1
|
Floresta G, Abbate V. Recent progress in the imaging of c-Met aberrant cancers with positron emission tomography. Med Res Rev 2022; 42:1588-1606. [PMID: 35292998 PMCID: PMC9314990 DOI: 10.1002/med.21885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/31/2022] [Accepted: 02/22/2022] [Indexed: 11/06/2022]
Abstract
Tyrosine-protein kinase Met-also known as c-Met or HGFR-is a membrane receptor protein with associated tyrosine kinase activity physiologically stimulated by its natural ligand, the hepatocyte growth factor (HGF), and is involved in different ways in cancer progression and tumourigenesis. Targeting c-Met with pharmaceuticals has been preclinically proved to have significant benefits for cancer treatment. Recently, evaluating the protein status during and before c-Met targeted therapy has been shown of relevant importance by different studies, demonstrating that there is a correlation between the status (e.g., aberrant activation and overexpression) of the HGFR with therapy response and clinical prognosis. Currently, clinical imaging based on positron emission tomography (PET) appears as one of the most promising tools for the in vivo real-time scanning of irregular alterations of the tyrosine-protein kinase Met and for the diagnosis of c-Met related cancers. In this study, we review the recent progress in the imaging of c-Met aberrant cancers with PET. Particular attention is directed on the development of PET probes with a range of different sizes (HGF, antibodies, anticalines, peptides, and small molecules), and radiolabeled with different radionuclides. The goal of this review is to report all the preclinical imaging studies based on PET imaging reported until now for in vivo diagnosis of c-Met in oncology to support the design of novel and more effective PET probes for in vivo evaluation of c-Met.
Collapse
Affiliation(s)
- Giuseppe Floresta
- Department of Analytical, Environmental and Forensic Sciences, Institute of Pharmaceutical Sciences, King's College London, London, UK
| | - Vincenzo Abbate
- Department of Analytical, Environmental and Forensic Sciences, Institute of Pharmaceutical Sciences, King's College London, London, UK
| |
Collapse
|
2
|
Bolcaen J, Nair S, Driver CHS, Boshomane TMG, Ebenhan T, Vandevoorde C. Novel Receptor Tyrosine Kinase Pathway Inhibitors for Targeted Radionuclide Therapy of Glioblastoma. Pharmaceuticals (Basel) 2021; 14:626. [PMID: 34209513 PMCID: PMC8308832 DOI: 10.3390/ph14070626] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GB) remains the most fatal brain tumor characterized by a high infiltration rate and treatment resistance. Overexpression and/or mutation of receptor tyrosine kinases is common in GB, which subsequently leads to the activation of many downstream pathways that have a critical impact on tumor progression and therapy resistance. Therefore, receptor tyrosine kinase inhibitors (RTKIs) have been investigated to improve the dismal prognosis of GB in an effort to evolve into a personalized targeted therapy strategy with a better treatment outcome. Numerous RTKIs have been approved in the clinic and several radiopharmaceuticals are part of (pre)clinical trials as a non-invasive method to identify patients who could benefit from RTKI. The latter opens up the scope for theranostic applications. In this review, the present status of RTKIs for the treatment, nuclear imaging and targeted radionuclide therapy of GB is presented. The focus will be on seven tyrosine kinase receptors, based on their central role in GB: EGFR, VEGFR, MET, PDGFR, FGFR, Eph receptor and IGF1R. Finally, by way of analyzing structural and physiological characteristics of the TKIs with promising clinical trial results, four small molecule RTKIs were selected based on their potential to become new therapeutic GB radiopharmaceuticals.
Collapse
Affiliation(s)
- Julie Bolcaen
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| | - Shankari Nair
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| | - Cathryn H. S. Driver
- Radiochemistry, South African Nuclear Energy Corporation, Pelindaba, Brits 0240, South Africa;
- Pre-Clinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pelindaba, Brits 0242, South Africa;
| | - Tebatso M. G. Boshomane
- Department of Nuclear Medicine, University of Pretoria Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| | - Thomas Ebenhan
- Pre-Clinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pelindaba, Brits 0242, South Africa;
- Department of Nuclear Medicine, University of Pretoria Steve Biko Academic Hospital, Pretoria 0001, South Africa;
- Preclinical Drug Development Platform, Department of Science and Technology, North West University, Potchefstroom 2520, South Africa
| | - Charlot Vandevoorde
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| |
Collapse
|
3
|
Cavaliere A, Sun S, Lee S, Bodner J, Li Z, Huang Y, Moores SL, Marquez-Nostra B. Development of [ 89Zr]ZrDFO-amivantamab bispecific to EGFR and c-MET for PET imaging of triple-negative breast cancer. Eur J Nucl Med Mol Imaging 2021; 48:383-394. [PMID: 32770372 PMCID: PMC7855369 DOI: 10.1007/s00259-020-04978-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/27/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Amivantamab is a novel bispecific antibody that simultaneously targets the epidermal growth factor receptor (EGFR) and the hepatocyte growth factor receptor (HGFR/c-MET) that are overexpressed in several types of cancer including triple-negative breast cancer (TNBC). Targeting both receptors simultaneously can overcome resistance to mono-targeted therapy. The purpose of this study is to develop 89Zr-labeled amivantamab as a potential companion diagnostic imaging agent to amivantamab therapy using various preclinical models of TNBC for evaluation. METHODS Amivantamab was conjugated to desferrioxamine (DFO) and radiolabeled with 89Zr to obtain [89Zr]ZrDFO-amivantamab. Binding of the bispecific [89Zr]ZrDFO-amivantamab as well as its mono-specific "single-arm" antibody controls were determined in vitro and in vivo. Biodistribution studies of [89Zr]ZrDFO-amivantamab were performed in MDA-MB-468 xenografts to determine the optimal imaging time point. PET/CT imaging with [89Zr]ZrDFO-amivantamab or its isotype control was performed in a panel of TNBC xenografts with varying levels of EGFR and c-MET expression. RESULTS [89Zr]ZrDFO-amivantamab was synthesized with a specific activity of 148 MBq/mg and radiochemical yield of ≥ 95%. Radioligand binding studies and western blot confirmed the order of EGFR and c-MET expression levels: HCC827 lung cancer cell (positive control) > MDA-MB-468 > MDA-MB-231 > MDA-MB-453. [89Zr]ZrDFO-amivantamab demonstrated bispecific binding in cell lines co-expressed with EGFR and c-MET. PET/CT imaging with [89Zr]ZrDFO-amivantamab in TNBC xenografted mice showed standard uptake value (SUVmean) of 6.0 ± 1.1 in MDA-MB-468, 4.2 ± 1.4 in MDA-MB-231, and 1.5 ± 1.4 in MDA-MB-453 tumors, which are consistent with their receptors' expression levels on the cell surface. CONCLUSION We have successfully prepared a radiolabeled bispecific antibody, [89Zr]ZrDFO-amivantamab, and evaluated its pharmacologic and imaging properties in comparison with its single-arm antibodies and non-specific isotype controls. [89Zr]ZrDFO-amivantamab demonstrated the greatest uptake in tumors co-expressing EGFR and c-MET.
Collapse
Affiliation(s)
- Alessandra Cavaliere
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, PO Box 208048, New Haven, CT, 06520, USA
| | - Suxia Sun
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, PO Box 208048, New Haven, CT, 06520, USA
- Department of Nutrition and Food Hygiene, Southern Medical University, Guangzhou, Guangdong, China
| | - Supum Lee
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, PO Box 208048, New Haven, CT, 06520, USA
| | - Jacob Bodner
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, PO Box 208048, New Haven, CT, 06520, USA
| | - Ziqi Li
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, PO Box 208048, New Haven, CT, 06520, USA
| | - Yiyun Huang
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, PO Box 208048, New Haven, CT, 06520, USA
| | | | - Bernadette Marquez-Nostra
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University, PO Box 208048, New Haven, CT, 06520, USA.
| |
Collapse
|
4
|
Liu J, Babka AM, Kearney BJ, Radoshitzky SR, Kuhn JH, Zeng X. Molecular detection of SARS-CoV-2 in formalin-fixed, paraffin-embedded specimens. JCI Insight 2020; 5:139042. [PMID: 32379723 PMCID: PMC7406253 DOI: 10.1172/jci.insight.139042] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/06/2020] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of human coronavirus disease 2019 (COVID-19), emerged in Wuhan, China, in December 2019. The virus rapidly spread globally, resulting in a public health crisis including almost 5 million cases and 323,256 deaths as of May 21, 2020. Here, we describe the identification and evaluation of commercially available reagents and assays for the molecular detection of SARS-CoV-2 in infected FFPE cell pellets. We identified a suitable rabbit polyclonal anti-SARS-CoV spike protein antibody and a mouse monoclonal anti-SARS-CoV nucleocapsid protein (NP) antibody for cross-detection of the respective SARS-CoV-2 proteins by IHC and immunofluorescence assay (IFA). Next, we established RNAscope in situ hybridization (ISH) to detect SARS-CoV-2 RNA. Furthermore, we established a multiplex FISH (mFISH) to detect positive-sense SARS-CoV-2 RNA and negative-sense SARS-CoV-2 RNA (a replicative intermediate indicating viral replication). Finally, we developed a dual staining assay using IHC and ISH to detect SARS-CoV-2 antigen and RNA in the same FFPE section. It is hoped that these reagents and assays will accelerate COVID-19 pathogenesis studies in humans and in COVID-19 animal models.
Collapse
Affiliation(s)
- Jun Liu
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, Maryland, USA
| | - April M. Babka
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, Maryland, USA
| | - Brian J. Kearney
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, Maryland, USA
| | - Sheli R. Radoshitzky
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, Maryland, USA
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Fort Detrick, Frederick, Maryland, USA
| | - Xiankun Zeng
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, Maryland, USA
| |
Collapse
|
5
|
Liu J, Babka AM, Kearney BJ, Radoshitzky SR, Kuhn JH, Zeng X. Molecular Detection of SARS-CoV-2 in Formalin Fixed Paraffin Embedded Specimens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.04.21.042911. [PMID: 32511350 PMCID: PMC7255791 DOI: 10.1101/2020.04.21.042911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of human coronavirus disease 2019 (COVID-19), emerged in Wuhan, China in December 2019. The virus rapidly spread globally, resulting in a public-health crisis including more than one million cases and tens of thousands of deaths. Here, we describe the identification and evaluation of commercially available reagents and assays for the molecular detection of SARS-CoV-2 in infected formalin fixed paraffin embedded (FFPE) cell pellets. We identified a suitable rabbit polyclonal anti-SARS-CoV spike protein antibody and a mouse monoclonal anti-SARS-CoV nucleocapsid protein (NP) antibody for cross detection of the respective SARS-CoV-2 proteins by immunohistochemistry (IHC) and immunofluorescence assay (IFA). Next, we established RNAscope in situ hybridization (ISH) to detect SARS-CoV-2 RNA. Furthermore, we established a multiplex fluorescence ISH (mFISH) to detect positive-sense SARS-CoV-2 RNA and negative-sense SARS-CoV-2 RNA (a replicative intermediate indicating viral replication). Finally, we developed a dual staining assay using IHC and ISH to detect SARS-CoV-2 antigen and RNA in the same FFPE section. These reagents and assays will accelerate COVID-19 pathogenesis studies in humans and in COVID-19 animal models.
