1
|
Ge Y, O’Shea DF. Review of Clinically Assessed Molecular Fluorophores for Intraoperative Image Guided Surgery. Molecules 2024; 29:5964. [PMID: 39770053 PMCID: PMC11679787 DOI: 10.3390/molecules29245964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
The term "fluorescence" was first proposed nearly two centuries ago, yet its application in clinical medicine has a relatively brief history coming to the fore in the past decade. Nowadays, as fluorescence is gradually expanding into more medical applications, fluorescence image-guided surgery has become the new arena for this technology. It allows surgical teams to real-time visualize target tissues or anatomies intraoperatively to increase the precision of resection or preserve vital structures during open or laparoscopic surgeries. In this review, we introduce the concept of near-infrared fluorescence guided surgery, discuss the recent and ongoing clinical trials of molecular fluorophores (indocyanine green, 5-aminolevulinic acid, methylene blue, IR-dye 800CW, pafolacianine) and their surgical goals, highlight key chemical and medical factors for imaging agent optimization, deliberate challenges and potential advantages, and propose a framework for integrating this technology into routine surgical care in the near future. The notable clinical achievements of these fluorophores over the past decade strongly indicates that the future of fluorescence in surgery is bright with many more patient benefits to come.
Collapse
Affiliation(s)
| | - Donal F. O’Shea
- Department of Chemistry, RCSI, University of Medicine and Health Sciences, 123 St Stephen’s Green, Dublin 2, D02 YN77 Dublin, Ireland
| |
Collapse
|
2
|
Schusteff RA, Slavin KV, Roth S. 5-Aminolevulonic Acid, a New Tumor Contrast Agent: Anesthesia Considerations in Patients Undergoing Craniotomy. J Neurosurg Anesthesiol 2024; 36:294-302. [DOI: 10.1097/ana.0000000000000941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 09/26/2023] [Indexed: 01/03/2025]
Abstract
5-aminolevulinic acid (ALA) is used during resection of malignant gliomas due to its fluorescence properties and has been shown to render resection more effective than resection without ALA guidance. The aim of this narrative review is to categorize the adverse effects of ALA relevant to anesthesia providers. Intraoperative hypotension, porphyria-related side effects, alterations in blood chemistry and coagulation, photosensitivity, and increased levels of liver enzymes have all been reported. We also sought to examine the impact of dosage and timing of oral administration on efficacy of ALA and on these side effects. Twenty-seven studies met our inclusion criteria of patients undergoing craniotomy for glioma resection using ALA and occurrence of at least one adverse effect. The results of these studies showed that there was heterogeneity in levels of intraoperative hypotension, with some reporting an incidence as high as 32%, and that hypotension was associated with antihypertensive medication use. Clinical symptoms of porphyria, such as gastrointestinal disturbance, were less commonly reported. Photosensitivity of the skin after 5-ALA administration was well documented particularly in patients exposed to light; however, adverse effects on the eye were not adequately studied. Elevation in liver enzymes was a common finding postoperatively but was often clinically insignificant. The timing of oral administration presents practical issues for the preoperative management of patients undergoing resection with ALA. We provide guidance for perioperative management of patients who receive ALA for brain tumor resection. Controlled studies with adequate statistical power are required to further understand and prevent the adverse effects of ALA.
Collapse
Affiliation(s)
- Rachel A. Schusteff
- Department of Anesthesiology, University of Illinois at Chicago College of Medicine
| | - Konstantin V. Slavin
- Department of Neurosurgery, University of Illinois at Chicago College of Medicine, and Neurology Section, Jesse Brown Veterans Administration Medical Center, Chicago, IL
| | - Steven Roth
- Department of Anesthesiology, University of Illinois at Chicago College of Medicine
| |
Collapse
|
3
|
Fujiwara H, Furudate S, Takahara N, Nakai Y, Kodama Y, Arai J, Nakagawa H, Ikenoue T, Tateishi K, Kasuga M, Fujishiro M. Probe-guided endoscopic system for 5-aminolevulinic acid-based photodynamic diagnosis in cholangiocarcinoma. Photodiagnosis Photodyn Ther 2024; 48:104268. [PMID: 38971526 DOI: 10.1016/j.pdpdt.2024.104268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/23/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND AND AIM The diagnostic accuracy for cholangiocarcinoma (CCA) is inadequate, necessitating the exploration of novel diagnostic approaches. Protoporphyrin IX (Pp IX), a metabolic product of 5-aminolevulinic acid (5-ALA), emits red fluorescence upon blue light exposure. Because it accumulates selectively in cancer cells, photodynamic diagnosis using 5-ALA (5-ALA-PDD) has been integrated into clinical practice for diverse cancer types. Nevertheless, there is currently no device capable of capturing Pp IX-derived fluorescence for real-time 5-ALA-PDD within the biliary tract, largely due to challenges in device miniaturization. METHODS To investigate the feasibility of real-time 5ALA-PDD in CCA, we developed two essential components of the cholangioscopy system: a small-diameter flexible camera and a light guide for emitting blue light. We evaluated the detectability of Pp IX fluorescence using these devices in experimental gels and animal models. RESULTS Our camera and light guide were smoothly inserted into the lumen of existing cholangioscopes. Incorporating a long-pass filter at the camera tip enabled efficient detection of red fluorescence without significantly impacting white-light observation. The integration of these devices facilitated clear visualization of red fluorescence from gels containing Pp IX at concentrations of 5 μM or higher. Additionally, when observing subcutaneous human CCA tumor models in nude mice treated with 5-ALA, we successfully demonstrated distinct red fluorescence from Pp IX accumulation in tumors compared to peritumoral subcutaneous areas. CONCLUSION The integration of our device combination holds promise for real-time 5-ALA-PDD in human CCA, potentially enhancing the diagnostic accuracy for this complex condition.
Collapse
Affiliation(s)
- Hiroaki Fujiwara
- Division of Gastroenterology, The Institute of Medical Science, Asahi Life Foundation, 2-2-6 Bakurocho, Chuo-ku, Tokyo, 103-0002, Japan; Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Shiho Furudate
- Japan Lifeline Co., Ltd, 2-2-20 Higashishinagawa, Shinagawa-ku, Tokyo, Japan
| | - Naminatsu Takahara
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yousuke Nakai
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; Department of Endoscopy and Endoscopic Surgery, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yuki Kodama
- Japan Lifeline Co., Ltd, 2-2-20 Higashishinagawa, Shinagawa-ku, Tokyo, Japan
| | - Junya Arai
- Division of Gastroenterology, The Institute of Medical Science, Asahi Life Foundation, 2-2-6 Bakurocho, Chuo-ku, Tokyo, 103-0002, Japan; Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hayato Nakagawa
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Tsuneo Ikenoue
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, Tokyo 108‑8639, Japan
| | - Keisuke Tateishi
- Department of Gastroenterology, St Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Masato Kasuga
- The Institute of Medical Science, Asahi Life Foundation, 2-2-6 Bakurocho, Chuo-ku, Tokyo, 103-0002, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
4
|
Picart T, Gautheron A, Caredda C, Ray C, Mahieu-Williame L, Montcel B, Guyotat J. Fluorescence-Guided Surgical Techniques in Adult Diffuse Low-Grade Gliomas: State-of-the-Art and Emerging Techniques: A Systematic Review. Cancers (Basel) 2024; 16:2698. [PMID: 39123426 PMCID: PMC11311317 DOI: 10.3390/cancers16152698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Diffuse low-grade gliomas are infiltrative tumors whose margins are not distinguishable from the adjacent healthy brain parenchyma. The aim was to precisely examine the results provided by the intraoperative use of macroscopic fluorescence in diffuse low-grade gliomas and to describe the new fluorescence-based techniques capable of guiding the resection of low-grade gliomas. Only about 20% and 50% of low-grade gliomas are macroscopically fluorescent after 5-amino-levulinic acid (5-ALA) or fluorescein sodium intake, respectively. However, 5-ALA is helpful for detecting anaplastic foci, and thus choosing the best biopsy targets in diffuse gliomas. Spectroscopic detection of 5-ALA-induced fluorescence can detect very low and non-macroscopically visible concentrations of protoporphyrin IX, a 5-ALA metabolite, and, consequently, has excellent performances for the detection of low-grade gliomas. Moreover, these tumors have a specific spectroscopic signature with two fluorescence emission peaks, which is useful for distinguishing them not only from healthy brain but also from high-grade gliomas. Confocal laser endomicroscopy can generate intraoperative optic biopsies, but its sensitivity remains limited. In the future, the coupled measurement of autofluorescence and induced fluorescence, and the introduction of fluorescence detection technologies providing a wider field of view could result in the development of operator-friendly tools implementable in the operative routine.
Collapse
Affiliation(s)
- Thiebaud Picart
- Department of Neurosurgery, Hôpital Neurologique Pierre Wertheimer, Groupe Hospitalier Est, Hospices Civils de Lyon, 59 Boulevard Pinel, 69500 Bron, France
- Faculty of Medicine Lyon Est, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, 69003 Lyon, France
- Cancer Research Centre of Lyon (CRCL) Inserm 1052, CNRS 5286, 28 Rue Laennec, 69008 Lyon, France
| | - Arthur Gautheron
- Laboratoire Hubert Curien UMR 5516, Institut d’Optique Graduate School, CNRS, Université Jean Monnet Saint-Etienne, 42023 Saint-Etienne, France;
- CREATIS CNRS, Inserm, UMR 5220, U1294, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, 69100 Lyon, France; (C.C.); (C.R.); (L.M.-W.); (B.M.)
| | - Charly Caredda
- CREATIS CNRS, Inserm, UMR 5220, U1294, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, 69100 Lyon, France; (C.C.); (C.R.); (L.M.-W.); (B.M.)
| | - Cédric Ray
- CREATIS CNRS, Inserm, UMR 5220, U1294, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, 69100 Lyon, France; (C.C.); (C.R.); (L.M.-W.); (B.M.)
| | - Laurent Mahieu-Williame
- CREATIS CNRS, Inserm, UMR 5220, U1294, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, 69100 Lyon, France; (C.C.); (C.R.); (L.M.-W.); (B.M.)
| | - Bruno Montcel
- CREATIS CNRS, Inserm, UMR 5220, U1294, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, 69100 Lyon, France; (C.C.); (C.R.); (L.M.-W.); (B.M.)
| | - Jacques Guyotat
- Department of Neurosurgery, Hôpital Neurologique Pierre Wertheimer, Groupe Hospitalier Est, Hospices Civils de Lyon, 59 Boulevard Pinel, 69500 Bron, France
- Faculty of Medicine Lyon Est, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, 69003 Lyon, France
- CREATIS CNRS, Inserm, UMR 5220, U1294, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, 69100 Lyon, France; (C.C.); (C.R.); (L.M.-W.); (B.M.)
| |
Collapse
|
5
|
Malik SO, Wierenga A, Gao C, Akaaboune M. Plasticity and structural alterations of mitochondria and sarcoplasmic organelles in muscles of mice deficient in α-dystrobrevin, a component of the dystrophin-glycoprotein complex. Hum Mol Genet 2024; 33:1107-1119. [PMID: 38507070 DOI: 10.1093/hmg/ddae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/03/2024] [Accepted: 03/01/2024] [Indexed: 03/22/2024] Open
Abstract
The dystrophin-glycoprotein complex (DGC) plays a crucial role in maintaining the structural integrity of the plasma membrane and the neuromuscular junction. In this study, we investigated the impact of the deficiency of α-dystrobrevin (αdbn), a component of the DGC, on the homeostasis of intracellular organelles, specifically mitochondria and the sarcoplasmic reticulum (SR). In αdbn deficient muscles, we observed a significant increase in the membrane-bound ATP synthase complex levels, a marker for mitochondria in oxidative muscle fiber types compared to wild-type. Furthermore, examination of muscle fibers deficient in αdbn using electron microscopy revealed profound alterations in the organization of mitochondria and the SR within certain myofibrils of muscle fibers. This included the formation of hyper-branched intermyofibrillar mitochondria with extended connections, an extensive network spanning several myofibrils, and a substantial increase in the number/density of subsarcolemmal mitochondria. Concurrently, in some cases, we observed significant structural alterations in mitochondria, such as cristae loss, fragmentation, swelling, and the formation of vacuoles and inclusions within the mitochondrial matrix cristae. Muscles deficient in αdbn also displayed notable alterations in the morphology of the SR, along with the formation of distinct anomalous concentric SR structures known as whorls. These whorls were prevalent in αdbn-deficient mice but were absent in wild-type muscles. These results suggest a crucial role of the DGC αdbn in regulating intracellular organelles, particularly mitochondria and the SR, within muscle cells. The remodeling of the SR and the formation of whorls may represent a novel mechanism of the unfolded protein response (UPR) in muscle cells.
