hydroxycarbazole proved to be useful as a fluorescent sensor for anions, as it was able to sensitively recognise fluoride and chloride anions by establishing hydrogen bond interactions through the hydrogen atoms on the pyrrolic nitrogen and the hydroxy group. Solvent effects and excited-state proton transfer (ESPT) of the carbazole derivatives are described to discard the role of the anions as Brönsted bases on the observed fluorescence behaviour of the sensors. The anion-sensor interaction was confirmed by 1H-NMR. Molecular modelling was employed to propose a mode of recognition of the sensor in terms of complex stability and interatomic distances. 1-hydroxycarbazole was employed for the quantitation of fluoride and chloride anions in commercially available medicinal spring water and mouthwash samples.
Collapse
Affiliation(s)
- Víctor González-Ruiz
- Unidad de Química Analítica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; (V.G.-R.); (M.M.C.); (M.A.M.)
- School of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
- Swiss Centre for Applied Human Toxicology (SCATH), 4055 Basel, Switzerland
| | - Ángel Cores
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Á.C.); (V.S.); (M.V.)
| | - M. Mar Caja
- Unidad de Química Analítica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; (V.G.-R.); (M.M.C.); (M.A.M.)
| | - Vellaisamy Sridharan
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Á.C.); (V.S.); (M.V.)
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu 181143, J&K, India
| | - Mercedes Villacampa
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Á.C.); (V.S.); (M.V.)
| | - M. Antonia Martín
- Unidad de Química Analítica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; (V.G.-R.); (M.M.C.); (M.A.M.)
| | - Ana I. Olives
- Unidad de Química Analítica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; (V.G.-R.); (M.M.C.); (M.A.M.)
| | - J. Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Á.C.); (V.S.); (M.V.)
| |
Collapse
|
6
|
Branchereau P, Cattaert D. Chloride Homeostasis in Developing Motoneurons. ADVANCES IN NEUROBIOLOGY 2022; 28:45-61. [PMID: 36066820 DOI: 10.1007/978-3-031-07167-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Maturation of GABA/Glycine chloride-mediated synaptic inhibitions is crucial for the establishment of a balance between excitation and inhibition. GABA and glycine are excitatory neurotransmitters on immature neurons that exhibit elevated [Cl-]i. Later in development [Cl-]i drops leading to the occurrence of inhibitory synaptic activity. This ontogenic change is closely correlated to a differential expression of two cation-chloride cotransporters that are the Cl- channel K+/Cl- co-transporter type 2 (KCC2) that extrudes Cl- ions and the Na+-K+-2Cl- cotransporter NKCC1 that accumulates Cl- ions. The classical scheme built from studies performed on cortical and hippocampal networks proposes that immature neurons display high [Cl-]i because NKCC1 is overexpressed compared to KCC2 and that the co-transporters ratio reverses in mature neurons, lowering [Cl-]i. In this chapter, we will see that this classical scheme is not true in motoneurons (MNs) and that an early alteration of the chloride homeostasis may be involved in pathological conditions.
Collapse
Affiliation(s)
- Pascal Branchereau
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), Univ. Bordeaux, UMR 5287, CNRS, Bordeaux, France.
| | - Daniel Cattaert
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), Univ. Bordeaux, UMR 5287, CNRS, Bordeaux, France
| |
Collapse
|
7
|
Zhou X, Wang Z, Lin Z, Zhu Y, Zhu D, Xie C, Calcutt NA, Guan Y. Rate-dependent depression is impaired in amyotrophic lateral sclerosis. Neurol Sci 2021; 43:1831-1838. [PMID: 34518934 DOI: 10.1007/s10072-021-05596-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/06/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE We investigated rate-dependent depression (RDD) of the Hoffman reflex (H-reflex) in patients with amyotrophic lateral sclerosis (ALS), a degenerative disease with ventral horn involvement. PATIENTS AND METHODS In this case-control study, we enrolled 27 patients with ALS and 30 matched healthy control subjects. Clinical and electrophysiological assessments, as well as RDD in response to various stimulation frequencies (0.5 Hz, 1 Hz, 3 Hz and 5 Hz), were compared between groups. Multiple clinical and electrophysiological factors were also explored to determine any underlying associations with RDD. RESULTS The ALS group showed a significant loss of RDD across all frequencies compared to the control group, most notably following 1 Hz stimulation (19.1 ± 20.3 vs. 34.0 ± 13.7%, p = 0.003). Among factors that might influence RDD, the enlargement of the motor unit potential (MUP) showed a significant relationship with RDD following multifactor analysis of variance (p = 0.007) and Pearson correlation analysis (ρ = - 0.70, p < 0.001), while various upper motor neuron manifestations were not correlated with RDD values (p > 0.05). CONCLUSION We report a loss of RDD in patients with ALS. The strong correlation detected between the RDD deficit and increased MUP suggests that RDD is a sensitive indicator of underlying spinal disinhibition in ALS. TRIAL REGISTRATION ChiCTR2000038848, 10/7/2020 (retrospectively registered), http://www.chictr.org.cn/ .
Collapse
Affiliation(s)
- Xiajun Zhou
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China
| | - Ze Wang
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China
| | - Zhi Lin
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China
| | - Ying Zhu
- Department of Neurology, Shanghai International Medical Center, Shanghai, 201318, China
| | - Desheng Zhu
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China
| | - Chong Xie
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China
| | - Nigel A Calcutt
- Department of Pathology, University of California San Diego, San Diego, CA, 92093, USA
| | - Yangtai Guan
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China.
| |
Collapse
|
8
|
Wieters F, Weiss Lucas C, Gruhn M, Büschges A, Fink GR, Aswendt M. Introduction to spasticity and related mouse models. Exp Neurol 2020; 335:113491. [PMID: 33007294 DOI: 10.1016/j.expneurol.2020.113491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 12/22/2022]
Abstract
Although spasticity is one of the most common causes of motor disability worldwide, its precise definition and pathophysiology remain elusive, which to date renders its experimental targeting tricky. At least in part, this difficulty is caused by heterogeneous phenotypes of spasticity-causing neurological disorders, all causing spasticity by involving upper motor neurons. The most common clinical symptoms are a series of rapid muscle contractions (clonus), an increased muscle tone (hypertonia), and augmented tendon reflex activity (hyperreflexia). This muscle overactivity is due to disturbed inhibition of spinal reflexes following upper motor neuron dysfunction. Despite a range of physical and pharmacological therapies ameliorating the symptoms, their targeted application remains difficult. Therefore, to date, spasticity impacts rehabilitative therapy, and no therapy exists that reverses the pathology completely. In contrast to the incidence and importance of spasticity, only very little pre-clinical work in animal models exists, and this research is focused on the cat or the rat spastic tail model to decipher altered reflexes and excitability of the motor neurons in the spinal cord. Meanwhile, the characterization of spasticity in clinically more relevant mouse models of neurological disorders, such as stroke, remains understudied. Here, we provide a brief introduction into the clinical knowledge and therapy of spasticity and an in-depth review of pre-clinical studies of spasticity in mice including the current experimental challenges for clinical translation.