Collapse
Affiliation(s)
- Jun Liu
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland 21702, USA
| | - April M. Babka
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland 21702, USA
| | - Brian J. Kearney
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland 21702, USA
| | - Sheli R. Radoshitzky
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland 21702, USA
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National, Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Xiankun Zeng
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland 21702, USA
| |
Collapse
|
6
|
Chen YC, Chen YY, Liao JW, Chang SC. Expression and prognostic value of c-met in canine mammary tumours. Vet Comp Oncol 2018; 16:670-676. [PMID: 30129270 DOI: 10.1111/vco.12439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 12/12/2022]
Abstract
C-met is a receptor normally expressed on epithelial cells and dysregulated in human breast cancers. Mammary tumours are the most common tumour in female dogs. The aims of this study were to detect the expression of c-met in canine mammary tumours (CMTs) and evaluate the correlations between c-met expression and clinicopathological features. A total of 240 specimens of canine mammary tissues composed of 30 normal glands, 30 hyperplastic ones, 90 benign tumours and 90 carcinomas obtained from 127 bitches were examined by immunohistochemical staining. Positive c-met immunoreactivity was demonstrated in the cytoplasm of mammary epithelial cells at variable levels, and in malignant CMTs, higher c-met expression was found in carcinomas whose grade, stage and mitotic index were low, and metastasis was absent. The median survival time was shorter in dogs with malignant CMTs with a maximum diameter ≥5 cm, regional lymph node or distant metastasis, and a high histologic grade. However, the 2-year survival rate was higher in dogs with malignant CMTs of higher c-met expression than those of low c-met expression (80.1% vs 57%). C-met expression could be used as a valuable positive prognostic factor for the clinical outcomes of dogs with malignant CMTs.
Collapse
Affiliation(s)
- Yi-Chen Chen
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Ying-Yu Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Shih-Chieh Chang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan.,Veterinary Medical Teaching Hospital, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
7
|
Regulation of inside-out β1-integrin activation by CDCP1. Oncogene 2018; 37:2817-2836. [PMID: 29511352 DOI: 10.1038/s41388-018-0142-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/07/2017] [Accepted: 12/09/2017] [Indexed: 12/21/2022]
Abstract
Tumor metastasis depends on the dynamic regulation of cell adhesion through β1-integrin. The Cub-Domain Containing Protein-1, CDCP1, is a transmembrane glycoprotein which regulates cell adhesion. Overexpression and loss of CDCP1 have been observed in the same cancer types to promote metastatic progression. Here, we demonstrate reduced CDCP1 expression in high-grade, primary prostate cancers, circulating tumor cells and tumor metastases of patients with castrate-resistant prostate cancer. CDCP1 is expressed in epithelial and not mesenchymal cells, and its cell surface and mRNA expression declines upon stimulation with TGFβ1 and epithelial-to-mesenchymal transition. Silencing of CDCP1 in DU145 and PC3 cells resulted in 3.4-fold higher proliferation of non-adherent cells and 4.4-fold greater anchorage independent growth. CDCP1-silenced tumors grew in 100% of mice, compared to 30% growth of CDCP1-expressing tumors. After CDCP1 silencing, cell adhesion and migration diminished 2.1-fold, caused by loss of inside-out activation of β1-integrin. We determined that the loss of CDCP1 reduces CDK5 kinase activity due to the phosphorylation of its regulatory subunit, CDK5R1/p35, by c-SRC on Y234. This generates a binding site for the C2 domain of PKCδ, which in turn phosphorylates CDK5 on T77. The resulting dissociation of the CDK5R1/CDK5 complex abolishes the activity of CDK5. Mutations of CDK5-T77 and CDK5R1-Y234 phosphorylation sites re-establish the CDK5/CDKR1 complex and the inside-out activity of β1-integrin. Altogether, we discovered a new mechanism of regulation of CDK5 through loss of CDCP1, which dynamically regulates β1-integrin in non-adherent cells and which may promote vascular dissemination in patients with advanced prostate cancer.
Collapse
|
8
|
Linklater ES, Tovar EA, Essenburg CJ, Turner L, Madaj Z, Winn ME, Melnik MK, Korkaya H, Maroun CR, Christensen JG, Steensma MR, Boerner JL, Graveel CR. Targeting MET and EGFR crosstalk signaling in triple-negative breast cancers. Oncotarget 2018; 7:69903-69915. [PMID: 27655711 PMCID: PMC5342523 DOI: 10.18632/oncotarget.12065] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/01/2016] [Indexed: 12/14/2022] Open
Abstract
There is a vital need for improved therapeutic strategies that are effective in both primary and metastatic triple-negative breast cancer (TNBC). Current treatment options for TNBC patients are restricted to chemotherapy; however tyrosine kinases are promising druggable targets due to their high expression in multiple TNBC subtypes. Since coexpression of receptor tyrosine kinases (RTKs) can promote signaling crosstalk and cell survival in the presence of kinase inhibitors, it is likely that multiple RTKs will need to be inhibited to enhance therapeutic benefit and prevent resistance. The MET and EGFR receptors are actionable targets due to their high expression in TNBC; however crosstalk between MET and EGFR has been implicated in therapeutic resistance to single agent use of MET or EGFR inhibitors in several cancer types. Therefore it is likely that dual inhibition of MET and EGFR is required to prevent crosstalk signaling and acquired resistance. In this study, we evaluated the heterogeneity of MET and EGFR expression and activation in primary and metastatic TNBC tumorgrafts and determined the efficacy of MET (MGCD265 or crizotinib) and/or EGFR (erlotinib) inhibition against TNBC progression. Here we demonstrate that combined MET and EGFR inhibition with either MGCD265 and erlotinib treatment or crizotinib and erlotinib treatment were highly effective at abrogating tumor growth and significantly decreased the variability in treatment response compared to monotherapy. These results advance our understanding of the RTK signaling architecture in TNBC and demonstrate that combined MET and EGFR inhibition may be a promising therapeutic strategy for TNBC patients.
Collapse
Affiliation(s)
- Erik S Linklater
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Elizabeth A Tovar
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Curt J Essenburg
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Lisa Turner
- Pathology and Biorepository Core, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Zachary Madaj
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Mary E Winn
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Marianne K Melnik
- Spectrum Health Cancer Center, Spectrum Health System, Grand Rapids, Michigan, USA.,Grand Rapids Medical Education Partners, General Surgery Residency Program, Grand Rapids, Michigan, USA.,Department of Surgery, Michigan State University College of Human Medicine, Grand Rapids, Michigan, USA
| | - Hasan Korkaya
- Molecular Oncology and Biomarkers Program, Augusta University, Augusta, Georgia, USA
| | - Christiane R Maroun
- Mirati Therapeutics, San Diego, California, USA.,Current address: Vertex Pharmaceuticals (Canada) Inc., Laval, Quebec, Canada
| | | | - Matthew R Steensma
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan, USA.,Spectrum Health Cancer Center, Spectrum Health System, Grand Rapids, Michigan, USA.,Department of Surgery, Michigan State University College of Human Medicine, Grand Rapids, Michigan, USA
| | - Julie L Boerner
- Biobanking and Correlative Sciences Core, Karmanos Cancer Institute, Detroit, Michigan, USA
| | - Carrie R Graveel
- Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan, USA
| |
Collapse
|
9
|
Doi T, Yamaguchi K, Komatsu Y, Muro K, Nishina T, Nakajima TE, Tang R, Yang H, Zhang Y, Jung AS, Ang A, Yasui H. A Phase 1/1b tolerability study of rilotumumab alone or in combination with cisplatin and capecitabine in Japanese patients with gastric cancer. Jpn J Clin Oncol 2018; 47:1002-1009. [PMID: 28973403 DOI: 10.1093/jjco/hyx114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/09/2017] [Indexed: 12/11/2022] Open
Abstract
Objective To evaluate the safety (including adverse events and dose-limiting toxicities [DLTs]), tolerability, pharmacokinetics and antitumor activity of the investigational MET inhibitor rilotumumab alone in patients with advanced solid tumors (Part 1) or in combination with cisplatin plus capecitabine (CX) in patients with MET-positive advanced gastric or gastroesophageal junction cancer (Part 2). Methods Adult patients received 10 or 20 mg/kg intravenous (IV) rilotumumab every 2 weeks (Part 1) or 15 mg/kg IV rilotumumab every 3 weeks plus 80 mg/m2 cisplatin on Day 1 and 1000 mg/m2 capecitabine twice daily on Days 1-14 of every 21-day cycle (Part 2). Results Nine patients enrolled in Part 1; 12 patients enrolled in Part 2. One DLT occurred (Grade 3 decreased appetite and stomatitis [Part 2]). Adverse events related to any treatment occurred in 17 patients (81%) and were Grade ≥3 in nine patients (43%). Rilotumumab pharmacokinetics appeared linear, and exposure was unaffected by CX. No patient who received rilotumumab monotherapy in Part 1 had a response. In Part 2, five of eight patients (63%) with measureable disease at baseline had a partial response and two patients (25%) had stable disease; median (95% CI) progression-free survival was 7.0 (2.4-15.4) months; overall survival was 18.2 (5.6-20.4) months. Conclusions In combination with CX, rilotumumab appeared tolerable and showed antitumor activity in Japanese patients with MET-positive gastric/gastroesophageal junction cancer. However, owing to the results of recent Phase 3 trials of MET inhibitors (including rilotumumab), further development of rilotumumab in this setting is not being pursued. ClinicalTrials.gov Identifier: NCT01791374.
