1
|
Weiss KR, Huisken J, Khanjani N, Bakalov V, Engle ML, Krzyzanowski MC, Madden T, Maiese DR, Waterfield JR, Williams DN, Wood L, Wu X, Hamilton CM, Huggins W. T-CLEARE: a pilot community-driven tissue clearing protocol repository. Front Bioeng Biotechnol 2024; 12:1304622. [PMID: 39351064 PMCID: PMC11439823 DOI: 10.3389/fbioe.2024.1304622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/18/2024] [Indexed: 10/04/2024] Open
Abstract
Selecting and implementing a tissue clearing protocol is challenging. Established more than 100 years ago, tissue clearing is still a rapidly evolving field of research. There are currently many published protocols to choose from, and each performs better or worse across a range of key evaluation factors (e.g., speed, cost, tissue stability, fluorescence quenching). Additionally, tissue clearing protocols are often optimized for specific experimental contexts, and applying an existing protocol to a new problem can require a lengthy period of adaptation by trial and error. Although the primary literature and review articles provide a useful starting point for optimization, there is growing recognition that results can vary dramatically with changes to tissue type or antibody used. To help address this issue, we have developed a novel, freely available repository of tissue clearing protocols named T-CLEARE (Tissue CLEAring protocol REpository; https://doryworkspace.org/doryviz). T-CLEARE incorporates community responses to an open survey designed to capture details not commonly found in the scientific literature, including modifications to published protocols required for specific use cases and instances when tissue clearing protocols did not perform well (negative results). The goal of T-CLEARE is to help the community share evaluations and modifications of tissue clearing protocols for various tissue types and potentially identify best-in-class methods for a given application.
Collapse
Affiliation(s)
- Kurt R. Weiss
- Morgridge Institute for Research, Madison, WI, United States
| | - Jan Huisken
- Morgridge Institute for Research, Madison, WI, United States
| | - Neda Khanjani
- Mark and Mary Stevens Neuroimaging and Informatics Institute, Laboratory of Neuro Imaging, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| | - Vesselina Bakalov
- Bioinformatics and Computational Biology Program, RTI International, Durham, NC, United States
| | - Michelle L. Engle
- Bioinformatics and Computational Biology Program, RTI International, Durham, NC, United States
| | | | - Tom Madden
- Bioinformatics and Computational Biology Program, RTI International, Durham, NC, United States
| | - Deborah R. Maiese
- Bioinformatics and Computational Biology Program, RTI International, Durham, NC, United States
| | - Justin R. Waterfield
- Bioinformatics and Computational Biology Program, RTI International, Durham, NC, United States
| | - David N. Williams
- Bioinformatics and Computational Biology Program, RTI International, Durham, NC, United States
| | - Lauren Wood
- Bioinformatics and Computational Biology Program, RTI International, Durham, NC, United States
| | - Xin Wu
- Bioinformatics and Computational Biology Program, RTI International, Durham, NC, United States
| | - Carol M. Hamilton
- Bioinformatics and Computational Biology Program, RTI International, Durham, NC, United States
| | - Wayne Huggins
- Bioinformatics and Computational Biology Program, RTI International, Durham, NC, United States
| |
Collapse
|
2
|
Weiss K, Huisken J, Bakalov V, Engle M, Gridley L, Krzyzanowski MC, Madden T, Maiese D, Waterfield J, Williams D, Wu X, Hamilton CM, Huggins W. T-CLEARE: A Pilot Community-Driven Tissue-Clearing Protocol Repository. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531970. [PMID: 36945489 PMCID: PMC10028991 DOI: 10.1101/2023.03.09.531970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Selecting and implementing a tissue-clearing protocol is challenging. Established more than 100 years ago, tissue clearing is still a rapidly evolving field of research. There are currently many published protocols to choose from, and each performs better or worse across a range of key evaluation factors (e.g., speed, cost, tissue stability, fluorescence quenching). Additionally, tissue-clearing protocols are often optimized for specific experimental contexts, and applying an existing protocol to a new problem can require a lengthy period of adaptation by trial and error. Although the primary literature and review articles provide a useful starting point for optimization, there is growing recognition that many articles do not provide sufficient detail to replicate or reproduce experimental results. To help address this issue, we have developed a novel, freely available repository of tissue-clearing protocols named T-CLEARE (Tissue CLEAring protocol REpository; https://doryworkspace.org/doryviz). T-CLEARE incorporates community responses to an open survey designed to capture details not commonly found in the scientific literature, including modifications to published protocols required for specific use cases and instances when tissue-clearing protocols did not perform well (negative results). The goal of T-CLEARE is to provide a forum for the community to share evaluations and modifications of tissue-clearing protocols for various tissue types and potentially identify best-in-class methods for a given application.
