1
|
Whaley RD, Sill DR, Tekin B, McCarthy MR, Cheville JC, Ebare K, Stanton ML, Reynolds JP, Raghunathan A, Herrera Hernandez LP, Jimenez RE, Sharma V, Boorjian SA, Leibovich BC, Hofich CD, Alvand S, Pujari GP, Kipp BR, Ketterling RP, Geiersbach KB, Greipp PT, Sukov WR, Halling KC, Gupta S. Evaluation of 3,606 renal cell tumors for TFE3 rearrangements and TFEB alterations via fluorescence in situ hybridization, next generation sequencing, and GPNMB immunohistochemistry. Hum Pathol 2025; 159:105797. [PMID: 40381702 DOI: 10.1016/j.humpath.2025.105797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 05/13/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025]
Abstract
Molecularly defined renal cell carcinomas include TFE3-rearranged renal cell carcinoma (TFE3-RCC) and TFEB-altered renal cell carcinoma (TFEB-RCC). There is significant morphologic and immunophenotypic overlap between these entities and common renal tumors, such that molecular testing is often required to make the diagnosis. Herein, we reviewed our reference laboratory experience pertaining to TFE3 and TFEB FISH testing, targeted next generation RNA sequencing (NGS), and GPNMB immunohistochemistry (IHC). Most FISH testing (2963/3543, 83.6%) was performed on renal tumors. TFE3 FISH showed rearrangements in 449 of 2467 specimens (18.2%), including 281 (of 1887, 14.9%) renal tumors. TFEB FISH identified an abnormality in 107 of 1076 (9.9%) renal tumors, including 52 (of 107, 48.6%) rearrangements, 41 (of 107, 38.3%) amplifications, or 14 (of 107, 13.1%) with both rearrangements and amplifications. More specifically, TFE3-rearranged, TFEB-rearranged, TFEB-amplified, and TFEB-rearranged/amplified renal tumors occurred in females in 54%, 69.6%, 39.1%, and 40% of cases, respectively. The pediatric and young adult population (aged ≤21 years) included 44 (of 121, 36.3%) TFE3-RCC and 9 (of 50, 18%) TFEB-rearranged RCC. TFE3-RCC fusion partners included RBM10, NONO, ASPSCR1, FUBP1, SFPQ, MAPK1IP1L, and PRCC. TFEB-rearranged RCC fusion partners SYNRG and BYSL were identified. Diffuse GPNMB expression was seen in 92% of TFE3-RCC (24/26; median H-score 275), 100% of TFEB-rearranged RCC (19/19; median H-score 300), and 100% of TFEB-amplified RCC (17/17; 240). Finally, our cohort included 5 eosinophilic TFEB-amplified RCCs with non-focal keratin 20 expression. This large series of TFE3-RCC and TFEB-RCC provides population data regarding these rare tumors and demonstrates the clinical value of targeted FISH strategies. Our results suggest that GPNMB IHC is an effective screen for TFE3-RCC and TFEB-RCC. Additionally, we report a RCC harboring a novel SYNRG::TFEB fusion.
Collapse
Affiliation(s)
- Rumeal D Whaley
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | - Daniel R Sill
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | - Burak Tekin
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | - Micheal R McCarthy
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | - John C Cheville
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | - Kingsley Ebare
- The Department of Laboratory Medicine and Pathology, Mayo Clinic, Phoenix, AZ, USA.
| | - Melissa L Stanton
- The Department of Laboratory Medicine and Pathology, Mayo Clinic, Phoenix, AZ, USA.
| | - Jordan P Reynolds
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL, USA.
| | - Aditya Raghunathan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | | | - Rafael E Jimenez
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | - Vidit Sharma
- The Department of Urology, Mayo Clinic, Rochester, MN, USA.
| | | | | | - Christopher D Hofich
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | - Saba Alvand
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | - Ganesh P Pujari
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | - Benjamin R Kipp
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | - Rhett P Ketterling
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | | | - Patricia T Greipp
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | - William R Sukov
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | - Kevin C Halling
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | - Sounak Gupta
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
2
|
Miller JW, Johnson JS, Guske C, Mannam G, Hatoum F, Nassar M, Potez M, Fazili A, Spiess PE, Chahoud J. Immune-Based and Novel Therapies in Variant Histology Renal Cell Carcinomas. Cancers (Basel) 2025; 17:326. [PMID: 39858107 PMCID: PMC11763753 DOI: 10.3390/cancers17020326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/13/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025] Open
Abstract
Renal cell carcinoma (RCC) is a heterogeneous disease that represents the most common type of kidney cancer. The classification of RCC is primarily based on distinct morphological and molecular characteristics, with two broad categories: clear cell RCC (ccRCC) and non-clear cell RCC (nccRCC). Clear cell RCC is the predominant subtype, representing about 70-80% of all RCC cases, while non-clear cell subtypes collectively make up the remaining 20-30%. Non-clear cell RCC encompasses many histopathological variants, each with unique biological and clinical characteristics. Additionally, any RCC subtype can undergo sarcomatoid dedifferentiation, which is associated with poor prognosis and rapid disease progression. Recent advances in molecular profiling have also led to the identification of molecularly defined variants, further highlighting the complexity of this disease. While immunotherapy has shown efficacy in some RCC variants and subpopulations, significant gaps remain in the treatment of rare subtypes. This review explores the outcomes of immunotherapy across RCC subtypes, including rare variants, and highlights opportunities for improving care through novel therapies, biomarker-driven approaches, and inclusive clinical trial designs.