Collapse
Affiliation(s)
- Saad O Malik
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4164 Biological Sciences Building, 1105 N. University Avenue, Ann Arbor, MI 48109, United States
| | - Alissa Wierenga
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4164 Biological Sciences Building, 1105 N. University Avenue, Ann Arbor, MI 48109, United States
| | - Chenlang Gao
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4164 Biological Sciences Building, 1105 N. University Avenue, Ann Arbor, MI 48109, United States
| | - Mohammed Akaaboune
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 4164 Biological Sciences Building, 1105 N. University Avenue, Ann Arbor, MI 48109, United States
- Michigan Neuroscience Institute, University of Michigan, 205 Zina Pitcher Pl, Ann Arbor, MI 48109, United States
| |
Collapse
|
6
|
Chang C, Chavarro VS, Gerstl JVE, Blitz SE, Spanehl L, Dubinski D, Valdes PA, Tran LN, Gupta S, Esposito L, Mazzetti D, Gessler FA, Arnaout O, Smith TR, Friedman GK, Peruzzi P, Bernstock JD. Recurrent Glioblastoma-Molecular Underpinnings and Evolving Treatment Paradigms. Int J Mol Sci 2024; 25:6733. [PMID: 38928445 PMCID: PMC11203521 DOI: 10.3390/ijms25126733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Glioblastoma is the most common and lethal central nervous system malignancy with a median survival after progression of only 6-9 months. Major biochemical mechanisms implicated in glioblastoma recurrence include aberrant molecular pathways, a recurrence-inducing tumor microenvironment, and epigenetic modifications. Contemporary standard-of-care (surgery, radiation, chemotherapy, and tumor treating fields) helps to control the primary tumor but rarely prevents relapse. Cytoreductive treatment such as surgery has shown benefits in recurrent glioblastoma; however, its use remains controversial. Several innovative treatments are emerging for recurrent glioblastoma, including checkpoint inhibitors, chimeric antigen receptor T cell therapy, oncolytic virotherapy, nanoparticle delivery, laser interstitial thermal therapy, and photodynamic therapy. This review seeks to provide readers with an overview of (1) recent discoveries in the molecular basis of recurrence; (2) the role of surgery in treating recurrence; and (3) novel treatment paradigms emerging for recurrent glioblastoma.
Collapse
Affiliation(s)
- Christopher Chang
- Warren Alpert Medical School, Brown University, Providence, RI 02912, USA;
| | - Velina S. Chavarro
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
| | - Jakob V. E. Gerstl
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
| | - Sarah E. Blitz
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Lennard Spanehl
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Department of Neurosurgery, University of Rostock, 18055 Rostock, Germany; (D.D.); (F.A.G.)
| | - Daniel Dubinski
- Department of Neurosurgery, University of Rostock, 18055 Rostock, Germany; (D.D.); (F.A.G.)
| | - Pablo A. Valdes
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Lily N. Tran
- Division of Biology and Medicine, Brown University, Providence, RI 02912, USA;
| | - Saksham Gupta
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Luisa Esposito
- Department of Medicine and Surgery, Unicamillus University, 00131 Rome, Italy;
| | - Debora Mazzetti
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
| | - Florian A. Gessler
- Department of Neurosurgery, University of Rostock, 18055 Rostock, Germany; (D.D.); (F.A.G.)
| | - Omar Arnaout
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Timothy R. Smith
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Gregory K. Friedman
- Division of Pediatrics, Neuro-Oncology Section, MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Pierpaolo Peruzzi
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Joshua D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
7
|
Optical microscopy and transcriptomics reveal the origins of fluorescence in glioma surgery. Nat Biomed Eng 2024; 8:670-671. [PMID: 38992291 DOI: 10.1038/s41551-024-01218-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
|
8
|
Nasir-Moin M, Wadiura LI, Sacalean V, Juros D, Movahed-Ezazi M, Lock EK, Smith A, Lee M, Weiss H, Müther M, Alber D, Ratna S, Fang C, Suero-Molina E, Hellwig S, Stummer W, Rössler K, Hainfellner JA, Widhalm G, Kiesel B, Reichert D, Mischkulnig M, Jain R, Straehle J, Neidert N, Schnell O, Beck J, Trautman J, Pastore S, Pacione D, Placantonakis D, Oermann EK, Golfinos JG, Hollon TC, Snuderl M, Freudiger CW, Heiland DH, Orringer DA. Localization of protoporphyrin IX during glioma-resection surgery via paired stimulated Raman histology and fluorescence microscopy. Nat Biomed Eng 2024; 8:672-688. [PMID: 38987630 DOI: 10.1038/s41551-024-01217-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/20/2024] [Indexed: 07/12/2024]
Abstract
The most widely used fluorophore in glioma-resection surgery, 5-aminolevulinic acid (5-ALA), is thought to cause the selective accumulation of fluorescent protoporphyrin IX (PpIX) in tumour cells. Here we show that the clinical detection of PpIX can be improved via a microscope that performs paired stimulated Raman histology and two-photon excitation fluorescence microscopy (TPEF). We validated the technique in fresh tumour specimens from 115 patients with high-grade gliomas across four medical institutions. We found a weak negative correlation between tissue cellularity and the fluorescence intensity of PpIX across all imaged specimens. Semi-supervised clustering of the TPEF images revealed five distinct patterns of PpIX fluorescence, and spatial transcriptomic analyses of the imaged tissue showed that myeloid cells predominate in areas where PpIX accumulates in the intracellular space. Further analysis of external spatially resolved metabolomics, transcriptomics and RNA-sequencing datasets from glioblastoma specimens confirmed that myeloid cells preferentially accumulate and metabolize PpIX. Our findings question 5-ALA-induced fluorescence in glioma cells and show how 5-ALA and TPEF imaging can provide a window into the immune microenvironment of gliomas.
Collapse
Affiliation(s)
- Mustafa Nasir-Moin
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Vlad Sacalean
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Microenvironment and Immunology Research Laboratory, Medical Center - University of Freiburg, Freiburg, Germany
| | - Devin Juros
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Emily K Lock
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Andrew Smith
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Matthew Lee
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Hannah Weiss
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Michael Müther
- Department of Neurosurgery, Münster University Hospital, Münster, Germany
| | - Daniel Alber
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Camila Fang
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Eric Suero-Molina
- Department of Neurosurgery, Münster University Hospital, Münster, Germany
| | - Sönke Hellwig
- Department of Neurosurgery, Münster University Hospital, Münster, Germany
| | - Walter Stummer
- Department of Neurosurgery, Münster University Hospital, Münster, Germany
| | - Karl Rössler
- Department of Neurosurgery, Medical University Vienna, Vienna, Austria
| | - Johannes A Hainfellner
- Division of Neuropathology and Neurochemistry (Obersteiner Institute), Department of Neurology, Medical University Vienna, Vienna, Austria
| | - Georg Widhalm
- Department of Neurosurgery, Medical University Vienna, Vienna, Austria
| | - Barbara Kiesel
- Department of Neurosurgery, Medical University Vienna, Vienna, Austria
| | - David Reichert
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Mario Mischkulnig
- Department of Neurosurgery, Medical University Vienna, Vienna, Austria
| | - Rajan Jain
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Jakob Straehle
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Berta-Ottenstein Clinician Scientist Program, Faculty of Medicine, University Freiburg, Freiburg, Germany
| | - Nicolas Neidert
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Berta-Ottenstein Clinician Scientist Program, Faculty of Medicine, University Freiburg, Freiburg, Germany
| | - Oliver Schnell
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Translational NeuroOncology Research Group, Medical Center - University of Freiburg, Freiburg, Germany
| | - Jürgen Beck
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for NeuroModulation (NeuroModul), University of Freiburg, Freiburg, Germany
| | | | | | - Donato Pacione
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Eric Karl Oermann
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA
- Center for Data Science, New York University, New York, USA
| | - John G Golfinos
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Todd C Hollon
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Matija Snuderl
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | | | - Dieter Henrik Heiland
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Microenvironment and Immunology Research Laboratory, Medical Center - University of Freiburg, Freiburg, Germany.
- Comprehensive Cancer Center Freiburg (CCCF), Medical Center - University of Freiburg, Freiburg, Germany.
- German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany.
| | - Daniel A Orringer
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
9
|
Gautheron A, Bernstock JD, Picart T, Guyotat J, Valdés PA, Montcel B. 5-ALA induced PpIX fluorescence spectroscopy in neurosurgery: a review. Front Neurosci 2024; 18:1310282. [PMID: 38348134 PMCID: PMC10859467 DOI: 10.3389/fnins.2024.1310282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/02/2024] [Indexed: 02/15/2024] Open
Abstract
The review begins with an overview of the fundamental principles/physics underlying light, fluorescence, and other light-matter interactions in biological tissues. It then focuses on 5-aminolevulinic acid (5-ALA)-induced protoporphyrin IX (PpIX) fluorescence spectroscopy methods used in neurosurgery (e.g., intensity, time-resolved) and in so doing, describe their specific features (e.g., hardware requirements, main processing methods) as well as their strengths and limitations. Finally, we review current clinical applications and future directions of 5-ALA-induced protoporphyrin IX (PpIX) fluorescence spectroscopy in neurosurgery.
Collapse
Affiliation(s)
- A. Gautheron
- Université Jean Monnet Saint-Etienne, CNRS, Institut d Optique Graduate School, Laboratoire Hubert Curien UMR 5516, Saint-Étienne, France
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, Lyon, France
| | - J. D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - T. Picart
- Department of Neurosurgical Oncology and Vascular Neurosurgery, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon, Lyon, France
- Université Lyon 1, INSERM 1052, CNRS 5286, Lyon, France
| | - J. Guyotat
- Department of Neurosurgical Oncology and Vascular Neurosurgery, Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon, Lyon, France
| | - P. A. Valdés
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, United States
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, United States
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, United States
| | - B. Montcel
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, Lyon, France
| |
Collapse
|
10
|
Fukumura M, Nonoguchi N, Kawabata S, Hiramatsu R, Futamura G, Takeuchi K, Kanemitsu T, Takata T, Tanaka H, Suzuki M, Sampetrean O, Ikeda N, Kuroiwa T, Saya H, Nakano I, Wanibuchi M. 5-Aminolevulinic acid increases boronophenylalanine uptake into glioma stem cells and may sensitize malignant glioma to boron neutron capture therapy. Sci Rep 2023; 13:10173. [PMID: 37349515 PMCID: PMC10287723 DOI: 10.1038/s41598-023-37296-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023] Open
Abstract
Boron neutron capture therapy (BNCT) is a high-LET particle radiotherapy clinically tested for treating malignant gliomas. Boronophenylalanine (BPA), a boron-containing phenylalanine derivative, is selectively transported into tumor cells by amino acid transporters, making it an ideal agent for BNCT. In this study, we investigated whether the amino acid 5-aminolevulinic acid (ALA) could sensitize glioma stem cells (GSCs) to BNCT by enhancing the uptake of BPA. Using human and mouse GSC lines, pre-incubation with ALA increased the intracellular accumulation of BPA dose-dependent. We also conducted in vivo experiments by intracerebrally implanting HGG13 cells in mice and administering ALA orally 24 h before BPA administration (ALA + BPA-BNCT). The ALA preloading group increased the tumor boron concentration and improved the tumor/blood boron concentration ratio, resulting in improved survival compared to the BPA-BNCT group. Furthermore, we found that the expression of amino acid transporters was upregulated following ALA treatment both in vitro and in vivo, particularly for ATB0,+. This suggests that ALA may sensitize GSCs to BNCT by upregulating the expression of amino acid transporters, thereby enhancing the uptake of BPA and improving the effectiveness of BNCT. These findings have important implications for strategies to improve the sensitivity of malignant gliomas to BPA-BNCT.