Collapse
Affiliation(s)
- Kurt Weiss
- Morgridge Institute for Research, 330 N Orchard Street, Madison, WI, 53715, USA
| | - Jan Huisken
- Morgridge Institute for Research, 330 N Orchard Street, Madison, WI, 53715, USA
| | - Vesselina Bakalov
- Bioinformatics and Computational Biology Program, RTI International, 3040 East Cornwallis Road, Research Triangle Park, NC, 27709, USA
| | - Michelle Engle
- Bioinformatics and Computational Biology Program, RTI International, 3040 East Cornwallis Road, Research Triangle Park, NC, 27709, USA
| | - Lauren Gridley
- Bioinformatics and Computational Biology Program, RTI International, 3040 East Cornwallis Road, Research Triangle Park, NC, 27709, USA
| | - Michelle C Krzyzanowski
- Bioinformatics and Computational Biology Program, RTI International, 3040 East Cornwallis Road, Research Triangle Park, NC, 27709, USA
| | - Tom Madden
- Bioinformatics and Computational Biology Program, RTI International, 3040 East Cornwallis Road, Research Triangle Park, NC, 27709, USA
| | - Deborah Maiese
- Bioinformatics and Computational Biology Program, RTI International, 3040 East Cornwallis Road, Research Triangle Park, NC, 27709, USA
| | - Justin Waterfield
- Bioinformatics and Computational Biology Program, RTI International, 3040 East Cornwallis Road, Research Triangle Park, NC, 27709, USA
| | - David Williams
- Bioinformatics and Computational Biology Program, RTI International, 3040 East Cornwallis Road, Research Triangle Park, NC, 27709, USA
| | - Xin Wu
- Bioinformatics and Computational Biology Program, RTI International, 3040 East Cornwallis Road, Research Triangle Park, NC, 27709, USA
| | - Carol M Hamilton
- Bioinformatics and Computational Biology Program, RTI International, 3040 East Cornwallis Road, Research Triangle Park, NC, 27709, USA
| | - Wayne Huggins
- Bioinformatics and Computational Biology Program, RTI International, 3040 East Cornwallis Road, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
3
|
Kiemen AL, Damanakis AI, Braxton AM, He J, Laheru D, Fishman EK, Chames P, Pérez CA, Wu PH, Wirtz D, Wood LD, Hruban RH. Tissue clearing and 3D reconstruction of digitized, serially sectioned slides provide novel insights into pancreatic cancer. MED 2023; 4:75-91. [PMID: 36773599 PMCID: PMC9922376 DOI: 10.1016/j.medj.2022.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/06/2022] [Accepted: 11/23/2022] [Indexed: 01/26/2023]
Abstract
Pancreatic cancer is currently the third leading cause of cancer death in the United States. The clinical hallmarks of this disease include abdominal pain that radiates to the back, the presence of a hypoenhancing intrapancreatic lesion on imaging, and widespread liver metastases. Technologies such as tissue clearing and three-dimensional (3D) reconstruction of digitized serially sectioned hematoxylin and eosin-stained slides can be used to visualize large (up to 2- to 3-centimeter cube) tissues at cellular resolution. When applied to human pancreatic cancers, these 3D visualization techniques have provided novel insights into the basis of a number of the clinical characteristics of this disease. Here, we describe the clinical features of pancreatic cancer, review techniques for clearing and the 3D reconstruction of digitized microscope slides, and provide examples that illustrate how 3D visualization of human pancreatic cancer at the microscopic level has revealed features not apparent in 2D microscopy and, in so doing, has closed the gap between bench and bedside. Compared with animal models and 2D microscopy, studies of human tissues in 3D can reveal the difference between what can happen and what does happen in human cancers.
