1
|
Sohel HI, Kiyono T, Zahan UF, Razia S, Ishikawa M, Yamashita H, Kanno K, Sonia SB, Nakayama K, Kyo S. Establishment of a Novel In Vitro and In Vivo Model to Understand Molecular Carcinogenesis of Endometriosis-Related Ovarian Neoplasms. Int J Mol Sci 2025; 26:1995. [PMID: 40076621 PMCID: PMC11901000 DOI: 10.3390/ijms26051995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
The molecular mechanisms through which endometriosis-related ovarian neoplasms (ERONs) develop from benign endometrioma remain unclear. It is especially a long-standing mystery why ovarian endometrioma has the potential to develop into two representative histological subtypes: endometrioid ovarian carcinoma or clear cell ovarian carcinoma. This study aimed to investigate the molecular carcinogenesis of ERONs using newly developed in vitro and in vivo carcinogenesis models. Epithelial cells were isolated and purified from surgically removed benign endometrioma samples, followed by immortalization by overexpressing cyclinD1/CDK4 in combination with the human TERT gene. Immortalized cells were subjected to various molecular manipulations by combining knockout or overexpression of several candidate drivers, including ARID1A, KRAS, PIK3CA, AKT, and MYC, based on previous comprehensive genome-wide studies of ERONs. These cells were then inoculated into immunocompromised mice and evaluated for malignant transformation. Inoculated cells harboring a combination of three genetic alterations successfully developed tumors with malignant features in mice, whereas those with two genetic manipulations failed to do so. Especially, ARID1A gene knockout, combined with overexpressing the KRAS oncogenic mutant allele (or overexpressing AKT) and c-Myc overexpression led to efficient tumor formation. Of note, these three combinations of genetic alterations produced tumors that histologically represented typical clear cell carcinoma in SCID mice, while the same combination led to tumors with endometrioid histology in nude mice. A combination of ARID1A mutation, KRAS mutation or AKT activation, and c-Myc overexpression were confirmed to be the main candidate drivers for the development of ERONs, as suggested by comprehensive genetic analyses of ERONs. A tumor immune microenvironment involving B-cell signaling may contribute to the diverse histological phenotypes. The present model may help to clarify the molecular mechanisms of ERON carcinogenesis and understand their histological diversity and novel molecular targets.
Collapse
Affiliation(s)
- Hasibul Islam Sohel
- Department of Obstetrics and Gynecology, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan; (H.I.S.); (U.F.Z.); (M.I.); (H.Y.); (K.K.); (S.B.S.)
| | - Tohru Kiyono
- Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Kashiwa 277-8577, Japan;
| | - Umme Farzana Zahan
- Department of Obstetrics and Gynecology, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan; (H.I.S.); (U.F.Z.); (M.I.); (H.Y.); (K.K.); (S.B.S.)
| | - Sultana Razia
- Department of Legal Medicine, Shimane University Faculty of Medicine, 89-1 Enya-Cho, Izumo 693-8501, Japan;
| | - Masako Ishikawa
- Department of Obstetrics and Gynecology, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan; (H.I.S.); (U.F.Z.); (M.I.); (H.Y.); (K.K.); (S.B.S.)
| | - Hitomi Yamashita
- Department of Obstetrics and Gynecology, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan; (H.I.S.); (U.F.Z.); (M.I.); (H.Y.); (K.K.); (S.B.S.)
| | - Kosuke Kanno
- Department of Obstetrics and Gynecology, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan; (H.I.S.); (U.F.Z.); (M.I.); (H.Y.); (K.K.); (S.B.S.)
| | - Shahataj Begum Sonia
- Department of Obstetrics and Gynecology, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan; (H.I.S.); (U.F.Z.); (M.I.); (H.Y.); (K.K.); (S.B.S.)
| | - Kentaro Nakayama
- Department of Obstetrics and Gynecology, East Medical Center, Nagoya City University, Nagoya 464-8547, Japan
| | - Satoru Kyo
- Department of Obstetrics and Gynecology, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan; (H.I.S.); (U.F.Z.); (M.I.); (H.Y.); (K.K.); (S.B.S.)
| |
Collapse
|
2
|
Hu Y, Liu W, Fang W, Dong Y, Zhang H, Luo Q. Tumor energy metabolism: implications for therapeutic targets. MOLECULAR BIOMEDICINE 2024; 5:63. [PMID: 39609317 PMCID: PMC11604893 DOI: 10.1186/s43556-024-00229-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/30/2024] Open
Abstract
Tumor energy metabolism plays a crucial role in the occurrence, progression, and drug resistance of tumors. The study of tumor energy metabolism has gradually become an emerging field of tumor treatment. Recent studies have shown that epigenetic regulation is closely linked to tumor energy metabolism, influencing the metabolic remodeling and biological traits of tumor cells. This review focuses on the primary pathways of tumor energy metabolism and explores therapeutic strategies to target these pathways. It covers key areas such as glycolysis, the Warburg effect, mitochondrial function, oxidative phosphorylation, and the metabolic adaptability of tumors. Additionally, this article examines the role of the epigenetic regulator SWI/SNF complex in tumor metabolism, specifically its interactions with glucose, lipids, and amino acids. Summarizing therapeutic strategies aimed at these metabolic pathways, including inhibitors of glycolysis, mitochondrial-targeted drugs, exploitation of metabolic vulnerabilities, and recent developments related to SWI/SNF complexes as potential targets. The clinical significance, challenges, and future directions of tumor metabolism research are discussed, including strategies to overcome drug resistance, the potential of combination therapy, and the application of new technologies.
Collapse
Affiliation(s)
- Youwu Hu
- The Public Experimental Center of Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, Guizhou, 563003, China
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wanqing Liu
- The Public Experimental Center of Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, Guizhou, 563003, China
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - WanDi Fang
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yudi Dong
- The Public Experimental Center of Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, Guizhou, 563003, China
| | - Hong Zhang
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qing Luo
- The Public Experimental Center of Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, Guizhou, 563003, China.
- Guizhou Provincial Key Laboratory of Cell Engineering, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
3
|
Bostan IS, Mihaila M, Roman V, Radu N, Neagu MT, Bostan M, Mehedintu C. Landscape of Endometrial Cancer: Molecular Mechanisms, Biomarkers, and Target Therapy. Cancers (Basel) 2024; 16:2027. [PMID: 38893147 PMCID: PMC11171255 DOI: 10.3390/cancers16112027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Endometrial cancer is one the most prevalent gynecological cancers and, unfortunately, has a poor prognosis due to low response rates to traditional treatments. However, the progress in molecular biology and understanding the genetic mechanisms involved in tumor processes offers valuable information that has led to the current classification that describes four molecular subtypes of endometrial cancer. This review focuses on the molecular mechanisms involved in the pathogenesis of endometrial cancers, such as genetic mutations, defects in the DNA mismatch repair pathway, epigenetic changes, or dysregulation in angiogenic or hormonal signaling pathways. The preclinical genomic and molecular investigations presented allowed for the identification of some molecules that could be used as biomarkers to diagnose, predict, and monitor the progression of endometrial cancer. Besides the therapies known in clinical practice, targeted therapy is described as a new cancer treatment that involves identifying specific molecular targets in tumor cells. By selectively inhibiting these targets, key signaling pathways involved in cancer progression can be disrupted while normal cells are protected. The connection between molecular biomarkers and targeted therapy is vital in the fight against cancer. Ongoing research and clinical trials are exploring the use of standard therapy agents in combination with other treatment strategies like immunotherapy and anti-angiogenesis therapy to improve outcomes and personalize treatment for patients with endometrial cancer. This approach has the potential to transform the management of cancer patients. In conclusion, enhancing molecular tools is essential for stratifying the risk and guiding surgery, adjuvant therapy, and cancer treatment for women with endometrial cancer. In addition, the information from this review may have an essential value in the personalized therapy approach for endometrial cancer to improve the patient's life.
Collapse
Affiliation(s)
| | - Mirela Mihaila
- Stefan S. Nicolau Institute of Virology, Center of Immunology, Romanian Academy, 030304 Bucharest, Romania; (M.M.); (V.R.)
- Faculty of Pharmacy, Titu Maiorescu University, 040314 Bucharest, Romania
| | - Viviana Roman
- Stefan S. Nicolau Institute of Virology, Center of Immunology, Romanian Academy, 030304 Bucharest, Romania; (M.M.); (V.R.)
| | - Nicoleta Radu
- Department of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania;
- Biotechnology Department, National Institute for Chemistry and Petrochemistry R&D of Bucharest, 060021 Bucharest, Romania
| | - Monica Teodora Neagu
- Department of Immunology, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania;
| | - Marinela Bostan
- Stefan S. Nicolau Institute of Virology, Center of Immunology, Romanian Academy, 030304 Bucharest, Romania; (M.M.); (V.R.)
- Department of Immunology, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania;
| | - Claudia Mehedintu
- Filantropia Clinical Hospital, 011132 Bucharest, Romania; (I.-S.B.); (C.M.)
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 050471 Bucharest, Romania
| |
Collapse
|
4
|
Sasaki M, Sato Y, Nakanuma Y. Nestin may be a candidate marker for differential diagnosis between small duct type and large duct type intrahepatic cholangiocarcinomas. Pathol Res Pract 2024; 253:155061. [PMID: 38154357 DOI: 10.1016/j.prp.2023.155061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUNDS/AIMS Intrahepatic cholangiocarcinoma (iCCA) is subclassified into small and large duct types. These two subtypes show distinct differences in various clinicopathological features and possible cell origin and pathways of carcinogenesis, however, a differential diagnosis may be sometimes difficult. Given the type IV intermediate filament, Nestin, may be a candidate diagnostic marker for combined hepatocellular-cholangiocarcinoma (cHCC-CCA) and small duct type iCCAs, the significance of nestin as a differential diagnostic marker between small and large duct types of iCCAs was addressed in the present study. METHODS Nestin expression was immunohistochemically assessed in the sections from 36 patients with small duct-type iCCA, 30 with large duct-type iCCA, and 27 with extrahepatic cholangiocarcinoma (CCA). Nestin expression and its relationship with clinicopathological features and genetic alterations were investigated in small duct type iCCAs. RESULTS Nestin expression was detected in 17 small duct type iCCAs (47.2%), one large duct type iCCA (3.8%) and zero extrahepatic CCA. Nestin expression was significantly more frequent in the patients with small duct type iCCAs than in those with large duct type iCCA and extrahepatic CCA (p < 0.01). In 10 liver biopsies, all samples with nestin expression were small duct type iCCAs. Nestin-positive small duct type iCCAs were characterized by a higher histological grade, compared to Nestin-negative small duct type iCCAs (p < 0.01). Nestin-positive small duct type iCCAs tended to have 2 or more genetic alterations, but there was no statistic difference (p > 0.05). CONCLUSION Different nestin expression may reflect differences between small duct type iCCA and large duct type/extrahepatic CCA and may be a useful diagnostic marker for small duct type iCCAs.
Collapse
Affiliation(s)
- Motoko Sasaki
- Department of Human Pathology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan.
| | - Yasunori Sato
- Department of Human Pathology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Yasuni Nakanuma
- Division of Pathology, Fukui Saiseikai Hospital, Fukui, Japan
| |
Collapse
|
5
|
Li JJ, Lee CS. The Role of the AT-Rich Interaction Domain 1A Gene ( ARID1A) in Human Carcinogenesis. Genes (Basel) 2023; 15:5. [PMID: 38275587 PMCID: PMC10815128 DOI: 10.3390/genes15010005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
The switch/sucrose non-fermentable (SWI/SNF) (SWI/SNF) complex uses energy from ATP hydrolysis to mobilise nucleosomes on chromatin. Components of SWI/SNF are mutated in 20% of all human cancers, of which mutations in AT-rich binding domain protein 1A (ARID1A) are the most common. ARID1A is mutated in nearly half of ovarian clear cell carcinoma and around one-third of endometrial and ovarian carcinomas of the endometrioid type. This review will examine in detail the molecular functions of ARID1A, including its role in cell cycle control, enhancer regulation, and the prevention of telomerase activity. ARID1A has key roles in the maintenance of genomic integrity, including DNA double-stranded break repair, DNA decatenation, integrity of the cohesin complex, and reduction in replication stress, and is also involved in mismatch repair. The role of ARID1A loss in the pathogenesis of some of the most common human cancers is discussed, with a particular emphasis on gynaecological cancers. Finally, several promising synthetic lethal strategies, which exploit the specific vulnerabilities of ARID1A-deficient cancer cells, are briefly mentioned.
Collapse
Affiliation(s)
- Jing Jing Li
- Department of Anatomical Pathology, Liverpool Hospital, Liverpool, NSW 2170, Australia;
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia
| | - Cheok Soon Lee
- Department of Anatomical Pathology, Liverpool Hospital, Liverpool, NSW 2170, Australia;
- Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, NSW 2560, Australia
- South Western Sydney Clinical School, University of New South Wales, Liverpool, NSW 2170, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW 2010, Australia
| |
Collapse
|
6
|
Mandal J, Yu ZC, Shih IM, Wang TL. ARID1A loss activates MAPK signaling via DUSP4 downregulation. J Biomed Sci 2023; 30:94. [PMID: 38071325 PMCID: PMC10709884 DOI: 10.1186/s12929-023-00985-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/12/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND ARID1A, a tumor suppressor gene encoding BAF250, a protein participating in chromatin remodeling, is frequently mutated in endometrium-related malignancies, including ovarian or uterine clear cell carcinoma (CCC) and endometrioid carcinoma (EMCA). However, how ARID1A mutations alter downstream signaling to promote tumor development is yet to be established. METHODS We used RNA-sequencing (RNA-seq) to explore transcriptomic changes in isogenic human endometrial epithelial cells after deleting ARID1A. Chromatin immunoprecipitation sequencing (ChIP-seq) was employed to assess the active or repressive histone marks on DUSP4 promoter and regulatory regions. We validated our findings using genetically engineered murine endometroid carcinoma models, human endometroid carcinoma tissues, and in silico approaches. RESULTS RNA-seq revealed the downregulation of the MAPK phosphatase dual-specificity phosphatase 4 (DUSP4) in ARID1A-deficient cells. ChIP-seq demonstrated decreased histone acetylation marks (H3K27Ac, H3K9Ac) on DUSP4 regulatory regions as one of the causes for DUSP4 downregulation in ARID1A-deficient cells. Ectopic DUSP4 expression decreased cell proliferation, and pharmacologically inhibiting the MAPK pathway significantly mitigated tumor formation in vivo. CONCLUSIONS Our findings suggest that ARID1A protein transcriptionally modulates DUSP4 expression by remodeling chromatin, subsequently inactivating the MAPK pathway, leading to tumor suppression. The ARID1A-DUSP4-MAPK axis may be further considered for developing targeted therapies against ARID1A-mutated cancers.