Collapse
Affiliation(s)
- Toshihiko Doi
- National Cancer Center Hospital East, Kashiwa, Chiba
| | - Kensei Yamaguchi
- Saitama Cancer Center, Kita Adachi-gun, Saitama.,Cancer Institute Hospital of Japanese Foundation for Cancer Research, Ariake, Tokyo
| | | | - Kei Muro
- Aichi Cancer Center Hospital, Nagoya
| | | | | | - Rui Tang
- Amgen Inc., Thousand Oaks, CA, USA
| | - Hui Yang
- Amgen Inc., Thousand Oaks, CA, USA
| | | | | | | | | |
Collapse
|
10
|
Han Z, Wu Y, Wang K, Xiao Y, Cheng Z, Sun X, Shen B. Analysis of progress and challenges for various patterns of c-MET-targeted molecular imaging: a systematic review. EJNMMI Res 2017; 7:41. [PMID: 28485003 PMCID: PMC5422222 DOI: 10.1186/s13550-017-0286-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 04/17/2017] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Mesenchymal-epithelial transition factor also named c-MET is a receptor tyrosine kinase for the hepatocyte growth factor that plays a pivotal role in tumorigenesis. c-MET-targeted therapies have been tested in preclinical models and patients, with significant benefits for cancer treatment. In recent years, many studies have shown that the expression level and activation status of c-MET are closely correlated to c-MET-targeted therapy response and clinical prognosis, thus highlighting the importance of evaluating the c-MET status during and prior to targeted therapy. Molecular imaging allows the monitoring of abnormal alterations of c-MET in real time and in vivo. RESULTS In this review, we initially summarize the recent advances in c-MET-targeted molecular imaging, with a special focus on the development of imaging agents ranging in size from monoclonal antibody to small molecule. The aim of this review is to report the preclinical results and clinical application of all molecular imaging studies completed until now for in vivo detection of c-MET in cancer, in order to be beneficial to development of molecular probe and the combination of molecular imaging technologies for in vivo evaluation of c-MET. Various molecular probe targeted to c-MET possesses distinctive advantages and disadvantages. For example, antibody-based probes have high binding affinity but with long metabolic cycle as well as remarkable immunogenicity. CONCLUSIONS Although studies for c-MET-targeted molecular imaging have made many important advances, most of imaging agents specifically target to extracellular area of c-MET receptor; however, it is difficult to reflect entirely activation of c-MET. Therefore, small molecule probes based on tyrosine kinase inhibitors, which could target to intracellular area of c-MET without any immunogenicity, should be paid more attention.
Collapse
Affiliation(s)
- Zhaoguo Han
- Molecular Imaging Research Center, Harbin Medical University, 766Xiangan N street, Songbei District, Harbin, Heilongjiang, 150028, China
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yongyi Wu
- Molecular Imaging Research Center, Harbin Medical University, 766Xiangan N street, Songbei District, Harbin, Heilongjiang, 150028, China
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Kai Wang
- Molecular Imaging Research Center, Harbin Medical University, 766Xiangan N street, Songbei District, Harbin, Heilongjiang, 150028, China
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yadi Xiao
- Molecular Imaging Research Center, Harbin Medical University, 766Xiangan N street, Songbei District, Harbin, Heilongjiang, 150028, China
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Lucas Center, Room P089, 1201 Welch Rd, Stanford, CA, 94305-5484, USA.
| | - Xilin Sun
- Molecular Imaging Research Center, Harbin Medical University, 766Xiangan N street, Songbei District, Harbin, Heilongjiang, 150028, China.
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Lucas Center, Room P089, 1201 Welch Rd, Stanford, CA, 94305-5484, USA.
| | - Baozhong Shen
- Molecular Imaging Research Center, Harbin Medical University, 766Xiangan N street, Songbei District, Harbin, Heilongjiang, 150028, China.
- TOF-PET/CT/MR center, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
11
|
Absent and abundant MET immunoreactivity is associated with poor prognosis of patients with oral and oropharyngeal squamous cell carcinoma. Oncotarget 2017; 7:13167-81. [PMID: 26909606 PMCID: PMC4914349 DOI: 10.18632/oncotarget.7534] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 01/01/2016] [Indexed: 11/25/2022] Open
Abstract
Although the receptor tyrosine kinase (RTK) MET is widely expressed in head and neck squamous cell carcinoma (HNSCC), its prognostic value remains unclear. This might be due to the use of a variety of antibodies and scoring systems. Here, the reliability of five commercial C-terminal MET antibodies (D1C2, CVD13, SP44, C-12 and C-28) was evaluated before examining the prognostic value of MET immunoreactivity in HNSCC. Using cancer cell lines, it was shown that D1C2 and CVD13 specifically detect MET under reducing, native and formalin-fixed paraffin-embedded (FFPE) conditions. Immunohistochemical staining of routinely FFPE oral SCC with D1C2 and CVD13 demonstrated that D1C2 is most sensitive in the detection of membranous MET. Examination of membranous D1C2 immunoreactivity with 179 FFPE oral and oropharyngeal SCC – represented in a tissue microarray – illustrated that staining is either uniform (negative or positive) across tumors or differs between a tumor's center and periphery. Ultimately, statistical analysis revealed that D1C2 uniform staining is significantly associated with poor 5-year overall and disease free survival of patients lacking vasoinvasive growth (HR = 3.019, p < 0.001; HR = 2.559, p < 0.001). These findings might contribute to reliable stratification of patients eligible for treatment with biologicals directed against MET.
Collapse
|
12
|
Gui Y, Khan MGM, Bobbala D, Dubois C, Ramanathan S, Saucier C, Ilangumaran S. Attenuation of MET-mediated migration and invasion in hepatocellular carcinoma cells by SOCS1. World J Gastroenterol 2017; 23:6639-6649. [PMID: 29085209 PMCID: PMC5643285 DOI: 10.3748/wjg.v23.i36.6639] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/07/2017] [Accepted: 07/04/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the role of suppressor of cytokine signaling 1 (SOCS1) in regulating MET-mediated invasive potential of hepatocellular carcinoma (HCC) cells.
METHODS Stable derivatives of mouse (Hepa1-6) and human (hep3B, HepG2) HCC cell lines expressing SOCS1 or control vector were evaluated for their ability to migrate towards hepatocyte growth factor (HGF) in the transwell migration assay, invade extracellular matrix in response to HGF stimulation in a 3-D invasion assay by confocal microscopy, and to undergo anchorage-independent proliferation in semisolid agar. Following intravenous and intrasplenic inoculation into NOD.scid.gamma mice, the ability of Hepa cells to form othotopic tumors was evaluated. Following HGF stimulation of Hepa and Hep3B cells, expression of proteins implicated in epithelial-to-mesenchymal transition was evaluated by western blot and qRT-PCR.
RESULTS SOCS1 expression in mouse and human HCC cells inhibited HGF-induced migration through matrigel. In the 3-D invasion assay, HGF stimulation induced invasion of HCC cells across type-I collagen matrix, and SOCS1 expression significantly reduced the depth of invasion. SOCS1 expression also reduced the number and size of colonies formed by anchorage-independent growth in semisolid agar. Following intravenous inoculation, control Hepa cell formed large tumor nodules that obliterated the liver whereas the SOCS1-expressing Hepa cells formed significantly smaller nodules. Tumors formed by SOCS1-expressing cells showed reduced phosphorylation of STAT3 and ERK that was accompanied by reduced levels of MET protein expression. HGF stimulated Hepa cells expressing SOCS1 showed increased expression of E-cadherin and decreased expression of EGR1, SNAI1 and ZEB1. Comparable results were obtained with Hep3B cells. SOCS1 expressing HCC cells also showed reduced levels of EGR1 and SNAI1 transcripts.
CONCLUSION Our findings indicate that loss of SOCS1-dependent control over epithelial-to-mesenchymal transition may contribute to MET-mediated migration, invasion and metastatic growth of HCC.
Collapse
Affiliation(s)
- Yirui Gui
- Department of Pediatrics, Immunology Division, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Md Gulam Musawwir Khan
- Department of Pediatrics, Immunology Division, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Diwakar Bobbala
- Department of Pediatrics, Immunology Division, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Claire Dubois
- Department of Pediatrics, Immunology Division, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Sheela Ramanathan
- Department of Pediatrics, Immunology Division, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Caroline Saucier
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Subburaj Ilangumaran
- Department of Pediatrics, Immunology Division, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| |
Collapse
|
13
|
Sakamoto N, Tsujimoto H, Takahata R, Cao B, Zhao P, Ito N, Shimazaki H, Ichikura T, Hase K, Vande Woude GF, Shinomiya N. MET4 expression predicts poor prognosis of gastric cancers with Helicobacter pylori infection. Cancer Sci 2017; 108:322-330. [PMID: 28012218 PMCID: PMC5378289 DOI: 10.1111/cas.13146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/08/2016] [Accepted: 12/17/2016] [Indexed: 02/06/2023] Open
Abstract
The role of HGF/SF‐MET signaling is important in cancer progression, but its relation with Helicobacter pylori‐positive gastric cancers remains to be elucidated. In total, 201 patients with primary gastric carcinoma who underwent curative or debulking resection without preoperative chemotherapy were studied. MET4 and anti‐HGF/SF mAbs were used for immunohistochemical analysis. Survival of gastric cancer patients was estimated by Kaplan–Meier method and compared with log‐rank. Cox proportional hazards models were fit to determine the independent association of MET‐staining status with outcome. The effect of live H. pylori bacteria on cell signaling and biological behaviors was evaluated using gastric cancer cell lines. MET4‐positive gastric cancers showed poorer prognosis than MET4‐negative cases (overall survival, P = 0.02; relapse‐free survival, P = 0.06). Positive staining for MET4 was also a statistically significant factor to predict poor prognosis in H. pylori‐positive cases (overall survival, P < 0.01; relapse‐free survival, P = 0.01) but not in H. pylori‐negative cases. Gastric cancers positively stained with both HGF/SF and MET4 showed a tendency of the worst prognosis. Stimulation of MET‐positive gastric cancer cells with live H. pylori bacteria directly upregulated MET phosphorylation and activated MET downstream signals such as p44/42MAPK and Akt, conferring cell proliferation and anti‐apoptotic activity. In conclusion, positive staining for MET4 was useful for predicting poor prognosis of gastric cancers with H. pylori infection. Helicobacter pylori stimulated MET‐positive gastric cancers and activated downstream signaling, thereby promoting cancer proliferation and anti‐apoptotic activity. These results support the importance of H. pylori elimination from gastric epithelial surface in clinical therapy.