Collapse
Affiliation(s)
- Ashley L Kiemen
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Chemical & Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA
| | - Alexander Ioannis Damanakis
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of General, Visceral, Cancer and Transplant Surgery, University Hospital of Cologne, Cologne, Germany
| | - Alicia M Braxton
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jin He
- Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Daniel Laheru
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Elliot K Fishman
- Department of Radiology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Patrick Chames
- Antibody Therapeutics and Immunotargeting Team, Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Cristina Almagro Pérez
- Department of Chemical & Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA
| | - Pei-Hsun Wu
- Department of Chemical & Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA
| | - Denis Wirtz
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Chemical & Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA
| | - Laura D Wood
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | - Ralph H Hruban
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
4
|
Brenna C, Simioni C, Varano G, Conti I, Costanzi E, Melloni M, Neri LM. Optical tissue clearing associated with 3D imaging: application in preclinical and clinical studies. Histochem Cell Biol 2022; 157:497-511. [PMID: 35235045 PMCID: PMC9114043 DOI: 10.1007/s00418-022-02081-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2022] [Indexed: 12/23/2022]
Abstract
Understanding the inner morphology of intact tissues is one of the most competitive challenges in modern biology. Since the beginning of the twentieth century, optical tissue clearing (OTC) has provided solutions for volumetric imaging, allowing the microscopic visualization of thick sections of tissue, organoids, up to whole organs and organisms (for example, mouse or rat). Recently, tissue clearing has also been introduced in clinical settings to achieve a more accurate diagnosis with the support of 3D imaging. This review aims to give an overview of the most recent developments in OTC and 3D imaging and to illustrate their role in the field of medical diagnosis, with a specific focus on clinical applications.
Collapse
Affiliation(s)
- Cinzia Brenna
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy.,Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Carolina Simioni
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121, Ferrara, Italy.,LTTA - Electron Microscopy Center, University of Ferrara, 44121, Ferrara, Italy
| | - Gabriele Varano
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Ilaria Conti
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Eva Costanzi
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Mattia Melloni
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - Luca Maria Neri
- Department of Translational Medicine, University of Ferrara, 44121, Ferrara, Italy. .,LTTA - Electron Microscopy Center, University of Ferrara, 44121, Ferrara, Italy.
| |
Collapse
|
5
|
Sun Q, Tiziana P, Khan AUM, Heuveline V, Gretz N. A simple optical tissue clearing pipeline for 3D vasculature imaging of the mediastinal organs in mice. Int J Exp Pathol 2021; 102:218-227. [PMID: 34613652 DOI: 10.1111/iep.12399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 12/23/2022] Open
Abstract
Optical tissue clearing (OTC) methods render tissue transparent by matching the refractive index within a sample to enable three-dimensional (3D) imaging with advanced microscopes. The application of OTC method in mediastinal organs in mice remains poorly understand. Our aim was to establish a simple protocol pipeline for 3D imaging of the mediastinal organs in mice. Trachea, oesophagus, thymus and heart were harvested from mice after retrograde perfusion via the abdominal aorta. We combined and optimized antibody labelling of thick tissue samples, OTC with cheap and non-toxic solvent ethyl cinnamate (ECi), and light-sheet fluorescence microscopy (LSFM) or laser confocal fluorescence microscopy (LCFM) to visualize the vasculature of those tissues. A high degree of optical transparency of trachea, oesophagus, thymus and heart was achieved after ECi-based OTC. With anti-CD31 antibody immunofluorescence labelling before ECi-based OTC, the vasculature of these tissues with their natural morphology, location and organizational network was imaged using LSFM or LCFM. This simple protocol pipeline provides an easy-to-setup and comprehensive way to study the vasculature of mediastinal organs in 3D without any special equipment. We anticipate that it will facilitate diverse applications in biomedical research of thoracic diseases and even other organs.
Collapse
Affiliation(s)
- Quanchao Sun
- Department of Thoracic Surgery, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.,Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Institute for Medical Technology, University of Heidelberg and University of Applied Sciences, Mannheim, Germany
| | - Picascia Tiziana
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Institute for Medical Technology, University of Heidelberg and University of Applied Sciences, Mannheim, Germany
| | - Arif Ul Maula Khan
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Institute for Medical Technology, University of Heidelberg and University of Applied Sciences, Mannheim, Germany
| | - Vincent Heuveline
- Director of the Computing Centre, Heidelberg University, Heidelberg, Germany
| | - Norbert Gretz
- Medical Research Center, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Institute for Medical Technology, University of Heidelberg and University of Applied Sciences, Mannheim, Germany
| |
Collapse
|
6
|
Abstract
This review focuses on the human pancreatic islet-including its structure, cell composition, development, function, and dysfunction. After providing a historical timeline of key discoveries about human islets over the past century, we describe new research approaches and technologies that are being used to study human islets and how these are providing insight into human islet physiology and pathophysiology. We also describe changes or adaptations in human islets in response to physiologic challenges such as pregnancy, aging, and insulin resistance and discuss islet changes in human diabetes of many forms. We outline current and future interventions being developed to protect, restore, or replace human islets. The review also highlights unresolved questions about human islets and proposes areas where additional research on human islets is needed.