Collapse
Affiliation(s)
- Jayaprakash Mandal
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zheng-Cheng Yu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ie-Ming Shih
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Tian-Li Wang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
7
|
Reid K, Camacho-Vanegas O, Pandya D, Camacho SC, Qiao RF, Kalir T, Padron-Rhenals MM, Beddoe AM, Dottino P, Martignetti JA. Deep molecular tracking over the 12-yr development of endometrial cancer from hyperplasia in a single patient. Cold Spring Harb Mol Case Stud 2023; 9:a006311. [PMID: 37848227 PMCID: PMC10815295 DOI: 10.1101/mcs.a006311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/04/2023] [Indexed: 10/19/2023] Open
Abstract
Although the progressive histologic steps leading to endometrial cancer (EndoCA), the most common female reproductive tract malignancy, from endometrial hyperplasia are well-established, the molecular changes accompanying this malignant transformation in a single patient have never been described. We had the unique opportunity to investigate the paired histologic and molecular features associated with the 12-yr development of EndoCA in a postmenopausal female who could not undergo hysterectomy and instead underwent progesterone treatment. Using a specially designed 58-gene next-generation sequencing panel, we analyzed a total of 10 sequential biopsy samples collected over this time frame. A total of eight pathogenic/likely pathogenic mutations in seven genes, APC, ARID1A, CTNNB1, CDKN2A, KRAS, PTEN, and TP53, were identified. A PTEN nonsense mutation p.W111* was present in all samples analyzed except histologically normal endometrium. Apart from this PTEN mutation, the only other recurrent mutation was KRAS G12D, which was present in six biopsy samplings, including histologically normal tissue obtained at the patient's first visit but not detectable in the cancer. The PTEN p.W111* mutant allele fractions were lowest in benign, inactive endometrial glands (0.7%), highest in adenocarcinoma (36.9%), and, notably, were always markedly reduced following progesterone treatment. To our knowledge, this report provides the first molecular characterization of EndoCA development in a single patient. A single PTEN mutation was present throughout the 12 years of cancer development. Importantly, and with potential significance toward medical and nonsurgical management of EndoCA, progesterone treatments were consistently noted to markedly decrease PTEN mutant allele fractions to precancerous levels.
Collapse
Affiliation(s)
- Katherine Reid
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA;
| | - Olga Camacho-Vanegas
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Deep Pandya
- Rudy L. Ruggles Biomedical Research Institute, Nuvance Health, Danbury, Connecticut 06810, USA
| | - Sandra Catalina Camacho
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Rui Fang Qiao
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Tamara Kalir
- Department of Obstetrics/Gynecology and Reproductive Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Maria M Padron-Rhenals
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Ann-Marie Beddoe
- Department of Obstetrics/Gynecology and Reproductive Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Peter Dottino
- Department of Obstetrics/Gynecology and Reproductive Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, Connecticut 06520, USA
- MDDx, Inc., Tarrytown, New York 10591, USA
| | - John A Martignetti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Rudy L. Ruggles Biomedical Research Institute, Nuvance Health, Danbury, Connecticut 06810, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Obstetrics/Gynecology and Reproductive Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- MDDx, Inc., Tarrytown, New York 10591, USA
| |
Collapse
|
8
|
Watanabe T, Soeda S, Okoshi C, Fukuda T, Yasuda S, Fujimori K. Landscape of somatic mutated genes and inherited susceptibility genes in gynecological cancer. J Obstet Gynaecol Res 2023; 49:2629-2643. [PMID: 37632362 DOI: 10.1111/jog.15766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/26/2023] [Indexed: 08/28/2023]
Abstract
Traditionally, gynecological cancers have been classified based on histology. Since remarkable advancements in next-generation sequencing technology have enabled the exploration of somatic mutations in various cancer types, comprehensive sequencing efforts have revealed the genomic landscapes of some common forms of human cancer. The genomic features of various gynecological malignancies have been reported by several studies of large-scale genomic cohorts, including The Cancer Genome Atlas. Although recent comprehensive genomic profiling tests, which can detect hundreds of genetic mutations at a time from cancer tissues or blood samples, have been increasingly used as diagnostic clinical biomarkers and in therapeutic management decisions, germline pathogenic variants associated with hereditary cancers can also be detected using this test. Gynecological cancers are closely related to genetic factors, with approximately 5% of endometrial cancer cases and 20% of ovarian cancer cases being caused by germline pathogenic variants. Hereditary breast and ovarian cancer syndrome and Lynch syndrome are the two major cancer susceptibility syndromes among gynecological cancers. In addition, several other hereditary syndromes have been reported to be associated with gynecological cancers. In this review, we highlight the genes for somatic mutation and germline pathogenic variants commonly seen in gynecological cancers. We first describe the relationship between clinicopathological attributes and somatic mutated genes. Subsequently, we discuss the characteristics and clinical management of inherited cancer syndromes resulting from pathogenic germline variants in gynecological malignancies.
Collapse
Affiliation(s)
- Takafumi Watanabe
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima, Japan
| | - Shu Soeda
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima, Japan
| | - Chihiro Okoshi
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima, Japan
| | - Toma Fukuda
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima, Japan
| | - Shun Yasuda
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima, Japan
| | - Keiya Fujimori
- Department of Obstetrics and Gynecology, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
9
|
Motoko S, Yasunori S, Yasuni N. Bile duct adenoma and small-sized small duct type intrahepatic cholangiocarcinoma show distinct differences in genetic alterations, expression of IMP3 and EZH2 and stromal and inflammatory components. Histopathology 2023. [PMID: 37140546 DOI: 10.1111/his.14932] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/11/2023] [Accepted: 04/13/2023] [Indexed: 05/05/2023]
Abstract
AIMS Given that bile duct adenoma was significantly more prevalent in the liver with small duct type intrahepatic cholangiocarcinoma (small duct iCCA), compared to other primary liver carcinomas, we examined the possibility of bile duct adenoma as a precursor of small duct iCCA by analysing genetic alterations and other features in bile duct adenomas. METHODS AND RESULTS Subjects included 33 bile duct adenomas and 17 small-sized (up to 2 cm in diameter) small duct iCCAs. Genetic alterations were examined by direct sequencing for hot-spot regions and immunohistochemical staining. The expression of p16INK4a , EZH2 and IMP3 and stromal and inflammatory components were also examined. Genetic alterations examined including BRAF were not detected in bile duct adenomas, whereas genetic alterations of p53 (47%), ARID1A (41%), PBRM1 (12%), MTAP (12%), IDH1 (6%), KRAS (6%) and TERT promoter (6%) were detected in 16 small-sized small duct iCCA (94%) (P < 0.01). The expression of IMP3 and EZH2 was not detected in bile duct adenomas, whereas it was detected in most small duct iCCA (94%) (P < 0.01). Immature stroma and neutrophilic infiltration were significantly more prevalent in small duct iCCA, compared to bile duct adenoma (P < 0.01). CONCLUSION Bile duct adenomas and small-sized small duct iCCAs show distinct differences in genetic alterations, expression of IMP3 and EZH2 and stromal and inflammatory components. There was no evidence suggesting that bile duct adenoma is a precursor of small duct iCCA. Immunohistochemical staining for IMP3, EZH2, p53, ARID1A and MTAP may be useful for differential diagnosis between bile duct adenomas and small duct iCCAs.
Collapse
Affiliation(s)
- Sasaki Motoko
- Department of Human Pathology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Sato Yasunori
- Department of Human Pathology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Nakanuma Yasuni
- Division of Pathology, Fukui Saiseikai Hospital, Fukui, Japan
| |
Collapse
|
10
|
Highly Sensitive Microsatellite Instability and Immunohistochemistry Assessment in Endometrial Aspirates as a Tool for Cancer Risk Individualization in Lynch Syndrome. Mod Pathol 2023; 36:100158. [PMID: 36918055 DOI: 10.1016/j.modpat.2023.100158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/22/2023] [Accepted: 03/01/2023] [Indexed: 03/13/2023]
Abstract
Women with Lynch syndrome (LS) are at increased risk of endometrial cancer (EC), among other tumors, and are characterized by mismatch repair (MMR) deficiency and microsatellite instability (MSI). While risk-reducing gynecological surgeries are effective in decreasing EC incidence, doubts arise regarding the appropriate timing of the surgery. We explored the usefulness of highly-sensitive MSI (hs-MSI) assessment in endometrial aspirates for the individualization of gynecological surveillance in LS carriers. Ninety-three women with LS, 25 sporadic EC patients (9 MMR-proficient and 16 MMR-deficient), and 30 women with benign gynecological disease were included in this study. Hs-MSI was assessed in prospectively collected endometrial aspirates in 67 LS carriers, EC cases, and controls. MMR, PTEN, ARID1A, and PAX2 expression patterns were evaluated in LS samples. Follow-up aspirates from eight LS carriers were also analyzed. Elevated hs-MSI scores were detected in all aspirates from MMR-deficient EC cases (3 LS and 16 sporadic), being negative in aspirates from controls and MMR-proficient EC cases. Positive hs-MSI scores were also detected in all four LS aspirates reported as complex hyperplasia. High hs-MSI was also present in 10 of 49 aspirates (20%) from LS carriers presenting a morphologically normal endometrium, where MMR expression loss was detected in 69% of the samples. Interestingly, the hs-MSI score was positively correlated with MMR-deficient gland density and the presence of MMR-deficient clusters, colocalizing with PTEN and ARID1A expression loss. High hs-MSI scores and clonality were evidenced in two samples collected up to four months before EC diagnosis; hs-MSI scores increased over time in five LS carriers, whereas they decreased in a patient with endometrial hyperplasia after progestin therapy. In LS carriers, elevated hs-MSI scores were detected in aspirates from premalignant and malignant lesions and normal endometrium, correlating with MMR protein loss. Hs-MSI assessment and MMR immunohistochemistry may help individualize EC risk assessment in women with LS.
Collapse
|
11
|
Asaka S, Liu Y, Yu ZC, Rahmanto YS, Ono M, Asaka R, Miyamoto T, Yen TT, Ayhan A, Wang TL, Shih IM. ARID1A Regulates Progesterone Receptor Expression in Early Endometrial Endometrioid Carcinoma Pathogenesis. Mod Pathol 2023; 36:100045. [PMID: 36853791 DOI: 10.1016/j.modpat.2022.100045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/13/2022] [Accepted: 10/18/2022] [Indexed: 01/11/2023]
Abstract
Loss of progesterone receptor (PR) expression is an established risk factor for unresponsiveness to progesterone therapy in patients with endometrial atypical hyperplasia and endometrioid carcinoma. ARID1A is one of the most commonly mutated genes in endometrioid carcinomas, and the loss of its expression is associated with tumor progression. In this study, we investigated the roles of ARID1A deficiency in PR expression in human and murine endometrial epithelial neoplasia. An analysis of genome-wide chromatin immunoprecipitation sequencing in isogenic ARID1A-/- and ARID1A+/+ human endometrial epithelial cells revealed that ARID1A-/- cells showed significantly reduced chromatin immunoprecipitation sequencing signals for ARID1A, BRG1, and H3K27AC in the PgR enhancer region. We then performed immunohistochemistry to correlate the protein expression levels of ARID1A, estrogen receptor, and PR in 50 human samples of endometrial atypical hyperplasia and 75 human samples of endometrial carcinomas. The expression levels of PR but not were significantly lower in ARID1A-deficient low-grade endometrial carcinomas and atypical hyperplasia (P = .0002). When Pten and Pten/Arid1a conditional knockout murine models were used, Pten-/-;Arid1a-/- mice exhibited significantly decreased epithelial PR expression in endometrial carcinomas (P = .003) and atypical hyperplasia (P < .0001) compared with that in the same tissues from Pten-/-;Arid1a+/+ mice. Our data suggest that the loss of ARID1A expression, as occurs in ARID1A-mutated endometrioid carcinomas, decreases PgR transcription by modulating the PgR enhancer region during early tumor development.
Collapse
Affiliation(s)
- Shiho Asaka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Ying Liu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Zheng-Cheng Yu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yohan Suryo Rahmanto
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Motoki Ono
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Ryoichi Asaka
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Tsutomu Miyamoto
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Ting-Tai Yen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ayse Ayhan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Seirei Mikatahara Hospital, Hamamatsu, Japan; Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tian-Li Wang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Ie-Ming Shih
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
12
|
Wilson MR, Reske JJ, Chandler RL. AP-1 Subunit JUNB Promotes Invasive Phenotypes in Endometriosis. Reprod Sci 2022; 29:3266-3277. [PMID: 35616875 PMCID: PMC9669088 DOI: 10.1007/s43032-022-00974-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/15/2022] [Indexed: 01/06/2023]
Abstract
Endometriosis is a disease defined by the presence of abnormal endometrium at ectopic sites, causing pain and infertility in 10% of women. Mutations in the chromatin remodeling protein ARID1A (AT-rich interactive domain-containing protein 1A) have been identified in endometriosis, particularly in the more severe deep infiltrating endometriosis and ovarian endometrioma subtypes. ARID1A has been shown to regulate chromatin at binding sites of the Activator Protein 1 (AP-1) transcription factor, and AP-1 expression has been shown in multiple endometriosis models. Here, we describe a role for AP-1 subunit JUNB in promoting invasive phenotypes in endometriosis. Through a series of knockdown experiments in the 12Z endometriosis cell line, we show that JUNB expression in endometriosis promotes the expression of epithelial-to-mesenchymal transition genes co-regulated by ARID1A including transcription factors SNAI1 and SNAI2, cell adhesion molecules ICAM1 and VCAM1, and extracellular matrix remodelers LOX and LOXL2. In highly invasive ARID1A-deficient endometriotic cells, co-knockdown of JUNB is sufficient to suppress invasion. These results suggest that AP-1 plays an important role in the progression of invasive endometriosis, and that therapeutic inhibition of AP-1 could prevent the occurrence of deep infiltrating endometriosis.
Collapse
Affiliation(s)
- Mike R Wilson
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Jake J Reske
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Ronald L Chandler
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA.
- Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
13
|
Bian PP, Liu SY, Luo QP, Xiong ZT. YTHDF2 is a novel diagnostic marker of endometrial adenocarcinoma and endometrial atypical hyperplasia/ intraepithelial neoplasia. Pathol Res Pract 2022; 234:153919. [DOI: 10.1016/j.prp.2022.153919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/14/2022] [Accepted: 04/24/2022] [Indexed: 11/15/2022]
|
14
|
Heinze K, Nazeran TM, Lee S, Krämer P, Cairns ES, Chiu DS, Leung SC, Kang EY, Meagher NS, Kennedy CJ, Boros J, Kommoss F, Vollert HW, Heitze F, du Bois A, Harter P, Grube M, Kraemer B, Staebler A, Kommoss FK, Heublein S, Sinn HP, Singh N, Laslavic A, Elishaev E, Olawaiye A, Moysich K, Modugno F, Sharma R, Brand AH, Harnett PR, DeFazio A, Fortner RT, Lubinski J, Lener M, Tołoczko-Grabarek A, Cybulski C, Gronwald H, Gronwald J, Coulson P, El-Bahrawy MA, Jones ME, Schoemaker MJ, Swerdlow AJ, Gorringe KL, Campbell I, Cook L, Gayther SA, Carney ME, Shvetsov YB, Hernandez BY, Wilkens LR, Goodman MT, Mateoiu C, Linder A, Sundfeldt K, Kelemen LE, Gentry-Maharaj A, Widschwendter M, Menon U, Bolton KL, Alsop J, Shah M, Jimenez-Linan M, Pharoah PD, Brenton JD, Cushing-Haugen KL, Harris HR, Doherty JA, Gilks B, Ghatage P, Huntsman DG, Nelson GS, Tinker AV, Lee CH, Goode EL, Nelson BH, Ramus SJ, Kommoss S, Talhouk A, Köbel M, Anglesio MS. Validated biomarker assays confirm that ARID1A loss is confounded with MMR deficiency, CD8 + TIL infiltration, and provides no independent prognostic value in endometriosis-associated ovarian carcinomas. J Pathol 2022; 256:388-401. [PMID: 34897700 PMCID: PMC9544180 DOI: 10.1002/path.5849] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/12/2021] [Accepted: 12/10/2021] [Indexed: 11/11/2022]
Abstract
ARID1A (BAF250a) is a component of the SWI/SNF chromatin modifying complex, plays an important tumour suppressor role, and is considered prognostic in several malignancies. However, in ovarian carcinomas there are contradictory reports on its relationship to outcome, immune response, and correlation with clinicopathological features. We assembled a series of 1623 endometriosis-associated ovarian carcinomas, including 1078 endometrioid (ENOC) and 545 clear cell (CCOC) ovarian carcinomas, through combining resources of the Ovarian Tumor Tissue Analysis (OTTA) Consortium, the Canadian Ovarian Unified Experimental Resource (COEUR), local, and collaborative networks. Validated immunohistochemical surrogate assays for ARID1A mutations were applied to all samples. We investigated associations between ARID1A loss/mutation, clinical features, outcome, CD8+ tumour-infiltrating lymphocytes (CD8+ TILs), and DNA mismatch repair deficiency (MMRd). ARID1A loss was observed in 42% of CCOCs and 25% of ENOCs. We found no associations between ARID1A loss and outcomes, stage, age, or CD8+ TIL status in CCOC. Similarly, we found no association with outcome or stage in endometrioid cases. In ENOC, ARID1A loss was more prevalent in younger patients (p = 0.012) and was associated with MMRd (p < 0.001) and the presence of CD8+ TILs (p = 0.008). Consistent with MMRd being causative of ARID1A mutations, in a subset of ENOCs we also observed an association with ARID1A loss-of-function mutation as a result of small indels (p = 0.035, versus single nucleotide variants). In ENOC, the association with ARID1A loss, CD8+ TILs, and age appears confounded by MMRd status. Although this observation does not explicitly rule out a role for ARID1A influence on CD8+ TIL infiltration in ENOC, given current knowledge regarding MMRd, it seems more likely that effects are dominated by the hypermutation phenotype. This large dataset with consistently applied biomarker assessment now provides a benchmark for the prevalence of ARID1A loss-of-function mutations in endometriosis-associated ovarian cancers and brings clarity to the prognostic significance. © 2021 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Karolin Heinze
- University of British Columbia, Department of Obstetrics and Gynecology, Vancouver, BC, Canada
- University of British Columbia, Vancouver General Hospital, and BC Cancer. British Columbia’s Gynecological Cancer Research Team (OVCARE), Vancouver, BC, Canada
| | - Tayyebeh M. Nazeran
- University of British Columbia, Vancouver General Hospital, and BC Cancer. British Columbia’s Gynecological Cancer Research Team (OVCARE), Vancouver, BC, Canada
| | - Sandra Lee
- University of Calgary, Department of Pathology and Laboratory Medicine, Calgary, AB, Canada
| | - Pauline Krämer
- University of British Columbia, Department of Obstetrics and Gynecology, Vancouver, BC, Canada
- University Hospital Tübingen, Department of Women’s Health, Tübingen, Germany
| | - Evan S. Cairns
- University of British Columbia, Department of Obstetrics and Gynecology, Vancouver, BC, Canada
| | - Derek S. Chiu
- University of British Columbia, Vancouver General Hospital, and BC Cancer. British Columbia’s Gynecological Cancer Research Team (OVCARE), Vancouver, BC, Canada
| | - Samuel C.Y. Leung
- University of British Columbia, Vancouver General Hospital, and BC Cancer. British Columbia’s Gynecological Cancer Research Team (OVCARE), Vancouver, BC, Canada
| | - Eun Young Kang
- University of Calgary, Department of Pathology and Laboratory Medicine, Calgary, AB, Canada
| | - Nicola S. Meagher
- University of New South Wales, Adult Cancer Program, Lowy Cancer Research Centre, Sydney, New South Wales, Australia
- University of New South Wales, School of Women’s and Children’s Health, Sydney, New South Wales, Australia
| | - Catherine J. Kennedy
- The University of Sydney, Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Westmead Hospital, Department of Gynaecological Oncology, Sydney, New South Wales, Australia
| | - Jessica Boros
- The University of Sydney, Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Westmead Hospital, Department of Gynaecological Oncology, Sydney, New South Wales, Australia
| | - Friedrich Kommoss
- Medizin Campus Bodensee, Institute of Pathology, Friedrichshafen, Germany
| | - Hans-Walter Vollert
- Medizin Campus Bodensee, Department of Gynecology and Obstetrics, Friedrichshafen, Germany
| | - Florian Heitze
- Kliniken Essen Mitte, Department of Gynecology and Gynecologic Oncology, Essen, Germany
| | - Andreas du Bois
- Kliniken Essen Mitte, Department of Gynecology and Gynecologic Oncology, Essen, Germany
| | - Philipp Harter
- Kliniken Essen Mitte, Department of Gynecology and Gynecologic Oncology, Essen, Germany
| | - Marcel Grube
- University of British Columbia, Department of Obstetrics and Gynecology, Vancouver, BC, Canada
- University Hospital Tübingen, Department of Women’s Health, Tübingen, Germany
| | - Bernhard Kraemer
- University Hospital Tübingen, Department of Women’s Health, Tübingen, Germany
| | - Annette Staebler
- University Hospital Tübingen, Institute of Pathology and Neuropathology, Tübingen, Germany
| | - Felix K.F. Kommoss
- University Hospital Heidelberg, Institute of Pathology, Heidelberg, Germany
| | - Sabine Heublein
- University Hospital Heidelberg and National Center for Tumor Diseases, Department of Obstetrics and Gynecology, Heidelberg, Germany
| | - Hans-Peter Sinn
- University Hospital Heidelberg, Institute of Pathology, Heidelberg, Germany
| | - Naveena Singh
- Barts Health National Health Service Trust, Department of Pathology, London, UK
| | - Angela Laslavic
- University of Pittsburgh School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, PA, USA
| | - Esther Elishaev
- University of Pittsburgh School of Medicine, Department of Pathology, PA, USA
| | - Alex Olawaiye
- University of Pittsburgh School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, PA, USA
| | - Kirsten Moysich
- Roswell Park Cancer Institute, Department of Cancer Prevention and Control, Buffalo, NY, USA
| | - Francesmary Modugno
- University of Pittsburgh School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, PA, USA
| | - Raghwa Sharma
- Westmead Hospital, Tissue Pathology and Diagnostic Oncology, Sydney, New South Wales, Australia
- University of Sydney, Sydney, New South Wales, Australia
- Western Sydney University, Sydney, New South Wales, Australia
| | - Alison H. Brand
- Westmead Hospital, Department of Gynaecological Oncology, Sydney, New South Wales, Australia
- University of Sydney, Sydney, New South Wales, Australia
| | - Paul R. Harnett
- Westmead Hospital, Department of Gynaecological Oncology, Sydney, New South Wales, Australia
- Westmead Hospital, Crown Princess Mary Cancer Centre, Sydney, New South Wales, Australia
| | - Anna DeFazio
- The University of Sydney, Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- Westmead Hospital, Department of Gynaecological Oncology, Sydney, New South Wales, Australia
- University of Sydney, Sydney, New South Wales, Australia
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, New South Wales, Australia
| | - Renée T. Fortner
- German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany
| | - Jan Lubinski
- Pomeranian Medical University, Department of Genetics and Pathology, International Hereditary Cancer Centre, Szczecin, Poland
| | - Marcin Lener
- Pomeranian Medical University, Department of Genetics and Pathology, International Hereditary Cancer Centre, Szczecin, Poland
| | - Aleksandra Tołoczko-Grabarek
- Pomeranian Medical University, Department of Genetics and Pathology, International Hereditary Cancer Centre, Szczecin, Poland
| | - Cezary Cybulski
- Pomeranian Medical University, Department of Genetics and Pathology, International Hereditary Cancer Centre, Szczecin, Poland
| | - Helena Gronwald
- Pomeranian Medical University, Department of Propaedeutics, Physical Diagnostics and Dental Physiotherapy, Szczecin, Poland
| | - Jacek Gronwald
- Pomeranian Medical University, Department of Genetics and Pathology, International Hereditary Cancer Centre, Szczecin, Poland
| | - Penny Coulson
- The Institute of Cancer Research, Division of Genetics and Epidemiology, London, UK
| | - Mona A El-Bahrawy
- Imperial College London, Department of Metabolism, Digestion and Reproduction, Hammersmith Hospital, London, UK
| | - Michael E. Jones
- The Institute of Cancer Research, Division of Genetics and Epidemiology, London, UK
| | - Minouk J. Schoemaker
- The Institute of Cancer Research, Division of Genetics and Epidemiology, London, UK
| | - Anthony J. Swerdlow
- The Institute of Cancer Research, Division of Genetics and Epidemiology, London, UK
- The Institute of Cancer Research, Division of Breast Cancer Research, London, UK
| | - Kylie L. Gorringe
- The University of Melbourne, Sir Peter MacCallum Department of Oncology, Melbourne, Australia
- Peter MacCallum Cancer Centre, Women’s Cancer Program, Melbourne, Australia
| | - Ian Campbell
- The University of Melbourne, Sir Peter MacCallum Department of Oncology, Melbourne, Australia
- Peter MacCallum Cancer Centre, Cancer Genetics Laboratory, Research Division, Melbourne, Australia
| | - Linda Cook
- The University of New Mexico, Division of Epidemiology and Biostatistics, Albuquerque, NM, USA
| | - Simon A. Gayther
- Cedars-Sinai Medical Center, Center for Bioinformatics and Functional Genomics and the Cedars Sinai Genomics Core, Los Angeles, CA, USA
| | - Michael E. Carney
- John A. Burns School of Medicine, University of Hawaii, Honolulu, Department of Obstetrics and Gynecology, HI, USA
| | - Yurii B. Shvetsov
- University of Hawaii Cancer Center, Epidemiology Program, Honolulu, HI, USA
| | | | - Lynne R. Wilkens
- University of Hawaii Cancer Center, Epidemiology Program, Honolulu, HI, USA
| | - Marc T. Goodman
- Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Institute, Cancer Prevention and Genetics Program, Los Angeles, CA, USA
| | - Constantina Mateoiu
- Sahlgrenska Academy at Gothenburg University, Sahlgrenska Center for Cancer Research, Department of Obstetrics and Gynecology, Gothenburg, Sweden
| | - Anna Linder
- Sahlgrenska Academy at Gothenburg University, Sahlgrenska Center for Cancer Research, Department of Obstetrics and Gynecology, Gothenburg, Sweden
| | - Karin Sundfeldt
- Sahlgrenska Academy at Gothenburg University, Sahlgrenska Center for Cancer Research, Department of Obstetrics and Gynecology, Gothenburg, Sweden
| | - Linda E. Kelemen
- Medical University of South Carolina, Hollings Cancer Center and Department of Public Health Sciences, Charleston, SC, USA
| | - Aleksandra Gentry-Maharaj
- University College London, MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology, London, UK
- University College London, Department of Women’s Cancer, Institute for Women’s Health, London, UK
| | | | - Usha Menon
- University College London, MRC Clinical Trials Unit at UCL, Institute of Clinical Trials & Methodology, London, UK
| | - Kelly L. Bolton
- Washington University School of Medicine, Department of Hematology and Oncology, Division of Oncology, St. Louis, MO, USA
| | - Jennifer Alsop
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Oncology, Cambridge, UK
| | - Mitul Shah
- Addenbrookes Hospital, Department of Histopathology, Cambridge, UK
| | | | - Paul D.P. Pharoah
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Oncology, Cambridge, UK
- University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, Cambridge, UK
| | - James D. Brenton
- University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge, UK
| | - Kara L. Cushing-Haugen
- Fred Hutchinson Cancer Research Center, Program in Epidemiology, Division of Public Health Sciences, Seattle, WA, USA
| | - Holly R. Harris
- Fred Hutchinson Cancer Research Center, Program in Epidemiology, Division of Public Health Sciences, Seattle, WA, USA
| | - Jennifer A. Doherty
- University of Utah, Huntsman Cancer Institute, Department of Population Health Sciences, Salt Lake City, UT, USA
| | - Blake Gilks
- University of British Columbia, Vancouver General Hospital, and BC Cancer. British Columbia’s Gynecological Cancer Research Team (OVCARE), Vancouver, BC, Canada
| | - Prafull Ghatage
- University of Calgary, Department of Oncology, Division of Gynecologic Oncology, Calgary, AB, Canada
| | - David G. Huntsman
- University of British Columbia, Department of Obstetrics and Gynecology, Vancouver, BC, Canada
- University of British Columbia, Vancouver General Hospital, and BC Cancer. British Columbia’s Gynecological Cancer Research Team (OVCARE), Vancouver, BC, Canada
| | - Gregg S. Nelson
- University of Calgary, Department of Oncology, Division of Gynecologic Oncology, Calgary, AB, Canada
| | - Anna V. Tinker
- University of British Columbia, Vancouver General Hospital, and BC Cancer. British Columbia’s Gynecological Cancer Research Team (OVCARE), Vancouver, BC, Canada
- University of British Columbia, Department of Medicine, Vancouver, BC, Canada
| | - Cheng-Han Lee
- University of Alberta, Department of Laboratory Medicine and Pathology, Edmonton, AB, Canada
| | - Ellen L. Goode
- Mayo Clinic, Department of Health Science Research, Division of Epidemiology, Rochester, MN, USA
| | - Brad H. Nelson
- Trev & Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, BC, Canada
| | - Susan J. Ramus
- University of New South Wales, Adult Cancer Program, Lowy Cancer Research Centre, Sydney, New South Wales, Australia
- University of New South Wales, School of Women’s and Children’s Health, Sydney, New South Wales, Australia
| | - Stefan Kommoss
- University Hospital Tübingen, Department of Women’s Health, Tübingen, Germany
| | - Aline Talhouk
- University of British Columbia, Department of Obstetrics and Gynecology, Vancouver, BC, Canada
- University of British Columbia, Vancouver General Hospital, and BC Cancer. British Columbia’s Gynecological Cancer Research Team (OVCARE), Vancouver, BC, Canada
| | - Martin Köbel
- University of Calgary, Department of Pathology and Laboratory Medicine, Calgary, AB, Canada
| | - Michael S. Anglesio
- University of British Columbia, Department of Obstetrics and Gynecology, Vancouver, BC, Canada
- University of British Columbia, Vancouver General Hospital, and BC Cancer. British Columbia’s Gynecological Cancer Research Team (OVCARE), Vancouver, BC, Canada
| |
Collapse
|
15
|
Wilson MR, Reske JJ, Koeman J, Adams M, Joshi NR, Fazleabas AT, Chandler RL. SWI/SNF Antagonism of PRC2 Mediates Estrogen-Induced Progesterone Receptor Expression. Cells 2022; 11:1000. [PMID: 35326450 PMCID: PMC8946988 DOI: 10.3390/cells11061000] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 12/11/2022] Open
Abstract
Endometrial cancer (EC) is characterized by high estrogen levels unopposed by progesterone. Treatment with progestins is standard for early EC, but the response to progestins is dependent on progesterone receptor (PGR) expression. Here, we show that the expression of PGR in endometrial epithelial cells is dependent on ARID1A, a DNA-binding subunit of the SWI/SNF chromatin-remodeling complex that is commonly mutated in EC. In endometrial epithelial cells with estrogen receptor overexpression, we find that ARID1A promotes estrogen signaling and regulates common gene expression programs. Normally, endometrial epithelial cells expressing estrogen receptors respond to estrogen by upregulating the PGR. However, when ARID1A expression is lost, upregulation of PGR expression is significantly reduced. This phenomenon can also occur following the loss of the SWI/SNF subunit BRG1, suggesting a role for ARID1A- and BRG1-containing complexes in PGR regulation. We find that PGR is regulated by a bivalent promoter, which harbors both H3K4me3 and H3K27me3 histone tail modifications. H3K27me3 is deposited by EZH2, and inhibition of EZH2 in the context of ARID1A loss results in restoration of estrogen-induced PGR expression. Our results suggest a role for ARID1A deficiency in the loss of PGR in late-stage EC and a therapeutic utility for EZH2 inhibitors in this disease.