Collapse
Affiliation(s)
- Naoko Sakamoto
- Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Hironori Tsujimoto
- Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Risa Takahata
- Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Brian Cao
- Laboratory of Antibody Technology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Ping Zhao
- Laboratory of Antibody Technology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Nozomi Ito
- Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Hideyuki Shimazaki
- Department of Laboratory Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Takashi Ichikura
- Court Physician in Chief, The Imperial Household Agency, Tokyo, Japan
| | - Kazuo Hase
- Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | - George F Vande Woude
- Laboratory of Molecular Oncology, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Nariyoshi Shinomiya
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Japan
| |
Collapse
|
14
|
Expression of SOCS1 and the downstream targets of its putative tumor suppressor functions in prostate cancer. BMC Cancer 2017; 17:157. [PMID: 28235401 PMCID: PMC5326496 DOI: 10.1186/s12885-017-3141-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/15/2017] [Indexed: 01/28/2023] Open
Abstract
Background Suppressor of cytokine signaling 1 (SOCS1) is considered a tumor suppressor due to frequent epigenetic and micro-RNA-mediated repression of its gene expression in diverse cancers. In prostate cancer (PCa), elevated expression of miR-30d that targets SOCS1 mRNA is associated with increased risk of disease recurrence. SOCS1 can mediate its tumor suppressor functions by diverse mechanisms such as inhibiting the JAK-STAT signaling pathway, promoting the tumor suppressor functions of p53, attenuating MET receptor tyrosine kinase signaling and blocking the oncogenic potential of the cell cycle inhibitor p21CIP1 (p21). Here, we studied the expression of SOCS1 and the downstream targets of its putative tumor suppressor functions (p53, MET and p21) in human PCa specimens to evaluate their significance as markers of disease prognosis. Methods Tissue microarrays were constructed of 78 archived prostatectomy specimens that were grouped according to the recommendations of the International Society of Urological Pathology (ISUP) based on the Gleason patterns. SOCS1, p53, MET and p21 protein expression were evaluated by immunohistochemical staining alongside the common prostate cancer-related markers Ki67, prostein and androgen receptor. Statistical correlations between the staining intensities of these markers and ISUP grade groups, local invasion or lymph node metastasis were evaluated. Results SOCS1 showed diffuse staining in the prostatic epithelium. SOCS1 staining intensity correlated inversely with the ISUP grade groups (ρ = −0.4687, p <0.0001) and Ki67 (ρ = −0.2444, p = 0.031), and positively with prostein (ρ = 0.3511, p = 0.0016). Changes in SOCS1 levels did not significantly associate with those of p53, MET or p21. However, p21 positively correlated with androgen receptor expression (ρ = −0.1388, p = 0.0003). A subset of patients with regional lymph node metastasis, although small in number, showed reduced SOCS1 expression and increased expression of MET and p21. Conclusions Our findings suggest that evaluating SOCS1 and p21 protein expression in prostatectomy specimens may have a prognostic value in identifying the aggressive disease. Hence, prospective studies with larger numbers of metastatic PCa specimens incorporating clinical correlates such as disease-free and overall survival are warranted. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3141-8) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
Srivastava AK, Hollingshead MG, Weiner J, Navas T, Evrard YA, Khin SA, Ji JJ, Zhang Y, Borgel S, Pfister TD, Kinders RJ, Bottaro DP, Linehan WM, Tomaszewski JE, Doroshow JH, Parchment RE. Pharmacodynamic Response of the MET/HGF Receptor to Small-Molecule Tyrosine Kinase Inhibitors Examined with Validated, Fit-for-Clinic Immunoassays. Clin Cancer Res 2016; 22:3683-94. [PMID: 27001313 PMCID: PMC7802886 DOI: 10.1158/1078-0432.ccr-15-2323] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/23/2016] [Indexed: 01/08/2023]
Abstract
PURPOSE Rational development of targeted MET inhibitors for cancer treatment requires a quantitative understanding of target pharmacodynamics, including molecular target engagement, mechanism of action, and duration of effect. EXPERIMENTAL DESIGN Sandwich immunoassays and specimen handling procedures were developed and validated for quantifying full-length MET and its key phosphospecies (pMET) in core tumor biopsies. MET was captured using an antibody to the extracellular domain and then probed using antibodies to its C-terminus (full-length) and epitopes containing pY1234/1235, pY1235, and pY1356. Using pMET:MET ratios as assay endpoints, MET inhibitor pharmacodynamics were characterized in MET-amplified and -compensated (VEGFR blockade) models. RESULTS By limiting cold ischemia time to less than two minutes, the pharmacodynamic effects of the MET inhibitors PHA665752 and PF02341066 (crizotinib) were quantifiable using core needle biopsies of human gastric carcinoma xenografts (GTL-16 and SNU5). One dose decreased pY1234/1235 MET:MET, pY1235-MET:MET, and pY1356-MET:MET ratios by 60% to 80% within 4 hours, but this effect was not fully sustained despite continued daily dosing. VEGFR blockade by pazopanib increased pY1235-MET:MET and pY1356-MET:MET ratios, which was reversed by tivantinib. Full-length MET was quantifiable in 5 of 5 core needle samples obtained from a resected hereditary papillary renal carcinoma, but the levels of pMET species were near the assay lower limit of quantitation. CONCLUSIONS These validated immunoassays for pharmacodynamic biomarkers of MET signaling are suitable for studying MET responses in amplified cancers as well as compensatory responses to VEGFR blockade. Incorporating pharmacodynamic biomarker studies into clinical trials of MET inhibitors could provide critical proof of mechanism and proof of concept for the field. Clin Cancer Res; 22(14); 3683-94. ©2016 AACR.
Collapse
Affiliation(s)
- Apurva K Srivastava
- Laboratory of Human Toxicology and Pharmacology, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Melinda G Hollingshead
- Biological Testing Branch, Developmental Therapeutics Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Jennifer Weiner
- Laboratory of Human Toxicology and Pharmacology, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Tony Navas
- Laboratory of Human Toxicology and Pharmacology, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Yvonne A Evrard
- Laboratory of Human Toxicology and Pharmacology, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Sonny A Khin
- Laboratory of Human Toxicology and Pharmacology, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Jiuping Jay Ji
- National Clinical Target Validation Laboratory, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Yiping Zhang
- National Clinical Target Validation Laboratory, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Suzanne Borgel
- In Vivo Evaluation Group, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Thomas D Pfister
- Laboratory of Human Toxicology and Pharmacology, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Robert J Kinders
- Laboratory of Human Toxicology and Pharmacology, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | | | | | | | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, NCI, Bethesda, Maryland
| | - Ralph E Parchment
- Laboratory of Human Toxicology and Pharmacology, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland.
| |
Collapse
|
16
|
Huang F, Ma Z, Pollan S, Yuan X, Swartwood S, Gertych A, Rodriguez M, Mallick J, Bhele S, Guindi M, Dhall D, Walts AE, Bose S, de Peralta Venturina M, Marchevsky AM, Luthringer DJ, Feller SM, Berman B, Freeman MR, Alvord WG, Vande Woude G, Amin MB, Knudsen BS. Quantitative imaging for development of companion diagnostics to drugs targeting HGF/MET. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2016; 2:210-222. [PMID: 27785366 PMCID: PMC5068192 DOI: 10.1002/cjp2.49] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/07/2016] [Indexed: 02/06/2023]
Abstract
The limited clinical success of anti-HGF/MET drugs can be attributed to the lack of predictive biomarkers that adequately select patients for treatment. We demonstrate here that quantitative digital imaging of formalin fixed paraffin embedded tissues stained by immunohistochemistry can be used to measure signals from weakly staining antibodies and provides new opportunities to develop assays for detection of MET receptor activity. To establish a biomarker panel of MET activation, we employed seven antibodies measuring protein expression in the HGF/MET pathway in 20 cases and up to 80 cores from 18 human cancer types. The antibodies bind to epitopes in the extra (EC)- and intracellular (IC) domains of MET (MET4EC, SP44_METIC, D1C2_METIC), to MET-pY1234/pY1235, a marker of MET kinase activation, as well as to HGF, pSFK or pMAPK. Expression of HGF was determined in tumour cells (T_HGF) as well as in stroma surrounding cancer (St_HGF). Remarkably, MET4EC correlated more strongly with pMET (r = 0.47) than SP44_METIC (r = 0.21) or D1C2_METIC (r = 0.08) across 18 cancer types. In addition, correlation coefficients of pMET and T_HGF (r = 0.38) and pMET and pSFK (r = 0.56) were high. Prediction models of MET activation reveal cancer-type specific differences in performance of MET4EC, SP44_METIC and anti-HGF antibodies. Thus, we conclude that assays to predict the response to HGF/MET inhibitors require a cancer-type specific antibody selection and should be developed in those cancer types in which they are employed clinically.