Collapse
Affiliation(s)
- John T Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Diane C Saunders
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Marcela Brissova
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Alvin C Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| |
Collapse
|
7
|
Wakiya T, Ishido K, Yoshizawa T, Kanda T, Hakamada K. Roles of the nervous system in pancreatic cancer. Ann Gastroenterol Surg 2021; 5:623-633. [PMID: 34585047 PMCID: PMC8452481 DOI: 10.1002/ags3.12459] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/04/2021] [Accepted: 03/14/2021] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), with its extremely poor prognosis, presents a substantial health problem worldwide. Outcomes have improved thanks to progress in surgical technique, chemotherapy, pre-/postoperative management, and centralization of patient care to high-volume centers. However, our goals are yet to be met. Recently, exome sequencing using PDAC surgical specimens has demonstrated that the most frequently altered genes were the axon guidance genes, indicating involvement of the nervous system in PDAC carcinogenesis. Moreover, perineural invasion has been widely identified as one poor prognostic factor. The combination of innovative technologies and extensive clinician experience with the nervous system come together here to create a new treatment option. However, evidence has emerged that suggests that the relationship between cancer and nerves in PDAC, the underlying mechanism, is not fully understood. In an attempt to tackle this lethal cancer, this review summarizes the anatomy and physiology of the pancreas and discusses the role of the nervous system in the pathophysiology of PDAC.
Collapse
Affiliation(s)
- Taiichi Wakiya
- Department of Gastroenterological SurgeryHirosaki University Graduate School of MedicineHirosakiJapan
| | - Keinosuke Ishido
- Department of Gastroenterological SurgeryHirosaki University Graduate School of MedicineHirosakiJapan
| | - Tadashi Yoshizawa
- Department of Pathology and BioscienceHirosaki University Graduate School of MedicineHirosakiJapan
| | - Taishu Kanda
- Department of Gastroenterological SurgeryHirosaki University Graduate School of MedicineHirosakiJapan
| | - Kenichi Hakamada
- Department of Gastroenterological SurgeryHirosaki University Graduate School of MedicineHirosakiJapan
| |
Collapse
|
8
|
Urea-based amino sugar agent clears murine liver and preserves protein fluorescence and lipophilic dyes. Biotechniques 2021; 70:72-80. [PMID: 33467918 PMCID: PMC7983039 DOI: 10.2144/btn-2020-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Five established clearing protocols were compared with a modified and simplified method to determine an optimal clearing reagent for three-dimensionally visualizing fluorophores in the murine liver, a challenging organ to clear. We report successful clearing of whole liver lobes by modification of an established protocol (UbasM) using only Ub-1, a urea-based amino sugar reagent, in a simpler protocol that requires only a 24-h processing time. With Ub-1 alone, we observed sufficiently preserved liver tissue structure in three dimensions along with excellent preservation of fluorophore emissions from endogenous protein reporters and lipophilic tracer dyes. This streamlined technique can be used for 3D cell lineage tracing and fluoroprobe-based reporter gene expression to compare various experimental conditions. This study presents a simplified protocol for optically clearing murine liver tissue in only 24 h using one simple urea-based amino sugar solution and a single incubation. This method preserves fluorescence of transgenically expressed proteins and lipophilic tracer dyes within the context of native spatial morphology.
Collapse
|
9
|
Campbell-Thompson M, Tang SC. Pancreas Optical Clearing and 3-D Microscopy in Health and Diabetes. Front Endocrinol (Lausanne) 2021; 12:644826. [PMID: 33981285 PMCID: PMC8108133 DOI: 10.3389/fendo.2021.644826] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
Although first described over a hundred years ago, tissue optical clearing is undergoing renewed interest due to numerous advances in optical clearing methods, microscopy systems, and three-dimensional (3-D) image analysis programs. These advances are advantageous for intact mouse tissues or pieces of human tissues because samples sized several millimeters can be studied. Optical clearing methods are particularly useful for studies of the neuroanatomy of the central and peripheral nervous systems and tissue vasculature or lymphatic system. Using examples from solvent- and aqueous-based optical clearing methods, the mouse and human pancreatic structures and networks will be reviewed in 3-D for neuro-insular complexes, parasympathetic ganglia, and adipocyte infiltration as well as lymphatics in diabetes. Optical clearing with multiplex immunofluorescence microscopy provides new opportunities to examine the role of the nervous and circulatory systems in pancreatic and islet functions by defining their neurovascular anatomy in health and diabetes.