Collapse
Affiliation(s)
- Frederique Wieters
- University of Cologne, Faculty of Medicine, University Hospital Cologne, Department of Neurology, Cologne, Germany
| | - Carolin Weiss Lucas
- University of Cologne, Faculty of Medicine, University Hospital Cologne, Center of Neurosurgery, Cologne, Germany
| | - Matthias Gruhn
- Department for Animal Physiology, Institute for Zoology, Biocenter Cologne, University of Cologne
| | - Ansgar Büschges
- Department for Animal Physiology, Institute for Zoology, Biocenter Cologne, University of Cologne
| | - Gereon R Fink
- University of Cologne, Faculty of Medicine, University Hospital Cologne, Department of Neurology, Cologne, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, Germany
| | - Markus Aswendt
- University of Cologne, Faculty of Medicine, University Hospital Cologne, Department of Neurology, Cologne, Germany; Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, Germany.
| |
Collapse
|
9
|
Mòdol-Caballero G, García-Lareu B, Verdés S, Ariza L, Sánchez-Brualla I, Brocard F, Bosch A, Navarro X, Herrando-Grabulosa M. Therapeutic Role of Neuregulin 1 Type III in SOD1-Linked Amyotrophic Lateral Sclerosis. Neurotherapeutics 2020; 17:1048-1060. [PMID: 31965551 PMCID: PMC7609630 DOI: 10.1007/s13311-019-00811-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating motoneuron (Mn) disease without effective cure currently available. Death of MNs in ALS is preceded by failure of neuromuscular junctions and axonal retraction. Neuregulin 1 (NRG1) is a neurotrophic factor highly expressed in MNs and neuromuscular junctions that support axonal and neuromuscular development and maintenance. NRG1 and its ErbB receptors are involved in ALS. Reduced NRG1 expression has been found in ALS patients and in the ALS SOD1G93A mouse model; however, the expression of the isoforms of NRG1 and its receptors is still controversial. Due to the reduced levels of NRG1 type III (NRG1-III) in the spinal cord of ALS patients, we used gene therapy based on intrathecal administration of adeno-associated virus to overexpress NRG1-III in SOD1G93A mice. The mice were evaluated from 9 to 16 weeks of age by electrophysiology and rotarod tests. At 16 weeks, samples were harvested for histological and molecular analyses. Our results indicate that overexpression of NRG1-III is able to preserve neuromuscular function of the hindlimbs, improve locomotor performance, increase the number of surviving MNs, and reduce glial reactivity in the treated female SOD1G93A mice. Furthermore, the NRG1-III/ErbB4 axis appears to regulate MN excitability by modulating the chloride transporter KCC2 and reduces the expression of the MN vulnerability marker MMP-9. However, NRG1-III did not have a significant effect on male mice, indicating relevant sex differences. These findings indicate that increasing NRG1-III at the spinal cord is a promising approach for promoting MN protection and functional improvement in ALS.
Collapse
Affiliation(s)
- Guillem Mòdol-Caballero
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08193, Bellaterra, Spain
| | - Belén García-Lareu
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08193, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Sergi Verdés
- Department of Biochemistry and Molecular Biology, Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Lorena Ariza
- Department of Biochemistry and Molecular Biology, Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Irene Sánchez-Brualla
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- Team P3M, Institut de Neurosciences de la Timone, UMR7289, Aix-Marseille Université and Centre National de la Recherche Scientifique (CNRS), 13005, Marseille, France
| | - Frédéric Brocard
- Team P3M, Institut de Neurosciences de la Timone, UMR7289, Aix-Marseille Université and Centre National de la Recherche Scientifique (CNRS), 13005, Marseille, France
| | - Assumpció Bosch
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08193, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Xavier Navarro
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08193, Bellaterra, Spain.
| | - Mireia Herrando-Grabulosa
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08193, Bellaterra, Spain.
| |
Collapse
|
10
|
Branchereau P, Martin E, Allain AE, Cazenave W, Supiot L, Hodeib F, Laupénie A, Dalvi U, Zhu H, Cattaert D. Relaxation of synaptic inhibitory events as a compensatory mechanism in fetal SOD spinal motor networks. eLife 2019; 8:e51402. [PMID: 31868588 PMCID: PMC6974356 DOI: 10.7554/elife.51402] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/20/2019] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease affecting motor neurons (MNs) during late adulthood. Here, with the aim of identifying early changes underpinning ALS neurodegeneration, we analyzed the GABAergic/glycinergic inputs to E17.5 fetal MNs from SOD1G93A (SOD) mice in parallel with chloride homeostasis. Our results show that IPSCs are less frequent in SOD animals in accordance with a reduction of synaptic VIAAT-positive terminals. SOD MNs exhibited an EGABAAR10 mV more depolarized than in WT MNs associated with a KCC2 reduction. Interestingly, SOD GABAergic/glycinergic IPSCs and evoked GABAAR-currents exhibited a slower decay correlated to elevated [Cl-]i. Computer simulations revealed that a slower relaxation of synaptic inhibitory events acts as compensatory mechanism to strengthen GABA/glycine inhibition when EGABAAR is more depolarized. How such mechanisms evolve during pathophysiological processes remain to be determined, but our data indicate that at least SOD1 familial ALS may be considered as a neurodevelopmental disease.
Collapse
Affiliation(s)
| | - Elodie Martin
- University of BordeauxCNRS, INCIA, UMR 5287BordeauxFrance
| | | | | | - Laura Supiot
- University of BordeauxCNRS, INCIA, UMR 5287BordeauxFrance
| | - Fara Hodeib
- University of BordeauxCNRS, INCIA, UMR 5287BordeauxFrance
| | | | - Urvashi Dalvi
- University of BordeauxCNRS, INCIA, UMR 5287BordeauxFrance
| | - Hongmei Zhu
- University of BordeauxCNRS, INCIA, UMR 5287BordeauxFrance
| | | |
Collapse
|
11
|
Pradhan J, Noakes PG, Bellingham MC. The Role of Altered BDNF/TrkB Signaling in Amyotrophic Lateral Sclerosis. Front Cell Neurosci 2019; 13:368. [PMID: 31456666 PMCID: PMC6700252 DOI: 10.3389/fncel.2019.00368] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/29/2019] [Indexed: 12/11/2022] Open
Abstract
Brain derived neurotrophic factor (BDNF) is well recognized for its neuroprotective functions, via activation of its high affinity receptor, tropomysin related kinase B (TrkB). In addition, BDNF/TrkB neuroprotective functions can also be elicited indirectly via activation of adenosine 2A receptors (A2aRs), which in turn transactivates TrkB. Evidence suggests that alterations in BDNF/TrkB, including TrkB transactivation by A2aRs, can occur in several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Although enhancing BDNF has been a major goal for protection of dying motor neurons (MNs), this has not been successful. Indeed, there is emerging in vitro and in vivo evidence suggesting that an upregulation of BDNF/TrkB can cause detrimental effects on MNs, making them more vulnerable to pathophysiological insults. For example, in ALS, early synaptic hyper-excitability of MNs is thought to enhance BDNF-mediated signaling, thereby causing glutamate excitotoxicity, and ultimately MN death. Moreover, direct inhibition of TrkB and A2aRs has been shown to protect MNs from these pathophysiological insults, suggesting that modulation of BDNF/TrkB and/or A2aRs receptors may be important in early disease pathogenesis in ALS. This review highlights the relevance of pathophysiological actions of BDNF/TrkB under certain circumstances, so that manipulation of BDNF/TrkB and A2aRs may give rise to alternate neuroprotective therapeutic strategies in the treatment of neural diseases such as ALS.