Collapse
Affiliation(s)
- Fangjin Huang
- Department of Biomedical Sciences Cedars-Sinai Medical Center Los Angeles California 90048 USA
| | - Zhaoxuan Ma
- Department of Biomedical Sciences Cedars-Sinai Medical Center Los Angeles California 90048 USA
| | - Sara Pollan
- Department of Biomedical Sciences Cedars-Sinai Medical Center Los Angeles California 90048 USA
| | - Xiaopu Yuan
- Department of Biomedical Sciences Cedars-Sinai Medical Center Los Angeles California 90048 USA
| | - Steven Swartwood
- Department of Biomedical Sciences Cedars-Sinai Medical Center Los Angeles California 90048 USA
| | - Arkadiusz Gertych
- Departments of Surgery Cedars-Sinai Medical Center Los Angeles California 90048 USA
| | - Maria Rodriguez
- Department of Biomedical Sciences Cedars-Sinai Medical Center Los Angeles California 90048 USA
| | - Jayati Mallick
- Department of Pathology and Laboratory Medicine Cedars-Sinai Medical Center Los Angeles California 90048 USA
| | - Sanica Bhele
- Department of Pathology and Laboratory Medicine Cedars-Sinai Medical Center Los Angeles California 90048 USA
| | - Maha Guindi
- Department of Pathology and Laboratory Medicine Cedars-Sinai Medical Center Los Angeles California 90048 USA
| | - Deepti Dhall
- Department of Pathology and Laboratory Medicine Cedars-Sinai Medical Center Los Angeles California 90048 USA
| | - Ann E Walts
- Department of Pathology and Laboratory Medicine Cedars-Sinai Medical Center Los Angeles California 90048 USA
| | - Shikha Bose
- Department of Pathology and Laboratory Medicine Cedars-Sinai Medical Center Los Angeles California 90048 USA
| | - Mariza de Peralta Venturina
- Department of Pathology and Laboratory Medicine Cedars-Sinai Medical Center Los Angeles California 90048 USA
| | - Alberto M Marchevsky
- Department of Pathology and Laboratory Medicine Cedars-Sinai Medical Center Los Angeles California 90048 USA
| | - Daniel J Luthringer
- Department of Pathology and Laboratory Medicine Cedars-Sinai Medical Center Los Angeles California 90048 USA
| | - Stephan M Feller
- Institute of Molecular Medicine, Martin-Luther-University 06120 Halle Germany
| | - Benjamin Berman
- Department of Biomedical Sciences Cedars-Sinai Medical Center Los Angeles California 90048 USA
| | - Michael R Freeman
- Department of Biomedical SciencesCedars-Sinai Medical CenterLos AngelesCalifornia90048USA; Departments of SurgeryCedars-Sinai Medical CenterLos AngelesCalifornia90048USA; Cancer Biology Program, Departments of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical CenterLos AngelesCalifornia90048USA
| | - W Gregory Alvord
- Data Management Services, Inc., National Cancer Institute at Frederick Frederick Maryland 21702 USA
| | - George Vande Woude
- Laboratory of Molecular Oncology Center for Cancer and Cell Biology, Van Andel Research Institute Grand Rapids Michigan 49503 USA
| | - Mahul B Amin
- Department of Pathology and Laboratory Medicine Cedars-Sinai Medical Center Los Angeles California 90048 USA
| | - Beatrice S Knudsen
- Department of Biomedical SciencesCedars-Sinai Medical CenterLos AngelesCalifornia90048USA; Department of Pathology and Laboratory MedicineCedars-Sinai Medical CenterLos AngelesCalifornia90048USA
| |
Collapse
|
17
|
Erichsen R, Kelsh MA, Oliner KS, Nielsen KB, Frøslev T, Lænkholm AV, Vyberg M, Acquavella J, Sørensen HT. Prognostic impact of tumor MET expression among patients with stage IV gastric cancer: a Danish cohort study. Ann Epidemiol 2016; 26:500-503. [PMID: 27318530 DOI: 10.1016/j.annepidem.2016.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 04/13/2016] [Accepted: 05/01/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE We aimed to investigate the prevalence and prognostic impact of tumor mesenchymal epithelial transition factor (MET) expression in stage IV gastric cancers in a real-world clinical setting because existing evidence is sparse. METHODS The study included archived cancer specimens from 103 stage IV gastric cancer patients (2003-2010). We analyzed MET-protein expression by immunohistochemistry (MET-positive if ≥25% of tumor cells showed MET expression). We calculated overall survival using the Kaplan-Meier method and hazard ratios comparing mortality among MET-positive and MET-negative patients using Cox regression adjusted for age, gender, and comorbidity. RESULTS We found that 62.1% (95% confidence interval, 52.0-71.5) of patients had MET-positive tumors. Median survival was lower among patients with MET-positive tumors (3.5 months) than among patients with MET-negative tumors (9.6 months), corresponding to an adjusted hazard ratio of 2.2 (95% confidence interval, 1.3-3.7). CONCLUSIONS Tumor MET expression is prevalent and has substantial prognostic impact in stage IV gastric cancer patients.
Collapse
Affiliation(s)
- Rune Erichsen
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus N, Denmark.
| | - Michael A Kelsh
- Center for Observational Research, Amgen Inc., Thousand Oaks, CA
| | | | | | - Trine Frøslev
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus N, Denmark
| | | | - Mogens Vyberg
- Institute of Pathology, Aalborg University Hospital, Aalborg, Denmark
| | - John Acquavella
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus N, Denmark; Center for Observational Research, Amgen Inc., Thousand Oaks, CA
| | - Henrik Toft Sørensen
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus N, Denmark
| |
Collapse
|
18
|
MET Expression in Primary and Metastatic Clear Cell Renal Cell Carcinoma: Implications of Correlative Biomarker Assessment to MET Pathway Inhibitors. BIOMED RESEARCH INTERNATIONAL 2015; 2015:192406. [PMID: 26448928 PMCID: PMC4584049 DOI: 10.1155/2015/192406] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/08/2015] [Indexed: 02/07/2023]
Abstract
Aims. Inhibitors of the MET pathway hold promise in the treatment for metastatic kidney cancer. Assessment of predictive biomarkers may be necessary for appropriate patient selection. Understanding MET expression in metastases and the correlation to the primary site is important, as distant tissue is not always available. Methods and Results. MET immunofluorescence was performed using automated quantitative analysis and a tissue microarray containing matched nephrectomy and distant metastatic sites from 34 patients with clear cell renal cell carcinoma. Correlations between MET expressions in matched primary and metastatic sites and the extent of heterogeneity were calculated. The mean expression of MET was not significantly different between primary tumors when compared to metastases (P = 0.1). MET expression weakly correlated between primary and matched metastatic sites (R = 0.5) and a number of cases exhibited very high levels of discordance between these tumors. Heterogeneity within nephrectomy specimens compared to the paired metastatic tissues was not significantly different (P = 0.39). Conclusions. We found that MET expression is not significantly different in primary tumors than metastatic sites and only weakly correlates between matched sites. Moderate concordance of MET expression and significant expression heterogeneity may be a barrier to the development of predictive biomarkers using MET targeting agents.
Collapse
|
19
|
Gruver AM, Liu L, Vaillancourt P, Yan SB, Cook JD, Roseberry Baker JA, Felke EM, Lacy ME, Marchal CC, Szpurka H, Holzer TR, Rhoads EK, Zeng W, Wortinger MA, Lu J, Chow C, Denning IJ, Beuerlein G, Davies J, Hanson JC, Credille KM, Wijayawardana SR, Schade AE. Immunohistochemical application of a highly sensitive and specific murine monoclonal antibody recognising the extracellular domain of the human hepatocyte growth factor receptor (
MET
). Histopathology 2014; 65:879-96. [DOI: 10.1111/his.12510] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/12/2014] [Indexed: 01/07/2023]
Affiliation(s)
- Aaron M Gruver
- Lilly Research Laboratories Eli Lilly and Company Indianapolis IN USA
| | - Ling Liu
- Lilly Research Laboratories Eli Lilly and Company Indianapolis IN USA
| | | | - Sau‐Chi B Yan
- Lilly Research Laboratories Eli Lilly and Company Indianapolis IN USA
| | - Joel D Cook
- Lilly Research Laboratories Eli Lilly and Company Indianapolis IN USA
| | | | - Erin M Felke
- Lilly Research Laboratories Eli Lilly and Company Indianapolis IN USA
| | - Megan E Lacy
- Lilly Research Laboratories Eli Lilly and Company Indianapolis IN USA
| | | | - Hadrian Szpurka
- Lilly Research Laboratories Eli Lilly and Company Indianapolis IN USA
| | - Timothy R. Holzer
- Lilly Research Laboratories Eli Lilly and Company Indianapolis IN USA
| | - Emily K Rhoads
- Lilly Research Laboratories Eli Lilly and Company Indianapolis IN USA
| | - Wei Zeng
- Lilly Research Laboratories Eli Lilly and Company Indianapolis IN USA
| | - Mark A Wortinger
- Lilly Research Laboratories Eli Lilly and Company Indianapolis IN USA
| | - Jirong Lu
- Lilly Research Laboratories Eli Lilly and Company Indianapolis IN USA
| | - Chi‐kin Chow
- Lilly Research Laboratories Eli Lilly and Company Indianapolis IN USA
| | - Irene J Denning
- Lilly Research Laboratories Eli Lilly and Company Indianapolis IN USA
| | - Gregory Beuerlein
- Lilly Research Laboratories Eli Lilly and Company Indianapolis IN USA
| | - Julian Davies
- Lilly Research Laboratories Eli Lilly and Company Indianapolis IN USA
| | - Jeff C Hanson
- Lilly Research Laboratories Eli Lilly and Company Indianapolis IN USA
| | - Kelly M Credille
- Lilly Research Laboratories Eli Lilly and Company Indianapolis IN USA
| | | | - Andrew E Schade
- Lilly Research Laboratories Eli Lilly and Company Indianapolis IN USA
| |
Collapse
|
20
|
Iveson T, Donehower RC, Davidenko I, Tjulandin S, Deptala A, Harrison M, Nirni S, Lakshmaiah K, Thomas A, Jiang Y, Zhu M, Tang R, Anderson A, Dubey S, Oliner KS, Loh E. Rilotumumab in combination with epirubicin, cisplatin, and capecitabine as first-line treatment for gastric or oesophagogastric junction adenocarcinoma: an open-label, dose de-escalation phase 1b study and a double-blind, randomised phase 2 study. Lancet Oncol 2014; 15:1007-18. [PMID: 24965569 DOI: 10.1016/s1470-2045(14)70023-3] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Dysregulation of the hepatocyte growth factor (HGF)/MET pathway promotes tumour growth and metastasis. Rilotumumab is a fully human, monoclonal antibody that neutralises HGF. We aimed to assess the safety, efficacy, biomarkers, and pharmacokinetics of rilotumumab combined with epirubicin, cisplatin, and capecitabine (ECX) in patients with advanced gastric or oesophagogastric junction cancer. METHODS We recruited patients (≥18 years old) with unresectable locally advanced or metastatic gastric or oesophagogastric junction adenocarcinoma, an Eastern Cooperative Oncology Group (ECOG) performance status of 0 or 1, who had not received previous systemic therapy, from 43 sites worldwide. Phase 1b was an open-label, dose de-escalation study to identify a safe dose of rilotumumab (initial dose 15 mg/kg intravenously on day 1) plus ECX (epirubicin 50 mg/m(2) intravenously on day 1, cisplatin 60 mg/m(2) intravenously on day 1, capecitabine 625 mg/m(2) twice a day orally on days 1-21, respectively), administered every 3 weeks. The phase 1b primary endpoint was the incidence of dose-limiting toxicities in all phase 1b patients who received at least one dose of rilotumumab and completed the dose-limiting toxicity assessment window (first cycle of therapy). Phase 2 was a double-blind study that randomly assigned patients (1:1:1) using an interactive voice response system to receive rilotumumab 15 mg/kg, rilotumumab 7·5 mg/kg, or placebo, plus ECX (doses as above), stratified by ECOG performance status and disease extent. The phase 2 primary endpoint was progression-free survival (PFS), analysed by intention to treat. The study is registered with ClinicalTrials.gov, number NCT00719550. FINDINGS Seven of the nine patients enrolled in the phase 1b study received at least one dose of rilotumumab 15 mg/kg, only two of whom had three dose-limiting toxicities: palmar-plantar erythrodysesthesia, cerebral ischaemia, and deep-vein thrombosis. In phase 2, 121 patients were randomly assigned (40 to rilotumumab 15 mg/kg; 42 to rilotumumab 7·5 mg/kg; 39 to placebo). Median PFS was 5·1 months (95% CI 2·9-7·0) in the rilotumumab 15 mg/kg group, 6·8 months (4·5-7·5) in the rilotumumab 7·5 mg/kg group, 5·7 months (4·5-7·0) in both rilotumumab groups combined, and 4·2 months (2·9-4·9) in the placebo group. The hazard ratio for PFS events compared with placebo was 0·69 (80% CI 0·49-0·97; p=0·164) for rilotumumab 15 mg/kg, 0·53 (80% CI 0·38-0·73; p=0·009) for rilotumumab 7·5 mg/kg, and 0·60 (80% CI 0·45-0·79; p=0·016) for combined rilotumumab. Any grade adverse events more common in the combined rilotumumab group than in the placebo group included haematological adverse events (neutropenia in 44 [54%] of 81 patients vs 13 [33%] of 39 patients; anaemia in 32 [40%] vs 11 [28%]; and thrombocytopenia in nine [11%] vs none), peripheral oedema (22 [27%] vs three [8%]), and venous thromboembolism (16 [20%] vs five [13%]). Grade 3-4 adverse events more common with rilotumumab included neutropenia (36 [44%] vs 11 [28%]) and venous thromboembolism (16 [20%] vs four [10%]). Serious adverse events were balanced between groups except for anaemia, which occurred more frequently in the combined rilotumumab group (ten [12%] vs none). INTERPRETATION Rilotumumab plus ECX had no unexpected safety signals and showed greater activity than placebo plus ECX. A phase 3 study of the combination in MET-positive gastric and oesophagogastric junction cancer is in progress. FUNDING Amgen Inc.