Collapse
Affiliation(s)
- Martha Campbell-Thompson
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
- *Correspondence: Martha Campbell-Thompson, ; Shiue-Cheng Tang,
| | - Shiue-Cheng Tang
- Department of Medical Science and Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
- *Correspondence: Martha Campbell-Thompson, ; Shiue-Cheng Tang,
| |
Collapse
|
10
|
Fiedler S, Wünnemann H, Hofmann I, Theobalt N, Feuchtinger A, Walch A, Schwaiger J, Wanke R, Blutke A. A practical guide to unbiased quantitative morphological analyses of the gills of rainbow trout (Oncorhynchus mykiss) in ecotoxicological studies. PLoS One 2020; 15:e0243462. [PMID: 33296424 PMCID: PMC7725368 DOI: 10.1371/journal.pone.0243462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/21/2020] [Indexed: 12/28/2022] Open
Abstract
Rainbow trout (Oncorhynchus mykiss) are frequently used as experimental animals in ecotoxicological studies, in which they are experimentally exposed to defined concentrations of test substances, such as heavy metals, pesticides, or pharmaceuticals. Following exposure to a broad variety of aquatic pollutants, early morphologically detectable toxic effects often manifest in alterations of the gills. Suitable methods for an accurate and unbiased quantitative characterization of the type and the extent of morphological gill alterations are therefore essential prerequisites for recognition, objective evaluation and comparison of the severity of gill lesions. The aim of the present guidelines is to provide practicable, standardized and detailed protocols for the application of unbiased quantitative stereological analyses of relevant morphological parameters of the gills of rainbow trout. These gill parameters inter alia include the total volume of the primary and secondary gill lamellae, the surface area of the secondary gill lamellae epithelium (i.e., the respiratory surface) and the thickness of the diffusion barrier. The featured protocols are adapted to fish of frequently used body size classes (300-2000 g). They include well-established, conventional sampling methods, probes and test systems for unbiased quantitative stereological analyses of light- and electron microscopic 2-D gill sections, as well as the application of modern 3-D light sheet fluorescence microscopy (LSFM) of optically cleared gill samples as an innovative, fast and efficient quantitative morphological analysis approach. The methods shown here provide a basis for standardized and representative state-of-the-art quantitative morphological analyses of trout gills, ensuring the unbiasedness and reproducibility, as well as the intra- and inter-study comparability of analyses results. Their broad implementation will therefore significantly contribute to the reliable identification of no observed effect concentration (NOEC) limits in ecotoxicological studies and, moreover, to limit the number of experimental animals by reduction of unnecessary repetition of experiments.
Collapse
Affiliation(s)
- Sonja Fiedler
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hannah Wünnemann
- Unit 73 Aquatic Ecotoxicology, Microbial Ecology, Bavarian Environment Agency, Wielenbach, Germany
| | - Isabel Hofmann
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Natalie Theobalt
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Julia Schwaiger
- Unit 73 Aquatic Ecotoxicology, Microbial Ecology, Bavarian Environment Agency, Wielenbach, Germany
| | - Rüdiger Wanke
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Andreas Blutke
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
- * E-mail:
| |
Collapse
|
11
|
Mesoscopic 3D imaging of pancreatic cancer and Langerhans islets based on tissue autofluorescence. Sci Rep 2020; 10:18246. [PMID: 33106532 PMCID: PMC7588461 DOI: 10.1038/s41598-020-74616-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/05/2020] [Indexed: 12/16/2022] Open
Abstract
The possibility to assess pancreatic anatomy with microscopic resolution in three dimensions (3D) would significantly add to pathological analyses of disease processes. Pancreatic ductal adenocarcinoma (PDAC) has a bleak prognosis with over 90% of the patients dying within 5 years after diagnosis. Cure can be achieved by surgical resection, but the efficiency remains drearily low. Here we demonstrate a method that without prior immunohistochemical labelling provides insight into the 3D microenvironment and spread of PDAC and premalignant cysts in intact surgical biopsies. The method is based solely on the autofluorescent properties of the investigated tissues using optical projection tomography and/or light-sheet fluorescence microscopy. It does not interfere with subsequent histopathological analysis and may facilitate identification of tumor-free resection margins within hours. We further demonstrate how the developed approach can be used to assess individual volumes and numbers of the islets of Langerhans in unprecedently large biopsies of human pancreatic tissue, thus providing a new means by which remaining islet mass may be assessed in settings of diabetes. Generally, the method may provide a fast approach to provide new anatomical insight into pancreatic pathophysiology.