Collapse
Affiliation(s)
- Mike R. Wilson
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (M.R.W.); (J.J.R.); (N.R.J.); (A.T.F.)
| | - Jake J. Reske
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (M.R.W.); (J.J.R.); (N.R.J.); (A.T.F.)
| | - Julie Koeman
- Genomics Core Facility, Van Andel Research Institute, Grand Rapids, MI 49503, USA; (J.K.); (M.A.)
| | - Marie Adams
- Genomics Core Facility, Van Andel Research Institute, Grand Rapids, MI 49503, USA; (J.K.); (M.A.)
| | - Niraj R. Joshi
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (M.R.W.); (J.J.R.); (N.R.J.); (A.T.F.)
| | - Asgerally T. Fazleabas
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (M.R.W.); (J.J.R.); (N.R.J.); (A.T.F.)
- Department of Women’s Health, Spectrum Health System, Grand Rapids, MI 49341, USA
| | - Ronald L. Chandler
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; (M.R.W.); (J.J.R.); (N.R.J.); (A.T.F.)
- Department of Women’s Health, Spectrum Health System, Grand Rapids, MI 49341, USA
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
16
|
Aguilar M, Chen H, Rivera-Colon G, Niu S, Carrick K, Gwin K, Cuevas IC, Sahoo SS, Li HD, Zhang S, Zheng W, Lucas E, Castrillon DH. Reliable Identification of Endometrial Precancers Through Combined Pax2, β-Catenin, and Pten Immunohistochemistry. Am J Surg Pathol 2022; 46:404-414. [PMID: 34545858 PMCID: PMC8860214 DOI: 10.1097/pas.0000000000001810] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The diagnosis of endometrial atypical hyperplasia/endometrioid intraepithelial neoplasia (AH/EIN) remains challenging and subjective in some cases, with variable histologic criteria and differences of opinion among gynecologic pathologists, potentially leading to under/overtreatment. There has been growing interest in the use of specific immunohistochemical markers as adjuncts in AH/EIN diagnosis. For example, the World Health Organization 2020 Classification specifies that loss of Pten, Pax2, or mismatch repair proteins are desirable diagnostic criteria. Other markers, most notably β-catenin and Arid1a, are also aberrantly expressed in some AH/EIN. However, the performance of some markers individually-and more importantly as a group-has not been rigorously explored, raising questions as to which marker(s) or combination(s) is the most effective in practice. Formalin-fixed paraffin-embedded tissue sections from AH/EIN cases (n=111) were analyzed by immunohistochemistry for 6 markers: Pax2, Pten, Mlh1, β-catenin, Arid1a, and p53. Aberrant expression was tabulated for each case and marker. An additional set of normal endometria (n=79) was also analyzed to define optimal diagnostic criteria for marker aberrance. The performance characteristics of each marker, the entire panel, and subsets thereof were quantitatively and statistically analyzed. In order of number of cases detected, the most frequently aberrant markers in AH/EIN were Pax2 (81.1% of cases), Pten (50.5%), β-catenin (47.7%), Arid1a (7.2%), Mlh1 (4.5%), and p53 (2.7%). The majority of cases showed aberrant expression of ≥2 markers. All 6 markers together identified 92.8% of cases. Arid1a, Mlh1, and p53 were robust and readily scored markers, but all cases showing aberrant expression of these 3 markers were also detected by Pax2, Pten, or β-catenin. A focused panel of only 3 markers (Pax2, Pten, and β-catenin) showed optimal performance characteristics as a diagnostic adjunct in the histopathologic diagnosis of AH/EIN. Use of this panel is practicable and robust, with at least 1 of the 3 markers being aberrant in 92.8% of AH/EIN.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Song Zhang
- Population and Data Sciences, UT Southwestern Medical School
- Harold C. Simmons Comprehensive Cancer Center, Dallas, TX
| | - Wenxin Zheng
- Departments of Pathology
- Harold C. Simmons Comprehensive Cancer Center, Dallas, TX
| | - Elena Lucas
- Departments of Pathology
- Harold C. Simmons Comprehensive Cancer Center, Dallas, TX
| | - Diego H. Castrillon
- Departments of Pathology
- Harold C. Simmons Comprehensive Cancer Center, Dallas, TX
| |
Collapse
|
17
|
Srinivas US, Tay NSC, Jaynes P, Anbuselvan A, Ramachandran GK, Wardyn JD, Hoppe MM, Hoang PM, Peng Y, Lim S, Lee MY, Peethala PC, An O, Shendre A, Tan BWQ, Jemimah S, Lakshmanan M, Hu L, Jakhar R, Sachaphibulkij K, Lim LHK, Pervaiz S, Crasta K, Yang H, Tan P, Liang C, Ho L, Khanchandani V, Kappei D, Yong WP, Tan DSP, Bordi M, Campello S, Tam WL, Frezza C, Jeyasekharan AD. PLK1 inhibition selectively induces apoptosis in ARID1A deficient cells through uncoupling of oxygen consumption from ATP production. Oncogene 2022; 41:1986-2002. [PMID: 35236967 DOI: 10.1038/s41388-022-02219-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 01/12/2022] [Accepted: 01/27/2022] [Indexed: 12/26/2022]
Abstract
Inhibitors of the mitotic kinase PLK1 yield objective responses in a subset of refractory cancers. However, PLK1 overexpression in cancer does not correlate with drug sensitivity, and the clinical development of PLK1 inhibitors has been hampered by the lack of patient selection marker. Using a high-throughput chemical screen, we discovered that cells deficient for the tumor suppressor ARID1A are highly sensitive to PLK1 inhibition. Interestingly this sensitivity was unrelated to canonical functions of PLK1 in mediating G2/M cell cycle transition. Instead, a whole-genome CRISPR screen revealed PLK1 inhibitor sensitivity in ARID1A deficient cells to be dependent on the mitochondrial translation machinery. We find that ARID1A knock-out (KO) cells have an unusual mitochondrial phenotype with aberrant biogenesis, increased oxygen consumption/expression of oxidative phosphorylation genes, but without increased ATP production. Using expansion microscopy and biochemical fractionation, we see that a subset of PLK1 localizes to the mitochondria in interphase cells. Inhibition of PLK1 in ARID1A KO cells further uncouples oxygen consumption from ATP production, with subsequent membrane depolarization and apoptosis. Knockdown of specific subunits of the mitochondrial ribosome reverses PLK1-inhibitor induced apoptosis in ARID1A deficient cells, confirming specificity of the phenotype. Together, these findings highlight a novel interphase role for PLK1 in maintaining mitochondrial fitness under metabolic stress, and a strategy for therapeutic use of PLK1 inhibitors. To translate these findings, we describe a quantitative microscopy assay for assessment of ARID1A protein loss, which could offer a novel patient selection strategy for the clinical development of PLK1 inhibitors in cancer.
Collapse
Affiliation(s)
- Upadhyayula S Srinivas
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Norbert S C Tay
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Patrick Jaynes
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Akshaya Anbuselvan
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Gokula K Ramachandran
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Joanna D Wardyn
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Michal M Hoppe
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Phuong Mai Hoang
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Yanfen Peng
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Sherlly Lim
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - May Yin Lee
- Genome Institute of Singapore (GIS), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Praveen C Peethala
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Omer An
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Akshay Shendre
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Bryce W Q Tan
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Sherlyn Jemimah
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Manikandan Lakshmanan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Longyu Hu
- Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Rekha Jakhar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
- Centre for Healthy Longevity, National University Health System (NUHS), Singapore, Singapore
| | - Karishma Sachaphibulkij
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Lina H K Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Karen Crasta
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
- Centre for Healthy Longevity, National University Health System (NUHS), Singapore, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Patrick Tan
- Genome Institute of Singapore (GIS), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
- Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Chao Liang
- Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Lena Ho
- Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Vartika Khanchandani
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Wei Peng Yong
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
- National University Cancer Institute, Singapore (NCIS), National University Hospital (NUH), Singapore, Singapore
| | - David S P Tan
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
- National University Cancer Institute, Singapore (NCIS), National University Hospital (NUH), Singapore, Singapore
| | - Matteo Bordi
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - Silvia Campello
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - Wai Leong Tam
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
- Genome Institute of Singapore (GIS), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | | | - Anand D Jeyasekharan
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore.
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore.
- National University Cancer Institute, Singapore (NCIS), National University Hospital (NUH), Singapore, Singapore.
| |
Collapse
|
18
|
Megino-Luque C, Sisó P, Mota-Martorell N, Navaridas R, de la Rosa I, Urdanibia I, Albertí-Valls M, Santacana M, Pinyol M, Bonifaci N, Macià A, Llobet-Navas D, Gatius S, Matias-Guiu X, Eritja N. ARID1A-deficient cells require HDAC6 for progression of endometrial carcinoma. Mol Oncol 2022; 16:2235-2259. [PMID: 35167193 PMCID: PMC9168762 DOI: 10.1002/1878-0261.13193] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/22/2021] [Accepted: 02/14/2022] [Indexed: 12/24/2022] Open
Abstract
AT‐rich interactive domain‐containing protein 1A (ARID1A) loss‐of‐function mutation accompanied by a loss of ARID1A protein expression is frequently observed in endometrial carcinomas. However, the molecular mechanisms linking these genetic changes to the altered pathways regulating tumour initiation, maintenance and/or progression remain poorly understood. Thus, the main aim of this study was to analyse the role of ARID1A loss of function in endometrial tumorigenesis. Here, using different endometrial in vitro and in vivo models, such as tumoral cell lines, 3D primary cultures and metastatic or genetically modified mouse models, we show that altered expression of ARID1A is not enough to initiate endometrial tumorigenesis. However, in an established endometrial cancer context, ARID1A loss of function accelerates tumoral progression and metastasis through the disruption of the G2/M cell cycle checkpoint and ATM/ATR‐mediated DNA damage checkpoints, increases epithelial cell proliferation rates and induces epithelial mesenchymal transition through the activation of histone deacetylase 6 (HDAC6). Next, we demonstrated that the inhibition of HDAC6 function, using the HDAC6‐specific inhibitor ACY1215 or by transfection with HDAC6 short hairpin RNA (shRNA), can reverse the migratory and invasive phenotype of ARID1A‐knockdown cells. Further, we also show that inhibition of HDAC6 activity causes an apoptotic vulnerability to etoposide treatments in ARID1A‐deficient cells. In summary, the findings exposed in this work indicate that the inhibition of HDAC6 activity is a potential therapeutic strategy for patients suffering from ARID1A‐mutant endometrial cancer diagnosed in advanced stages.
Collapse
Affiliation(s)
- Cristina Megino-Luque
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Pol Sisó
- Oncologic Pathology Group, Department of Medicine, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain
| | - Natalia Mota-Martorell
- Metabolic Physiopathology Group, Department of Experimental Medicine, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain
| | - Raúl Navaridas
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain
| | - Inés de la Rosa
- Oncologic Pathology Group, Department of Medicine, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain
| | - Izaskun Urdanibia
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain
| | - Manel Albertí-Valls
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain
| | - Maria Santacana
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029, Madrid, Spain.,Scientific and Technical Service of Immunohistochemistry, Biomedical Research Institute of Lleida (IRBLleida), Hospital Universitari Arnau de Vilanova, Av. Rovira Roure 80, 25198, Lleida, Spain
| | - Miquel Pinyol
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain.,Department of Pathology, Hospital Universitari Arnau de Vilanova, Av. Rovira Roure 80, 25198, Lleida, Spain
| | - Núria Bonifaci
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Anna Macià
- Oncologic Pathology Group, Department of Experimental Medicine, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain
| | - David Llobet-Navas
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029, Madrid, Spain.,Molecular Mechanisms and Experimental Therapy in Oncology-Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran via De l'Hospitalet 199, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Sònia Gatius
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029, Madrid, Spain.,Oncologic Pathology Group, Department of Medicine, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain
| | - Xavier Matias-Guiu
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029, Madrid, Spain.,Oncologic Pathology Group, Department of Medicine, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain.,Department of Pathology, Hospital Universitari de Bellvitge, IDIBELL, University of Barcelona, Av. Gran via de l'Hospitalet 199, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Núria Eritja
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029, Madrid, Spain.,Oncologic Pathology Group, Department of Medicine, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain
| |
Collapse
|
19
|
Sasaki M, Sato Y, Nakanuma Y. Is Nestin a diagnostic marker for combined hepatocellular‐cholangiocarcinoma? Histopathology 2022; 80:859-868. [DOI: 10.1111/his.14622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/22/2021] [Accepted: 01/20/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Motoko Sasaki
- Department of Human Pathology Kanazawa University Graduate School of Medical Sciences Kanazawa Japan
| | - Yasunori Sato
- Department of Human Pathology Kanazawa University Graduate School of Medical Sciences Kanazawa Japan
| | | |
Collapse
|
20
|
Sasaki T, Kohashi K, Kawatoko S, Ihara E, Oki E, Nakamura M, Ogawa Y, Oda Y. Tumor progression by epithelial-mesenchymal transition in ARID1A- and SMARCA4-aberrant solid-type poorly differentiated gastric adenocarcinoma. Virchows Arch 2022; 480:1063-1075. [PMID: 34997313 DOI: 10.1007/s00428-021-03261-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/19/2021] [Accepted: 12/22/2021] [Indexed: 11/24/2022]
Abstract
Solid-type poorly differentiated adenocarcinoma (PDA) of the stomach is frequently associated with microsatellite instability (MSI) and aberrations of the SWI/SNF chromatin remodeling complex. Previous studies showed that aberrant ARID1A and SMARCA4 expression induces mesenchymal transition. We analyzed 51 primary-site cases and 209 metastatic lymph nodes among solid-type PDA for the expression of SWI/SNF complex subunits (ARID1A, SMARCA4, SMARCB1, SMARCC2) and epithelial-mesenchymal transition (EMT) markers (E-cadherin, β-catenin, Snail). We also analyzed 40 cases of non-solid-type PDA as a stage-matched control group. Aberrant expression of ARID1A (39%) and SMARCA4 (49%) was more common in solid-type PDA than in non-solid-type PDA (ARID1A, P = 0.0049; SMARCA4, P < 0.0001). The group of solid-type PDA with aberrant ARID1A showed significantly longer overall and progression-free survival than the corresponding ARID1A-retained group (P = 0.0405 and P = 0.0296, respectively). Aberrant expression of EMT factors inducing mesenchymal transition in the groups with solid-type PDA at the primary site or metastatic lymph nodes with aberrant ARID1A was less common than in the corresponding groups with retained ARID1A (E-cadherin, primary site P = 0.0341, lymph node P < 0.0001; β-catenin, primary site P = 0.0293, lymph node P = 0.0010; Snail, primary site P = 0.0169, lymph node P = 0.0828). Furthermore, N3 of the TNM classification was more frequently observed in the group with solid-type PDA with retained ARID1A than in the corresponding ARID1A-aberrant group (P = 0.0288). Mesenchymal transition was not induced in the ARID1A-aberrant group, in which patients had favorable prognosis, and preserved epithelial characteristics in EMT may play an important role in low tumor aggressiveness of solid-type PDA.