Collapse
Affiliation(s)
- Jonu Pradhan
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Peter G Noakes
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Mark C Bellingham
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
12
|
Moore YE, Conway LC, Wobst HJ, Brandon NJ, Deeb TZ, Moss SJ. Developmental Regulation of KCC2 Phosphorylation Has Long-Term Impacts on Cognitive Function. Front Mol Neurosci 2019; 12:173. [PMID: 31396048 PMCID: PMC6664008 DOI: 10.3389/fnmol.2019.00173] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 07/01/2019] [Indexed: 01/04/2023] Open
Abstract
GABAA receptor-mediated currents shift from excitatory to inhibitory during postnatal brain development in rodents. A postnatal increase in KCC2 protein expression is considered to be the sole mechanism controlling the developmental onset of hyperpolarizing synaptic transmission, but here we identify a key role for KCC2 phosphorylation in the developmental EGABA shift. Preventing phosphorylation of KCC2 in vivo at either residue serine 940 (S940), or at residues threonine 906 and threonine 1007 (T906/T1007), delayed or accelerated the postnatal onset of KCC2 function, respectively. Several models of neurodevelopmental disorders including Rett syndrome, Fragile × and Down's syndrome exhibit delayed postnatal onset of hyperpolarizing GABAergic inhibition, but whether the timing of the onset of hyperpolarizing synaptic inhibition during development plays a role in establishing adulthood cognitive function is unknown; we have used the distinct KCC2-S940A and KCC2-T906A/T1007A knock-in mouse models to address this issue. Altering KCC2 function resulted in long-term abnormalities in social behavior and memory retention. Tight regulation of KCC2 phosphorylation is therefore required for the typical timing of the developmental onset of hyperpolarizing synaptic inhibition, and it plays a fundamental role in the regulation of adulthood cognitive function.
Collapse
Affiliation(s)
- Yvonne E. Moore
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Leslie C. Conway
- AstraZeneca-Tufts University Laboratory for Basic and Translational Neuroscience Research, Tufts University School of Medicine, Boston, MA, United States
| | - Heike J. Wobst
- Neuroscience, R&D Biopharmaceuticals, AstraZeneca, Boston, MA, United States
| | - Nicholas J. Brandon
- Neuroscience, R&D Biopharmaceuticals, AstraZeneca, Boston, MA, United States
| | - Tarek Z. Deeb
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Stephen J. Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
- AstraZeneca-Tufts University Laboratory for Basic and Translational Neuroscience Research, Tufts University School of Medicine, Boston, MA, United States
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
13
|
Theisen U, Hey S, Hennig CD, Schnabel R, Köster RW. Glycine is able to induce both a motility speed in- and decrease during zebrafish neuronal migration. Commun Integr Biol 2018; 11:1-7. [PMID: 30214676 PMCID: PMC6132429 DOI: 10.1080/19420889.2018.1493324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 06/21/2018] [Indexed: 11/25/2022] Open
Abstract
Various neurotransmitters influence neuronal migration in the developing zebrafish hindbrain. Migrating tegmental hindbrain nuclei neurons (THNs) are governed by depolarizing neurotransmitters (acetylcholine and glutamate), and glycine. In mature neurons, glycine binds to its receptor to hyperpolarize cells. This effect depends on the co-expression of the solute carrier KCC2. Immature precursors, however, typically express NKCC1 instead of KCC2, leading to membrane depolarization upon glycine receptor activation. As neuronal migration occurs in neurons after leaving the cell cycle and before terminal differentiation, we hypothesized that the switch from NKCC1 to KCC2 expression could alter the effect of glycine on THN migration. We tested this notion using in vivo cell tracking, overexpression of glycine receptor mutations and whole mount in situ hybridization. We summarize our findings in a speculative model, combining developmental age, glycine receptor strength and solute carrier expression to describe the effect of glycine on the migration of THNs.
Collapse
Affiliation(s)
- Ulrike Theisen
- TU Braunschweig, Zoological Institute, Cellular and Molecular Neurobiology, Braunschweig, Germany
| | - Sven Hey
- TU Braunschweig, Zoological Institute, Cellular and Molecular Neurobiology, Braunschweig, Germany
| | | | - Ralf Schnabel
- TU Braunschweig, Institute for Genetics, Braunschweig, Germany
| | - Reinhard W Köster
- TU Braunschweig, Zoological Institute, Cellular and Molecular Neurobiology, Braunschweig, Germany
| |
Collapse
|
14
|
Imaging of glial cell morphology, SOD1 distribution and elemental composition in the brainstem and hippocampus of the ALS hSOD1 G93A rat. Neuroscience 2017; 357:37-55. [PMID: 28576725 DOI: 10.1016/j.neuroscience.2017.05.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/23/2017] [Accepted: 05/23/2017] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder affecting motor and cognitive domains of the CNS. Mutations in the Cu,Zn-superoxide dismutase (SOD1) cause 20% of familial ALS and provoke formation of intracellular aggregates and copper and zinc unbinding, leading to glial activation and neurodegeneration. Therefore, we investigated glial cell morphology, intracellular SOD1 distribution, and elemental composition in the brainstem and hippocampus of the hSOD1G93A transgenic rat model of ALS. Immunostaining for astrocytes, microglia and SOD1 revealed glial proliferation and progressive tissue accumulation of SOD1 in both brain regions of ALS rats starting already at the presymptomatic stage. Glial cell morphology analysis in the brainstem of ALS rats revealed astrocyte activation occurring before disease symptoms onset, followed by activation of microglia. Hippocampal ALS astrocytes exhibited an identical reactive profile, while microglial morphology was unchanged. Additionally, ALS brainstem astrocytes demonstrated progressive SOD1 accumulation in the cell body and processes, while microglial SOD1 levels were reduced and its distribution limited to distal cell processes. In the hippocampus both glial cell types exhibited SOD1 accumulation in the cell body. X-ray fluorescence imaging revealed decreased P and increased Ca, Cl, K, Ni, Cu and Zn in the brainstem, and higher levels of Cl, Ni and Cu, but lower levels of Zn in the hippocampus of symptomatic ALS rats. These results bring new insights into the glial response during disease development and progression in motor as well as in non-motor CNS structures, and indicate disturbed tissue elemental homeostasis as a prominent hallmark of disease pathology.