Collapse
Affiliation(s)
- Masao Fukumura
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, 569-8686, Japan
| | - Naosuke Nonoguchi
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, 569-8686, Japan.
| | - Shinji Kawabata
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, 569-8686, Japan
| | - Ryo Hiramatsu
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, 569-8686, Japan
| | - Gen Futamura
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, 569-8686, Japan
| | - Koji Takeuchi
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, 569-8686, Japan
| | - Takuya Kanemitsu
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, 569-8686, Japan
| | - Takushi Takata
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Osaka, Japan
| | - Hiroki Tanaka
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Osaka, Japan
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Osaka, Japan
| | - Oltea Sampetrean
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Naokado Ikeda
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, 569-8686, Japan
| | - Toshihiko Kuroiwa
- Department of Neurosurgery, Tesseikai Neurosurgical Hospital, Shijonawate, Osaka, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Ichiro Nakano
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Masahiko Wanibuchi
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, 569-8686, Japan
| |
Collapse
|
11
|
5-Aminolevulinic acid fluorescence in brain non-neoplastic lesions: a systematic review and case series. Neurosurg Rev 2022; 45:3139-3148. [PMID: 35972631 DOI: 10.1007/s10143-022-01843-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
Abstract
Fluorescence-guided surgery with 5-aminolevulinic acid (5-ALA) is used to assist brain tumor resection, especially for high-grade gliomas but also for low-grade gliomas, metastasis, and meningiomas. With the increasing use of this technique, even to assist biopsies, high-grade glioma-mimicking lesions had misled diagnosis by showing 5-ALA fluorescence in non-neoplastic lesions such as radiation necrosis and inflammatory or infectious disease. Since only isolated reports have been published, we systematically review papers reporting non-neoplastic lesion cases with 5-ALA according with the PRISMA guidelines, present our series, and discuss its pathophysiology. In total, 245 articles were identified and 12 were extracted according to our inclusion criteria. Analyzing 27 patients, high-grade glioma was postulated as preoperative diagnosis in 48% of the cases. Microsurgical resection was performed in 19 cases (70%), while 8 patients were submitted to biopsy (30%). We found 4 positive cases in demyelinating disease (50%), 4 in brain abscess (80%), 1 in neurocysticercosis (33%), 1 in neurotoxoplasmosis, infarction, and hematoma (100%), 4 in inflammatory disease (80%), and 3 in cortical dysplasia (100%). New indications are being considered especially in benign lesion biopsies with assistance of 5-ALA. Using fluorescence as an aid in biopsies may improve procedure time, number of samples, and necessity of intraoperative pathology. Further studies should include this technology to encourage more beneficial uses.
Collapse
|
12
|
Mischkulnig M, Roetzer-Pejrimovsky T, Lötsch-Gojo D, Kastner N, Bruckner K, Prihoda R, Lang A, Martinez-Moreno M, Furtner J, Berghoff A, Woehrer A, Berger W, Widhalm G, Kiesel B. Heme Biosynthesis Factors and 5-ALA Induced Fluorescence: Analysis of mRNA and Protein Expression in Fluorescing and Non-fluorescing Gliomas. Front Med (Lausanne) 2022; 9:907442. [PMID: 35665365 PMCID: PMC9157484 DOI: 10.3389/fmed.2022.907442] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Objective The intraoperative visualization of adult-type diffuse gliomas with 5-aminolevulinic acid (5-ALA) induced fluorescence is widely used in the neurosurgical field. While visible 5-ALA induced fluorescence is found in the majority of high-grade gliomas, most low-grade gliomas lack visible fluorescence during surgery. Recently, the heme biosynthesis pathway was identified as crucial influencing factor for presence of visible fluorescence since it metabolizes 5-ALA to fluorescing Protoporphyrin IX (PpIX). However, the exact alterations within the heme biosynthesis pathway resulting in visible 5-ALA induced fluorescence in gliomas are still unclear. The aim of the present study was thus to compare the mRNA and protein expression of promising intramitochondrial heme biosynthesis enzymes/transporters in glioma tissue samples of different fluorescence behavior. Methods A total of 19 strongly fluorescing and 21 non-fluorescing tissue samples from neurosurgical adult-type diffuse gliomas (WHO grades II-IV) were included in the current analysis. In these samples, we investigated the mRNA expression by quantitative real time PCR and protein expression using immunohistochemistry of the intramitochondrial heme biosynthesis enzymes Coproporphyrinogen Oxidase (CPOX), Protoporphyrinogen Oxidase (PPOX), Ferrochelatase (FECH), and the transporter ATP-binding Cassette Subfamily B Member 2 (ABCG2). Results Regarding mRNA expression analysis, we found a significantly decreased ABCG2 expression in fluorescing specimens compared to non-fluorescing samples (p = 0.001), whereas no difference in CPOX, PPOX and FECH was present. With respect to protein expression, significantly higher levels of CPOX (p = 0.005), PPOX (p < 0.01) and FECH (p = 0.003) were detected in fluorescing samples. Similar to mRNA expression analysis, the protein expression of ABCG2 (p = 0.001) was significantly lower in fluorescing samples. Conclusion Distinct alterations of the analyzed heme biosynthesis factors were found primarily on protein level. Our data indicate that heme biosynthesis pathway activity in general is enhanced in fluorescing gliomas with upregulation of PpIX generating enzymes and decreased ABCG2 mediated PpIX efflux outweighing the also increased further metabolization of PpIX to heme. Intramitochondrial heme biosynthesis factors thus constitute promising pharmacological targets to optimize intraoperative 5-ALA fluorescence visualization of usually non-fluorescing tumors such as low-grade gliomas.
Collapse
Affiliation(s)
- Mario Mischkulnig
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center–Central Nervous System Tumours Unit, Medical University of Vienna, Vienna, Austria
| | - Thomas Roetzer-Pejrimovsky
- Comprehensive Cancer Center–Central Nervous System Tumours Unit, Medical University of Vienna, Vienna, Austria
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Daniela Lötsch-Gojo
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center–Central Nervous System Tumours Unit, Medical University of Vienna, Vienna, Austria
| | - Nina Kastner
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Katharina Bruckner
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Romana Prihoda
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
- Department of Neurosurgery, University Hospital of St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Alexandra Lang
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center–Central Nervous System Tumours Unit, Medical University of Vienna, Vienna, Austria
| | | | - Julia Furtner
- Comprehensive Cancer Center–Central Nervous System Tumours Unit, Medical University of Vienna, Vienna, Austria
- Department of Radiology and Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Anna Berghoff
- Comprehensive Cancer Center–Central Nervous System Tumours Unit, Medical University of Vienna, Vienna, Austria
- Clinical Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Adelheid Woehrer
- Comprehensive Cancer Center–Central Nervous System Tumours Unit, Medical University of Vienna, Vienna, Austria
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center–Central Nervous System Tumours Unit, Medical University of Vienna, Vienna, Austria
| | - Barbara Kiesel
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center–Central Nervous System Tumours Unit, Medical University of Vienna, Vienna, Austria
- *Correspondence: Barbara Kiesel,
| |
Collapse
|
13
|
Analysis of corticosteroid and antiepileptic drug treatment effects on heme biosynthesis mRNA expression in lower-grade gliomas: potential implications for 5-ALA metabolization. Photodiagnosis Photodyn Ther 2022; 38:102755. [PMID: 35149260 DOI: 10.1016/j.pdpdt.2022.102755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/22/2022] [Accepted: 02/07/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVES Intraoperative visualization of gliomas with 5-aminolevulinic acid (5-ALA) induced fluorescence constitutes a powerful technique. While visible fluorescence is typically observed in high-grade gliomas, fluorescence is considerably less common in lower-grade gliomas (LGGs) WHO grade II&III. Whereas the exact mechanisms determining fluorescence in LGGs are not fully understood, metabolization of non-fluorescent 5-ALA to fluorescent Protoporphyrin IX by specific heme biosynthesis enzymes/transporters has been identified as relevant mechanism influencing fluorescence behavior. Furthermore, recent in-vitro studies have suggested preoperative treatment with corticosteroids and anti-epileptic drugs (AED) as potential factors influencing 5-ALA induced fluorescence. METHODS The goal of this study was thus to investigate the effect of preoperative corticosteroid/AED treatment on heme biosynthesis mRNA expression in a clinically relevant patient population. For this purpose, we analyzed the mRNA expression levels of specific heme biosynthesis factors including ALAD, HMBS, UROS, UROD, CPOX, PPOX, FECH, ABCB6, ACG2, SLC15A1 and SLC15A2, ABCB1, ABCB10 in a cohort of LGGs from "The Cancer Genome Atlas". RESULTS Altogether, 403 patients with available data on preoperative corticosteroid/AED treatment and heme biosynthesis mRNA expression were identified. Regarding corticosteroid treatment, no significant differences in expression of any of the 11 investigated heme biosynthesis factors were found. In contrast, a marginal yet statistically significant increase in SLC15A1 levels and decrease in ABCB6 levels were observed in patients with preoperative AED treatment. CONCLUSION While no significant differences in heme biosynthesis mRNA expression were observed according to preoperative corticosteroid treatment, changes in SLC15A1 as well as ABCB6 expression were detected in patients treated with AED. However, since these alterations were minor and have opposing effects on 5-ALA metabolization, our findings do not support a distinct effect of AED and corticosteroid treatment on heme biosynthesis regulation in LGGs.
Collapse
|
14
|
Byrd BK, Duke RB, Fan X, Wirth DJ, Warner WR, Hoopes PJ, Strawbridge RR, Evans LT, Paulsen KD, Davis SC. Whole-brain MR-registered cryo-imaging of a porcine-human glioma model to compare contrast agent biodistributions. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2022; 11943:1194303. [PMID: 36226235 PMCID: PMC9553323 DOI: 10.1117/12.2608252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
As rapidly accelerating technology, fluorescence guided surgery (FGS) has the potential to place molecular information directly into the surgeon's field of view by imaging administered fluorescent contrast agents in real time, circumnavigating pre-operative MR registration challenges with brain deformation. The most successful implementation of FGS is 5-ALA-PpIX guided glioma resection which has been linked to improved patient outcomes. While FGS may offer direct in-field guidance, fluorescent contrast agent distributions are not as familiar to the surgical community as Gd-MRI uptake, and may provide discordant information from previous Gd-MRI guidance. Thus, a method to assess and validate consistency between fluorescence-labeled tumor regions and Gd-enhanced tumor regions could aid in understanding the correlation between optical agent fluorescence and Gd-enhancement. Herein, we present an approach for comparing whole-brain fluorescence biodistributions with Gd-enhancement patterns on a voxel-by-voxel basis using co-registered fluorescent cryo-volumes and Gd-MRI volumes. In this initial study, a porcine-human glioma xenograft model was administered 5-ALA-PpIX, imaged with MRI, and euthanized 22 hours following 5-ALA administration. Following euthanization, the extracted brain was imaged with the cryo-macrotome system. After image processing steps and non-rigid, point-based registration, the fluorescence cryo-volume and Gd-MRI volume were compared for similarity metrics including: image similarity, tumor shape similarity, and classification similarity. This study serves as a proof-of-principle in validating our screening approach for quantitatively comparing 3D biodistributions between optical agents and Gd-based agents.
Collapse
Affiliation(s)
- B K Byrd
- Thayer School of Engineering at Dartmouth College, 14 Engineering Dr. Hanover, NH, 03755
| | - R B Duke
- Thayer School of Engineering at Dartmouth College, 14 Engineering Dr. Hanover, NH, 03755
| | - X Fan
- Thayer School of Engineering at Dartmouth College, 14 Engineering Dr. Hanover, NH, 03755
| | - D J Wirth
- Thayer School of Engineering at Dartmouth College, 14 Engineering Dr. Hanover, NH, 03755
| | - W R Warner
- Thayer School of Engineering at Dartmouth College, 14 Engineering Dr. Hanover, NH, 03755
| | - P J Hoopes
- Thayer School of Engineering at Dartmouth College, 14 Engineering Dr. Hanover, NH, 03755
| | - R R Strawbridge
- Thayer School of Engineering at Dartmouth College, 14 Engineering Dr. Hanover, NH, 03755
| | - L T Evans
- Thayer School of Engineering at Dartmouth College, 14 Engineering Dr. Hanover, NH, 03755
| | - K D Paulsen
- Thayer School of Engineering at Dartmouth College, 14 Engineering Dr. Hanover, NH, 03755
| | - S C Davis
- Thayer School of Engineering at Dartmouth College, 14 Engineering Dr. Hanover, NH, 03755
| |
Collapse
|
15
|
Suero Molina E, Kaneko S, Black D, Stummer W. 5-Aminolevulinic Acid-Induced Porphyrin Contents in Various Brain Tumors: Implications Regarding Imaging Device Design and Their Validation. Neurosurgery 2021; 89:1132-1140. [PMID: 34670277 DOI: 10.1093/neuros/nyab361] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/04/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Fluorescence-guided resections using 5-aminolevulinic acid (5-ALA)-induced tumor porphyrins have been established as an adjunct for malignant glioma surgery based on a phase III study using specifically adapted microscopes for visualizing fluorescing protoporphyrin IX (PPIX). New hardware technologies are being introduced, which claim the same performance as the original technology for visualizing fluorescence. This assumes that qualitative fluorescence detection is equivalent to the established standard, an assumption that needs to be critically assessed. OBJECTIVE To determine PPIX concentrations (cPPIX) in tissue that can be detected visually using the established BLUE400 filter system (Carl Zeiss Meditec, Oberkochen, Germany) as a basis for defining the performance of this system. METHODS Utilizing a hyperspectral imaging system, tumor samples from patients harboring different tumor tissues, with or without visible fluorescence, were analyzed. Absolute values of cPPIX were calculated after calibrating the system with fluorescence phantoms with known cPPIX. RESULTS A total of 524 tumor samples from 162 patients were analyzed. Visual fluorescence under the BLUE400 filter was documented by experienced neurosurgeons. A 0.9 μg/ml threshold of cPPIX was defined as the minimal concentration required to detect and discriminate visual fluorescence. CONCLUSION This is the first report providing data on the threshold of cPPIX, which is visually detected using the current generation of microscopes, thus defining the specificity and sensitivity of this technology as initially tested in a randomized trial. Novel technologies should show similar characteristics in order to be used safely and effectively. If more sensitive, such technologies require further assessments of tumor selectivity.