Collapse
Affiliation(s)
- Taisuke Sasaki
- Department of Anatomic Pathology, Pathological Sciences, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kenichi Kohashi
- Department of Anatomic Pathology, Pathological Sciences, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shinichiro Kawatoko
- Department of Anatomic Pathology, Pathological Sciences, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Eikichi Ihara
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiji Oki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Pathological Sciences, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
21
|
Chen H, Strickland AL, Castrillon DH. Histopathologic diagnosis of endometrial precancers: Updates and future directions. Semin Diagn Pathol 2021; 39:137-147. [PMID: 34920905 PMCID: PMC9035046 DOI: 10.1053/j.semdp.2021.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/31/2022]
Abstract
Early detection of endometrial cancer, especially its precancers, remains a critical and evolving issue in patient management and the quest to decrease mortality due to endometrial cancer. Due to many factors such as specimen fragmentation, the confounding influence of endogenous or exogenous hormones, and variable or overlapping histologic features, identification of bona fide endometrial precancers and their reliable discrimination from benign mimics remains one of the most challenging areas in diagnostic pathology. At the same time, the diagnosis of endometrial precancer, or the presence of suspicious but subdiagnostic features in an endometrial biopsy, can lead to long clinical follow-up with multiple patient visits and serial endometrial sampling, emphasizing the need for accurate diagnosis. Our understanding of endometrial precancers and their diagnosis has improved due to systematic investigations into morphologic criteria, the molecular genetics of endometrial cancer and their precursors, the validation of novel biomarkers and their use in panels, and more recent methods such digital image analysis. Although precancers for both endometrioid and non-endometrioid carcinomas will be reviewed, emphasis will be placed on the former. We review these advances and their relevance to the histopathologic diagnosis of endometrial precancers, and the recently updated 2020 World Health Organization (WHO) Classification of Female Genital Tumors.
Collapse
|
22
|
Munakata S, Yamamoto T. Application of immunocytochemical and molecular analysis of six genes in liquid-based endometrial cytology. Diagn Cytopathol 2021; 50:8-17. [PMID: 34783431 DOI: 10.1002/dc.24903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND The Yokohama System of Endometrial Cytology has been used for reporting endometrial cytology, which includes gray zone category, atypical endometrial cells (ATEC), subdivided into ATEC-US and ATEC-AE. ATEC-US has been reported to be correlated with malignancy in nearly 10% of the cases. For accurate diagnosis, application of ancillary techniques on endometrial cytology was investigated. METHODS Thirty-seven liquid based cytological specimens (SurePath™) with diagnosis of ATEC or malignant which have corresponding histological specimens, were subjected to immunocytochemical analysis for β-catenin, ARID1A, and PTEN. Hot spots of mutations for KRAS, BRAF and PIK3CA were evaluated by using i-densy system (ARKRAY). RESULTS In endometrial samples with the diagnosis of ATEC and malignant, aberrant gene expressions and/or gene mutations for β-catenin, ARID1A, PTEN, KRAS, BRAF, and PIK3CA were observed in 32.4, 18.9, 37.8, 18.8, 0, and 37.1%, respectively. When any of the genes had aberrant expression or mutation, only sensitivity was better than that of cytology (77 vs. 53.8%). However, specificity, positive predictive value, negative predictive value, and accuracy was better in cytology than those of ancillary techniques. Increasing rate of abnormality according to the consequent histology results was observed in ARID1A (p = .015). Frequent loss of PTEN immunostaining (45.8%) and PIK3CA mutation (43.5%) was observed in the cases with consequent benign histology results. CONCLUSION In ATEC category of endometrial cytology, gene expression and mutation analysis of six genes were insufficient to aid conventional cytological diagnoses albeit increased sensitivity. Further investigation would be necessary.
Collapse
Affiliation(s)
- Satoru Munakata
- Department of Pathology, Hakodate Municipal Hospital, Hakodate, Hokkaido, Japan
| | - Toshiya Yamamoto
- Department of Obstetrics and Gynecology, Sakai City Hospital Organization, Sakai City Medical Center, Osaka, Japan
| |
Collapse
|
23
|
Sun Y, Liu G. Endometriosis-associated Ovarian Clear Cell Carcinoma: A Special Entity? J Cancer 2021; 12:6773-6786. [PMID: 34659566 PMCID: PMC8518018 DOI: 10.7150/jca.61107] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/12/2021] [Indexed: 02/06/2023] Open
Abstract
Endometriosis is an estrogen-dependent disease, which serves as a precursor of ovarian cancer, especially clear cell carcinoma (OCCC) and endometrial carcinoma. Although micro-environmental factors such as oxidative stress, immune cell dysfunction, inflammation, steroid hormones, and stem cells required for malignant transformation have been found in endometriosis, the exact carcinogenic mechanism remains unclear. Recent research suggest that many putative driver genes and aberrant pathways including ARID1A mutations, PIK3CA mutations, MET activation, HNF-1β activation, and miRNAs dysfunction, play crucial roles in the malignant transformation of endometriosis to OCCC. The clinical features of OCCC are different from other histological types. Patients usually present with a large, unilateral pelvic mass, and occasionally have thromboembolic vascular complications. OCCC patients are easier to be resistant to chemotherapy, have a worse prognosis, and are usually difficult to treat. To improve the survival of OCCC patients, it is necessary to better understand its specific carcinogenic mechanism and explore new treatment strategy, including molecular target.
Collapse
Affiliation(s)
- Yue Sun
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, 300052, China
| | - Guoyan Liu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, 300052, China
| |
Collapse
|
24
|
Kase K, Saito M, Nakajima S, Takayanagi D, Saito K, Yamada L, Ashizawa M, Nakano H, Hanayama H, Onozawa H, Okayama H, Endo H, Fujita S, Sakamoto W, Saze Z, Momma T, Mimura K, Ohki S, Shiraishi K, Kohno T, Kono K. ARID1A deficiency in EBV-positive gastric cancer is partially regulated by EBV-encoded miRNAs, but not by DNA promotor hypermethylation. Carcinogenesis 2021; 42:21-30. [PMID: 33196828 DOI: 10.1093/carcin/bgaa123] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 10/21/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
AT-rich interactive domain 1A (ARID1A), which is a tumor suppressor gene, is frequently mutated in Epstein-Barr virus-positive gastric cancer [EBV (+) GC]. While most ARID1A mutations in GC are truncating mutations, leading to loss of ARID1A protein expression, epigenetic modifications appear to contribute to ARID1A deficiency in EBV (+) GC harboring wild-type ARID1A. Based on the significant role of epigenetic modifications in EBV (+) GC that contributes to ARID1A deficiency, the methylation status of ARID1A was evaluated in EBV-infected cells and GC patients using a publicly available microarray and the Cancer Genome Atlas (TCGA) database. EBV-encoded miRNAs that potentially target ARID1A were identified as an additional epigenetic modulator by computational prediction. In vitro experiments were conducted to evaluate how EBV-encoded miRNAs affected ARID1A mRNA and protein levels. In clinical GC samples, the expression of predicted miRNAs and ARID1A and the mutation status of ARID1A was evaluated. As results, ARID1A was not hypermethylated in EBV (+) GC samples or EBV-infected GC cells. EBV infection did not alter ARID1A mRNA levels, suggesting that ARID1A protein deficiency was caused by post-transcriptional gene silencing in ARID1A-WT EBV (+) GC. Overexpression of miR-BART11-3p and miR-BART12, which were identified as miRNAs that potentially bind ARID1A, suppressed ARID1A protein expression in MKN7 and NCI-N87 cells. Highly expressed miR-BART11-3p and miR-BART12 were correlated with decreased ARID1A levels in GC tumors which did not harbor ARID1A mutations. The present findings revealed that ARID1A expression was epigenetically regulated by miR-BART11-3p and miR-BART12 in EBV (+) GC.
Collapse
Affiliation(s)
- Koji Kase
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Motonobu Saito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Shotaro Nakajima
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan.,Department of Medical Electrophysiology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Daisuke Takayanagi
- Divisioin of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Katsuharu Saito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Leo Yamada
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Mai Ashizawa
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hiroshi Nakano
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hiroyuki Hanayama
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hisashi Onozawa
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hirokazu Okayama
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hisahito Endo
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Shotaro Fujita
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Wataru Sakamoto
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Zenichiro Saze
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Tomoyuki Momma
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kosaku Mimura
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan.,Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Shinji Ohki
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kouya Shiraishi
- Divisioin of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Takashi Kohno
- Divisioin of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Koji Kono
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
25
|
Lapke N, Chen CH, Chang TC, Chao A, Lu YJ, Lai CH, Tan KT, Chen HC, Lu HY, Chen SJ. Genetic alterations and their therapeutic implications in epithelial ovarian cancer. BMC Cancer 2021; 21:499. [PMID: 33947352 PMCID: PMC8097933 DOI: 10.1186/s12885-021-08233-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 04/21/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Genetic alterations for epithelial ovarian cancer are insufficiently characterized. Previous studies are limited regarding included histologies, gene numbers, copy number variant (CNV) detection, and interpretation of pathway alteration patterns of individual patients. METHODS We sequenced 410 genes to analyze mutations and CNV of 82 ovarian carcinomas, including high-grade serous (n = 37), endometrioid (n = 22) and clear cell (n = 23) histologies. Eligibility for targeted therapy was determined for each patient by a pathway-based approach. The analysis covered DNA repair, receptor tyrosine kinase, PI3K/AKT/MTOR, RAS/MAPK, cell cycle, and hedgehog pathways, and included 14 drug targets. RESULTS Postulated PARP, MTOR, and CDK4/6 inhibition sensitivity were most common. BRCA1/2 alterations, PTEN loss, and gain of PIK3CA and CCND1 were characteristic for high-grade serous carcinomas. Mutations of ARID1A, PIK3CA, and KRAS, and ERBB2 gain were enriched in the other histologies. PTEN mutations and high tumor mutational burden were characteristic for endometrioid carcinomas. Drug target downstream alterations impaired actionability in all histologies, and many alterations would not have been discovered by key gene mutational analysis. Individual patients often had more than one actionable drug target. CONCLUSIONS Genetic alterations in ovarian carcinomas are complex and differ among histologies. Our results aid the personalization of therapy and biomarker analysis for clinical studies, and indicate a high potential for combinations of targeted therapies.
Collapse
MESH Headings
- Adenocarcinoma, Clear Cell/genetics
- Adenocarcinoma, Clear Cell/pathology
- Adenocarcinoma, Clear Cell/therapy
- Carcinoma/genetics
- Carcinoma/pathology
- Carcinoma/therapy
- Carcinoma, Endometrioid/genetics
- Carcinoma, Endometrioid/pathology
- Carcinoma, Endometrioid/therapy
- Carcinoma, Ovarian Epithelial/genetics
- Carcinoma, Ovarian Epithelial/pathology
- Carcinoma, Ovarian Epithelial/therapy
- Cell Cycle/genetics
- DNA Copy Number Variations
- DNA Mutational Analysis/methods
- DNA Repair/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Hedgehog Proteins/genetics
- High-Throughput Nucleotide Sequencing/methods
- Humans
- Mutation
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/therapy
- Precision Medicine
- Retrospective Studies
Collapse
Affiliation(s)
- Nina Lapke
- ACT Genomics, Co. Ltd., 3F., No.345, Xinhu 2nd Rd., Neihu Dist, Taipei City, 114, Taiwan
- ACT Genomics, Co. Ltd., Units 803 - 807, 8F, Building 15W, No.15 Science Park West Avenue, Hong Kong Science Park, Pak Shek Kok. NT, Hong Kong, Hong Kong
| | - Chien-Hung Chen
- ACT Genomics, Co. Ltd., 3F., No.345, Xinhu 2nd Rd., Neihu Dist, Taipei City, 114, Taiwan
| | - Ting-Chang Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital and Chang Gung University, Linkou Medical Center, 5 Fushin St., Guishan District, Taoyuan, 333, Taiwan
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, 5 Fushin St., Guishan District, Taoyuan, 333, Taiwan
| | - Angel Chao
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital and Chang Gung University, Linkou Medical Center, 5 Fushin St., Guishan District, Taoyuan, 333, Taiwan
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, 5 Fushin St., Guishan District, Taoyuan, 333, Taiwan
| | - Yen-Jung Lu
- ACT Genomics, Co. Ltd., 3F., No.345, Xinhu 2nd Rd., Neihu Dist, Taipei City, 114, Taiwan.
| | - Chyong-Huey Lai
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital and Chang Gung University, Linkou Medical Center, 5 Fushin St., Guishan District, Taoyuan, 333, Taiwan
- Gynecologic Cancer Research Center, Chang Gung Memorial Hospital, 5 Fushin St., Guishan District, Taoyuan, 333, Taiwan
| | - Kien Thiam Tan
- ACT Genomics, Co. Ltd., 3F., No.345, Xinhu 2nd Rd., Neihu Dist, Taipei City, 114, Taiwan
| | - Hua-Chien Chen
- ACT Genomics, Co. Ltd., 3F., No.345, Xinhu 2nd Rd., Neihu Dist, Taipei City, 114, Taiwan
| | - Hsiao-Yun Lu
- ACT Genomics, Co. Ltd., 3F., No.345, Xinhu 2nd Rd., Neihu Dist, Taipei City, 114, Taiwan
| | - Shu-Jen Chen
- ACT Genomics, Co. Ltd., 3F., No.345, Xinhu 2nd Rd., Neihu Dist, Taipei City, 114, Taiwan
| |
Collapse
|
26
|
Kato MK, Yoshida H, Tanase Y, Uno M, Ishikawa M, Kato T. Loss of ARID1A Expression as a Favorable Prognostic Factor in Early-Stage Grade 3 Endometrioid Endometrial Carcinoma Patients. Pathol Oncol Res 2021; 27:598550. [PMID: 34257552 PMCID: PMC8262237 DOI: 10.3389/pore.2021.598550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/12/2021] [Indexed: 11/13/2022]
Abstract
Introduction: High-risk patients with grade 3 endometrioid endometrial carcinoma (G3EEC) who require adjuvant therapy have not been clearly identified. Therefore, the current study aimed to investigate the prognostic impact of ARID1A, p53, and mismatch repair (MMR) protein expressions, previously reported as prognosticators in some gynecological cancers, in patients with early-stage G3EEC. Methods: A total of 67 patients with pathologically confirmed early-stage G3EEC diagnosed between 1997 and 2020 were identified; none received adjuvant chemotherapy. The recurrence-free survival (RFS) and overall survival (OS) were estimated using the Kaplan-Meier method and compared with a log-rank test. The protein expressions of ARID1A, p53, and MMR were examined via immunohistochemistry, and the associations between these biomarkers and clinical outcomes were evaluated. Results: Recurrence was observed in 9 (13%) of the 67 patients with early stage G3EEC. The respective 5-years RFS and OS rates were 87.7% and 93.7%, and 68.6% and 85.7%, respectively for stages I and II. Multivariate analysis showed significantly longer RFS among patients with ARID1A loss (hazard ratio = 8.7; 95% CI, 1.09–69.6, p = 0.04). No significant differences were observed in RFS and OS of patients according to p53 and MMR expression status. Conclusion: ARID1A expression status was a prognosticator for patients with early stage G3EEC without adjuvant therapy, whereas p53 and MMR expression status showed no impact on survival outcomes. ARID1A may become a useful biomarker for stratification of adjuvant treatment for early stage G3EEC patients.