Collapse
Affiliation(s)
| | | | - Irina Davidenko
- State Institution of Public Health "Regional Clinical Oncology Dispensary", Krasnodar, Russia
| | | | - Andrzej Deptala
- Central Clinical Hospital MSW, Warsaw Medical University, Warsaw, Poland
| | | | - Somanath Nirni
- Indo-American Cancer Institute and Research Centre, Hyderabad, India
| | | | | | | | - Min Zhu
- Amgen Inc, Thousand Oaks, CA, USA
| | - Rui Tang
- Amgen Inc, Thousand Oaks, CA, USA
| | | | | | | | - Elwyn Loh
- Amgen Inc, South San Francisco, CA, USA
| |
Collapse
|
21
|
X-chromosome-linked inhibitor of apoptosis as a key factor for chemoresistance in clear cell carcinoma of the ovary. Br J Cancer 2014; 110:2881-6. [PMID: 24853184 PMCID: PMC4056063 DOI: 10.1038/bjc.2014.255] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 04/10/2014] [Accepted: 04/14/2014] [Indexed: 12/11/2022] Open
Abstract
Background: X-chromosome-linked inhibitor of apoptosis (XIAP) is one of the anti-apoptotic proteins leading to chemoresistance in several cancers. The aim of this study is to evaluate the impact of XIAP expression upon ovarian clear cell carcinoma (CCC) that has a platinum-resistant phenotype. Methods: Tissue microarrays made from 90 CCC patients were analysed for immunohistochemical expression levels of XIAP, c-Met, p-Akt and Bcl-XL. In addition, CCC cell lines were evaluated whether XIAP silencing could modulate sensitivity to platinum agent in vitro. Results: High XIAP expression was observed in 30 (33%) of 90 CCC cases, and was associated with c-Met (<0.01) and Bcl-XL (<0.01) expression. Cases with high XIAP expression had lower response rate to primary platinum-based chemotherapy (10% vs 65%, P=0.02). In stages II–IV tumours, high XIAP expression was related with worse progression-free survival (PFS, P=0.02). Furthermore, high XIAP expression was identified as an independent worse prognostic factor for PFS and overall survival. Finally, downregulation of XIAP using XIAP-specific small interfering RNA increased sensitivity to cisplatin in human cancer cells derived from CCC. Conclusions: X-chromosome-linked inhibitor of apoptosis expression was correlated with chemoresistance of primary chemotherapy, and identified as a prognostic marker for CCC. X-chromosome-linked inhibitor of apoptosis could be a candidate for new therapeutic target in CCC.
Collapse
|
22
|
Whitsett TG, Fortin Ensign SP, Dhruv HD, Inge LJ, Kurywchak P, Wolf KK, LoBello J, Kingsley CB, Allen JW, Weiss GJ, Tran NL. FN14 expression correlates with MET in NSCLC and promotes MET-driven cell invasion. Clin Exp Metastasis 2014; 31:613-23. [PMID: 24710956 DOI: 10.1007/s10585-014-9653-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 03/27/2014] [Indexed: 12/19/2022]
Abstract
The five-year survival rate in advanced non-small cell lung cancer (NSCLC) remains below ten percent. The invasive and metastatic nature of NSCLC tumor cells contributes to the high mortality rate, and as such the mechanisms that govern NSCLC metastasis is an active area of investigation. Two surface receptors that influence NSCLC invasion and metastasis are the hepatocyte growth factor receptor (HGFR/MET) and fibroblast growth factor-inducible 14 (FN14). MET protein is over-expressed in NSCLC tumors and associated with poor clinical outcome and metastasis. FN14 protein is also elevated in NSCLC tumors and positively correlates with tumor cell migration and invasion. In this report, we show that MET and FN14 protein expressions are significantly correlated in human primary NSCLC tumors, and the protein levels of MET and FN14 are elevated in metastatic lesions relative to patient-matched primary tumors. In vitro, HGF/MET activation significantly enhances FN14 mRNA and protein expression. Importantly, depletion of FN14 is sufficient to inhibit MET-driven NSCLC tumor cell migration and invasion in vitro. This work suggests that MET and FN14 protein expressions are associated with the invasive and metastatic potential of NSCLC. Receptor-targeted therapeutics for both MET and FN14 are in clinical development, the use of which may mitigate the metastatic potential of NSCLC.
Collapse
Affiliation(s)
- Timothy G Whitsett
- Cancer and Cell Biology Division, The Translational Genomics Research Institute (TGen), 445 N. Fifth St., Suite 400, Phoenix, AZ, 85004, USA,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Won JR, Gao D, Chow C, Cheng J, Lau SYH, Ellis MJ, Perou CM, Bernard PS, Nielsen TO. A survey of immunohistochemical biomarkers for basal-like breast cancer against a gene expression profile gold standard. Mod Pathol 2013; 26:1438-50. [PMID: 23702728 DOI: 10.1038/modpathol.2013.97] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/01/2013] [Accepted: 05/02/2013] [Indexed: 12/16/2022]
Abstract
Gene expression profiling of breast cancer delineates a particularly aggressive subtype referred to as 'basal-like', which comprises ∼15% of all breast cancers, afflicts younger women and is refractory to endocrine and anti-HER2 therapies. Immunohistochemical surrogate definitions for basal-like breast cancer, such as the clinical ER/PR/HER2 triple-negative phenotype and models incorporating positive expression for CK5 (CK5/6) and/or EGFR are heavily cited. However, many additional biomarkers for basal-like breast cancer have been described in the literature. A parallel comparison of 46 proposed immunohistochemical biomarkers of basal-like breast cancer was performed against a gene expression profile gold standard on a tissue microarray containing 42 basal-like and 80 non-basal-like breast cancer cases. Ki67 and PPH3 were the most sensitive biomarkers (both 92%) positively expressed in the basal-like subtype, whereas CK14, IMP3 and NGFR were the most specific (100%). Among biomarkers surveyed, loss of INPP4B (a negative regulator of phosphatidylinositol signaling) was 61% sensitive and 99% specific with the highest odds ratio (OR) at 108, indicating the strongest association with basal-like breast cancer. Expression of nestin, a common marker of neural progenitor cells that is also associated with the triple-negative/basal-like phenotype and poor breast cancer prognosis, possessed the second highest OR at 29 among the 46 biomarkers surveyed, as well as 54% sensitivity and 96% specificity. As a positively expressed biomarker, nestin possesses technical advantages over INPP4B that make it a more ideal biomarker for identification of basal-like breast cancer. The comprehensive immunohistochemical biomarker survey presented in this study is a necessary step for determining an optimized surrogate immunopanel that best defines basal-like breast cancer in a practical and clinically accessible way.
Collapse
Affiliation(s)
- Jennifer R Won
- 1] Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada [2] Genetic Pathology Evaluation Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Cabozantinib inhibits growth of androgen-sensitive and castration-resistant prostate cancer and affects bone remodeling. PLoS One 2013; 8:e78881. [PMID: 24205338 PMCID: PMC3808282 DOI: 10.1371/journal.pone.0078881] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 09/16/2013] [Indexed: 11/19/2022] Open
Abstract
Cabozantinib is an inhibitor of multiple receptor tyrosine kinases, including MET and VEGFR2. In a phase II clinical trial in advanced prostate cancer (PCa), cabozantinib treatment improved bone scans in 68% of evaluable patients. Our studies aimed to determine the expression of cabozantinib targets during PCa progression and to evaluate its efficacy in hormone-sensitive and castration-resistant PCa in preclinical models while delineating its effects on tumor and bone. Using immunohistochemistry and tissue microarrays containing normal prostate, primary PCa, and soft tissue and bone metastases, our data show that levels of MET, P-MET, and VEGFR2 are increasing during PCa progression. Our data also show that the expression of cabozantinib targets are particularly pronounced in bone metastases. To evaluate cabozantinib efficacy on PCa growth in the bone environment and in soft tissues we used androgen-sensitive LuCaP 23.1 and castration-resistant C4-2B PCa tumors. In vivo, cabozantinib inhibited the growth of PCa in bone as well as growth of subcutaneous tumors. Furthermore, cabozantinib treatment attenuated the bone response to the tumor and resulted in increased normal bone volume. In summary, the expression pattern of cabozantinib targets in primary and castration-resistant metastatic PCa, and its efficacy in two different models of PCa suggest that this agent has a strong potential for the effective treatment of PCa at different stages of the disease.