Collapse
|
12
|
Gómez-Gaviro MV, Sanderson D, Ripoll J, Desco M. Biomedical Applications of Tissue Clearing and Three-Dimensional Imaging in Health and Disease. iScience 2020; 23:101432. [PMID: 32805648 PMCID: PMC7452225 DOI: 10.1016/j.isci.2020.101432] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/27/2022] Open
Abstract
Three-dimensional (3D) optical imaging techniques can expand our knowledge about physiological and pathological processes that cannot be fully understood with 2D approaches. Standard diagnostic tests frequently are not sufficient to unequivocally determine the presence of a pathological condition. Whole-organ optical imaging requires tissue transparency, which can be achieved by using tissue clearing procedures enabling deeper image acquisition and therefore making possible the analysis of large-scale biological tissue samples. Here, we review currently available clearing agents, methods, and their application in imaging of physiological or pathological conditions in different animal and human organs. We also compare different optical tissue clearing methods discussing their advantages and disadvantages and review the use of different 3D imaging techniques for the visualization and image acquisition of cleared tissues. The use of optical tissue clearing resources for large-scale biological tissues 3D imaging paves the way for future applications in translational and clinical research.
Collapse
Affiliation(s)
- Maria Victoria Gómez-Gaviro
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain.
| | - Daniel Sanderson
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain
| | - Jorge Ripoll
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain
| | - Manuel Desco
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| |
Collapse
|
13
|
Hasanain A, Blanco BA, Yu J, Wolfgang CL. The importance of circulating and disseminated tumor cells in pancreatic cancer. Surg Open Sci 2020; 1:49-55. [PMID: 32754693 PMCID: PMC7391911 DOI: 10.1016/j.sopen.2019.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 07/24/2019] [Accepted: 08/30/2019] [Indexed: 12/26/2022] Open
Abstract
Pancreatic cancer is a lethal disease in a large part due to the systemic nature at the time of diagnosis. In those patients who undergo a potentially curative resection of pancreatic cancer, the overwhelming majority will have systemic relapse. Circulating tumor cells are an important mediator of the development of metastases. Circulating tumor cells have been identified in patients with clinically localized resectable pancreatic cancer and exist as several phenotypes. Mesenchymal and stem cell-like phenotypes of circulating tumor cells predict early recurrence and worse survival. This review focuses on the current understanding of circulating tumor cells in pancreatic cancer and how this information can be used in developing more effective therapy in the future.