Collapse
Affiliation(s)
| | - Hiroshi Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Yasuhito Tanase
- Department of Gynecology, National Cancer Center Hospital, Tokyo, Japan
| | - Masaya Uno
- Department of Gynecology, National Cancer Center Hospital, Tokyo, Japan
| | - Mitsuya Ishikawa
- Department of Gynecology, National Cancer Center Hospital, Tokyo, Japan
| | - Tomoyasu Kato
- Department of Gynecology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
27
|
Aguilar M, Zhang H, Zhang M, Cantarell B, Sahoo SS, Li HD, Cuevas IC, Lea J, Miller DS, Chen H, Zheng W, Gagan J, Lucas E, Castrillon DH. Serial genomic analysis of endometrium supports the existence of histologically indistinct endometrial cancer precursors. J Pathol 2021; 254:20-30. [PMID: 33506979 PMCID: PMC8252414 DOI: 10.1002/path.5628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/12/2021] [Accepted: 01/20/2021] [Indexed: 11/18/2022]
Abstract
The endometrium is unique as an accessible anatomic location that can be repeatedly biopsied and where diagnostic biopsies do not extirpate neoplastic lesions. We exploited these features to retrospectively characterize serial genomic alterations along the precancer/cancer continuum in individual women. Cases were selected based on (1) endometrial cancer diagnosis/hysterectomy and (2) preceding serial endometrial biopsies including for some patients an early biopsy before a precancer histologic diagnosis. A comprehensive panel was designed for endometrial cancer genes. Formalin‐fixed, paraffin‐embedded specimens for each cancer, preceding biopsies, and matched germline samples were subjected to barcoded high‐throughput sequencing to identify mutations and track their origin and allelic frequency progression. In total, 92 samples from 21 patients were analyzed, providing an opportunity for new insights into early endometrial cancer progression. Definitive invasive endometrial cancers exhibited expected mutational spectra, and canonical driver mutations were detectable in preceding biopsies. Notably, ≥1 cancer mutations were detected prior to the histopathologic diagnosis of an endometrial precancer in the majority of patients. In 18/21 cases, ≥1 mutations were confirmed by abnormal protein levels or subcellular localization by immunohistochemistry, confirming genomic data and providing unique views of histologic correlates. In 19 control endometria, mutation counts were lower, with a lack of canonical endometrial cancer hotspot mutations. Our study documents the existence of endometrial lesions that are histologically indistinct but are bona fide endometrial cancer precursors. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Mitzi Aguilar
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - He Zhang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Musi Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Brandi Cantarell
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Subhransu S Sahoo
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hao-Dong Li
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ileana C Cuevas
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jayanthi Lea
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David S Miller
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hao Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wenxin Zheng
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey Gagan
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elena Lucas
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Diego H Castrillon
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
28
|
Giles KA, Gould CM, Achinger-Kawecka J, Page SG, Kafer GR, Rogers S, Luu PL, Cesare AJ, Clark SJ, Taberlay PC. BRG1 knockdown inhibits proliferation through multiple cellular pathways in prostate cancer. Clin Epigenetics 2021; 13:37. [PMID: 33596994 PMCID: PMC7888175 DOI: 10.1186/s13148-021-01023-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Background BRG1 (encoded by SMARCA4) is a catalytic component of the SWI/SNF chromatin remodelling complex, with key roles in modulating DNA accessibility. Dysregulation of BRG1 is observed, but functionally uncharacterised, in a wide range of malignancies. We have probed the functions of BRG1 on a background of prostate cancer to investigate how BRG1 controls gene expression programmes and cancer cell behaviour. Results Our investigation of SMARCA4 revealed that BRG1 is over-expressed in the majority of the 486 tumours from The Cancer Genome Atlas prostate cohort, as well as in a complementary panel of 21 prostate cell lines. Next, we utilised a temporal model of BRG1 depletion to investigate the molecular effects on global transcription programmes. Depleting BRG1 had no impact on alternative splicing and conferred only modest effect on global expression. However, of the transcriptional changes that occurred, most manifested as down-regulated expression. Deeper examination found the common thread linking down-regulated genes was involvement in proliferation, including several known to increase prostate cancer proliferation (KLK2, PCAT1 and VAV3). Interestingly, the promoters of genes driving proliferation were bound by BRG1 as well as the transcription factors, AR and FOXA1. We also noted that BRG1 depletion repressed genes involved in cell cycle progression and DNA replication, but intriguingly, these pathways operated independently of AR and FOXA1. In agreement with transcriptional changes, depleting BRG1 conferred G1 arrest. Conclusions Our data have revealed that BRG1 promotes cell cycle progression and DNA replication, consistent with the increased cell proliferation associated with oncogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01023-7.
Collapse
Affiliation(s)
- Katherine A Giles
- Epigenetics Laboratory, Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.,Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW, 2145, Australia.,Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, TAS, Hobart, 7000, Australia
| | - Cathryn M Gould
- Epigenetics Laboratory, Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Joanna Achinger-Kawecka
- Epigenetics Laboratory, Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, 2000, Australia
| | - Scott G Page
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW, 2145, Australia
| | - Georgia R Kafer
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW, 2145, Australia
| | - Samuel Rogers
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW, 2145, Australia
| | - Phuc-Loi Luu
- Epigenetics Laboratory, Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, 2000, Australia
| | - Anthony J Cesare
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW, 2145, Australia
| | - Susan J Clark
- Epigenetics Laboratory, Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, 2000, Australia
| | - Phillippa C Taberlay
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, TAS, Hobart, 7000, Australia.
| |
Collapse
|
29
|
Samartzis EP, Labidi-Galy SI, Moschetta M, Uccello M, Kalaitzopoulos DR, Perez-Fidalgo JA, Boussios S. Endometriosis-associated ovarian carcinomas: insights into pathogenesis, diagnostics, and therapeutic targets-a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1712. [PMID: 33490224 PMCID: PMC7812165 DOI: 10.21037/atm-20-3022a] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endometriosis is a benign gynecologic condition affecting up to one woman out of ten of reproductive age. It is defined by the presence of endometrial-like tissue in localizations outside of the uterine cavity. It often causes symptoms such as chronic pain, most frequently associated with the menstrual cycle, and infertility, but may also be oligo- or asymptomatic. There is evidence that some ovarian carcinoma (OC) histotypes, mainly the ovarian clear cell (OCCC) and endometrioid (EnOC) carcinoma, may arise from endometriosis. The most frequent genomic alterations in these carcinomas are mutations in the AT-rich interacting domain containing protein 1A (ARID1A) gene, a subunit of the SWI/SNF chromatin remodeling complex, and alterations in the phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR pathway, which frequently co-occur. In ARID1A deficient cancers preclinical experimental data suggest different targetable mechanisms including epigenetic regulation, cell cycle, genomic instability, the PI3K/AKT/mTOR pathway, inflammatory pathways, immune modulation, or metabolic alterations as potential precision oncology approaches. Most of these strategies are relying on the concept of synthetic lethality in which tumors deficient in ARID1A are more sensitive to the different compounds. Some of these approaches are currently being or have recently been investigated in early clinical trials. The remarkably frequent occurrence of these mutations in endometriosis-associated ovarian cancer, the occurrence in a relatively young population, and the high proportion of platinum-resistant disease certainly warrants further investigation of precision oncology opportunities in this population. Furthermore, advanced knowledge about oncogenic mutations involved in endometriosis-associated ovarian carcinomas may be potentially useful for early cancer detection. However, this approach may be complicated by the frequent occurrence of somatic mutations in benign endometriotic tissue as recent studies suggest. In this narrative review of the current literature, we will discuss the data available on endometriosis-associated ovarian carcinoma, with special emphasis on epidemiology, diagnosis and molecular changes that could have therapeutic implications and clinical applicability in the future.
Collapse
Affiliation(s)
- Eleftherios P Samartzis
- Department of Gynecology and Gynecological Cancer Center, University Hospital Zurich, Zurich, Switzerland
| | - S Intidhar Labidi-Galy
- Department of Oncology, Hôpitaux Universitaires de Genève, Geneva, Switzerland.,Department of Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Mario Uccello
- Northampton General Hospital NHS Trust, Cliftonville, Northampton, UK
| | - Dimitrios R Kalaitzopoulos
- Department of Gynecology and Gynecological Cancer Center, University Hospital Zurich, Zurich, Switzerland.,Department of Gynecology and Obstetrics, Kantonsspital Schaffhausen, Schaffhausen, Switzerland
| | - J Alejandro Perez-Fidalgo
- Department of Medical Oncology, Hospital Clinico Universitario de Valencia, INCLIVA, CIBERONC, Valencia, Spain
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham, Kent, UK.,AELIA Organization, 9th Km Thessaloniki - Thermi, Thessaloniki, Greece
| |
Collapse
|
30
|
Zou J, Qin W, Yang L, Wang L, Wang Y, Shen J, Xiong W, Yu S, Song S, Ajani JA, Lin SY, Mills GB, Yuan X, Chen J, Peng G. Genetic alterations and expression characteristics of ARID1A impact tumor immune contexture and survival in early-onset gastric cancer. Am J Cancer Res 2020; 10:3947-3972. [PMID: 33294279 PMCID: PMC7716160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 10/21/2020] [Indexed: 06/12/2023] Open
Abstract
The AT-rich Interactive Domain 1A (ARID1A) is one of the most frequently mutated genes in gastric cancer. Here, we found that genetic variants in noncoding regions of ARID1A associated with altered protein levels by target sequencing. Notably, tumors with ARID1A variants in the 3'untranslated region (3'UTR) exhibited remarkably increased heterogeneity of ARID1A protein. In general, genetic variants and protein deficiency of ARID1A in tumors were associated with a better survival. Strikingly, altered patterns and heterogeneity of ARID1A protein expression were observed in peritumor tissues and carried significant implications in defining tumor immune contexture by multiplex immunohistochemistry. By analyzing the spatial distribution of TILs, we showed that reduced ARID1A protein levels in both tumor and peritumor tissues were significantly correlated with increased density and proximity of TILs to tumor cells. In contrast, high heterogeneity of ARID1A expression was associated with increased TIL density, but reduced proximity of TILs to tumor cells. Collectively, our study characterized ARID1A genetic alterations and its protein expression patterns in EOGC, demonstrating new strategies for clinically assessing its molecular impact on tumor onset and progression, tumor immune response, and patient survival.
Collapse
Affiliation(s)
- Jun Zou
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Wan Qin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Lin Yang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Lulu Wang
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Yu Wang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Jianfeng Shen
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiaotong University School of MedicineShanghai 200025, China
| | - Wei Xiong
- Department of Oncology, Second Hospital of Wuhan Iron and Steel (Group) Corp.Wuhan 430080, China
| | - Shiying Yu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Shumei Song
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Shiaw-Yih Lin
- Department of Systems Biology, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Gordon B Mills
- Department of Cell, Development & Cancer Biology, Oregon Health and Science University Knight Cancer InstitutePortland, Oregon, USA
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Jianying Chen
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, China
| | - Guang Peng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| |
Collapse
|
31
|
Wilson MR, Reske JJ, Holladay J, Neupane S, Ngo J, Cuthrell N, Wegener M, Rhodes M, Adams M, Sheridan R, Hostetter G, Alotaibi FT, Yong PJ, Anglesio MS, Lessey BA, Leach RE, Teixeira JM, Missmer SA, Fazleabas AT, Chandler RL. ARID1A Mutations Promote P300-Dependent Endometrial Invasion through Super-Enhancer Hyperacetylation. Cell Rep 2020; 33:108366. [PMID: 33176148 PMCID: PMC7682620 DOI: 10.1016/j.celrep.2020.108366] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/16/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
Endometriosis affects 1 in 10 women and is characterized by the presence of abnormal endometrium at ectopic sites. ARID1A mutations are observed in deeply invasive forms of the disease, often correlating with malignancy. To identify epigenetic dependencies driving invasion, we use an unbiased approach to map chromatin state transitions accompanying ARID1A loss in the endometrium. We show that super-enhancers marked by high H3K27 acetylation are strongly associated with ARID1A binding. ARID1A loss leads to H3K27 hyperacetylation and increased chromatin accessibility and enhancer RNA transcription at super-enhancers, but not typical enhancers, indicating that ARID1A normally prevents super-enhancer hyperactivation. ARID1A co-localizes with P300 at super-enhancers, and genetic or pharmacological inhibition of P300 in ARID1A mutant endometrial epithelia suppresses invasion and induces anoikis through the rescue of super-enhancer hyperacetylation. Among hyperactivated super-enhancers, SERPINE1 (PAI-1) is identified as an essential target gene driving ARID1A mutant endometrial invasion. Broadly, our findings provide rationale for therapeutic strategies targeting super-enhancers in ARID1A mutant endometrium.
Collapse
Affiliation(s)
- Mike R Wilson
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Jake J Reske
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Jeanne Holladay
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Subechhya Neupane
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Julie Ngo
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Nina Cuthrell
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Marc Wegener
- Genomics Core Facility, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Mary Rhodes
- Genomics Core Facility, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Marie Adams
- Genomics Core Facility, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Rachael Sheridan
- Flow Cytometry Core, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Galen Hostetter
- Pathology and Biorepository Core, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Fahad T Alotaibi
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada; Department of Physiology, College of Medicine, Al-Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Paul J Yong
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
| | - Michael S Anglesio
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada; British Columbia's Gynecological Cancer Research Team (OVCARE), University of British Columbia, Vancouver General Hospital, and BC Cancer, Vancouver, BC, Canada
| | - Bruce A Lessey
- Department of Obstetrics and Gynecology, Wake Forest Baptist Health, Winston-Salem, NC 27157, USA
| | - Richard E Leach
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; Department of Women's Health, Spectrum Health System, Grand Rapids, MI 49341, USA
| | - Jose M Teixeira
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; Department of Women's Health, Spectrum Health System, Grand Rapids, MI 49341, USA
| | - Stacey A Missmer
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; Department of Women's Health, Spectrum Health System, Grand Rapids, MI 49341, USA
| | - Asgerally T Fazleabas
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; Department of Women's Health, Spectrum Health System, Grand Rapids, MI 49341, USA
| | - Ronald L Chandler
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA; Department of Women's Health, Spectrum Health System, Grand Rapids, MI 49341, USA; Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
32
|
Reske JJ, Wilson MR, Holladay J, Wegener M, Adams M, Chandler RL. SWI/SNF inactivation in the endometrial epithelium leads to loss of epithelial integrity. Hum Mol Genet 2020; 29:3412-3430. [PMID: 33075803 PMCID: PMC7749707 DOI: 10.1093/hmg/ddaa227] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/01/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Although ARID1A mutations are a hallmark feature, mutations in other SWI/SNF (SWItch/Sucrose Non-Fermentable) chromatin remodeling subunits are also observed in endometrial neoplasms. Here, we interrogated the roles of Brahma/SWI2-related gene 1 (BRG1, SMARCA4), the SWI/SNF catalytic subunit, in the endometrial epithelium. BRG1 loss affects more than one-third of all active genes and highly overlaps with the ARID1A gene regulatory network. Chromatin immunoprecipitation studies revealed widespread subunit-specific differences in transcriptional regulation, as BRG1 promoter interactions are associated with gene activation, while ARID1A binding is associated with gene repression. However, we identified a physiologically relevant subset of BRG1 and ARID1A co-regulated epithelial identity genes. Mice were genetically engineered to inactivate BRG1 specifically in the endometrial epithelium. Endometrial glands were observed embedded in uterine myometrium, indicating adenomyosis-like phenotypes. Molecular similarities were observed between BRG1 and ARID1A mutant endometrial cells in vivo, including loss of epithelial cell adhesion and junction genes. Collectively, these studies illustrate overlapping contributions of multiple SWI/SNF subunit mutations in the translocation of endometrium to distal sites, with loss of cell integrity being a common feature in SWI/SNF mutant endometrial epithelia.