Collapse
|
15
|
Ringer C, Tune S, Bertoune MA, Schwarzbach H, Tsujikawa K, Weihe E, Schütz B. Disruption of calcitonin gene-related peptide signaling accelerates muscle denervation and dampens cytotoxic neuroinflammation in SOD1 mutant mice. Cell Mol Life Sci 2017; 74:339-358. [PMID: 27554772 PMCID: PMC11107523 DOI: 10.1007/s00018-016-2337-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 08/06/2016] [Accepted: 08/08/2016] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease. Neuronal vacuolization and glial activation are pathologic hallmarks in the superoxide dismutase 1 (SOD1) mouse model of ALS. Previously, we found the neuropeptide calcitonin gene-related peptide (CGRP) associated with vacuolization and astrogliosis in the spinal cord of these mice. We now show that CGRP abundance positively correlated with the severity of astrogliosis, but not vacuolization, in several motor and non-motor areas throughout the brain. SOD1 mice harboring a genetic depletion of the βCGRP isoform showed reduced CGRP immunoreactivity associated with vacuolization, while motor functions, body weight, survival, and astrogliosis were not altered. When CGRP signaling was completely disrupted through genetic depletion of the CGRP receptor component, receptor activity-modifying protein 1 (RAMP1), hind limb muscle denervation, and loss of muscle performance were accelerated, while body weight and survival were not affected. Dampened neuroinflammation, i.e., reduced levels of astrogliosis in the brain stem already in the pre-symptomatic disease stage, and reduced microgliosis and lymphocyte infiltrations during the late disease phase were additional neuropathology features in these mice. On the molecular level, mRNA expression levels of brain-derived neurotrophic factor (BDNF) and those of the anti-inflammatory cytokine interleukin 6 (IL-6) were elevated, while those of several pro-inflammatory cytokines found reduced in the brain stem of RAMP1-deficient SOD1 mice at disease end stage. Our results thus identify an important, possibly dual role of CGRP in ALS pathogenesis.
Collapse
Affiliation(s)
- Cornelia Ringer
- Department of Molecular Neurosciences, Institute of Anatomy and Cell Biology, Philipps-University, Robert-Koch-Strasse 8, 35037, Marburg, Germany
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | - Sarah Tune
- Department of Physiology, University of Lübeck, Lübeck, Germany
| | - Mirjam A Bertoune
- Department of Medical Cell Biology, Institute of Anatomy and Cell Biology, Philipps-University, Marburg, Germany
| | - Hans Schwarzbach
- Department of Medical Cell Biology, Institute of Anatomy and Cell Biology, Philipps-University, Marburg, Germany
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita, Osaka, Japan
| | - Eberhard Weihe
- Department of Molecular Neurosciences, Institute of Anatomy and Cell Biology, Philipps-University, Robert-Koch-Strasse 8, 35037, Marburg, Germany.
| | - Burkhard Schütz
- Department of Molecular Neurosciences, Institute of Anatomy and Cell Biology, Philipps-University, Robert-Koch-Strasse 8, 35037, Marburg, Germany.
| |
Collapse
|
16
|
Jaenisch N, Liebmann L, Guenther M, Hübner CA, Frahm C, Witte OW. Reduced tonic inhibition after stroke promotes motor performance and epileptic seizures. Sci Rep 2016; 6:26173. [PMID: 27188341 PMCID: PMC4870642 DOI: 10.1038/srep26173] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/28/2016] [Indexed: 01/19/2023] Open
Abstract
Stroke survivors often recover from motor deficits, either spontaneously or with the support of rehabilitative training. Since tonic GABAergic inhibition controls network excitability, it may be involved in recovery. Middle cerebral artery occlusion in rodents reduces tonic GABAergic inhibition in the structurally intact motor cortex (M1). Transcript and protein abundance of the extrasynaptic GABAA-receptor complex α4β3δ are concurrently reduced (δ-GABAARs). In vivo and in vitro analyses show that stroke-induced glutamate release activates NMDA receptors, thereby reducing KCC2 transporters and down-regulates δ-GABAARs. Functionally, this is associated with improved motor performance on the RotaRod, a test in which mice are forced to move in a similar manner to rehabilitative training sessions. As an adverse side effect, decreased tonic inhibition facilitates post-stroke epileptic seizures. Our data imply that early and sometimes surprisingly fast recovery following stroke is supported by homeostatic, endogenous plasticity of extrasynaptic GABAA receptors.
Collapse
Affiliation(s)
- Nadine Jaenisch
- Hans-Berger Department of Neurology, Jena University Hospital, D-07747 Jena, Germany
| | - Lutz Liebmann
- Institute of Human Genetics, Jena University Hospital, D-07743 Jena, Germany
| | - Madlen Guenther
- Hans-Berger Department of Neurology, Jena University Hospital, D-07747 Jena, Germany
| | - Christian A. Hübner
- Institute of Human Genetics, Jena University Hospital, D-07743 Jena, Germany
| | - Christiane Frahm
- Hans-Berger Department of Neurology, Jena University Hospital, D-07747 Jena, Germany
| | - Otto W. Witte
- Hans-Berger Department of Neurology, Jena University Hospital, D-07747 Jena, Germany
| |
Collapse
|
17
|
Abstract
Amyotrophic lateral sclerosis (ALS) is a dreadful, devastating and incurable motor neuron disease. Aetiologically, it is a multigenic, multifactorial and multiorgan disease. Despite intense research, ALS pathology remains unexplained. Following extensive literature review, this paper posits a new integrative explanation. This framework proposes that ammonia neurotoxicity is a main player in ALS pathogenesis. According to this explanation, a combination of impaired ammonia removal- mainly because of impaired hepatic urea cycle dysfunction-and increased ammoniagenesis- mainly because of impaired glycolytic metabolism in fast twitch skeletal muscle-causes chronic hyperammonia in ALS. In the absence of neuroprotective calcium binding proteins (calbindin, calreticulin and parvalbumin), elevated ammonia-a neurotoxin-damages motor neurons. Ammonia-induced motor neuron damage occurs through multiple mechanisms such as macroautophagy-endolysosomal impairment, endoplasmic reticulum (ER) stress, CDK5 activation, oxidative/nitrosative stress, neuronal hyperexcitability and neuroinflammation. Furthermore, the regional pattern of calcium binding proteins' loss, owing to either ER stress and/or impaired oxidative metabolism, determines clinical variability of ALS. Most importantly, this new framework can be generalised to explain other neurodegenerative disorders such as Huntington's disease and Parkinsonism.
Collapse
Affiliation(s)
- Bhavin Parekh
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
18
|
Wang H, Liu S, Wang H, Wang G, Zhu A. The effect of propofol postconditioning on the expression of K(+)-Cl(-)-co-transporter 2 in GABAergic inhibitory interneurons of acute ischemia/reperfusion injury rats. Brain Res 2015; 1597:210-9. [PMID: 25463027 DOI: 10.1016/j.brainres.2014.11.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/01/2014] [Accepted: 11/16/2014] [Indexed: 12/20/2022]
Abstract
It has been shown in our previous study that propofol postconditioning enhanced the activity of phosphatidylinositol-3-kinase (PI3K) and prevented the internalization of GluR2 subunit of α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, thus provided neuroprotection in cerebral ischemia/reperfusion (I/R) injury. Regarding inhibitory system in CNS, K(+)-Cl(-)-co-transporter 2 (KCC2), a Cl(-) extruder, plays a critical role in gamma-aminobutyric acid (GABA) inhibitory effect in mature central neurons. However, the effect of propofol postconditioning on the expression of KCC2 in GABAergic interneurons is unclear. Therefore, in this article we describe the role of KCC2 in GABAergic interneurons in the ipsilateral hippocampal CA1 region of adult rats and the effects of propofol postconditioning on this region. Herein we demonstrate that propofol postconditioning (20mg/kg/h, 2h) improved rats' neurobehavioral abilities, increased the number of survival neurons, and up-regulated neuronal KCC2 expression in glutamic acid decarboxylase 67 (GAD67) expressing GABAergic interneurons in hippocampal CA1 region at 24h after I/R. In contrast, when rats were injected with the KCC2 antagonist, [(dihydroindenyl)oxy] alkanoic acid (DIOA), the neuroprotective effects induced by propofol postconditioning were reversed. Our study indicated that propofol postconditioning increased the expression of KCC2 in inhibitory GABAergic interneurons, thus providing acute neuroprotection to rats who had undergone cerebral I/R injury.