Collapse
|
25
|
Abstract
The field of anatomic pathology has changed significantly over the last decades and, as a result of the technological developments in molecular pathology and genetics, has had increasing pressures put on it to become quantitative and to provide more information about protein expression on a cellular level in tissue sections. Multispectral imaging (MSI) has a long history as an advanced imaging modality and has been used for over a decade now in pathology to improve quantitative accuracy, enable the analysis of multicolor immunohistochemistry, and drastically reduce the impact of contrast-robbing tissue autofluorescence common in formalin-fixed, paraffin-embedded tissues. When combined with advanced software for the automated segmentation of different tissue morphologies (eg, tumor vs stroma) and cellular and subcellular segmentation, MSI can enable the per-cell quantitation of many markers simultaneously. This article covers the role that MSI has played in anatomic pathology in the analysis of formalin-fixed, paraffin-embedded tissue sections, discusses the technological aspects of why MSI has been adopted, and provides a review of the literature of the application of MSI in anatomic pathology.
Collapse
|
26
|
Paulson AK, Linklater ES, Berghuis BD, App CA, Oostendorp LD, Paulson JE, Pettinga JE, Melnik MK, Vande Woude GF, Graveel CR. MET and ERBB2 are coexpressed in ERBB2+ breast cancer and contribute to innate resistance. Mol Cancer Res 2013; 11:1112-21. [PMID: 23825050 DOI: 10.1158/1541-7786.mcr-13-0042] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Breast cancer displays significant intratumoral heterogeneity, which has been shown to have a substantial impact on both innate and acquired resistance to tyrosine kinase inhibitors. The heterogeneous expression of multiple receptor tyrosine kinases (RTK) in cancers supports tumor signaling robustness and plays a significant role in resistance to targeted inhibition. Recent studies have revealed interactions between the MET receptor and the ERBB receptor family in the therapeutic resistance of several cancers. In this study, the relationship between MET expression/activity and the expression/activity of the ERBB receptor family in human breast cancer was interrogated. Importantly, a significant percentage of ERBB2(+) tumors coexpressing MET and ERBB2 were observed and displayed significant heterogeneity with subpopulations of cells that are MET(-)/ERBB2(+), MET(+)/ERBB2(-), and MET(+)/ERBB2(+). In a MET(+)/ERBB2(+) breast cancer cell line, MET depletion resulted in increased ERBB2 activation, and conversely, ERBB2 depletion resulted in increased MET activation. Neither EGFR nor ERBB3 compensated for MET or ERBB2 knockdown. The loss of either MET or ERBB2 led to a decrease in PI3K/AKT signaling and increased dependency on MAPK. These data show that a subset of ERBB2(+) breast cancers express MET and contain MET(+)/ERBB2(+) subpopulations. Moreover, analysis of RTK activation during ERBB2 knockdown indicated that MET signaling is a compensatory pathway of resistance. IMPLICATIONS ERBB2(+) breast cancers with MET(+)/ERBB2(+) subpopulations may have an innate resistance to ERBB2 inhibition and may benefit from combined MET and ERBB2 inhibition.
Collapse
Affiliation(s)
- Amanda K Paulson
- Van Andel Research Institute, 333 Bostwick Avenue NE, Grand Rapids, MI 49503.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Chen X, Ding G, Gao Q, Sun J, Zhang Q, Du L, Qiu Z, Wang C, Zheng F, Sun B, Ni J, Feng Z, Zhu J. A human anti-c-Met Fab fragment conjugated with doxorubicin as targeted chemotherapy for hepatocellular carcinoma. PLoS One 2013; 8:e63093. [PMID: 23675455 PMCID: PMC3652865 DOI: 10.1371/journal.pone.0063093] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 03/28/2013] [Indexed: 12/15/2022] Open
Abstract
c-Met is over-expressed in hepatocellular carcinoma(HCC) but is absent or expressed at low levels in normal tissues. Therefore we generated a novel conjugate of a human anti-c-Met Fab fragment (MetFab) with doxorubicin (DOX) and assessed whether it had targeted antitumor activity against HCC and reduced the side-effects of DOX. The MetFab was screened from human phage library, conjugated with DOX via chemical synthesis, and the conjugation MetFab-DOX was confirmed by HPLC. The drug release patterns, the binding efficacy, and cellular distribution of MetFab-DOX were assessed. MetFab-DOX was stable at pH7.2 PBS while release doxorubicin quickly at pH4.0, the binding efficacy of MetFab-DOX was similarly as MetFab, and the cellular distribution of the MetFab-DOX is distinct from free DOX. The cytotoxicity of MetFab-DOX was analyzed by the MTT method and the nude mouse HCC model. The MetFab-DOX demonstrated cytotoxic effects on c-Met expressing-tumor cells, but not on the cells without c-Met expression. MetFab-DOX exerted anti-tumor effect and significantly reduced the side effect of free DOX in mice model. Furthermore, the localization of conjugate was confirmed by immunofluorescence staining of tumor tissue sections and optical tumor imaging, respectively, and the tissue-distribution of drug was compared between free DOX and MetFab-DOX treatment by spectrofluorometer. MetFab-DOX can localize to the tumor tissue, and the concentration of doxorubicin in the tumor was higher after MetFab-DOX administration than after DOX administration. In summary, MetFab-DOX can target c-Met expressing HCC cells effectively and have obvious antitumor activity with decreased side-effects in preclinical models of HCC.
Collapse
MESH Headings
- Animals
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cell Survival/drug effects
- Doxorubicin/chemistry
- Doxorubicin/pharmacology
- Drug Stability
- Gene Expression
- Hepatocytes/drug effects
- Hepatocytes/metabolism
- Hepatocytes/pathology
- Humans
- Hydrogen-Ion Concentration
- Immunoconjugates/chemistry
- Immunoconjugates/genetics
- Immunoconjugates/pharmacology
- Immunoglobulin Fab Fragments/chemistry
- Immunoglobulin Fab Fragments/genetics
- Immunoglobulin Fab Fragments/immunology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/immunology
- Liver Neoplasms/pathology
- Liver Neoplasms, Experimental/drug therapy
- Liver Neoplasms, Experimental/genetics
- Liver Neoplasms, Experimental/immunology
- Liver Neoplasms, Experimental/pathology
- Male
- Mice
- Mice, Nude
- Molecular Targeted Therapy
- Peptide Library
- Proto-Oncogene Proteins c-met/antagonists & inhibitors
- Proto-Oncogene Proteins c-met/genetics
- Proto-Oncogene Proteins c-met/immunology
Collapse
Affiliation(s)
- Ximin Chen
- Key Laboratory of Antibody Technique of Ministry of Health, Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Guipeng Ding
- Key Laboratory of Antibody Technique of Ministry of Health, Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Qihe Gao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Jian Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Qianqian Zhang
- Key Laboratory of Antibody Technique of Ministry of Health, Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Lijian Du
- Key Laboratory of Antibody Technique of Ministry of Health, Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Zhenning Qiu
- Key Laboratory of Antibody Technique of Ministry of Health, Department of Pathology, Nanjing Medical University, Nanjing, China
| | - Changjun Wang
- Huadong Medical Institute of Biotechniques, Nanjing, China
| | - Feng Zheng
- Huadong Medical Institute of Biotechniques, Nanjing, China
| | - Bowang Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Jian Ni
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhenqing Feng
- Key Laboratory of Antibody Technique of Ministry of Health, Department of Pathology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Cancer Biomarkers, Prevention & Treatment, Cancer Center, Nanjing Medical University, Nanjing, China
- * E-mail: (ZF); (JZ)
| | - Jin Zhu
- Key Laboratory of Antibody Technique of Ministry of Health, Department of Pathology, Nanjing Medical University, Nanjing, China
- Huadong Medical Institute of Biotechniques, Nanjing, China
- * E-mail: (ZF); (JZ)
| |
Collapse
|
28
|
Froehlich JM, Galt NJ, Charging MJ, Meyer BM, Biga PR. In vitro indeterminate teleost myogenesis appears to be dependent on Pax3. In Vitro Cell Dev Biol Anim 2013; 49:371-85. [PMID: 23613306 DOI: 10.1007/s11626-013-9616-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 04/03/2013] [Indexed: 02/06/2023]
Abstract
The zebrafish (Danio rerio) has been used extensively as a model system for developmental studies but, unlike most teleost fish, it grows in a determinate-like manner. A close relative, the giant danio (Devario cf. aequipinnatus), grows indeterminately, displaying both hyperplasia and hypertrophy of skeletal myofibers as an adult. To better understand adult muscle hyperplasia, a postlarval/postnatal process that closely resembles secondary myogenesis during development, we characterized the expression of Pax3/7, c-Met, syndecan-4, Myf5, MyoD1, myogenin, and myostatin during in vitro myogenesis, a technique that allows for the complete progression of myogenic precursor cells to myotubes. Pax7 appears to be expressed only in newly activated MPCs while Pax3 is expressed through most of the myogenic program, as are c-Met and syndecan-4. MyoD1 appears important in all stages of myogenesis, while Myf5 is likely expressed at low to background levels, and myogenin expression is enriched in myotubes. Myostatin, like MyoD1, appears to be ubiquitous at all stages. This is the first comprehensive report of key myogenic factor expression patterns in an indeterminate teleost, one that strongly suggests that Pax3 and/or Myf5 may be involved in the regulation of this paradigm. Further, it validates this species as a model organism for studying adult myogenesis in vitro, especially mechanisms underlying nascent myofiber recruitment.