Collapse
Affiliation(s)
- Jake J Reske
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Mike R Wilson
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Jeanne Holladay
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Marc Wegener
- Genomics Core Facility, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Marie Adams
- Genomics Core Facility, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Ronald L Chandler
- To whom correspondence should be addressed at: Grand Rapids Research Center, 400 Monroe NW, Grand Rapids, MI 49503, USA. Tel: +1 6162340980;
| |
Collapse
|
33
|
Sasaki M, Sato Y, Nakanuma Y. Bile duct adenoma may be a precursor lesion of small duct type intrahepatic cholangiocarcinoma. Histopathology 2020; 78:310-320. [PMID: 33405289 DOI: 10.1111/his.14222] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND/AIMS Precursor lesions of small duct type intrahepatic cholangiocarcinoma (small duct iCCA) have not been clarified so far. We hypothesised that precursor lesions may be frequently distributed in the background liver of small duct iCCA. METHODS AND RESULTS We determined by histology the presence of bile duct adenomas and von Meyenburg complexes as candidate precursor lesions in the background liver of small duct iCCA, with other primary liver carcinomas as control. Subjects included 28 patients with small duct iCCA, 29 with large duct iCCAs, 60 with combined hepatocellular-cholangiocarcinoma (Comb) and 40 with hepatocellular carcinoma (HCC). The prevalence of bile duct adenomas in the background liver was significantly higher in small duct iCCA (35.7%) compared to other primary liver carcinomas (Comb, 4.9%; 10%, HCC) (P < 0.01). The prevalence of bile duct adenomas was significantly associated with the presence of von Meyenburg complexes and ductal plate malformation-like patterns in small duct iCCAs and Combs. Von Meyenburg complexes were detected in 11 small duct iCCA (39.3%), five large duct iCCAs (17.2%), 10 Comb (16.4%) and 13 HCC (33.3%), respectively (P > 0.05). Small duct iCCAs showed altered expression of ARID1A (46.4%), p53 (39.3%), PBRM1 (14.3%), IMP3 (85.7%) and EZH2 (82.1%), whereas these markers were negative in bile duct adenomas. CONCLUSION Bile duct adenomas may be precursor lesions of small duct iCCAs. Alteration of ARID1A, p53 or PBRM1 may be involved in the carcinogenesis of small duct iCCAs.
Collapse
Affiliation(s)
- Motoko Sasaki
- Department of Human Pathology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Yasunori Sato
- Department of Human Pathology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Yasuni Nakanuma
- Division of Pathology, Fukui Saiseikai Hospital, Fukui, Japan
| |
Collapse
|
34
|
Inactivation of Arid1a in the endometrium is associated with endometrioid tumorigenesis through transcriptional reprogramming. Nat Commun 2020; 11:2717. [PMID: 32483112 PMCID: PMC7264300 DOI: 10.1038/s41467-020-16416-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 05/04/2020] [Indexed: 01/01/2023] Open
Abstract
Somatic inactivating mutations of ARID1A, a SWI/SNF chromatin remodeling gene, are prevalent in human endometrium-related malignancies. To elucidate the mechanisms underlying how ARID1A deleterious mutation contributes to tumorigenesis, we establish genetically engineered murine models with Arid1a and/or Pten conditional deletion in the endometrium. Transcriptomic analyses on endometrial cancers and precursors derived from these mouse models show a close resemblance to human uterine endometrioid carcinomas. We identify transcriptional networks that are controlled by Arid1a and have an impact on endometrial tumor development. To verify findings from the murine models, we analyze ARID1AWT and ARID1AKO human endometrial epithelial cells. Using a system biology approach and functional studies, we demonstrate that ARID1A-deficiency lead to loss of TGF-β tumor suppressive function and that inactivation of ARID1A/TGF-β axis promotes migration and invasion of PTEN-deleted endometrial tumor cells. These findings provide molecular insights into how ARID1A inactivation accelerates endometrial tumor progression and dissemination, the major causes of cancer mortality. ARID1A, which is often mutated in human endometrial cancer, is a component of the SWI/SNF chromatin remodelling complex. Here, the authors show that Arid1a mutations in the mouse endometrium and primary human endometrial epithelial cells cause widespread reprogramming of gene transcription and result in a loss of response to TGFβ.
Collapse
|
35
|
Wang Y, Hoang L, Ji JX, Huntsman DG. SWI/SNF Complex Mutations in Gynecologic Cancers: Molecular Mechanisms and Models. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2020; 15:467-492. [PMID: 31977292 DOI: 10.1146/annurev-pathmechdis-012418-012917] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The SWI/SNF (mating type SWItch/Sucrose NonFermentable) chromatin remodeling complexes interact with histones and transcription factors to modulate chromatin structure and control gene expression. These evolutionarily conserved multisubunit protein complexes are involved in regulating many biological functions, such as differentiation and cell proliferation. Genomic studies have revealed frequent mutations of genes encoding multiple subunits of the SWI/SNF complexes in a wide spectrum of cancer types, including gynecologic cancers. These SWI/SNF mutations occur at different stages of tumor development and are restricted to unique histologic types of gynecologic cancers. Thus, SWI/SNF mutations have to function in the appropriate tissue and cell context to promote gynecologic cancer initiation and progression. In this review, we summarize the current knowledge of SWI/SNF mutations in the development of gynecologic cancers to provide insights into both molecular pathogenesis and possible treatment implications for these diseases.
Collapse
Affiliation(s)
- Yemin Wang
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L3, Canada; , , .,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada; .,Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia V6Z 2K8, Canada
| | - Lien Hoang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada;
| | - Jennifer X Ji
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L3, Canada; , , .,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada;
| | - David G Huntsman
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia V5Z 1L3, Canada; , , .,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada; .,Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia V6Z 2K8, Canada
| |
Collapse
|
36
|
Abstract
Recent advances in molecular studies, especially genome-wide analyses, have revealed the landscape of genomic alterations present in endometrial carcinomas, and have provided valuable insight into the pathogenesis of this disease. The current challenges are in developing a molecular-morphologic classification system to enhance traditional pathologic diagnosis and in determining the optimal approach to using this new information to guide clinical management. Molecular assays may be particularly beneficial in allowing the earlier detection of endometrial cancer or precursor lesions and in guiding personalized treatment approaches. In this review, we describe the current molecular landscape of endometrial cancers, efforts underway to incorporate molecular alterations into the current classification systems, and the development of diagnostic tools for the early detection of endometrial cancer. Finally, we present opportunities for using these data to tailor therapeutic strategies. A comprehensive understanding of the molecular alterations responsible for the origination, relapse, and resistance patterns of this disease will ultimately improve outcomes for patients with endometrial cancer.
Collapse
|
37
|
PI3K Pathway Effectors pAKT and FOXO1 as Novel Markers of Endometrioid Intraepithelial Neoplasia. Int J Gynecol Pathol 2020; 38:503-513. [PMID: 30256235 DOI: 10.1097/pgp.0000000000000549] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The diagnosis of endometrioid intraepithelial neoplasia (EIN) is challenging owing to limited sampling, hormonal status, and other confounding histologic variables. Markers such as PTEN or PAX2 can delineate EIN in some cases, but are not wholly reliable. Clearly, new markers of EIN are needed. We explored several potential markers of EIN based rationally on molecular pathways most frequently misregulated in endometrial cancer: the 3-phosphoinositide kinase (PI3K)/AKT, β-catenin, and mismatch repair pathways. We studied PTEN, PAX2, β-catenin, and MLH1, in conjunction with 2 new markers-FOXO1 and phosphorylated AKT (pAKT)-not previously investigated in EIN. Benign (n=14) and EIN (n=35) endometria were analyzed by immunohistochemistry. Staining patterns were interpreted, tabulated, and scored by "clonal distinctiveness" in neoplastic lesions; that is, pattern alterations relative to normal glands. In normal endometria, FOXO1 was cytoplasmic in proliferative phase, but nuclear in secretory phase, showing that PI3K/FOXO1 participates in endometrial cycling and that FOXO1 is a readout of PI3K status. pAKT expression was low across normal endometria. FOXO1 or pAKT expression was altered in the majority of EINs (27/35, 77%), with FOXO1 and pAKT being co-altered only in some (20/35, 57%). β-catenin or MLH1 also exhibited clonal distinctiveness in EINs, showing that these are also useful markers in some cases. This is the first study to demonstrate the potential of pAKT and FOXO1 as biomarkers in the histopathologic evaluation of EIN. However, variability in expression poses challenges in interpretation.
Collapse
|
38
|
Cholangiolocellular Carcinoma With "Ductal Plate Malformation" Pattern May Be Characterized by ARID1A Genetic Alterations. Am J Surg Pathol 2020; 43:352-360. [PMID: 30520820 DOI: 10.1097/pas.0000000000001201] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cholangiolocellular carcinoma (CLC) is a unique subtype of primary liver carcinoma, which sometimes coexists with hepatocellular carcinoma (HCC), cholangiocarcinoma and combined hepatocellular-cholangiocarcinoma (cHCC-CCA). "Ductal plate malformation" (DPM)-pattern of primary liver carcinoma, which resembles biliary lesions in Caroli disease and von Meyenburg complex, is sometimes associated with CLC. We examined genetic alterations of hTERT promoter (hTERT), IDH1 or 2 (IDH1/2), KRAS, ARID1A, PBRM1, ARID2, BAP1, p53 and their association with histologic features such as proportion of CLC and DPM-pattern in 77 patients with primary liver carcinoma diagnosed as cHCC-CCA or CLC. Primary liver carcinomas were histologically subdivided into 29 CLC-predominant (CLC component >80%), 31 with CLC (5% to 80%) and 17 without CLC (<5%). CLC-predominant group was characterized by older age, male-predominant and smaller tumor size. Genetic alterations were detected in hTERT (25%), ARID1A (21%), PBRM1 (20%), ARID2 (3%), BAP1 (1%), p53 (46%), KRAS (5%), and IDH1/2 (8%). ARID1A alteration was more frequent in CLC-predominant group, compared with other groups (P<0.05) and was correlated with the degree of DPM-pattern (P<0.01). Alterations of hTERT and p53 were less frequent in CLC-predominant group compared with "with CLC group" (P<0.05). hTERT mutation was less frequent in carcinomas with DPM-pattern (P<0.01). PBRM1 alteration was more frequent in CLC with focal HCC subgroup and without CLC group compared with other groups (P<0.05). CLC may be a distinct subgroup of primary liver carcinoma, which is different from cHCC-CCA, based on clinicopathologic and genetic alterations. ARID1A alterations may characterize CLC with DPM-pattern and could be a diagnostic immunohistochemical marker for small CLCs with DPM-pattern.
Collapse
|
39
|
Raffone A, Travaglino A, Saccone G, Cieri M, Mascolo M, Mollo A, Insabato L, Zullo F. Diagnostic and prognostic value of ARID1A in endometrial hyperplasia: a novel marker of occult cancer. APMIS 2019; 127:597-606. [DOI: 10.1111/apm.12977] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/20/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Antonio Raffone
- Gynecology and Obstetrics Unit, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine University of Naples Federico IINaples Italy
| | - Antonio Travaglino
- Anatomic Pathology Unit, Department of Advanced Biomedical Sciences, School of Medicine University of Naples Federico II Naples Italy
| | - Gabriele Saccone
- Gynecology and Obstetrics Unit, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine University of Naples Federico IINaples Italy
| | - Miriam Cieri
- Anatomic Pathology Unit, Department of Advanced Biomedical Sciences, School of Medicine University of Naples Federico II Naples Italy
| | - Massimo Mascolo
- Anatomic Pathology Unit, Department of Advanced Biomedical Sciences, School of Medicine University of Naples Federico II Naples Italy
| | - Antonio Mollo
- Gynecology and Obstetrics Unit, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine University of Naples Federico IINaples Italy
| | - Luigi Insabato
- Anatomic Pathology Unit, Department of Advanced Biomedical Sciences, School of Medicine University of Naples Federico II Naples Italy
| | - Fulvio Zullo
- Gynecology and Obstetrics Unit, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine University of Naples Federico IINaples Italy
| |
Collapse
|
40
|
ARID1A and PI3-kinase pathway mutations in the endometrium drive epithelial transdifferentiation and collective invasion. Nat Commun 2019; 10:3554. [PMID: 31391455 PMCID: PMC6686004 DOI: 10.1038/s41467-019-11403-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 07/03/2019] [Indexed: 01/06/2023] Open
Abstract
ARID1A and PI3-Kinase (PI3K) pathway alterations are common in neoplasms originating from the uterine endometrium. Here we show that monoallelic loss of ARID1A in the mouse endometrial epithelium is sufficient for vaginal bleeding when combined with PI3K activation. Sorted mutant epithelial cells display gene expression and promoter chromatin signatures associated with epithelial-to-mesenchymal transition (EMT). We further show that ARID1A is bound to promoters with open chromatin, but ARID1A loss leads to increased promoter chromatin accessibility and the expression of EMT genes. PI3K activation partially rescues the mesenchymal phenotypes driven by ARID1A loss through antagonism of ARID1A target gene expression, resulting in partial EMT and invasion. We propose that ARID1A normally maintains endometrial epithelial cell identity by repressing mesenchymal cell fates, and that coexistent ARID1A and PI3K mutations promote epithelial transdifferentiation and collective invasion. Broadly, our findings support a role for collective epithelial invasion in the spread of abnormal endometrial tissue. PIK3CA mutations and ARID1A loss co-exist in endometrial neoplasms. Here, the authors show that these co-mutations drive gene expression profiles correlated with differential chromatin accessibility and ARID1A binding in the endometrial epithelium, resulting in partial EMT and myometrial invasion.
Collapse
|
41
|
Toumpeki C, Liberis A, Tsirkas I, Tsirka T, Kalagasidou S, Inagamova L, Anthoulaki X, Tsatsaris G, Kontomanolis EN. The Role of ARID1A in Endometrial Cancer and the Molecular Pathways Associated With Pathogenesis and Cancer Progression. In Vivo 2019; 33:659-667. [PMID: 31028182 PMCID: PMC6559907 DOI: 10.21873/invivo.11524] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/26/2019] [Accepted: 04/01/2019] [Indexed: 02/07/2023]
Abstract
AT-rich interaction domain 1A gene (ARID1A) encodes for a subunit of the switch/sucrose non-fermentable (SWI/SNF) complex, a chromatin remodeling complex, and it has been implicated in the pathogenesis of various cancer types. In this review, we discuss how ARID1A is linked to endometrial cancer and what molecular pathways are affected by mutation or inhibition of ARID1A. We also discuss the potential use of ARID1A not only as a prognostic biomarker, but also as a target for therapeutic interventions.