Collapse
Affiliation(s)
- Hongbai Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin Research Institute of Anesthesiology, Tianjin, People׳s Republic of China
| | - Shuying Liu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin Research Institute of Anesthesiology, Tianjin, People׳s Republic of China
| | - Haiyun Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin Research Institute of Anesthesiology, Tianjin, People׳s Republic of China.
| | - Guolin Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin Research Institute of Anesthesiology, Tianjin, People׳s Republic of China
| | - Ai Zhu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin Research Institute of Anesthesiology, Tianjin, People׳s Republic of China
| |
Collapse
|
19
|
Toda T, Ishida K, Kiyama H, Yamashita T, Lee S. Down-regulation of KCC2 expression and phosphorylation in motoneurons, and increases the number of in primary afferent projections to motoneurons in mice with post-stroke spasticity. PLoS One 2014; 9:e114328. [PMID: 25546454 PMCID: PMC4278744 DOI: 10.1371/journal.pone.0114328] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/06/2014] [Indexed: 12/31/2022] Open
Abstract
Spasticity obstructs motor function recovery post-stroke, and has been reported to occur in spinal cord injury and electrophysiological studies. The purpose of the present study was to assess spinal cord circuit spasticity in post-stroke mice. At 3, 7, 21, and 42 d after photothrombotic ischemic cortical injury in C57BL/6J mice, we observed decreased rate-dependent depression (RDD) of the Hoffmann reflex (H reflex) in the affected forelimb of mice compared with the limbs of sham mice and the non-affected forelimb. This finding suggests a hyper-excitable stretch reflex in the affected forelimb. We then performed immunohistochemical and western blot analyses to examine the expression of the potassium-chloride cotransporter 2 (KCC2) and phosphorylation of the KCC2 serine residue, 940 (S940), since this is the main chloride extruder that affects neuronal excitability. We also performed immunohistochemical analyses on the number of vesicular glutamate transporter 1 (vGluT1)-positive boutons to count the number of Ia afferent fibers that connect to motoneurons. Western bolts revealed that, compared with sham mice, experimental mice had significantly reduced KCC2 expression at 7 d post-stroke, and dephosphorylated S940 at 3 and 7 d post-stroke in motoneuron plasma membranes. We also observed a lower density of KCC2-positive areas in the plasma membrane of motoneurons at 3 and 7 d post-stroke. However, western blot and immunohistochemical analyses revealed that there were no differences between groups 21 and 42 d post-stroke, respectively. In addition, at 7 and 42 d post-stroke, experimental mice exhibited a significant increase in vGluT1 boutons compared with sham mice. Our findings suggest that both the down-regulation of KCC2 and increases in Ia afferent fibers are involved in post-stroke spasticity.
Collapse
Affiliation(s)
- Takuya Toda
- Department of Physical and Occupational Therapy, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Kazuto Ishida
- Department of Physical and Occupational Therapy, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Hiroshi Kiyama
- Department of Functional Anatomy and Neuroscience, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Sachiko Lee
- Department of Physical and Occupational Therapy, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| |
Collapse
|
20
|
Mühling T, Duda J, Weishaupt JH, Ludolph AC, Liss B. Elevated mRNA-levels of distinct mitochondrial and plasma membrane Ca(2+) transporters in individual hypoglossal motor neurons of endstage SOD1 transgenic mice. Front Cell Neurosci 2014; 8:353. [PMID: 25452714 PMCID: PMC4231948 DOI: 10.3389/fncel.2014.00353] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/08/2014] [Indexed: 12/13/2022] Open
Abstract
Disturbances in Ca2+ homeostasis and mitochondrial dysfunction have emerged as major pathogenic features in familial and sporadic forms of Amyotrophic Lateral Sclerosis (ALS), a fatal degenerative motor neuron disease. However, the distinct molecular ALS-pathology remains unclear. Recently, an activity-dependent Ca2+ homeostasis deficit, selectively in highly vulnerable cholinergic motor neurons in the hypoglossal nucleus (hMNs) from a common ALS mouse model, the endstage superoxide dismutase SOD1G93A transgenic mouse, was described. This functional deficit was defined by a reduced hMN mitochondrial Ca2+ uptake capacity and elevated Ca2+ extrusion across the plasma membrane. To address the underlying molecular mechanisms, here we quantified mRNA-levels of respective potential mitochondrial and plasma membrane Ca2+ transporters in individual, choline-acetyltransferase (ChAT) positive hMNs from wildtype (WT) and endstage SOD1G93A mice, by combining UV laser microdissection with RT-qPCR techniques, and specific data normalization. As ChAT cDNA levels as well as cDNA and genomic DNA levels of the mitochondrially encoded NADH dehydrogenase ND1 were not different between hMNs from WT and endstage SOD1G93A mice, these genes were used to normalize hMN-specific mRNA-levels of plasma membrane and mitochondrial Ca2+ transporters, respectively. We detected about 2-fold higher levels of the mitochondrial Ca2+ transporters MCU/MICU1, Letm1, and UCP2 in remaining hMNs from endstage SOD1G93A mice. These higher expression-levels of mitochondrial Ca2+ transporters in individual hMNs were not associated with a respective increase in number of mitochondrial genomes, as evident from hMN specific ND1 DNA quantification. Normalized mRNA-levels for the plasma membrane Na+/Ca2+ exchanger NCX1 were also about 2-fold higher in hMNs from SOD1G93A mice. Thus, pharmacological stimulation of Ca2+ transporters in highly vulnerable hMNs might offer a neuroprotective strategy for ALS.