Collapse
Affiliation(s)
- Eric Suero Molina
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany
| | - Sadahiro Kaneko
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany.,Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - David Black
- Carl Zeiss Meditec AG, Oberkochen, Germany.,University of British Columbia, Vancouver, Canada
| | - Walter Stummer
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany
| |
Collapse
|
16
|
Mazurek M, Kulesza B, Stoma F, Osuchowski J, Mańdziuk S, Rola R. Characteristics of Fluorescent Intraoperative Dyes Helpful in Gross Total Resection of High-Grade Gliomas-A Systematic Review. Diagnostics (Basel) 2020; 10:E1100. [PMID: 33339439 PMCID: PMC7766001 DOI: 10.3390/diagnostics10121100] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Background: A very important aspect in the treatment of high-grade glioma is gross total resection to reduce the risk of tumor recurrence. One of the methods to facilitate this task is intraoperative fluorescence navigation. The aim of the study was to compare the dyes used in this technique fluorescent intraoperative navigation in terms of the mechanism of action and influence on the treatment of patients. Methods: The review was carried out on the basis of articles found in PubMed, Google Scholar, and BMC search engines, as well as those identified by searched bibliographies and suggested by experts during the preparation of the article. The database analysis was performed for the following phrases: "glioma", "glioblastoma", "ALA", "5ALA", "5-ALA", "aminolevulinic acid", "levulinic acid", "fluorescein", "ICG", "indocyanine green", and "fluorescence navigation". Results: After analyzing 913 citations identified on the basis of the search criteria, we included 36 studies in the review. On the basis of the analyzed articles, we found that 5-aminolevulinic acid and fluorescein are highly effective in improving the percentage of gross total resection achieved in high-grade glioma surgery. At the same time, the limitations resulting from the use of these methods are marked-higher costs of the procedure and the need to have neurosurgical microscope in combination with a special light filter in the case of 5-aminolevulinic acid (5-ALA), and low specificity for neoplastic cells and the dependence on the degree of damage to the blood-brain barrier in the intensity of fluorescence in the case of fluorescein. The use of indocyanine green in the visualization of glioma cells is relatively unknown, but some researchers have suggested its utility and the benefits of using it simultaneously with other dyes. Conclusion: The use of intraoperative fluorescence navigation with the use of 5-aminolevulinic acid and fluorescein allows the range of high-grade glioma resection to be increased.
Collapse
Affiliation(s)
- Marek Mazurek
- Chair and Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (F.S.); (J.O.); (R.R.)
| | - Bartłomiej Kulesza
- Chair and Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (F.S.); (J.O.); (R.R.)
| | - Filip Stoma
- Chair and Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (F.S.); (J.O.); (R.R.)
| | - Jacek Osuchowski
- Chair and Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (F.S.); (J.O.); (R.R.)
| | - Sławomir Mańdziuk
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Radosław Rola
- Chair and Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (F.S.); (J.O.); (R.R.)
| |
Collapse
|
17
|
Roberts DW, Bravo JJ, Olson JD, Hickey WF, Harris BT, Nguyen LN, Hong J, Evans LT, Fan X, Wirth D, Wilson BC, Paulsen KD. 5-Aminolevulinic Acid-Induced Fluorescence in Focal Cortical Dysplasia: Report of 3 Cases. Oper Neurosurg (Hagerstown) 2020; 16:403-414. [PMID: 29920583 DOI: 10.1093/ons/opy116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 04/20/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Three patients enrolled in a clinical trial of 5-aminolevulinic-acid (5-ALA)-induced fluorescence-guidance, which has been demonstrated to facilitate intracranial tumor resection, were found on neuropathological examination to have focal cortical dysplasia (FCD). OBJECTIVE To evaluate in this case series visible fluorescence and quantitative levels of protoporphyrin IX (PpIX) during surgery and correlate these findings with preoperative magnetic resonance imaging (MRI) and histopathology. METHODS Patients were administered 5-ALA (20 mg/kg) approximately 3 h prior to surgery and underwent image-guided, microsurgical resection of their MRI- and electrophysiologically identified lesions. Intraoperative visible fluorescence was evaluated using an operating microscope adapted with a commercially available blue light module. Quantitative PpIX levels were assessed using a handheld fiber-optic probe and a wide-field imaging spectrometer. Sites of fluorescence measurements were co-registered with both preoperative MRI and histopathological analysis. RESULTS Three patients with a pathologically confirmed diagnosis of FCD (Types 1b, 2a, and 2b) underwent surgery. All patients demonstrated some degree of visible fluorescence (faint or moderate), and all patients had quantitatively elevated concentrations of PpIX. No evidence of neoplasia was identified on histopathology, and in 1 patient, the highest concentrations of PpIX were found at a tissue site with marked gliosis but no typical histological features of FCD. CONCLUSION FCD has been found to be associated with intraoperative 5-ALA-induced visible fluorescence and quantitatively confirmed elevated concentrations of the fluorophore PpIX in 3 patients. This finding suggests that there may be a role for fluorescence-guidance during surgical intervention for epilepsy-associated FCD.
Collapse
Affiliation(s)
- David W Roberts
- Section of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire.,Geisel School Medicine, Dartmouth College, Hanover, New Hampshire.,Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire.,Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Jaime J Bravo
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Jonathan D Olson
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - William F Hickey
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Brent T Harris
- Departments of Pathology and Neurology, Georgetown University Medical Center, Washington, District of Columbia
| | - Lananh N Nguyen
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Jennifer Hong
- Section of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Linton T Evans
- Section of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Xiaoyao Fan
- Section of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire.,Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Dennis Wirth
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Brian C Wilson
- Princess Margaret Cancer Centre, University Health Network, Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Keith D Paulsen
- Section of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire.,Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire.,Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| |
Collapse
|
18
|
5-Aminolevulinic acid for recurrent malignant gliomas: A systematic review. Clin Neurol Neurosurg 2020; 195:105913. [DOI: 10.1016/j.clineuro.2020.105913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/28/2020] [Accepted: 05/10/2020] [Indexed: 11/24/2022]
|
19
|
Mischkulnig M, Kiesel B, Lötsch D, Roetzer T, Borkovec M, Wadiura LI, Mercea PA, Jaklin FJ, Hervey-Jumper S, Roessler K, Berger MS, Widhalm G, Erhart F. TCGA mRNA Expression Analysis of the Heme Biosynthesis Pathway in Diffusely Infiltrating Gliomas: A Comparison of Typically 5-ALA Fluorescent and Non-Fluorescent Gliomas. Cancers (Basel) 2020; 12:cancers12082043. [PMID: 32722247 PMCID: PMC7466145 DOI: 10.3390/cancers12082043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
5-Aminolevulinic acid (5-ALA) is a fluorescent dye that after metabolization to Protoporphyrin IX (PpIX) by the heme biosynthesis pathway typically leads to visible fluorescence in WHO grade IV but not grade II gliomas. The exact mechanism for high PpIX levels in WHO grade IV gliomas and low PpIX levels in WHO grade II gliomas is not fully clarified. To detect relevant changes in mRNA expression, we performed an in-silico analysis of WHO grade II and IV glioma sequencing datasets provided by The Cancer Genome Atlas (TCGA) to investigate mRNA expression levels of relevant heme biosynthesis genes: Solute Carrier Family 15 Member 1 and 2 (SLC15A1 and SLC15A2), Aminolevulinate-Dehydratase (ALAD), Hydroxymethylbilane-Synthase (HMBS), Uroporphyrinogen-III-Synthase (UROS), Uroporphyrinogen-Decarboxylase (UROD), Coproporphyrinogen-Oxidase (CPOX), Protoporphyrinogen-Oxidase (PPOX), ATP-binding Cassette Subfamily B Member 6 (ABCB6)/G Member 2 (ABCG2) and Ferrochelatase (FECH). Altogether, 258 WHO grade II and 166 WHO grade IV samples were investigated. The mRNA expression levels showed significant differences in 8 of 11 examined genes between WHO grade II and IV gliomas. Significant differences in mRNA expression included increases of HMBS, UROD, FECH and PPOX as well as decreases of SLC15A2, ALAD, UROS and ABCB6 in WHO IV gliomas. Since the majority of changes was found in directions that might actually impair PpIX accumulation in WHO grade IV gliomas, additional studies are needed to analyze the corresponding factors of the heme biosynthesis also on protein level.
Collapse
Affiliation(s)
- Mario Mischkulnig
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria; (M.M.); (B.K.); (D.L.); (M.B.); (L.I.W.); (P.A.M.); (F.J.J.); (K.R.); (F.E.)
- Comprehensive Cancer Center-Central Nervous System Tumours Unit, Medical University Vienna, 1090 Vienna, Austria;
| | - Barbara Kiesel
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria; (M.M.); (B.K.); (D.L.); (M.B.); (L.I.W.); (P.A.M.); (F.J.J.); (K.R.); (F.E.)
- Comprehensive Cancer Center-Central Nervous System Tumours Unit, Medical University Vienna, 1090 Vienna, Austria;
| | - Daniela Lötsch
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria; (M.M.); (B.K.); (D.L.); (M.B.); (L.I.W.); (P.A.M.); (F.J.J.); (K.R.); (F.E.)
- Comprehensive Cancer Center-Central Nervous System Tumours Unit, Medical University Vienna, 1090 Vienna, Austria;
| | - Thomas Roetzer
- Comprehensive Cancer Center-Central Nervous System Tumours Unit, Medical University Vienna, 1090 Vienna, Austria;
- Department of Neurology, Division of Neuropathology and Neurochemistry, Medical University Vienna, 1090 Vienna, Austria
| | - Martin Borkovec
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria; (M.M.); (B.K.); (D.L.); (M.B.); (L.I.W.); (P.A.M.); (F.J.J.); (K.R.); (F.E.)
- Department of Statistics, Ludwig-Maximilians-University, 80539 Munich, Germany
| | - Lisa I. Wadiura
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria; (M.M.); (B.K.); (D.L.); (M.B.); (L.I.W.); (P.A.M.); (F.J.J.); (K.R.); (F.E.)
- Comprehensive Cancer Center-Central Nervous System Tumours Unit, Medical University Vienna, 1090 Vienna, Austria;
| | - Petra A. Mercea
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria; (M.M.); (B.K.); (D.L.); (M.B.); (L.I.W.); (P.A.M.); (F.J.J.); (K.R.); (F.E.)
- Comprehensive Cancer Center-Central Nervous System Tumours Unit, Medical University Vienna, 1090 Vienna, Austria;
| | - Florian J. Jaklin
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria; (M.M.); (B.K.); (D.L.); (M.B.); (L.I.W.); (P.A.M.); (F.J.J.); (K.R.); (F.E.)
| | - Shawn Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA; (S.H.-J.); (M.S.B.)
| | - Karl Roessler
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria; (M.M.); (B.K.); (D.L.); (M.B.); (L.I.W.); (P.A.M.); (F.J.J.); (K.R.); (F.E.)
- Comprehensive Cancer Center-Central Nervous System Tumours Unit, Medical University Vienna, 1090 Vienna, Austria;
| | - Mitchel S. Berger
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA; (S.H.-J.); (M.S.B.)
| | - Georg Widhalm
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria; (M.M.); (B.K.); (D.L.); (M.B.); (L.I.W.); (P.A.M.); (F.J.J.); (K.R.); (F.E.)