Collapse
Affiliation(s)
- Chrisavgi Toumpeki
- Department of Obstetrics and Gynecology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Anastasios Liberis
- Second Department of Obstetrics and Gynecology, Hippokration General Hospital, Thessaloniki, Greece
| | - Ioannis Tsirkas
- Department of Obstetrics and Gynecology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Theodora Tsirka
- Department of Molecular Biology and Genetics, University of Thrace, Alexandroupolis, Greece
| | - Sofia Kalagasidou
- Department of Obstetrics and Gynecology, Bodosakio General Hospital of Ptolemaida, Ptolemaida, Greece
| | - Lola Inagamova
- Department of Obstetrics and Gynecology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Xanthoula Anthoulaki
- Department of Obstetrics and Gynecology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Georgios Tsatsaris
- Department of Obstetrics and Gynecology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Emmanuel N Kontomanolis
- Department of Obstetrics and Gynecology, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
42
|
Hu TWY, Li L, Yang E, Nie D, Li ZY. Molecular expression characteristics confirm the malignancy concealed by morphological alterations in endometrial cancer after fertility-preserving treatment. Arch Gynecol Obstet 2019; 299:1673-1682. [DOI: 10.1007/s00404-019-05145-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 03/27/2019] [Indexed: 12/13/2022]
|
43
|
Zhang L, Wang C, Yu S, Jia C, Yan J, Lu Z, Chen J. Loss of ARID1A Expression Correlates With Tumor Differentiation and Tumor Progression Stage in Pancreatic Ductal Adenocarcinoma. Technol Cancer Res Treat 2019; 17:1533034618754475. [PMID: 29486633 PMCID: PMC5833159 DOI: 10.1177/1533034618754475] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Mutations in the AT-rich interactive domain 1A gene, which encodes a subunit of the Switch/Sucrose nonfermentable chromatin remodeling complex, can result in loss of protein expression and are associated with different cancers. Here, we used immunohistochemistry to investigate the significance of AT-rich interactive domain 1A loss in 73 pancreatic ductal adenocarcinoma cases with paired paracancerous normal pancreatic tissues. The relationship between levels of the AT-rich interactive domain 1A protein product, BAF250a, and clinicopathological parameters in the 73 pancreatic cancer specimens was also analyzed. We found that the expression of AT-rich interactive domain 1A in normal pancreatic tissue was higher than that in tumor tissue. Loss of AT-rich interactive domain 1A expression in pancreatic tumors was associated with tumor differentiation (P = .002) and tumor stage (P = .048). Meanwhile, BAF250a protein levels were not related to lymph node metastasis, distant metastasis, sex, or age and were not associated with survival. Transfection of the pancreatic cancer cell lines AsPC-1 and PANC-1 with small-interfering RNA specific for AT-rich interactive domain 1A resulted in elevated messenger RNA and protein expression levels of B-cell lymphoma-2 (Bcl-2), CyclinD1, and Kirsten rat sarcoma viral oncogene (KRAS). The AT-rich interactive domain 1A expression level in the cells was increased following microRNA-31 (miR-31) inhibitor transfection. Our data provide additional evidence that AT-rich interactive domain 1A might function as a tumor suppressor gene in pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Li Zhang
- 1 Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing, China
| | - Cuiping Wang
- 1 Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing, China
| | - Shuangni Yu
- 1 Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing, China
| | - Congwei Jia
- 1 Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing, China
| | - Jie Yan
- 1 Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing, China
| | - Zhaohui Lu
- 1 Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing, China
| | - Jie Chen
- 1 Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing, China
| |
Collapse
|
44
|
Loss of ARID1A expression in endometrial samplings is associated with the risk of endometrial carcinoma. Gynecol Oncol 2018; 150:426-431. [DOI: 10.1016/j.ygyno.2018.06.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/19/2018] [Accepted: 06/23/2018] [Indexed: 11/21/2022]
|
45
|
Vitale SG, Capriglione S, Peterlunger I, La Rosa VL, Vitagliano A, Noventa M, Valenti G, Sapia F, Angioli R, Lopez S, Sarpietro G, Rossetti D, Zito G. The Role of Oxidative Stress and Membrane Transport Systems during Endometriosis: A Fresh Look at a Busy Corner. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7924021. [PMID: 29743986 PMCID: PMC5883985 DOI: 10.1155/2018/7924021] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 02/18/2018] [Indexed: 11/17/2022]
Abstract
Endometriosis is a condition characterized by the presence of endometrial tissue outside the uterine cavity, leading to a chronic inflammatory reaction. It is one of the most widespread gynecological diseases with a 10-15% prevalence in the general female population, rising up to 30-45% in patients with infertility. Although it was first described in 1860, its etiology and pathogenesis are still unclear. It is now accepted that inflammation plays a central role in the development and progression of endometriosis. In particular, it is marked by an inflammatory process associated with the overproduction of an array of inflammatory mediators such as prostaglandins, metalloproteinases, cytokines, and chemokines. In addition, the growth and adhesion of endometrial cells in the peritoneal cavity due to reactive oxygen species (ROS) and free radicals lead to disease onset, its ensuing symptoms-among which pain and infertility. The aim of our review is to evaluate the role of oxidative stress and ROS in the pathogenesis of endometriosis and the efficacy of antioxidant therapy in the treatment and mitigation of its symptoms.
Collapse
Affiliation(s)
- Salvatore Giovanni Vitale
- Unit of Gynecology and Obstetrics, Department of Human Pathology in Adulthood and Childhood “G. Barresi”, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
| | - Stella Capriglione
- Department of Obstetrics and Gynecology, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Isabel Peterlunger
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Ospedale di Cattinara, Strada di Fiume 447, 34149 Trieste, Italy
| | - Valentina Lucia La Rosa
- Unit of Psychodiagnostics and Clinical Psychology, University of Catania, Via Santa Sofia 78, 95124 Catania, Italy
| | - Amerigo Vitagliano
- Department of Woman and Child Health, University of Padua, Via Giustiniani 3, 35128 Padua, Italy
| | - Marco Noventa
- Department of Woman and Child Health, University of Padua, Via Giustiniani 3, 35128 Padua, Italy
| | - Gaetano Valenti
- Department of General Surgery and Medical Surgical Specialties, University of Catania, Via Santa Sofia 78, 95124 Catania, Italy
| | - Fabrizio Sapia
- Department of General Surgery and Medical Surgical Specialties, University of Catania, Via Santa Sofia 78, 95124 Catania, Italy
| | - Roberto Angioli
- Department of Obstetrics and Gynecology, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Salvatore Lopez
- Department of Obstetrics and Gynecology, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Giuseppe Sarpietro
- Department of General Surgery and Medical Surgical Specialties, University of Catania, Via Santa Sofia 78, 95124 Catania, Italy
| | - Diego Rossetti
- Unit of Gynecology and Obstetrics, Desenzano del Garda Hospital, Section of Gavardo, Via A. Gosa 74, 25085 Gavardo, Italy
| | - Gabriella Zito
- Department of Obstetrics and Gynecology, Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, Via dell'Istria 65/1, 34137 Trieste, Italy
| |
Collapse
|
46
|
Vierkoetter K, Wong J, Ahn HJ, Shimizu D, Kagami L, Terada K. Using gene expression in patients with endometrial intraepithelial neoplasia to assess the risk of cancer. Gynecol Oncol Rep 2018; 24:24-26. [PMID: 29845103 PMCID: PMC5966520 DOI: 10.1016/j.gore.2018.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/24/2018] [Accepted: 02/26/2018] [Indexed: 01/01/2023] Open
Abstract
Patients diagnosed with an endometrial cancer precursor lesion on biopsy may be found to have endometrial cancer at the time of subsequent surgery. The current study seeks to identify patients with endometrial intraepithelial neoplasia (EIN) on biopsy that may be harboring an occult carcinoma. Immunohistochemical stains for gene loss of expression (LOE) for 6 genes, PTEN, ARID1A, MSH6, MSH2, MLH1, and PMS2, were performed on 113 biopsy specimens with EIN. For the 95 patients with follow-up histology, 40 patients had cancer, 41 had EIN, and 14 had normal endometrium. PTEN LOE was found frequently in both EIN and endometrial cancer, and therefore had low positive predictive value. All specimens with ARID1A, MSH6, MSH2, MLH1, or PMS2 LOE on biopsy were subsequently found to have cancer. LOE of any gene was associated with modest sensitivity (0.78) in identifying patients with endometrial cancer who had EIN on biopsy. Further investigation is warranted to determine if gene LOE is a useful clinical tool when evaluating patients with EIN on biopsy.
Collapse
Affiliation(s)
- Koah Vierkoetter
- Department of Pathology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Jennifer Wong
- Department of Obstetrics, Gynecology, and Women's Health, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Hyeong Jun Ahn
- Department of Complementary and Integrative Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - David Shimizu
- Department of Pathology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Laura Kagami
- Department of Pathology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| | - Keith Terada
- Department of Obstetrics, Gynecology, and Women's Health, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
| |
Collapse
|
47
|
The ARID1A, p53 and ß-Catenin statuses are strong prognosticators in clear cell and endometrioid carcinoma of the ovary and the endometrium. PLoS One 2018; 13:e0192881. [PMID: 29451900 PMCID: PMC5815611 DOI: 10.1371/journal.pone.0192881] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/31/2018] [Indexed: 12/18/2022] Open
Abstract
Aim The objective of this study was to evaluate the prognostic value of ARID1A, p53, p21, p16 and ß-Catenin in endometrioid and clear cell ovarian and endometrial carcinomas. Materials and methods 97 tumors were available for analysis of ARID1A, p53, p21, p16 and ß-Catenin with the techniques of tissue microarray and immunohistochemistry. 32 were ovarian carcinomas and 65 were endometrial carcinomas. Results Endometrioid ovarian carcinomas showed negative staining for ARID1A (a) and p21 (b), aberrant expression of p53 (c) and p16 (d) and ß-Catenin positive nuclear expression (e) respectively in 19% (a), 100% (b), 28.6% (c), 52.4% (d) and 4.8% (e) of all cases. In the group of clear cell ovarian carcinomas it was 63.6% (a), 100% (b), 81.8% (c), 54.5% (d) and 0% (e). For endometrioid uterine carcinomas it was 75.7% (a), 94.9% (b), 30.5% (c), 52.1% (d) and 6.8% (e) and for clear cell uterine carcinomas it was 8.6% (a), 100% (b), 50% (c), 100% (d) and 0% (e). Survival analysis showed that negative expression of ARID1A, p53 aberrant expression and ß-Catenin nuclear positive staining are independent negative prognosticators in both, clear cell and endometrioid carcinoma, regardless of ovarian or uterine origin. Cox-Regression analysis showed them again as negative prognostic factors. Furthermore, we found a significant correlation between ARID1A and ß-Catenin expression in endometrioid uterine tumors. Conclusion The analyzed gynaecological carcinoma showed a distinct expression scheme of proteins that are associated with tumor suppression. We may conclude that ARID1A, p53 and ß-Catenin are the strongest prognostic factors by analyzing a subgroup of tumor suppressor genes in clear cell and endometrioid subtypes of ovarian and endometrial cancer and may be used along with traditional morphological and clinical characteristics for prognosis.
Collapse
|
48
|
Yang Y, Bao W, Sang Z, Yang Y, Lu M, Xi X. Microarray pathway analysis indicated that mitogen-activated protein kinase/extracellular signal-regulated kinase and insulin growth factor 1 signaling pathways were inhibited by small interfering RNA against AT-rich interactive domain 1A in endometrial cancer. Oncol Lett 2018; 15:1829-1838. [PMID: 29399196 DOI: 10.3892/ol.2017.7489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 10/20/2017] [Indexed: 01/08/2023] Open
Abstract
Mutations in the gene encoding AT-rich interactive domain 1A (ARID1A) are frequently observed in endometrial cancer (EC) but the molecular mechanisms linking the genetic changes remain to be fully understood. The present study aimed to elucidate the influence of ARID1A mutations on signaling pathways. Missense, synonymous and nonsense heterozygous ARID1A mutations in the EC HEC-1-A cell line were verified by Sanger sequencing. Mutated ARID1A small interfering RNA was transfected into HEC-1-A cells. Biochemical microarray analysis revealed 13 upregulated pathways, 17 downregulated pathways, 14 significantly affected disease states and functions, 662 upstream and 512 downstream genes in mutated ARID1A-depleted HEC-1-A cells, among which the mitogen-activated protein kinase/extracellular signal-regulated kinase and insulin-like growth factor-1 (IGF1) signaling pathways were the 2 most downregulated pathways. Furthermore, the forkhead box protein O1 pathway was upregulated, while the IGF1 receptor, insulin receptor substrate 1 and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit b pathways were downregulated. Carcinoma tumorigenesis, tumor cell mitosis and tumor cell death were significantly upregulated disease states and functions, while cell proliferation and tumor growth were significantly downregulated. The results of the present study suggested that ARID1A may be a potential prognostic and therapeutic molecular drug target for the prevention of EC progression.
Collapse
Affiliation(s)
- Ye Yang
- Department of Obstetrics and Gynecology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, P.R. China
| | - Wei Bao
- Department of Obstetrics and Gynecology, Shanghai General Hospital of Shanghai Jiaotong University, Shanghai 200080, P.R. China
| | - Zhengyu Sang
- Department of Obstetrics and Gynecology, Shanghai General Hospital of Shanghai Jiaotong University, Shanghai 200080, P.R. China
| | - Yongbing Yang
- Department of Obstetrics and Gynecology, Shanghai General Hospital of Shanghai Jiaotong University, Shanghai 200080, P.R. China
| | - Meng Lu
- Department of Obstetrics and Gynecology, Shanghai General Hospital of Shanghai Jiaotong University, Shanghai 200080, P.R. China
| | - Xiaowei Xi
- Department of Obstetrics and Gynecology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, P.R. China
| |
Collapse
|
49
|
Lee SE, Park HY, Shim SH, Kim WY. Dedifferentiated carcinoma with clear cell carcinoma of the endometrium: A case report. Pathol Int 2017; 67:472-476. [DOI: 10.1111/pin.12557] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/31/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Seung Eun Lee
- Department of Pathology; Konkuk University Medical Center; Konkuk University School of Medicine; Seoul Korea
| | - Ha young Park
- Department of Pathology; Busan Paik Hospital; Inje University College of Medicine; Busan Korea
| | - Seung-Hyuk Shim
- Department of Obstetrics and Gynaecology; Konkuk University School of Medicine; Seoul Korea
| | - Wook Youn Kim
- Department of Pathology; Konkuk University Medical Center; Konkuk University School of Medicine; Seoul Korea
| |
Collapse
|
50
|
Liu G, Xu P, Fu Z, Hua X, Liu X, Li W, Zhang M, Wu J, Wen J, Xu J, Jia X. Prognostic and Clinicopathological Significance of ARID1A in Endometrium-Related Gynecological Cancers: A Meta-Analysis. J Cell Biochem 2017; 118:4517-4525. [PMID: 28466574 DOI: 10.1002/jcb.26109] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 05/01/2017] [Indexed: 12/31/2022]
Abstract
The tumor suppressor gene, AT Rich Interactive Domain 1A (ARID1A) mutation has been reported in a variety of cancers, especially the endometrium-related gynecological cancers, including the ovarian clear cell carcinoma, ovarian endometrioid carcinoma, and uterine endometrioid carcinoma. However, the prognostic value of ARID1A in endometrium-related gynecological cancers is still inconclusive. Therefore, we performed this meta-analysis to evaluate the clinical significance of ARID1A in endometrium-related gynecological cancers. By systematically searching all the relevant studies from Pubmed, Cochrane Library, and Web of Science up to September 2016, 11 studies with 1,432 patients were included. All the study characteristics and the prognostic data were extracted. Hazard ratios (HRs) and 95% confidence intervals (CIs) were pooled using the fixed-effect or random-effect model. Our results indicated that negative ARID1A expression predicted shorter Progression free survival (PFS, HR, 1.84; 95%CI, 1.32-2.57, P = 0.000) of patients with endometrium related gynecological cancers, especially the patiently with OCCC and the patients in Japan. Besides, a marginal trend towards the same direction was found in the Overall analysis (OS, HR, 1.34; 95%CI, 0.93-1.93, P = 0.112). Furthermore, the significant correlation was achieved between the negative ARID1A expression and the FIGO stage of endometrium-related gynecological cancers, but not the other characteristics. J. Cell. Biochem. 118: 4517-4525, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Guangquan Liu
- Department of Obstetrics Gynecology, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical, University, Nanjing, 210004, China
| | - Pengfei Xu
- Nanjing Maternity and Child Health Medical Institute, Nanjing Maternity and Child, Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - Ziyi Fu
- Nanjing Maternity and Child Health Medical Institute, Nanjing Maternity and Child, Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - Xiangdong Hua
- Department of Obstetrics Gynecology, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical, University, Nanjing, 210004, China
| | - Xiaoguang Liu
- Department of Obstetrics Gynecology, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical, University, Nanjing, 210004, China
| | - Wenqu Li
- Department of Obstetrics Gynecology, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical, University, Nanjing, 210004, China
| | - Mi Zhang
- Department of Obstetrics Gynecology, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical, University, Nanjing, 210004, China
| | - Jiacong Wu
- Nantong Maternity and Child Health Care Hospital, Nantong, 226081, China
| | - Juan Wen
- Nanjing Maternity and Child Health Medical Institute, Nanjing Maternity and Child, Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, China
| | - Juan Xu
- Department of Obstetrics Gynecology, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical, University, Nanjing, 210004, China
| | - Xuemei Jia
- Department of Obstetrics Gynecology, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical, University, Nanjing, 210004, China
| |
Collapse
|