Collapse
Affiliation(s)
- Tobias Mühling
- Department of Applied Physiology, Institute of Applied Physiology, Ulm University Ulm, Germany
| | - Johanna Duda
- Department of Applied Physiology, Institute of Applied Physiology, Ulm University Ulm, Germany
| | | | | | - Birgit Liss
- Department of Applied Physiology, Institute of Applied Physiology, Ulm University Ulm, Germany
| |
Collapse
|
21
|
Calvo-Gallardo E, de Pascual R, Fernández-Morales JC, Arranz-Tagarro JA, Maroto M, Nanclares C, Gandía L, de Diego AMG, Padín JF, García AG. Depressed excitability and ion currents linked to slow exocytotic fusion pore in chromaffin cells of the SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Am J Physiol Cell Physiol 2014; 308:C1-19. [PMID: 25377090 DOI: 10.1152/ajpcell.00272.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Altered synaptic transmission with excess glutamate release has been implicated in the loss of motoneurons occurring in amyotrophic lateral sclerosis (ALS). Hyperexcitability or hypoexcitability of motoneurons from mice carrying the ALS mutation SOD1(G93A) (mSOD1) has also been reported. Here we have investigated the excitability, the ion currents, and the kinetics of the exocytotic fusion pore in chromaffin cells from postnatal day 90 to postnatal day 130 mSOD1 mice, when motor deficits are already established. With respect to wild-type (WT), mSOD1 chromaffin cells had a decrease in the following parameters: 95% in spontaneous action potentials, 70% in nicotinic current for acetylcholine (ACh), 35% in Na(+) current, 40% in Ca(2+)-dependent K(+) current, and 53% in voltage-dependent K(+) current. Ca(2+) current was increased by 37%, but the ACh-evoked elevation of cytosolic Ca(2+) was unchanged. Single exocytotic spike events triggered by ACh had the following differences (mSOD1 vs. WT): 36% lower rise rate, 60% higher decay time, 51% higher half-width, 13% lower amplitude, and 61% higher quantal size. The expression of the α3-subtype of nicotinic receptors and proteins of the exocytotic machinery was unchanged in the brain and adrenal medulla of mSOD1, with respect to WT mice. A slower fusion pore opening, expansion, and closure are likely linked to the pronounced reduction in cell excitability and in the ion currents driving action potentials in mSOD1, compared with WT chromaffin cells.
Collapse
Affiliation(s)
| | - Ricardo de Pascual
- Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain; Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | - Marcos Maroto
- Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carmen Nanclares
- Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain
| | - Luis Gandía
- Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain; Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Juan-Fernando Padín
- Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain; Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio G García
- Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain; Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Servicio de Farmacología Clínica, Hospital Universitario de La Princesa, Madrid, Spain; and Instituto de Investigación Sanitaria, Hospital Universitario de La Princesa, Madrid, Spain
| |
Collapse
|
22
|
Jantzie LL, Getsy PM, Firl DJ, Wilson CG, Miller RH, Robinson S. Erythropoietin attenuates loss of potassium chloride co-transporters following prenatal brain injury. Mol Cell Neurosci 2014; 61:152-62. [PMID: 24983520 PMCID: PMC4134983 DOI: 10.1016/j.mcn.2014.06.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 04/17/2014] [Accepted: 06/09/2014] [Indexed: 11/22/2022] Open
Abstract
Therapeutic agents that restore the inhibitory actions of γ-amino butyric acid (GABA) by modulating intracellular chloride concentrations will provide novel avenues to treat stroke, chronic pain, epilepsy, autism, and neurodegenerative and cognitive disorders. During development, upregulation of the potassium-chloride co-transporter KCC2, and the resultant switch from excitatory to inhibitory responses to GABA guide the formation of essential inhibitory circuits. Importantly, maturation of inhibitory mechanisms is also central to the development of excitatory circuits and proper balance between excitatory and inhibitory networks in the developing brain. Loss of KCC2 expression occurs in postmortem samples from human preterm infant brains with white matter lesions. Here we show that late gestation brain injury in a rat model of extreme prematurity impairs the developmental upregulation of potassium chloride co-transporters during a critical postnatal period of circuit maturation in CA3 hippocampus by inducing a sustained loss of oligomeric KCC2 via a calpain-dependent mechanism. Further, administration of erythropoietin (EPO) in a clinically relevant postnatal dosing regimen following the prenatal injury protects the developing brain by reducing calpain activity, restoring oligomeric KCC2 expression and attenuating KCC2 fragmentation, thus providing the first report of a safe therapy to address deficits in KCC2 expression. Together, these data indicate it is possible to reverse abnormalities in KCC2 expression during the postnatal period, and potentially reverse deficits in inhibitory circuit formation central to cognitive impairment and epileptogenesis.
Collapse
Affiliation(s)
- L L Jantzie
- Department of Neurology, Boston Children's Hospital & Harvard Medical School, 300 Longwood Avenue, Boston MA 02115, USA; Department of Neurosurgery, Boston Children's Hospital & Harvard Medical School, 300 Longwood Avenue, Boston MA 02115, USA
| | - P M Getsy
- Department of Pediatrics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | - D J Firl
- Department of Neurology, Boston Children's Hospital & Harvard Medical School, 300 Longwood Avenue, Boston MA 02115, USA; Department of Neurosurgery, Boston Children's Hospital & Harvard Medical School, 300 Longwood Avenue, Boston MA 02115, USA
| | - C G Wilson
- Department of Pediatrics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | - R H Miller
- Department of Neurosciences, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | - S Robinson
- Department of Neurology, Boston Children's Hospital & Harvard Medical School, 300 Longwood Avenue, Boston MA 02115, USA; Department of Neurosurgery, Boston Children's Hospital & Harvard Medical School, 300 Longwood Avenue, Boston MA 02115, USA.
| |
Collapse
|
23
|
Mòdol L, Mancuso R, Alé A, Francos-Quijorna I, Navarro X. Differential effects on KCC2 expression and spasticity of ALS and traumatic injuries to motoneurons. Front Cell Neurosci 2014; 8:7. [PMID: 24478630 PMCID: PMC3900854 DOI: 10.3389/fncel.2014.00007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 01/06/2014] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease manifested by progressive muscle atrophy and paralysis due to the loss of upper and lower motoneurons (MN). Spasticity appears in ALS patients leading to further disabling consequences. Loss of the inhibitory tone induced by downregulation of the potassium chloride cotransporter 2 (KCC2) in MN has been proposed to importantly contribute to the spastic behavior after spinal cord injury (SCI). The aim of the present study was to test whether the alterations in the expression of KCC2 are linked to the appearance of spasticity in the SODG93A ALS murine model. We compared SODG93A mice to wild type mice subjected to SCI to mimic the spinal MN disconnection from motor descending pathways, and to sciatic nerve lesion to mimic the loss of MN connectivity to muscle. Electrophysiological results show that loss of motor function is observed at presymptomatic stage (8 weeks) in SODG93A mice but hyperreflexia and spasticity do not appear until a late stage (16 weeks). However, KCC2 was not downregulated despite MN suffered disconnection both from muscles and upper MNs. Further experiments revealed decreased gephyrin expression, as a general marker of inhibitory systems, accompanied by a reduction in the number of Renshaw interneurons. Moreover, 5-HT fibers were increased in the ventral horn of the lumbar spinal cord at late stage of disease progression in SOD1G93A mice. Taken together, the present results indicate that spasticity appears late in the ALS model, and may be mediated by a decrease in inhibitory interneurons and an increase of 5-HT transmission, while the absence of down-regulation of KCC2 could rather indicate an inability of MNs to respond to insults.