Collapse
Affiliation(s)
- Alina Hasanain
- Department of Surgery, Division of Surgical Oncology, Johns Hopkins University, Baltimore, MD 21287.,The Johns Hopkins Pancreatic Cancer Precision Medicine Program
| | | | - Jun Yu
- Department of Surgery, Division of Surgical Oncology, Johns Hopkins University, Baltimore, MD 21287.,The Johns Hopkins Pancreatic Cancer Precision Medicine Program
| | - Christopher L Wolfgang
- Department of Surgery, Division of Surgical Oncology, Johns Hopkins University, Baltimore, MD 21287.,The Johns Hopkins Pancreatic Cancer Precision Medicine Program
| |
Collapse
|
14
|
Yoshizawa T, Hong SM, Jung D, Noë M, Kiemen A, Wu PH, Wirtz D, Hruban RH, Wood LD, Oshima K. Three-dimensional analysis of extrahepatic cholangiocarcinoma and tumor budding. J Pathol 2020; 251:400-410. [PMID: 32476131 PMCID: PMC9920311 DOI: 10.1002/path.5474] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/27/2020] [Accepted: 05/19/2020] [Indexed: 01/04/2023]
Abstract
Advances in tissue clearing and microscopy make it possible to study human diseases in three dimensions (3D). High-grade tumor budding is known to be associated with poor prognosis in various cancers; however, little is known about the 3D architecture of tumor budding. Using tissue clearing, we analyzed the 3D structure of tumor budding and E-cadherin expression in 31 extrahepatic cholangiocarcinomas. A total of 31 thick slabs (up to 5 mm) were harvested from surgically resected tumor tissue, including 27 hilar and 4 distal cholangiocarcinomas. Twenty-eight cases were adenocarcinoma, and three were undifferentiated carcinoma. After clearing, the tissues were immunolabeled with antibodies to cytokeratin 19 and to E-cadherin, and then visualized using light-sheet and confocal laser scanning microscopy. Tumor budding was evaluated in hematoxylin and eosin-stained sections (2D) using standard pathological criteria. Of the 31 cancers, 13 showed low-grade tumor budding and 18 showed high-grade tumor budding. First, 3D analysis revealed that the neoplastic cells in tumor buds of adenocarcinoma were typically not individual islands of cells, but rather tips of attenuated protrusions connected to the main tumor. Second, adenocarcinomas with low-grade tumor budding were composed predominantly of tubules that only focally form cords at the periphery. By contrast, adenocarcinomas with high-grade tumor budding predominantly formed cords in both centers and peripheries of the tumors. Third, adenocarcinoma with low-grade tumor budding was characterized by a few short protrusions with few branches, whereas adenocarcinoma with high-grade tumor budding was characterized by longer protrusions with more branching. Finally, immunolabeling of E-cadherin was stronger in the center of the adenocarcinoma but decreased at the tips of protrusions. E-cadherin loss was more extensive in the protrusions of high-grade tumor budding than in the protrusions of low-grade tumor budding. Our findings suggest that tumor buds as seen in 2D are, in fact, cross-sections of attenuated but contiguous protrusions extending from the main tumor. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Tadashi Yoshizawa
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA,Department of Pathology and Bioscience, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Seung-Mo Hong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - DongJun Jung
- Department of Medicine, Graduate school, University of Ulsan, Seoul, Republic of Korea
| | - Michaël Noë
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Ashley Kiemen
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Pei-Hsun Wu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Denis Wirtz
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ralph H Hruban
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA,Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Laura D Wood
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA,Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Kiyoko Oshima
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA,Correspondence to: K Oshima, Department of Pathology, Johns Hopkins Medical Institutions, Weinberg Building Room 2333, 401 N. Broadway, Baltimore, MD 21231, USA.
| |
Collapse
|
15
|
Hong SM, Jung D, Kiemen A, Gaida MM, Yoshizawa T, Braxton AM, Noë M, Lionheart G, Oshima K, Thompson ED, Burkhart R, Wu PH, Wirtz D, Hruban RH, Wood LD. Three-dimensional visualization of cleared human pancreas cancer reveals that sustained epithelial-to-mesenchymal transition is not required for venous invasion. Mod Pathol 2020; 33:639-647. [PMID: 31700162 PMCID: PMC10548439 DOI: 10.1038/s41379-019-0409-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/23/2019] [Accepted: 10/23/2019] [Indexed: 11/09/2022]
Abstract
Venous invasion is three times more common in pancreatic cancer than it is in other major cancers of the gastrointestinal tract, and venous invasion may explain why pancreatic cancer is so deadly. To characterize the patterns of venous invasion in pancreatic cancer, 52 thick slabs (up to 5 mm) of tissue were harvested from 52 surgically resected human ductal adenocarcinomas, cleared with a modified iDISCO method, and labeled with fluorescent-conjugated antibodies to cytokeratin 19, desmin, CD31, p53 and/or e-cadherin. Labeled three-dimensional (3D) pancreas cancer tissues were visualized with confocal laser scanning or light sheet microscopy. Multiple foci of venous and even arterial invasion were visualized. Venous invasion was detected more often in 3D (88%, 30/34 cases) than in conventional 2D slide evaluation (75%, 25/34 cases, P < 0.001). 3D visualization revealed pancreatic cancer cells crossing the walls of veins at multiple points, often at points where preexisting capillary structures bridge the blood vessels. The neoplastic cells often retained a ductal morphology (cohesive cells forming tubes) as they progressed from a stromal to intravenous location. Although immunolabeling with antibodies to e-cadherin revealed focal loss of expression at the leading edges of the cancers, the neoplastic cells within veins expressed e-cadherin and formed well-oriented glands. We conclude that venous invasion is almost universal in pancreatic cancer, suggesting that even surgically resectable PDAC has access to the venous spaces and thus the ability to disseminate widely. Furthermore, we observe that sustained epithelial-mesenchymal transition is not required for venous invasion in pancreatic cancer.