- Comprehensive Cancer Center-Central Nervous System Tumours Unit, Medical University Vienna, 1090 Vienna, Austria;
- Correspondence: ; Tel.: +43-1-40400-45650
| | - Friedrich Erhart
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria; (M.M.); (B.K.); (D.L.); (M.B.); (L.I.W.); (P.A.M.); (F.J.J.); (K.R.); (F.E.)
- Comprehensive Cancer Center-Central Nervous System Tumours Unit, Medical University Vienna, 1090 Vienna, Austria;
| |
Collapse
|
20
|
Belykh E, Shaffer KV, Lin C, Byvaltsev VA, Preul MC, Chen L. Blood-Brain Barrier, Blood-Brain Tumor Barrier, and Fluorescence-Guided Neurosurgical Oncology: Delivering Optical Labels to Brain Tumors. Front Oncol 2020; 10:739. [PMID: 32582530 PMCID: PMC7290051 DOI: 10.3389/fonc.2020.00739] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/17/2020] [Indexed: 12/17/2022] Open
Abstract
Recent advances in maximum safe glioma resection have included the introduction of a host of visualization techniques to complement intraoperative white-light imaging of tumors. However, barriers to the effective use of these techniques within the central nervous system remain. In the healthy brain, the blood-brain barrier ensures the stability of the sensitive internal environment of the brain by protecting the active functions of the central nervous system and preventing the invasion of microorganisms and toxins. Brain tumors, however, often cause degradation and dysfunction of this barrier, resulting in a heterogeneous increase in vascular permeability throughout the tumor mass and outside it. Thus, the characteristics of both the blood-brain and blood-brain tumor barriers hinder the vascular delivery of a variety of therapeutic substances to brain tumors. Recent developments in fluorescent visualization of brain tumors offer improvements in the extent of maximal safe resection, but many of these fluorescent agents must reach the tumor via the vasculature. As a result, these fluorescence-guided resection techniques are often limited by the extent of vascular permeability in tumor regions and by the failure to stain the full volume of tumor tissue. In this review, we describe the structure and function of both the blood-brain and blood-brain tumor barriers in the context of the current state of fluorescence-guided imaging of brain tumors. We discuss features of currently used techniques for fluorescence-guided brain tumor resection, with an emphasis on their interactions with the blood-brain and blood-tumor barriers. Finally, we discuss a selection of novel preclinical techniques that have the potential to enhance the delivery of therapeutics to brain tumors in spite of the barrier properties of the brain.
Collapse
Affiliation(s)
- Evgenii Belykh
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Kurt V. Shaffer
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Chaoqun Lin
- Department of Neurosurgery, School of Medicine, Southeast University, Nanjing, China
| | - Vadim A. Byvaltsev
- Department of Neurosurgery, Irkutsk State Medical University, Irkutsk, Russia
| | - Mark C. Preul
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Lukui Chen
- Department of Neurosurgery, Neuroscience Center, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
21
|
Mischkulnig M, Kiesel B, Borkovec M, Wadiura LI, Benner D, Hosmann A, Hervey‐Jumper S, Knosp E, Roessler K, Berger MS, Widhalm G. High Interobserver Agreement in the Subjective Classification of 5-Aminolevulinic Acid Fluorescence Levels in Newly Diagnosed Glioblastomas. Lasers Surg Med 2020; 52:814-821. [PMID: 32147864 PMCID: PMC7586784 DOI: 10.1002/lsm.23228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND OBJECTIVES Fluorescence-guided resection of glioblastomas (GBM) using 5-aminolevulinic acid (5-ALA) improves intraoperative tumor visualization and is thus widely used nowadays. During resection, different fluorescence levels can usually be distinguished within the same tumor. Recently, we demonstrated that strong, vague, and no fluorescence correspond to distinct histopathological characteristics in newly diagnosed GBM. However, the qualitative fluorescence classification by the neurosurgeon is subjective and currently no comprehensive data on interobserver variability is available. The aim of this study was thus to investigate the interobserver variability in the classification of 5-ALA fluorescence levels in newly diagnosed GBM. STUDY DESIGN/MATERIALS AND METHODS A questionnaire investigating the interobserver variability in 5-ALA fluorescence quantification was performed at a nation-wide neurosurgical oncology meeting. The participants involved in the neurosurgical/neurooncological field were asked to categorize 30 cases of 5-ALA fluorescence images derived from GBM resection on a lecture hall screen according to the widely used three-tier fluorescence classification scheme (negative, vague, or strong fluorescence). Additionally, participants were asked for information on their medical background such as specialty, level of training, and experience with 5-ALA fluorescence-guided procedures. Interobserver agreement was defined as the calculated mean κ values for each observer. RESULTS A total of 36 questionnaires were included in the final analysis. The mean average κ value in fluorescence classification within the entire cohort was 0.71 ± 0.12 and 29 (81%) participants had a substantial or almost perfect interobserver agreement (κ values 0.6-1.0). Interobserver agreement was significantly higher in neurosurgeons (mean κ: 0.83) as compared with non-neurosurgeons involved in the neurooncological field (mean κ: 0.52; P < 0.001). Furthermore, interobserver agreement was significantly higher in participants who had experience with at least 25 5-ALA fluorescence-guided surgeries (mean κ: 0.87) compared with less experienced colleagues (mean κ: 0.82; P = 0.039). CONCLUSION Our study found a high interobserver agreement in the qualitative classification of different 5-ALA fluorescence levels in newly diagnosed GBM. Interobserver agreement increases significantly in more experienced participants and therefore a high level of experience is crucial for reliable intraoperative fluorescence classification. Lasers Surg. Med. © 2020 The Authors. Lasers in Surgery and Medicine published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mario Mischkulnig
- Department of NeurosurgeryMedical University ViennaWaehringer Guertel 18‐20Vienna1090Austria
- Central Nervous System Tumours Unit, Comprehensive Cancer CenterMedical University ViennaWaehringer Guertel 18‐20Vienna1090Austria
| | - Barbara Kiesel
- Department of NeurosurgeryMedical University ViennaWaehringer Guertel 18‐20Vienna1090Austria
- Central Nervous System Tumours Unit, Comprehensive Cancer CenterMedical University ViennaWaehringer Guertel 18‐20Vienna1090Austria
| | - Martin Borkovec
- Department of NeurosurgeryMedical University ViennaWaehringer Guertel 18‐20Vienna1090Austria
- Department of StatisticsLudwig‐Maximilians‐UniversityLudwigstraße 33Munich80539Germany
| | - Lisa I. Wadiura
- Department of NeurosurgeryMedical University ViennaWaehringer Guertel 18‐20Vienna1090Austria
- Central Nervous System Tumours Unit, Comprehensive Cancer CenterMedical University ViennaWaehringer Guertel 18‐20Vienna1090Austria
| | - Dimitri Benner
- Department of NeurosurgeryMedical University ViennaWaehringer Guertel 18‐20Vienna1090Austria
| | - Arthur Hosmann
- Department of NeurosurgeryMedical University ViennaWaehringer Guertel 18‐20Vienna1090Austria
- Central Nervous System Tumours Unit, Comprehensive Cancer CenterMedical University ViennaWaehringer Guertel 18‐20Vienna1090Austria
| | - Shawn Hervey‐Jumper
- Department of Neurological SurgeryUniversity of California, San Francisco505 Parnassus AvenueSan FranciscoCalifornia94143
| | - Engelbert Knosp
- Department of NeurosurgeryMedical University ViennaWaehringer Guertel 18‐20Vienna1090Austria
- Central Nervous System Tumours Unit, Comprehensive Cancer CenterMedical University ViennaWaehringer Guertel 18‐20Vienna1090Austria
| | - Karl Roessler
- Department of NeurosurgeryMedical University ViennaWaehringer Guertel 18‐20Vienna1090Austria
- Central Nervous System Tumours Unit, Comprehensive Cancer CenterMedical University ViennaWaehringer Guertel 18‐20Vienna1090Austria
| | - Mitchel S. Berger
- Department of Neurological SurgeryUniversity of California, San Francisco505 Parnassus AvenueSan FranciscoCalifornia94143
| | - Georg Widhalm
- Department of NeurosurgeryMedical University ViennaWaehringer Guertel 18‐20Vienna1090Austria
- Central Nervous System Tumours Unit, Comprehensive Cancer CenterMedical University ViennaWaehringer Guertel 18‐20Vienna1090Austria
| |
Collapse
|
22
|
Lee S, Park WY, Chang H, Kim B, Jang WH, Kim S, Shin Y, Kim MJ, Lee KH, Kim EH, Chung E, Kim KH. Fast and sensitive delineation of brain tumor with clinically compatible moxifloxacin labeling and confocal microscopy. JOURNAL OF BIOPHOTONICS 2020; 13:e201900197. [PMID: 31368257 DOI: 10.1002/jbio.201900197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/16/2019] [Accepted: 07/29/2019] [Indexed: 05/09/2023]
Abstract
Delineation of brain tumor margins during surgery is critical to maximize tumor removal while preserving normal brain tissue to obtain optimal clinical outcomes. Although various imaging methods have been developed, they have limitations to be used in clinical practice. We developed a high-speed cellular imaging method by using clinically compatible moxifloxacin and confocal microscopy for sensitive brain tumor detection and delineation. Moxifloxacin is a Food and Drug Administration (FDA) approved antibiotic and was used as a cell labeling agent through topical administration. Its strong fluorescence at short visible excitation wavelengths allowed video-rate cellular imaging. Moxifloxacin-based confocal microscopy (MBCM) was characterized in normal mouse brain specimens and visualized their cytoarchitecture clearly. Then, MBCM was applied to both brain tumor murine models and two malignant human brain tumors of glioblastoma and metastatic cancer. MBCM detected tumors in all the specimens by visualizing dense and irregular cell distributions, and tumor margins were easily delineated based on the cytoarchitecture. An image analysis method was developed for automated detection and delineation. MBCM demonstrated sensitive delineation of brain tumors through cytoarchitecture visualization and would have potentials for human applications, such as a surgery-guiding method for tumor removal.
Collapse
Affiliation(s)
- Seunghun Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Won Yeong Park
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Hoonchul Chang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Bumju Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Won Hyuk Jang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Seonghan Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| | - Younghoon Shin
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Myoung Joon Kim
- Department of Ophthalmology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Kyung Hwa Lee
- Department of Pathology, Chonnam National University Medical School, Chonnam National University Hwasun Hospital, Hwasun-gun, Jeonnam, Republic of Korea
| | - Eui Hyun Kim
- Department of Neurosurgery, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea
| | - Euiheon Chung
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Ki Hean Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| |
Collapse
|
23
|
Yoneda T, Nonoguchi N, Ikeda N, Yagi R, Kawabata S, Furuse M, Hirose Y, Kuwabara H, Tamura Y, Kajimoto Y, Kuroiwa T. Spectral Radiance of Protoporphyrin IX Fluorescence and Its Histopathological Implications in 5-Aminolevulinic Acid-Guided Surgery for Glioblastoma. Photomed Laser Surg 2018; 36:266-272. [PMID: 29480754 DOI: 10.1089/pho.2017.4384] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE This study is intended to objectively clarify the relationship between the fluorescence intensity emitted by protoporphyrin IX (PpIX), which is a metabolite of 5-aminolevulinic acid (ALA), and histological findings during glioblastoma surgery. BACKGROUND ALA is widely used for the intraoperative detection of tumors. There are several reports about the fluorescence of PpIX and the histological findings of tumors, but judgments about the fluorescence intensity depend largely on the subjective sense of each surgeon. METHODS We quantified the PpIX fluorescence intensity emitted from tissue specimens using a spectroradiometer and evaluated the relationship between a spectral radiance of 635 nm and the histopathological features of surgical specimens of glioblastoma. Surgical samples from glioblastoma patients consist of a strongly fluorescent area (SFA) or vaguely fluorescent area (VFA). Hematoxylin and eosin staining, immunohistochemical Ki-67, and CD31 staining were performed to evaluate the cell density, MIB-1 index, and vascularity, respectively. The fluorescence intensities of each sample were compared with each histopathological parameter. RESULTS Cell density, MIB-1 index, and total vascular area were significantly correlated with PpIX fluorescence radiance. 87.5% of SFA were judged to be tumor bulk consisting mostly of tumor cells and 12.5% peritumoral invaded brain. In the VFA, 100% of specimens were judged to be peritumoral invaded brain. CONCLUSIONS ALA-induced PpIX fluorescence has quantitatively correlated well with histopathological malignant features both in SFA and VFA. These findings suggest that not only SFA but also VFA should be removed to the highest extent that does not cause neurological symptoms.