Collapse
Affiliation(s)
- Laura Mòdol
- Department of Cell Biology, Physiology, and Immunology, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Institute of Neurosciences, Universitat Autònoma de Barcelona Bellaterra, Spain
| | - Renzo Mancuso
- Department of Cell Biology, Physiology, and Immunology, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Institute of Neurosciences, Universitat Autònoma de Barcelona Bellaterra, Spain
| | - Albert Alé
- Department of Cell Biology, Physiology, and Immunology, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Institute of Neurosciences, Universitat Autònoma de Barcelona Bellaterra, Spain
| | - Isaac Francos-Quijorna
- Department of Cell Biology, Physiology, and Immunology, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Institute of Neurosciences, Universitat Autònoma de Barcelona Bellaterra, Spain
| | - Xavier Navarro
- Department of Cell Biology, Physiology, and Immunology, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Institute of Neurosciences, Universitat Autònoma de Barcelona Bellaterra, Spain
| |
Collapse
|
24
|
Bowerman M, Vincent T, Scamps F, Perrin FE, Camu W, Raoul C. Neuroimmunity dynamics and the development of therapeutic strategies for amyotrophic lateral sclerosis. Front Cell Neurosci 2013; 7:214. [PMID: 24312006 PMCID: PMC3833095 DOI: 10.3389/fncel.2013.00214] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 10/28/2013] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal paralytic disorder characterized by the progressive and selective loss of both upper and lower motoneurons. The neurodegenerative process is accompanied by a sustained inflammation in the brain and spinal cord. The neuron-immune interaction, implicating resident microglia of the central nervous system and blood-derived immune cells, is highly dynamic over the course of the disease. Here, we discuss the timely controlled neuroprotective and neurotoxic cues that are provided by the immune environment of motoneurons and their potential therapeutic applications for ALS.
Collapse
Affiliation(s)
- Melissa Bowerman
- The Neuroscience Institute of Montpellier, INM, INSERM UMR1051, Saint Eloi Hospital Montpellier, France
| | | | | | | | | | | |
Collapse
|
25
|
Caioli S, Pieri M, Antonini A, Guglielmotti A, Severini C, Zona C. Monocyte Chemoattractant Protein-1 upregulates GABA-induced current: Evidence of modified GABAA subunit composition in cortical neurons from the G93A mouse model of Amyotrophic Lateral Sclerosis. Neuropharmacology 2013; 73:247-60. [DOI: 10.1016/j.neuropharm.2013.05.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/06/2013] [Accepted: 05/27/2013] [Indexed: 02/06/2023]
|
26
|
Fuchs A, Kutterer S, Mühling T, Duda J, Schütz B, Liss B, Keller BU, Roeper J. Selective mitochondrial Ca2+ uptake deficit in disease endstage vulnerable motoneurons of the SOD1G93A mouse model of amyotrophic lateral sclerosis. J Physiol 2013; 591:2723-45. [PMID: 23401612 PMCID: PMC3678052 DOI: 10.1113/jphysiol.2012.247981] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 02/04/2013] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis is a progressive neurodegenerative disease that targets some somatic motoneuron populations, while others, e.g. those of the oculomotor system, are spared. The pathophysiological basis of this pattern of differential vulnerability, which is preserved in a transgenic mouse model of amyotrophic lateral sclerosis (SOD1(G93A)), and the mechanism of neurodegeneration in general are unknown. Hyperexcitability and calcium dysregulation have been proposed by others on the basis of data from juvenile mice that are, however, asymptomatic. No studies have been done with symptomatic mice following disease progression to the disease endstage. Here, we developed a new brainstem slice preparation for whole-cell patch-clamp recordings and single cell fura-2 calcium imaging to study motoneurons in adult wild-type and SOD1(G93A) mice up to disease endstage. We analysed disease-stage-dependent electrophysiological properties and intracellular Ca(2+) handling of vulnerable hypoglossal motoneurons in comparison to resistant oculomotor neurons. Thereby, we identified a transient hyperexcitability in presymptomatic but not in endstage vulnerable motoneurons. Additionally, we revealed a remodelling of intracellular Ca(2+) clearance within vulnerable but not resistant motoneurons at disease endstage characterised by a reduction of uniporter-dependent mitochondrial Ca(2+) uptake and enhanced Ca(2+) extrusion across the plasma membrane. Our study challenged the notion that hyperexcitability is a direct cause of neurodegeneration in SOD1(G93A) mice, but molecularly identified a Ca(2+) clearance deficit in motoneurons and an adaptive Ca(2+) handling strategy that might be targeted by future therapeutic strategies.
Collapse
Affiliation(s)
- Andrea Fuchs
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Retzius Väg 8, 17177 Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
PACAP signaling exerts opposing effects on neuroprotection and neuroinflammation during disease progression in the SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 2013; 54:32-42. [PMID: 23466699 DOI: 10.1016/j.nbd.2013.02.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 02/08/2013] [Accepted: 02/22/2013] [Indexed: 12/13/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic peptide with autocrine neuroprotective and paracrine anti-inflammatory properties in various models of acute neuronal damage and neurodegenerative diseases. Therefore, we examined a possible beneficial role of endogenous PACAP in the superoxide dismutase 1, SOD1(G93A), mouse model of amyotrophic lateral sclerosis (ALS), a lethal neurodegenerative disease particularly affecting somatomotor neurons. In wild-type mice, somatomotor and visceromotor neurons in brain stem and spinal cord were found to express the PACAP specific receptor PAC1, but only visceromotor neurons expressed PACAP as a potential autocrine source of regulation of these receptors. In SOD1(G93A) mice, only a small subset of the surviving somatomotor neurons showed induction of PACAP mRNA, and somatomotor neuron degeneration was unchanged in PACAP-deficient SOD1(G93A) mice. Pre-ganglionic sympathetic visceromotor neurons were found to be resistant in SOD1(G93A) mice, while pre-ganglionic parasympathetic neurons degenerated during ALS disease progression in this mouse model. PACAP-deficient SOD1(G93A) mice showed even greater pre-ganglionic parasympathetic neuron loss compared to SOD1(G93A) mice, and additional degeneration of pre-ganglionic sympathetic neurons. Thus, constitutive expression of PACAP and PAC1 may confer neuroprotection to central visceromotor neurons in SOD1(G93A) mice via autocrine pathways. Regarding the progression of neuroinflammation, the switch from amoeboid to hypertrophic microglial phenotype observed in SOD1(G93A) mice was absent in PACAP-deficient SOD1(G93A) mice. Thus, endogenous PACAP may promote microglial cytodestructive functions thought to drive ALS disease progression. This hypothesis was consistent with prolongation of life expectancy and preserved tongue motor function in PACAP-deficient SOD1(G93A) mice, compared to SOD1(G93A) mice. Given the protective role of PACAP expression in visceromotor neurons and the opposing effect on microglial function in SOD1(G93A) mice, both PACAP agonism and antagonism may be promising therapeutic tools for ALS treatment, if stage of disease progression and targeting the specific auto- and paracrine signaling pathways are carefully considered.