Collapse
Affiliation(s)
- Seung-Mo Hong
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - DongJun Jung
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Medical Science, Graduate School, University of Ulsan, Seoul, Republic of Korea
| | - Ashley Kiemen
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Matthias M Gaida
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Institute of Pathology, University Medical Center Mainz, Mainz, Germany
| | - Tadashi Yoshizawa
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Alicia M Braxton
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Michaël Noë
- Department of Oncology, the Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Gemma Lionheart
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Kiyoko Oshima
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Elizabeth D Thompson
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Oncology, the Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Richard Burkhart
- Department of Surgery, the Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Pei-Hsun Wu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Denis Wirtz
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ralph H Hruban
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA.
- Department of Oncology, the Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA.
| | - Laura D Wood
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA.
- Department of Oncology, the Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA.
| |
Collapse
|
16
|
|
17
|
Saylor J, Ma Z, Goodridge HS, Huang F, Cress AE, Pandol SJ, Shiao SL, Vidal AC, Wu L, Nickols NG, Gertych A, Knudsen BS. Spatial Mapping of Myeloid Cells and Macrophages by Multiplexed Tissue Staining. Front Immunol 2018; 9:2925. [PMID: 30619287 PMCID: PMC6302234 DOI: 10.3389/fimmu.2018.02925] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 11/29/2018] [Indexed: 12/15/2022] Open
Abstract
An array of phenotypically diverse myeloid cells and macrophages (MC&M) resides in the tumor microenvironment, requiring multiplexed detection systems for visualization. Here we report an automated, multiplexed staining approach, named PLEXODY, that consists of five MC&M-related fluorescently-tagged antibodies (anti - CD68, - CD163, - CD206, - CD11b, and - CD11c), and three chromogenic antibodies, reactive with high- and low-molecular weight cytokeratins and CD3, highlighting tumor regions, benign glands and T cells. The staining prototype and image analysis methods which include a pixel/area-based quantification were developed using tissues from inflamed colon and tonsil and revealed a unique tissue-specific composition of 14 MC&M-associated pixel classes. As a proof-of-principle, PLEXODY was applied to three cases of pancreatic, prostate and renal cancers. Across digital images from these cancer types we observed 10 MC&M-associated pixel classes at frequencies greater than 3%. Cases revealed higher frequencies of single positive compared to multi-color pixels and a high abundance of CD68+/CD163+ and CD68+/CD163+/CD206+ pixels. Significantly more CD68+ and CD163+ vs. CD11b+ and CD11c+ pixels were in direct contact with tumor cells and T cells. While the greatest percentage (~70%) of CD68+ and CD163+ pixels was 0–20 microns away from tumor and T cell borders, CD11b+ and CD11c+ pixels were detected up to 240 microns away from tumor/T cell masks. Together, these data demonstrate significant differences in densities and spatial organization of MC&M-associated pixel classes, but surprising similarities between the three cancer types.
Collapse
Affiliation(s)
- Joshua Saylor
- Departments of Biomedical Sciences, Pathology, Surgery and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Zhaoxuan Ma
- Departments of Biomedical Sciences, Pathology, Surgery and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Helen S Goodridge
- Departments of Biomedical Sciences, Pathology, Surgery and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Fangjin Huang
- Departments of Biomedical Sciences, Pathology, Surgery and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Anne E Cress
- Molecular and Cellular Biology, University of Arizona Cancer Center, University of Arizona, Tucson, AZ, United States
| | - Stephen J Pandol
- Departments of Biomedical Sciences, Pathology, Surgery and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Stephen L Shiao
- Departments of Biomedical Sciences, Pathology, Surgery and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Adriana C Vidal
- Departments of Biomedical Sciences, Pathology, Surgery and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Lily Wu
- Department of Molecular and Medical Pharmacology and Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Nicholas G Nickols
- Department of Molecular and Medical Pharmacology and Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Arkadiusz Gertych
- Departments of Biomedical Sciences, Pathology, Surgery and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Beatrice S Knudsen
- Departments of Biomedical Sciences, Pathology, Surgery and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|