Collapse
Affiliation(s)
- Takashi Yoneda
- 1 Department of Neurosurgery, Osaka Medical College , Takatsuki, Japan
| | - Naosuke Nonoguchi
- 1 Department of Neurosurgery, Osaka Medical College , Takatsuki, Japan
| | - Naokado Ikeda
- 1 Department of Neurosurgery, Osaka Medical College , Takatsuki, Japan
| | - Ryokichi Yagi
- 1 Department of Neurosurgery, Osaka Medical College , Takatsuki, Japan
| | - Shinji Kawabata
- 1 Department of Neurosurgery, Osaka Medical College , Takatsuki, Japan
| | - Motomasa Furuse
- 1 Department of Neurosurgery, Osaka Medical College , Takatsuki, Japan
| | - Yoshinobu Hirose
- 2 Department of Pathology, Osaka Medical College , Takatsuki, Japan
| | - Hiroko Kuwabara
- 2 Department of Pathology, Osaka Medical College , Takatsuki, Japan
| | - Yoji Tamura
- 1 Department of Neurosurgery, Osaka Medical College , Takatsuki, Japan
| | | | - Toshihiko Kuroiwa
- 1 Department of Neurosurgery, Osaka Medical College , Takatsuki, Japan
| |
Collapse
|
24
|
Kamp MA, Krause Molle Z, Munoz-Bendix C, Rapp M, Sabel M, Steiger HJ, Cornelius JF. Various shades of red-a systematic analysis of qualitative estimation of ALA-derived fluorescence in neurosurgery. Neurosurg Rev 2018; 41:3-18. [PMID: 27225452 DOI: 10.1007/s10143-016-0745-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 03/08/2016] [Accepted: 03/13/2016] [Indexed: 01/11/2023]
Abstract
5-Aminolevulinic acid (5-ALA)-fluorescence-guided resection is well established in many neuro-oncologic centers. Different classifications of 5-ALA-induced fluorescence have been reported. The aim of the systematic analysis was to evaluate the frequency of graduations, definitions, and designations of 5-ALA-induced fluorescence qualities. A systematic database search of PubMed was performed to identify studies reporting (1) on 5-ALA fluorescence-guided either spinal or cranial surgery, (2) on qualitative estimation and/or categorization of 5-ALA-induced fluorescence, (3) in English, and (4) were published as peer-reviewed original studies. Totally, 93 studies were identified. Different classification systems of 5-ALA-induced fluorescence were found. Over 60 % of the included studies used a dichotomized categorization of 5-ALA-induced fluorescence and 27.5 % of studies distinguished two different intensities of 5-ALA fluorescent tissue in addition to non-fluorescing tissue. More than 50 % of studies explicitly defined criteria for categorization of 5-ALA-induced fluorescence. The major limitation of the present analysis might be that it mainly comprises data from retrospective, uncontrolled, non-randomized trials. However, a precise definition of each 5-ALA-induced fluorescence quality is essential. Although dichotomized classification is the most common and simple graduation system, it may not be suitable for every clinical or scientific task. A three-level 5-ALA-induced fluorescence classification with precise definition of each fluorescence quality and their correlation with histological features would be more useful and reproducible in these cases.
Collapse
Affiliation(s)
- Marcel A Kamp
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany.
| | - Zarela Krause Molle
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Christopher Munoz-Bendix
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Marion Rapp
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Michael Sabel
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Hans-Jakob Steiger
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Jan F Cornelius
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany.
| |
Collapse
|
25
|
Abstract
Intraoperative fluorescence imaging allows real-time identification of diseased tissue during surgery without being influenced by brain shift and surgery interruption. 5-Aminolevulinic acid, useful for malignant gliomas and other tumors, is the most broadly explored compound approved for fluorescence-guided resection. Intravenous fluorescein sodium has recently received attention, highlighting tumor tissue based on extravasation at the blood-brain barrier (defective in many brain tumors). Fluorescein in perfused brain, unselective extravasation in brain perturbed by surgery, and propagation with edema are concerns. Fluorescein is not approved but targeted fluorochromes with affinity to brain tumor cells, in development, may offer future advantages.
Collapse
Affiliation(s)
- Walter Stummer
- Department of Neurosurgery, Univerity Hospital Münster, Münster, Germany.
| | - Eric Suero Molina
- Department of Neurosurgery, Univerity Hospital Münster, Münster, Germany
| |
Collapse
|
26
|
Sibai M, Fisher C, Veilleux I, Elliott JT, Leblond F, Roberts DW, Wilson BC. Preclinical evaluation of spatial frequency domain-enabled wide-field quantitative imaging for enhanced glioma resection. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:76007. [PMID: 28697235 PMCID: PMC5995142 DOI: 10.1117/1.jbo.22.7.076007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/21/2017] [Indexed: 05/19/2023]
Abstract
5-Aminolevelunic acid-induced protoporphyrin IX (PpIX) fluorescence-guided resection (FGR) enables maximum safe resection of glioma by providing real-time tumor contrast. However, the subjective visual assessment and the variable intrinsic optical attenuation of tissue limit this technique to reliably delineating only high-grade tumors that display strong fluorescence. We have previously shown, using a fiber-optic probe, that quantitative assessment using noninvasive point spectroscopic measurements of the absolute PpIX concentration in tissue further improves the accuracy of FGR, extending it to surgically curable low-grade glioma. More recently, we have shown that implementing spatial frequency domain imaging with a fluorescent-light transport model enables recovery of two-dimensional images of [PpIX], alleviating the need for time-consuming point sampling of the brain surface. We present first results of this technique modified for <italic<in vivo</italic< imaging on an RG2 rat brain tumor model. Despite the moderate errors in retrieving the absorption and reduced scattering coefficients in the subdiffusive regime of 14% and 19%, respectively, the recovered [PpIX] maps agree within 10% of the point [PpIX] values measured by the fiber-optic probe, validating its potential as an extension or an alternative to point sampling during glioma resection.
Collapse
Affiliation(s)
- Mira Sibai
- University of Toronto, Department of Medical Biophysics, Faculty of Medicine, Ontario, Canada
- University Health Network, Princess Margaret Cancer Center, Ontario, Canada
| | - Carl Fisher
- University of Toronto, Department of Medical Biophysics, Faculty of Medicine, Ontario, Canada
- University Health Network, Princess Margaret Cancer Center, Ontario, Canada
| | - Israel Veilleux
- University Health Network, Princess Margaret Cancer Center, Ontario, Canada
| | - Jonathan T. Elliott
- Dartmouth College, Thayer School of Engineering, New Hampshire, United States
| | - Frederic Leblond
- École Polytechnique De Montreal, Department of Engineering Physics, Québec, Canada
| | - David W. Roberts
- Dartmouth Hitchcock Medical Center, Department of Neurosurgery, New Hampshire, United States
| | - Brian C. Wilson
- University of Toronto, Department of Medical Biophysics, Faculty of Medicine, Ontario, Canada
- University Health Network, Princess Margaret Cancer Center, Ontario, Canada
- Address all correspondence to: Brian C. Wilson, E-mail:
| |
Collapse
|
27
|
Valdés PA, Roberts DW, Lu FK, Golby A. Optical technologies for intraoperative neurosurgical guidance. Neurosurg Focus 2016; 40:E8. [PMID: 26926066 DOI: 10.3171/2015.12.focus15550] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Biomedical optics is a broadly interdisciplinary field at the interface of optical engineering, biophysics, computer science, medicine, biology, and chemistry, helping us understand light-tissue interactions to create applications with diagnostic and therapeutic value in medicine. Implementation of biomedical optics tools and principles has had a notable scientific and clinical resurgence in recent years in the neurosurgical community. This is in great part due to work in fluorescence-guided surgery of brain tumors leading to reports of significant improvement in maximizing the rates of gross-total resection. Multiple additional optical technologies have been implemented clinically, including diffuse reflectance spectroscopy and imaging, optical coherence tomography, Raman spectroscopy and imaging, and advanced quantitative methods, including quantitative fluorescence and lifetime imaging. Here we present a clinically relevant and technologically informed overview and discussion of some of the major clinical implementations of optical technologies as intraoperative guidance tools in neurosurgery.
Collapse
Affiliation(s)
- Pablo A Valdés
- Departments of 1 Neurosurgery and.,Department of Neurosurgery, Harvard Medical School, Boston Children's Hospital, Boston
| | - David W Roberts
- Section of Neurosurgery, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | | | - Alexandra Golby
- Departments of 1 Neurosurgery and.,Radiology, and.,Dana Farber Cancer Institute, Harvard Medical School, Brigham and Women's Hospital
| |
Collapse
|
28
|
Belykh E, Martirosyan NL, Yagmurlu K, Miller EJ, Eschbacher JM, Izadyyazdanabadi M, Bardonova LA, Byvaltsev VA, Nakaji P, Preul MC. Intraoperative Fluorescence Imaging for Personalized Brain Tumor Resection: Current State and Future Directions. Front Surg 2016; 3:55. [PMID: 27800481 PMCID: PMC5066076 DOI: 10.3389/fsurg.2016.00055] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/12/2016] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Fluorescence-guided surgery is one of the rapidly emerging methods of surgical "theranostics." In this review, we summarize current fluorescence techniques used in neurosurgical practice for brain tumor patients as well as future applications of recent laboratory and translational studies. METHODS Review of the literature. RESULTS A wide spectrum of fluorophores that have been tested for brain surgery is reviewed. Beginning with a fluorescein sodium application in 1948 by Moore, fluorescence-guided brain tumor surgery is either routinely applied in some centers or is under active study in clinical trials. Besides the trinity of commonly used drugs (fluorescein sodium, 5-aminolevulinic acid, and indocyanine green), less studied fluorescent stains, such as tetracyclines, cancer-selective alkylphosphocholine analogs, cresyl violet, acridine orange, and acriflavine, can be used for rapid tumor detection and pathological tissue examination. Other emerging agents, such as activity-based probes and targeted molecular probes that can provide biomolecular specificity for surgical visualization and treatment, are reviewed. Furthermore, we review available engineering and optical solutions for fluorescent surgical visualization. Instruments for fluorescent-guided surgery are divided into wide-field imaging systems and hand-held probes. Recent advancements in quantitative fluorescence-guided surgery are discussed. CONCLUSION We are standing on the threshold of the era of marker-assisted tumor management. Innovations in the fields of surgical optics, computer image analysis, and molecular bioengineering are advancing fluorescence-guided tumor resection paradigms, leading to cell-level approaches to visualization and resection of brain tumors.
Collapse
Affiliation(s)
- Evgenii Belykh
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Laboratory of Neurosurgery, Irkutsk Scientific Center of Surgery and Traumatology, Irkutsk, Russia
- Irkutsk State Medical University, Irkutsk, Russia
| | - Nikolay L. Martirosyan
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Kaan Yagmurlu
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Eric J. Miller
- University of Arizona College of Medicine – Phoenix, Phoenix, AZ, USA
| | - Jennifer M. Eschbacher
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Mohammadhassan Izadyyazdanabadi
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Liudmila A. Bardonova
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
- Laboratory of Neurosurgery, Irkutsk Scientific Center of Surgery and Traumatology, Irkutsk, Russia
- Irkutsk State Medical University, Irkutsk, Russia
| | - Vadim A. Byvaltsev
- Laboratory of Neurosurgery, Irkutsk Scientific Center of Surgery and Traumatology, Irkutsk, Russia
- Irkutsk State Medical University, Irkutsk, Russia
| | - Peter Nakaji
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Mark C. Preul
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
29
|
Moon JH, Kim SH, Shim JK, Roh TH, Sung KS, Lee JH, Park J, Choi J, Kim EH, Kim SH, Kang SG, Chang JH. Histopathological implications of ventricle wall 5-aminolevulinic acid-induced fluorescence in the absence of tumor involvement on magnetic resonance images. Oncol Rep 2016; 36:837-44. [DOI: 10.3892/or.2016.4881] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/28/2016] [Indexed: 11/05/2022] Open
|
30
|
Guyotat J, Pallud J, Armoiry X, Pavlov V, Metellus P. 5-Aminolevulinic Acid-Protoporphyrin IX Fluorescence-Guided Surgery of High-Grade Gliomas: A Systematic Review. Adv Tech Stand Neurosurg 2016:61-90. [PMID: 26508406 DOI: 10.1007/978-3-319-21359-0_3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The current first-line treatment of malignant gliomas consists in surgical resection (if possible) as large as possible. The existing tools don't permit to identify the limits of tumor infiltration, which goes beyond the zone of contrast enhancement on MRI. The fluorescence-guided malignant gliomas surgery was started 15 years ago and had become a standard of care in many countries. The technique is based on fluorescent molecule revelation using the filters, positioned within the surgical microscope. The fluorophore, protoporphyrin IX (PpIX), is converted in tumoral cells from 5-aminolevulinic acid (5-ALA), given orally before surgery. Many studies have shown that the ratio of gross total resections was higher if the fluorescence technique was used. The fluorescence signal intensity is correlated to the cell density and the PpIX concentration. The current method has a very high specificity but still lower sensibility, particularly regarding the zones with poor tumoral infiltration. This book reviews the principles of the technique and the results (extent of resection and survival).