Collapse
|
28
|
Li JJ, Ji R, Shi YQ, Wang YY, Yang YL, Dou KF. Changes in expression of the chloride homeostasis-regulating genes, KCC2 and NKCC1, in the blood of cirrhotic patients with hepatic encephalopathy. Exp Ther Med 2012; 4:1075-1080. [PMID: 23226777 PMCID: PMC3494113 DOI: 10.3892/etm.2012.721] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 09/19/2012] [Indexed: 12/14/2022] Open
Abstract
Hepatic encephalopathy (HE), a neuropsychiatric abnormality that commonly accompanies cirrhosis of the liver, is often difficult to treat and manage. Changes in chloride homeostasis are involved in the generation of a number of brain disorders. In this study, we considered whether chloride homeostasis is associated with HE. The mRNA levels of the Cl− extrusion system (KCC2) and the Cl− intrusion system (NKCC1) were detected by real-time RT-PCR in the plasma of 29 cirrhotic patients with HE of grade I-II, 36 cirrhotic patients with HE of grade III–IV, 20 cirrhotic patients without HE and 15 healthy controls. The mRNA levels of KCC2 in cirrhotic patients with mild and severe HE were significantly lower compared to those in cirrhotic patients without HE or in the healthy controls. However, NKCC1 mRNA levels did not differ between the different groups. In addition, for cirrhotic patients with HE, there were significant negative correlations between KCC2 levels and the levels of blood ammonia and hepatic function scores (Child-Pugh and model for end-stage liver disease scores); there was also a significant positive correlation between KCC2 levels and neurological status (Glasgow scores). In conclusion, our study indicates that an imbalance of KCC2 and NKCC1 may be a novel biomarker for detecting HE and for monitoring disease development.
Collapse
Affiliation(s)
- Jun-Jie Li
- Department of Anatomy and K.K. Leung Brain Research Centre, Fourth Military Medical University; ; Departments of Hepatobiliary Surgery and
| | | | | | | | | | | |
Collapse
|
29
|
Liu Q, Wong-Riley MTT. Postnatal development of Na(+)-K(+)-2Cl(-) co-transporter 1 and K(+)-Cl(-) co-transporter 2 immunoreactivity in multiple brain stem respiratory nuclei of the rat. Neuroscience 2012; 210:1-20. [PMID: 22441038 PMCID: PMC3358512 DOI: 10.1016/j.neuroscience.2012.03.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 03/06/2012] [Accepted: 03/07/2012] [Indexed: 12/22/2022]
Abstract
Previously, we reported that in rats, GABA(A) and glycine receptor immunoreactivity increased markedly in multiple brain stem respiratory nuclei around postnatal days (P) 12-13, a critical period when abrupt neurochemical, metabolic, ventilatory, and electrophysiological changes occur in the respiratory network and when the system is under greater inhibition than excitation. Since Na(+)-K(+)-2Cl(-) co-transporter 1 (NKCC1) and K(+)-Cl(-) co-transporter 2 (KCC2) play pivotal roles in determining the responses of GABA(A) and glycine receptors, we hypothesized that NKCC1 and KCC2 undergo significant changes during the critical period. An in-depth immunohistochemical and single neuron optical densitometric study of neurons in seven respiratory-related nuclei (the pre-Bötzinger complex [PBC], nucleus ambiguus [Amb], hypoglossal nucleus [XII], ventrolateral subnucleus of solitary tract nucleus [NTS(VL)], retrotrapezoid nucleus/parafacial respiratory group [retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG)], dorsal motor nucleus of the vagus nerve [dorsal motor nucleus of the vagus nerve (DMNX)], and inferior olivary nucleus [IO]) and a non-respiratory cuneate nucleus (CN, an internal control) was undertaken in P0-P21 rats. Our data revealed that (1) NKCC1 immunoreactivity exhibited a developmental decrease from P0 to P21 in all eight nuclei examined, being relatively high during the first 1½ postnatal weeks and decreased thereafter. The decrease was abrupt and statistically significant at P12 in the PBC, Amb, and XII; (2) KCC2 immunoreactivity in these eight nuclei showed a developmental increase from P0 to P21; and (3) the significant reduction in NKCC1 and the greater dominance of KCC2 around P12 in multiple respiratory nuclei of the brain stem may form the basis of an enhanced inhibition in the respiratory network during the critical period before the system stabilizes to a more mature state.
Collapse
Affiliation(s)
- Q Liu
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, USA
| | | |
Collapse
|
30
|
Ringer C, Weihe E, Schütz B. Calcitonin gene-related peptide expression levels predict motor neuron vulnerability in the superoxide dismutase 1-G93A mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 2011; 45:547-54. [PMID: 21964254 DOI: 10.1016/j.nbd.2011.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 09/06/2011] [Accepted: 09/13/2011] [Indexed: 11/16/2022] Open
Abstract
In amyotrophic lateral sclerosis (ALS) some motor neurons degenerate while others survive. The molecular mechanisms underlying this selective vulnerability and resistance, respectively, are poorly understood. Since the neuropeptide, calcitonin gene-related peptide (CGRP), is expressed by many but not all motor neurons, we asked if motor neuron CGRP levels predict their vulnerability in the SOD1-G93A mouse model of ALS. In wild type mice three types of somatic motor neurons were distinguished based on their CGRP expression pattern, i.e. highCGRP, lowCGRP, and nonCGRP. Since motor nuclei III, IV and VI contained mostly nonCGRP motor neurons, they defined the oculomotor group. In comparison, the facial group (nuclei V, VII and XII) contained equal numbers of all three types, while the spinomedullary group (ambiguus nucleus and lumbar spinal cord) contained mainly highCGRP motor neurons. Analysis on the transcript level, and of mice lacking the αCGRP isoform, revealed that these group differences in CGRP expression were predominantly based on αCGRP. At disease end-stage in SOD1-G93A mice, group-specific extent of motor neuron loss correlated with CGRP expression as neurons with highCGRP were reduced by 80%, those with lowCGRP by 50%, and nonCGRP motor neurons were not significantly affected in all three groups. Finally, highCGRP motor neuron degeneration preceded lowCGRP motor neuron degeneration during disease progression. Our analysis revealed that the relative abundance of CGRP mRNA and immunoreactivity in motor neurons predicts their vulnerability. CGRP may be an autocrine or paracrine factor promoting motor neuron degeneration in this ALS model.
Collapse
Affiliation(s)
- Cornelia Ringer
- Molecular Neurosciences Department, Institute of Anatomy and Cell Biology, University of Marburg, Robert-Koch-Strasse 8, 35037 Marburg, Germany.
| | | | | |
Collapse
|
31
|
Synaptic conversion of chloride-dependent synapses in spinal nociceptive circuits: roles in neuropathic pain. PAIN RESEARCH AND TREATMENT 2011; 2011:738645. [PMID: 22110931 PMCID: PMC3195780 DOI: 10.1155/2011/738645] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2010] [Accepted: 03/21/2011] [Indexed: 11/17/2022]
Abstract
Electrophysiological conversion of chloride-dependent synapses from inhibitory to excitatory function, as a result of aberrant neuronal chloride homeostasis, is a known mechanism for the genesis of neuropathic pain. This paper examines theoretically how this type of synaptic conversion can disrupt circuit logic in spinal nociceptive circuits. First, a mathematical scaling factor is developed to represent local aberration in chloride electrochemical driving potential. Using this mathematical scaling factor, electrophysiological symbols are developed to represent the magnitude of synaptic conversion within nociceptive circuits. When inserted into a nociceptive circuit diagram, these symbols assist in understanding the generation of neuropathic pain associated with the collapse of transmembrane chloride gradients. A more generalized scaling factor is also derived to represent the interplay of chloride and bicarbonate driving potentials on the function of GABAergic and glycinergic synapses. These mathematical and symbolic representations of synaptic conversion help illustrate the critical role that anion driving potentials play in the transduction of pain. Using these representations, we discuss ramifications of glial-mediated synaptic conversion in the genesis, and treatment, of neuropathic pain.
Collapse
|