Collapse
|
29
|
Quantitative analysis of microRNAs in tissue microarrays by in situ hybridization. Biotechniques 2012; 52:235-45. [PMID: 22482439 DOI: 10.2144/000113837] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 02/03/2012] [Indexed: 12/29/2022] Open
Abstract
MicroRNAs (miRNAs) have emerged as key regulators in the pathogenesis of cancers where they can act as either oncogenes or tumor suppressors. Most miRNA measurement methods require total RNA extracts which lack critical spatial information and present challenges for standardization. We have developed and validated a method for the quantitative analysis of miRNA expression by in situ hybridization (ISH) allowing for the direct assessment of tumor epithelial expression of miRNAs. This co-localization based approach (called qISH) utilizes DAPI and cytokeratin immunofluorescence to establish subcellular compartments in the tumor epithelia, then multiplexed with the miRNA ISH, allows for quantitative measurement of miRNA expression within these compartments. We use this approach to assess miR-21, miR-92a, miR-34a, and miR-221 expression in 473 breast cancer specimens on tissue microarrays. We found that miR-221 levels are prognostic in breast cancer illustrating the high-throughput method and confirming that miRNAs can be valuable biomarkers in cancer. Furthermore, in applying this method we found that the inverse relationship between miRNAs and proposed target proteins is difficult to discern in large population cohorts. Our method demonstrates an approach for large cohort, tissue microarray-based assessment of miRNA expression.
Collapse
|
30
|
Abstract
Uncontrolled cell survival, growth, angiogenesis and metastasis are essential hallmarks of cancer. Genetic and biochemical data have demonstrated that the growth and motility factor hepatocyte growth factor/scatter factor (HGF/SF) and its receptor, the tyrosine kinase MET, have a causal role in all of these processes, thus providing a strong rationale for targeting these molecules in cancer. Parallel progress in understanding the structure and function of HGF/SF, MET and associated signalling components has led to the successful development of blocking antibodies and a large number of small-molecule MET kinase inhibitors. In this Review, we discuss these advances, as well as results from recent clinical studies that demonstrate that inhibiting MET signalling in several types of solid human tumours has major therapeutic value.
Collapse
Affiliation(s)
- Ermanno Gherardi
- Medical Research Council (MRC) Centre, Hills Road, Cambridge CB2 2QH, UK.
| | | | | | | |
Collapse
|
31
|
Zillhardt M, Park SM, Romero IL, Sawada K, Montag A, Krausz T, Yamada SD, Peter ME, Lengyel E. Foretinib (GSK1363089), an orally available multikinase inhibitor of c-Met and VEGFR-2, blocks proliferation, induces anoikis, and impairs ovarian cancer metastasis. Clin Cancer Res 2011; 17:4042-51. [PMID: 21551255 PMCID: PMC3169439 DOI: 10.1158/1078-0432.ccr-10-3387] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
PURPOSE Currently, there are no approved targeted therapies for the treatment of ovarian cancer, despite the fact that it is the most lethal gynecological malignancy. One proposed target is c-Met, which has been shown to be an important prognostic indicator in a number of malignancies, including ovarian cancer. The objective of this study was to determine whether an orally available multikinase inhibitor of c-Met and vascular endothelial growth factor receptor-2 (foretinib, GSK1363089) blocks ovarian cancer growth. EXPERIMENTAL DESIGN The effect of foretinib was tested in a genetic mouse model of endometrioid ovarian cancer, several ovarian cancer cell lines, and an organotypic 3D model of the human omentum. RESULTS In the genetic mouse model, treatment with foretinib prevented the progression of primary tumors to invasive adenocarcinoma. Invasion through the basement membrane was completely blocked in treated mice, whereas in control mice, invasive tumors entirely replaced the normal ovary. In 2 xenograft mouse models using human ovarian cancer cell lines, the inhibitor reduced overall tumor burden (86% inhibition, P < 0.0001) and metastasis (67% inhibition, P < 0.0001). The mechanism of inhibition by foretinib involved (a) inhibition of c-Met activation and downstream signaling, (b) reduction of ovarian cancer cell adhesion, (c) a block in migration and invasion, (d) reduced proliferation mediated by a G(2)-M cell-cycle arrest, and (e) induction of anoikis. CONCLUSIONS This study shows that foretinib blocks tumorigenesis and reduces invasive tumor growth in different models of ovarian cancer by affecting several critical tumor functions. We believe that it provides a rationale for the further clinical development of foretinib for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Marion Zillhardt
- Departments of Obstetrics and Gynecology/Section of Gynecologic Oncology – Center for Integrative Science
| | - Sun-Mi Park
- Department of Medicine/ Section of Hematology and Oncology, Northwestern University, Chicago, IL
| | - Iris L. Romero
- Departments of Obstetrics and Gynecology/Section of Gynecologic Oncology – Center for Integrative Science
| | - Kenjiro Sawada
- Departments of Obstetrics and Gynecology/Section of Gynecologic Oncology – Center for Integrative Science
| | | | | | - S. Diane Yamada
- Departments of Obstetrics and Gynecology/Section of Gynecologic Oncology – Center for Integrative Science
| | - Marcus E. Peter
- Department of Medicine/ Section of Hematology and Oncology, Northwestern University, Chicago, IL
| | - Ernst Lengyel
- Departments of Obstetrics and Gynecology/Section of Gynecologic Oncology – Center for Integrative Science
| |
Collapse
|
32
|
Cecchi F, Rabe DC, Bottaro DP. Targeting the HGF/Met signalling pathway in cancer. Eur J Cancer 2010; 46:1260-70. [PMID: 20303741 PMCID: PMC3412517 DOI: 10.1016/j.ejca.2010.02.028] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 02/16/2010] [Indexed: 12/13/2022]
Abstract
Under normal conditions, hepatocyte growth factor (HGF)-induced Met tyrosine kinase (TK) activation is tightly regulated by paracrine ligand delivery, ligand activation at the target cell surface, and ligand activated receptor internalisation and degradation. Despite these controls, HGF/Met signalling contributes to oncogenesis and tumour progression in several cancers and promotes aggressive cellular invasiveness that is strongly linked to tumour metastasis. The prevalence of HGF/Met pathway activation in human malignancies has driven rapid growth in cancer drug development programmes. Pathway inhibitors can be divided broadly into biologicals and low molecular weight synthetic TK inhibitors; of these, the latter now outnumber all other inhibitor types. We review here the basic properties of HGF/Met pathway antagonists now in preclinical and clinical development as well as the latest clinical trial results. The main challenges facing the effective use of HGF/Met-targeted antagonists for cancer treatment include optimal patient selection, diagnostic and pharmacodynamic biomarker development, and the identification and testing of optimal therapy combinations. The wealth of basic information, analytical reagents and model systems available concerning HGF/Met oncogenic signalling will continue to be invaluable in meeting these challenges and moving expeditiously toward more effective disease control.
Collapse
Affiliation(s)
- Fabiola Cecchi
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| | | | | |
Collapse
|
33
|
Current World Literature. Curr Opin Obstet Gynecol 2010; 22:87-93. [DOI: 10.1097/gco.0b013e328335462f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Hanna JA, Bordeaux J, Rimm DL, Agarwal S. The function, proteolytic processing, and histopathology of Met in cancer. Adv Cancer Res 2009; 103:1-23. [PMID: 19854350 DOI: 10.1016/s0065-230x(09)03001-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The hepatocyte growth factor (HGF) and its receptor, the Met receptor tyrosine kinase, form a signaling network promoting cell proliferation, invasion, and survival in normal and cancer cells. Improper regulation of this pathway is attributed to many cancer types through overexpression, activating mutations, or autocrine loop formation. Many studies describe the localization of Met as membranous/cytoplasmic, but some studies using antibodies targeted to the C-terminal domain of Met report nuclear localization. This chapter seeks to highlight the histopathology and expression of Met in cancer and its association with clinicopathological characteristics. We also discuss recent studies of the proteolytic processing of Met and effects of the processing on the subcellular localization of Met. Finally, we comment on Met as a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Jason A Hanna
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
35
|
Met induces diverse mammary carcinomas in mice and is associated with human basal breast cancer. Proc Natl Acad Sci U S A 2009; 106:12909-14. [PMID: 19567831 DOI: 10.1073/pnas.0810403106] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Understanding the signaling pathways that drive aggressive breast cancers is critical to the development of effective therapeutics. The oncogene MET is associated with decreased survival in breast cancer, yet the role that MET plays in the various breast cancer subtypes is unclear. We describe a knockin mouse with mutationally activated Met (Met(mut)) that develops a high incidence of diverse mammary tumors with basal characteristics, including metaplasia, absence of progesterone receptor and ERBB2 expression, and expression of cytokeratin 5. With gene expression and tissue microarray analysis, we show that high MET expression in human breast cancers significantly correlated with estrogen receptor negative/ERBB2 negative tumors and with basal breast cancers. Few treatment options exist for breast cancers of the basal or trastuzumab-resistant ERBB2 subtypes. We conclude from these studies that MET may play a critical role in the development of the most aggressive breast cancers and may be a rational therapeutic target.
Collapse
|
36
|
A highly invasive human glioblastoma pre-clinical model for testing therapeutics. J Transl Med 2008; 6:77. [PMID: 19055779 PMCID: PMC2645376 DOI: 10.1186/1479-5876-6-77] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 12/03/2008] [Indexed: 11/10/2022] Open
Abstract
Animal models greatly facilitate understanding of cancer and importantly, serve pre-clinically for evaluating potential anti-cancer therapies. We developed an invasive orthotopic human glioblastoma multiforme (GBM) mouse model that enables real-time tumor ultrasound imaging and pre-clinical evaluation of anti-neoplastic drugs such as 17-(allylamino)-17-demethoxy geldanamycin (17AAG). Clinically, GBM metastasis rarely happen, but unexpectedly most human GBM tumor cell lines intrinsically possess metastatic potential. We used an experimental lung metastasis assay (ELM) to enrich for metastatic cells and three of four commonly used GBM lines were highly metastatic after repeated ELM selection (M2). These GBM-M2 lines grew more aggressively orthotopically and all showed dramatic multifold increases in IL6, IL8, MCP-1 and GM-CSF expression, cytokines and factors that are associated with GBM and poor prognosis. DBM2 cells, which were derived from the DBTRG-05MG cell line were used to test the efficacy of 17AAG for treatment of intracranial tumors. The DMB2 orthotopic xenografts form highly invasive tumors with areas of central necrosis, vascular hyperplasia and intracranial dissemination. In addition, the orthotopic tumors caused osteolysis and the skull opening correlated to the tumor size, permitting the use of real-time ultrasound imaging to evaluate antitumor drug activity. We show that 17AAG significantly inhibits DBM2 tumor growth with significant drug responses in subcutaneous, lung and orthotopic tumor locations. This model has multiple unique features for investigating the pathobiology of intracranial tumor growth and for monitoring systemic and intracranial responses to antitumor agents.
Collapse
|