Collapse
Affiliation(s)
- Jacques Guyotat
- Department of Neurosurgery, Neurological Hospital, Lyon, France.
| | - Johan Pallud
- Department of Neurosurgery, Sainte Anne Hospital, Paris, France.
- Paris Descartes University, Paris, France.
| | - Xavier Armoiry
- Délégation à la recherche clinique et à l'innovation, cellule innovation Hospices Civils de, Lyon, France.
| | - Vladislav Pavlov
- Department of Neurosurgery, Neurological Hospital, Lyon, France.
| | - Philippe Metellus
- Department of Neurosurgery, Timone Hospital, Marseille, France.
- University Aix Marseille, Marseille, France.
| |
Collapse
|
31
|
Hu LS, Ning S, Eschbacher JM, Gaw N, Dueck AC, Smith KA, Nakaji P, Plasencia J, Ranjbar S, Price SJ, Tran N, Loftus J, Jenkins R, O’Neill BP, Elmquist W, Baxter LC, Gao F, Frakes D, Karis JP, Zwart C, Swanson KR, Sarkaria J, Wu T, Mitchell JR, Li J. Multi-Parametric MRI and Texture Analysis to Visualize Spatial Histologic Heterogeneity and Tumor Extent in Glioblastoma. PLoS One 2015; 10:e0141506. [PMID: 26599106 PMCID: PMC4658019 DOI: 10.1371/journal.pone.0141506] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/08/2015] [Indexed: 01/14/2023] Open
Abstract
Background Genetic profiling represents the future of neuro-oncology but suffers from inadequate biopsies in heterogeneous tumors like Glioblastoma (GBM). Contrast-enhanced MRI (CE-MRI) targets enhancing core (ENH) but yields adequate tumor in only ~60% of cases. Further, CE-MRI poorly localizes infiltrative tumor within surrounding non-enhancing parenchyma, or brain-around-tumor (BAT), despite the importance of characterizing this tumor segment, which universally recurs. In this study, we use multiple texture analysis and machine learning (ML) algorithms to analyze multi-parametric MRI, and produce new images indicating tumor-rich targets in GBM. Methods We recruited primary GBM patients undergoing image-guided biopsies and acquired pre-operative MRI: CE-MRI, Dynamic-Susceptibility-weighted-Contrast-enhanced-MRI, and Diffusion Tensor Imaging. Following image coregistration and region of interest placement at biopsy locations, we compared MRI metrics and regional texture with histologic diagnoses of high- vs low-tumor content (≥80% vs <80% tumor nuclei) for corresponding samples. In a training set, we used three texture analysis algorithms and three ML methods to identify MRI-texture features that optimized model accuracy to distinguish tumor content. We confirmed model accuracy in a separate validation set. Results We collected 82 biopsies from 18 GBMs throughout ENH and BAT. The MRI-based model achieved 85% cross-validated accuracy to diagnose high- vs low-tumor in the training set (60 biopsies, 11 patients). The model achieved 81.8% accuracy in the validation set (22 biopsies, 7 patients). Conclusion Multi-parametric MRI and texture analysis can help characterize and visualize GBM’s spatial histologic heterogeneity to identify regional tumor-rich biopsy targets.
Collapse
Affiliation(s)
- Leland S. Hu
- Department of Radiology, Mayo Clinic, Phoenix, Arizona, United States of America
- Department of Radiology, Barrow Neurological Institute, Phoenix, Arizona, United States of America
- * E-mail:
| | - Shuluo Ning
- School of Computing, Informatics and Decision Systems Engineering, Arizona State University, Tempe, Arizona, United States of America
| | - Jennifer M. Eschbacher
- Department of Pathology, Barrow Neurological Institute, Phoenix, Arizona, United States of America
| | - Nathan Gaw
- School of Computing, Informatics and Decision Systems Engineering, Arizona State University, Tempe, Arizona, United States of America
| | - Amylou C. Dueck
- Department of Biostatistics, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Kris A. Smith
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona, United States of America
| | - Peter Nakaji
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona, United States of America
| | - Jonathan Plasencia
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, United States of America
| | - Sara Ranjbar
- Department of Radiology, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Stephen J. Price
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Nhan Tran
- Department of Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Joseph Loftus
- Department of Cancer and Cell Biology, Mayo Clinic, Scottsdale, AZ, United States of America
| | - Robert Jenkins
- Department of Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Brian P. O’Neill
- Department of Neuro-oncology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - William Elmquist
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Leslie C. Baxter
- Department of Radiology, Barrow Neurological Institute, Phoenix, Arizona, United States of America
| | - Fei Gao
- School of Computing, Informatics and Decision Systems Engineering, Arizona State University, Tempe, Arizona, United States of America
| | - David Frakes
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, United States of America
| | - John P. Karis
- Department of Radiology, Barrow Neurological Institute, Phoenix, Arizona, United States of America
| | - Christine Zwart
- Department of Radiology, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Kristin R. Swanson
- Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Jann Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Teresa Wu
- Department of Radiology, Mayo Clinic, Phoenix, Arizona, United States of America
- School of Computing, Informatics and Decision Systems Engineering, Arizona State University, Tempe, Arizona, United States of America
| | - J. Ross Mitchell
- Department of Radiology, Mayo Clinic, Phoenix, Arizona, United States of America
| | - Jing Li
- Department of Radiology, Mayo Clinic, Phoenix, Arizona, United States of America
- School of Computing, Informatics and Decision Systems Engineering, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
32
|
Tata A, Zheng J, Ginsberg HJ, Jaffray DA, Ifa DR, Zarrine-Afsar A. Contrast Agent Mass Spectrometry Imaging Reveals Tumor Heterogeneity. Anal Chem 2015; 87:7683-9. [PMID: 26138213 DOI: 10.1021/acs.analchem.5b01992] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mapping intratumoral heterogeneity such as vasculature and margins is important during intraoperative applications. Desorption electrospray ionization mass spectrometry (DESI-MS) has demonstrated potential for intraoperative tumor imaging using validated MS profiles. The clinical translation of DESI-MS into a universal label-free imaging technique thus requires access to MS profiles characteristic to tumors and healthy tissues. Here, we developed contrast agent mass spectrometry imaging (CA-MSI) that utilizes a magnetic resonance imaging (MRI) contrast agent targeted to disease sites, as a label, to reveal tumor heterogeneity in the absence of known MS profiles. Human breast cancer tumors grown in mice were subjected to CA-MSI using Gadoteridol revealing tumor margins and vasculature from the localization of [Gadoteridol+K](+) and [Gadoteridol+Na](+) adducts, respectively. The localization of the [Gadoteridol+K](+) adduct as revealed through DESI-MS complements the in vivo MRI results. DESI-MS imaging is therefore possible for tumors for which no characteristic MS profiles are established. Further DESI-MS imaging of the flux of the contrast agent through mouse kidneys was performed indicating secretion of the intact label.
Collapse
Affiliation(s)
- Alessandra Tata
- †Techna Institute for the Advancement of Technology for Health, University Health Network, Toronto, Ontario M5G-1P5, Canada.,‡Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J-1P3, Canada
| | - Jinzi Zheng
- †Techna Institute for the Advancement of Technology for Health, University Health Network, Toronto, Ontario M5G-1P5, Canada
| | - Howard J Ginsberg
- §Department of Surgery, University of Toronto, 149 College Street, Toronto, Ontario M5T-1P5, Canada.,⊥Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 Bond Street, Toronto, Ontario M5B-1W8, Canada
| | - David A Jaffray
- †Techna Institute for the Advancement of Technology for Health, University Health Network, Toronto, Ontario M5G-1P5, Canada.,∥Department of Medical Biophysics, University of Toronto, 101 College Street, Suite 15-701, Toronto, Ontario M5G 1L7, Canada
| | - Demian R Ifa
- ‡Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J-1P3, Canada
| | - Arash Zarrine-Afsar
- †Techna Institute for the Advancement of Technology for Health, University Health Network, Toronto, Ontario M5G-1P5, Canada.,§Department of Surgery, University of Toronto, 149 College Street, Toronto, Ontario M5T-1P5, Canada.,⊥Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 Bond Street, Toronto, Ontario M5B-1W8, Canada.,∥Department of Medical Biophysics, University of Toronto, 101 College Street, Suite 15-701, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
33
|
Abstract
5-aminolevulinic acid-induced protoporphyrin IX fluorescence was authorized in the EU for visualization of tumor tissue during surgery for WHO grade III and IV gliomas in 2007. It facilitates tumor identification and doubles the number of gross total resections that can be achieved in these tumors. The growing acceptance of fluorescence-guided surgery in malignant gliomas brings forward a substantial yield of data on many types of intracranial lesions. The following review summarizes the main findings of these publications and illustrates the limitations, caveats and future perspectives of 5-aminolevulinic acid-induced fluorescence in malignant glioma as well as in other brain neoplasms.
Collapse
Affiliation(s)
- Martin Hefti
- Department of Neurosurgery, Hirslanden Private Hospital Group, Brauerstrasse 95, 9016 St Gallen, Switzerland.
| |
Collapse
|
34
|
Kolste KK, Kanick SC, Valdés PA, Jermyn M, Wilson BC, Roberts DW, Paulsen KD, Leblond F. Macroscopic optical imaging technique for wide-field estimation of fluorescence depth in optically turbid media for application in brain tumor surgical guidance. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:26002. [PMID: 25652704 PMCID: PMC4405086 DOI: 10.1117/1.jbo.20.2.026002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/05/2015] [Indexed: 05/13/2023]
Abstract
A diffuse imaging method is presented that enables wide-field estimation of the depth of fluorescent molecular markers in turbid media by quantifying the deformation of the detected fluorescence spectra due to the wavelength-dependent light attenuation by overlying tissue. This is achieved by measuring the ratio of the fluorescence at two wavelengths in combination with normalization techniques based on diffuse reflectance measurements to evaluate tissue attenuation variations for different depths. It is demonstrated that fluorescence topography can be achieved up to a 5 mm depth using a near-infrared dye with millimeter depth accuracy in turbid media having optical properties representative of normal brain tissue. Wide-field depth estimates are made using optical technology integrated onto a commercial surgical microscope, making this approach feasible for real-world applications.
Collapse
Affiliation(s)
- Kolbein K. Kolste
- Dartmouth College, Thayer School of Engineering, Hanover, 14 Engineering Drive, New Hampshire 03755, United States
| | - Stephen C. Kanick
- Dartmouth College, Thayer School of Engineering, Hanover, 14 Engineering Drive, New Hampshire 03755, United States
| | - Pablo A. Valdés
- Dartmouth College, Thayer School of Engineering, Hanover, 14 Engineering Drive, New Hampshire 03755, United States
- Dartmouth College, Geisel School of Medicine, Hanover, 1 Rope Ferry Road, New Hampshire 03755, United States
| | - Michael Jermyn
- Polytechnique Montreal, Engineering Physics Department, Montreal, Québec H3C 3A7, Canada
| | - Brian C. Wilson
- University of Toronto, Ontario Cancer Institute, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
| | - David W. Roberts
- Dartmouth-Hitchcock Medical Center, Section of Neurosurgery, 1 Medical Center Drive, Lebanon, New Hampshire 03756, United States
| | - Keith D. Paulsen
- Dartmouth College, Thayer School of Engineering, Hanover, 14 Engineering Drive, New Hampshire 03755, United States
| | - Frederic Leblond
- Polytechnique Montreal, Engineering Physics Department, Montreal, Québec H3C 3A7, Canada
- Address all correspondence to: Frederic Leblond, E-mail:
| |
Collapse
|
35
|
Valdes PA, Bekelis K, Harris BT, Wilson BC, Leblond F, Kim A, Simmons NE, Erkmen K, Paulsen KD, Roberts DW. 5-Aminolevulinic acid-induced protoporphyrin IX fluorescence in meningioma: qualitative and quantitative measurements in vivo. Neurosurgery 2014; 10 Suppl 1:74-82; discussion 82-3. [PMID: 23887194 DOI: 10.1227/neu.0000000000000117] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The use of 5-aminolevulinic acid (ALA)-induced protoporphyrin IX (PpIX) fluorescence has shown promise as a surgical adjunct for maximizing the extent of surgical resection in gliomas. To date, the clinical utility of 5-ALA in meningiomas is not fully understood, with most descriptive studies using qualitative approaches to 5-ALA-PpIX. OBJECTIVE To assess the diagnostic performance of 5-ALA-PpIX fluorescence during surgical resection of meningioma. METHODS ALA was administered to 15 patients with meningioma undergoing PpIX fluorescence-guided surgery at our institution. At various points during the procedure, the surgeon performed qualitative, visual assessments of fluorescence by using the surgical microscope, followed by a quantitative fluorescence measurement by using an intraoperative probe. Specimens were collected at each point for subsequent neuropathological analysis. Clustered data analysis of variance was used to ascertain a difference between groups, and receiver operating characteristic analyses were performed to assess diagnostic capabilities. RESULTS Red-pink fluorescence was observed in 80% (12/15) of patients, with visible fluorescence generally demonstrating a strong, homogenous character. Quantitative fluorescence measured diagnostically significant PpIX concentrations (cPpIx) in both visibly and nonvisibly fluorescent tissues, with significantly higher cPpIx in both visibly fluorescent (P < .001) and tumor tissue (P = .002). Receiver operating characteristic analyses also showed diagnostic accuracies up to 90% for differentiating tumor from normal dura. CONCLUSION ALA-induced PpIX fluorescence guidance is a potential and promising adjunct in accurately detecting neoplastic tissue during meningioma resective surgery. These results suggest a broader reach for PpIX as a biomarker for meningiomas than was previously noted in the literature.
Collapse
Affiliation(s)
- Pablo A Valdes
- *Section of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire; ‡Thayer School of Engineering, Hanover, New Hampshire; §Geisel School of Medicine at Dartmouth, Hanover, New Hampshire; ‖Departments of Pathology and Neurology, Georgetown University Medical Center, Washington, DC; ¶Ontario Cancer Institute, University of Toronto, Toronto, Ontario, Canada; #Engineering Physics Department, École Polytechnique de Montréal, Montreal, Quebec, Canada; **Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Suzuki C, Tsuji AB, Kato K, Kikuchi T, Sudo H, Okada M, Sugyo A, Zhang MR, Arano Y, Saga T. Preclinical characterization of 5-amino-4-oxo-[6-11C]hexanoic acid as an imaging probe to estimate protoporphyrin IX accumulation induced by exogenous aminolevulinic acid. J Nucl Med 2014; 55:1671-7. [PMID: 25125482 DOI: 10.2967/jnumed.114.145086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Preoperative noninvasive imaging to estimate the quantity and spatial distribution of protoporphyrin IX (PpIX) accumulation in tumors induced by 5-aminolevulinic acid (ALA) administration is expected to improve the efficacy of ALA-based fluorescence-guided resection and photo- and sonodynamic therapies. PpIX synthesis from exogenous ALA has been reported to be regulated by ALA influx or ALA dehydratase (ALAD) activity, which catalyzes the first step of the synthesis. In this study, we characterized the properties of a (11)C-labeled ALA analog, 5-amino-4-oxo-[6-(11)C]hexanoic acid ((11)C-MALA), as a PET tracer to estimate PpIX accumulation. METHODS In vitro uptake of (11)C-MALA and (3)H-ALA was determined in 5 tumor cell lines after 10-min incubation with each tracer at 37°C. The expression levels of ALAD were determined by Western blot analysis. In vivo distribution and dynamic PET studies were conducted in tumor-bearing mice. In vitro and in vivo accumulation of ALA-induced PpIX was determined by measuring fluorescence in extracts of cells or tumors. RESULTS In vitro uptake of (11)C-MALA in 5 tumor cell lines was correlated with ALAD expression levels and PpIX accumulation. In vivo biodistribution and dynamic PET studies showed that (11)C-MALA was rapidly incorporated into tumors, and the tumor-to-muscle ratio of (11)C-MALA at 1 min after injection was significantly correlated with that of (3)H-ALA. (11)C-MALA in tumors was continuously decreased thereafter, and the elimination rate of (11)C-MALA from AsPC-1 tumors with the highest ALAD expression level was slower than from other tumors with lower expression levels. These results suggest that the influx and intracellular retention of (11)C-MALA reflect ALA influx and ALAD expression levels, respectively. Tumor accumulation of (11)C-MALA at 60 min after injection was strongly correlated with PpIX accumulation in tumor tissues. CONCLUSION (11)C-MALA PET has the potential to noninvasively estimate the quantitative and spatial accumulation of exogenous ALA-induced PpIX.
Collapse
Affiliation(s)
- Chie Suzuki
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan Department of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Atsushi B Tsuji
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Koichi Kato
- Molecular Probe Program, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan; and Department of Integrative Brain Imaging, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tatsuya Kikuchi
- Molecular Probe Program, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan; and
| | - Hitomi Sudo
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Maki Okada
- Molecular Probe Program, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan; and
| | - Aya Sugyo
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Ming-Rong Zhang
- Molecular Probe Program, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan; and
| | - Yasushi Arano
- Department of Molecular Imaging and Radiotherapy, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Tsuneo Saga
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| |
Collapse
|
37
|
Cornelius JF, Slotty PJ, El Khatib M, Giannakis A, Senger B, Steiger HJ. Enhancing the effect of 5-aminolevulinic acid based photodynamic therapy in human meningioma cells. Photodiagnosis Photodyn Ther 2014; 11:1-6. [DOI: 10.1016/j.pdpdt.2014.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 01/09/2014] [Accepted: 01/13/2014] [Indexed: 12/11/2022]
|
38
|
Marbacher S, Klinger E, Schwyzer L, Fischer I, Nevzati E, Diepers M, Roelcke U, Fathi AR, Coluccia D, Fandino J. Use of fluorescence to guide resection or biopsy of primary brain tumors and brain metastases. Neurosurg Focus 2014; 36:E10. [DOI: 10.3171/2013.12.focus13464] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
The accurate discrimination between tumor and normal tissue is crucial for determining how much to resect and therefore for the clinical outcome of patients with brain tumors. In recent years, guidance with 5-aminolevulinic acid (5-ALA)–induced intraoperative fluorescence has proven to be a useful surgical adjunct for gross-total resection of high-grade gliomas. The clinical utility of 5-ALA in resection of brain tumors other than glioblastomas has not yet been established. The authors assessed the frequency of positive 5-ALA fluorescence in a cohort of patients with primary brain tumors and metastases.
Methods
The authors conducted a single-center retrospective analysis of 531 patients with intracranial tumors treated by 5-ALA–guided resection or biopsy. They analyzed patient characteristics, preoperative and postoperative liver function test results, intraoperative tumor fluorescence, and histological data. They also screened discharge summaries for clinical adverse effects resulting from the administration of 5-ALA. Intraoperative qualitative 5-ALA fluorescence (none, mild, moderate, and strong) was documented by the surgeon and dichotomized into negative and positive fluorescence.
Results
A total of 458 cases qualified for final analysis. The highest percentage of 5-ALA–positive fluorescence in open resection was found in glioblastomas (96%, n = 99/103). Among other tumors, 5-ALA–positive fluorescence was detected in 88% (n = 21/32) of anaplastic gliomas (WHO Grade III), 40% (n = 8/19) of low-grade gliomas (WHO Grade II), no (n = 0/3) WHO Grade I gliomas, and 77% (n = 85/110) of meningiomas. Among metastases, the highest percentage of 5-ALA–positive fluorescence was detected in adenocarcinomas (48%, n = 13/27). Low rates or absence of positive fluorescence was found among pituitary adenomas (8%, n = 1/12) and schwannomas (0%, n = 0/7). Biopsies of high-grade primary brain tumors showed positive rates of fluorescence similar to those recorded for open resection. No clinical adverse effects associated with use of 5-ALA were observed. Only 1 patient had clinically silent transient elevation of liver enzymes.
Conclusions
Study findings suggest that the administration of 5-ALA as a surgical adjunct for resection and biopsy of primary brain tumors and brain metastases is safe. In light of the high rate of positive fluorescence in high-grade gliomas other than glioblastomas, meningiomas, and a variety of metastatic cancers, 5-ALA seems to be a promising tool for enhancing intraoperative identification of neoplastic tissue and optimizing the extent of resection.
Collapse
Affiliation(s)
- Serge Marbacher
- 1Departments of Neurosurgery,
- 5Brain Tumor Center, Kantonsspital Aarau, Aarau, Switzerland
| | | | - Lucia Schwyzer
- 1Departments of Neurosurgery,
- 5Brain Tumor Center, Kantonsspital Aarau, Aarau, Switzerland
| | | | | | - Michael Diepers
- 2Neuroradiology,
- 5Brain Tumor Center, Kantonsspital Aarau, Aarau, Switzerland
| | - Ulrich Roelcke
- 4Neurology, and
- 5Brain Tumor Center, Kantonsspital Aarau, Aarau, Switzerland
| | - Ali-Reza Fathi
- 1Departments of Neurosurgery,
- 5Brain Tumor Center, Kantonsspital Aarau, Aarau, Switzerland
| | - Daniel Coluccia
- 1Departments of Neurosurgery,
- 5Brain Tumor Center, Kantonsspital Aarau, Aarau, Switzerland
| | - Javier Fandino
- 1Departments of Neurosurgery,
- 5Brain Tumor Center, Kantonsspital Aarau, Aarau, Switzerland
| |
Collapse
|
39
|
Aquaporin-4 in glioma and metastatic tissues harboring 5-aminolevulinic acid-induced porphyrin fluorescence. Clin Neurol Neurosurg 2013; 115:2075-81. [PMID: 23915916 DOI: 10.1016/j.clineuro.2013.07.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/07/2013] [Accepted: 07/09/2013] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Aquaporin channels (AQPs) are a group of integral membrane proteins that regulate the transport of water through cell membranes. Previous studies have shown that up-regulation of AQP1 and AQP4, two of the predominant AQPs in the human brain, in high grade glial tumors contribute to cerebral edema. Others link AQPs to the regulation of human glioma cell migration and invasion. The aim of this study was to determine AQPs expression in tumor tissue harboring 5-aminolevulinic acid (ALA)-induced porphyrin fluorescence with flow cytometry and compare it to the expression in normal brain tissue. METHODS Tissue samples were obtained from fluorescing brain tumors of 26 patients treated with ALA prior to surgery (20 mg/kg b.w.). Expression levels of aquaporin channels were measured in primary tissue cultures using a FACS CANTO I flow cytometer. A control group consisted of four non-fluorescing tissue samples, the C6 and the U87 cell line. RESULTS Nineteen gliomas (14 high grade, 5 low grade) and 7 metastases were analyzed. On the 4th post-operative day, expression levels of AQP4 channels, but not of AQP1 channels, were significantly increased in samples from fluorescing tissue compared to non-fluorescing tissue. In addition we could see how ALA induces fluorescence in metastases. CONCLUSION Flow cytometry appears to be an auspicious method for the analysis of porphyrins and AQPs in primary brain cell tumor cultures. ALA fluorescing tissue showed higher AQP4 expression compared to normal brain tissue. The demonstrated expression in a context with ALA could open a targeted therapeutic spectrum, for example to selectively target AQP4.
Collapse
|
40
|
[Comment on the study «recommendations on the use of 5-amino-levulinic acid in surgery of malignant gliomas. Consensus document», by Gil-Salú et al]. Neurocirugia (Astur) 2013; 24:170-1. [PMID: 23623811 DOI: 10.1016/j.neucir.2013.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 02/19/2013] [Indexed: 11/20/2022]
|
41
|
Nokes B, Apel M, Jones C, Brown G, Lang JE. Aminolevulinic acid (ALA): photodynamic detection and potential therapeutic applications. J Surg Res 2013; 181:262-71. [PMID: 23510551 DOI: 10.1016/j.jss.2013.02.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/17/2013] [Accepted: 02/01/2013] [Indexed: 12/12/2022]
Abstract
Aminolevulinic acid (ALA) is a heme precursor that may have potential applications for photodynamic detection and photodynamic therapy-based treatment of solid tumors in a variety of malignancies. ALA may have a role in other applications in surgical oncology based on its ability to discriminate neoplastic tissue from adjacent normal tissue. In this review, we provide a comprehensive summary of the published studies of ALA in noncutaneous solid malignancies.
Collapse
Affiliation(s)
- Brandon Nokes
- College of Medicine, University of Arizona, Tucson, Arizona, USA
| | | | | | | | | |
Collapse
|