Collapse
Affiliation(s)
- Justin W. Miller
- USF Health Morsani College of Medicine, Tampa, FL 33602, USA; (J.W.M.)
| | - Jeffrey S. Johnson
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Christopher Guske
- USF Health Morsani College of Medicine, Tampa, FL 33602, USA; (J.W.M.)
| | - Gowtam Mannam
- USF Health Morsani College of Medicine, Tampa, FL 33602, USA; (J.W.M.)
| | - Firas Hatoum
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | | - Marine Potez
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Adnan Fazili
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Philippe E. Spiess
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Jad Chahoud
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
3
|
Takahashi Y, Yoshida A, Yoshimoto S, Suzuki S, Kishikawa S, Mitsui A, Ryo E, Kojima Y, Yonemori K, Yatabe Y, Mori T. TFE3-rearranged perivascular epithelioid cell tumors of the head and neck with rare fusion partners: clues to the differential diagnosis between benign and malignant tumors. Diagn Pathol 2025; 20:7. [PMID: 39815310 PMCID: PMC11734225 DOI: 10.1186/s13000-025-01602-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Perivascular epithelioid cell tumors (PEComas) rarely appear in the head and neck region. This case report describes two transcription factor E3 (TFE3)-rearranged PEComa cases, consisting of one in the orbit and one in the nasal cavity. CASE PRESENTATION Both cases demonstrated sheet-like or focal nested architecture and comprised epithelioid cells with abundant clear to eosinophilic cytoplasm and vascular stroma. The first case exhibited partial pleomorphism, a small necrosis area, and slightly increased mitosis and was classified as malignant. The second case demonstrated mild atypia and no mitosis or necrosis and was categorized as benign. The nasal tumor was initially considered a TFE3-rearranged renal cell carcinoma metastasis. However, a subsequent renal tumor biopsy revealed angiomyolipoma. The RNA sequence revealed ZC3H4::TFE3 and PRCC::TFE3 fusions in the first and second cases, respectively. CONCLUSION The fusion partner gene ZC3H4 is uncommon, and this is the third reported PEComa case. The fusion partner gene PRCC is often reported in TFE3-rearranged renal cell carcinoma, and this PEComa case is the second reported in the head and neck region. The initially reported cases with the fusion partner genes ZC3H4 and PRCC were categorized as malignant. These cases were discussed with a literature review.
Collapse
Affiliation(s)
- Yuka Takahashi
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Seiichi Yoshimoto
- Department of Head and Neck Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Shigenobu Suzuki
- Department of Ophthalmic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Satsuki Kishikawa
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Ayaka Mitsui
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Eijitsu Ryo
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yuki Kojima
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Kan Yonemori
- Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yasushi Yatabe
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Taisuke Mori
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan.
| |
Collapse
|
4
|
Muñoz Bastidas C, Tapia MT, López AC, Cobo VT, Vives JC, Wong EM, Castané CG, Marckert FJA, Roca MT, Huerta LL, Alonso FDC, García JER, Aubá FV, Padilla DG, López BM, Zalabardo DS. Prognostic implications and diagnostic significance of TFE3 rearrangement in renal cell carcinoma. World J Urol 2024; 42:603. [PMID: 39470841 PMCID: PMC11522134 DOI: 10.1007/s00345-024-05290-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/19/2024] [Indexed: 11/01/2024] Open
Abstract
OBJECTIVES To investigate the impact of TFE3 rearrangement, analyzing clinicopathological features that influence renal cell carcinoma (RCC) recurrence, and clarify the role of immunohistochemistry (IHC) staining in diagnosis. METHODS We screened patients diagnosed of clear cell RCC (ccRCC), fluorescence in situ hybridization (FISH) was performed on all TFE3 positive IHC tumors. Clinicopathological and survival features were collected for analysis. RESULTS Out of 695 patients treated for renal tumors, 478 (68.7%) were ccRCC and 22 were suspected of TFE3 rearrangement based on IHC. Subsequent testing revealed 8 (1.15%) were positive in the FISH test (TFE3-rearranged-RCC) and 14 (2.01%) tested negative. No significant differences were noted in general characteristics among the three groups, except for age, TFE3-rearranged-RCC were younger than ccRCC (median age, 49 vs. 58 years, p=0.02). TFE3-rearranged-RCC exhibited a significant higher recurrence rate compared to ccRCC (50% vs 18.8%) and multivariate analysis revealed that TFE3 rearrangement, along with tumor size and metastasis, was an independent prognostic factor for recurrence (HR=4.6; 95% CI 1.1-21.2; p=0.05). Survival analysis demonstrated a significant shorter PFS (progression-free survival) for TFE3-rearranged-RCC compared to ccRCC. CONCLUSIONS TFE3 rearrangement is an independent prognostic factor for recurrence and contributes to a worse PFS, suggesting the necessity of careful follow-up. Diagnosis should be confirmed using FISH due to low specificity of IHC. Further studies are needed to confirm TFE3 IHC staining as a prognostic factor.
Collapse
|
5
|
Caliò A, Marletta S, Brunelli M, Antonini P, Martelli FM, Marcolini L, Stefanizzi L, Martignoni G. TFE3-Rearranged Tumors of the Kidney: An Emerging Conundrum. Cancers (Basel) 2024; 16:3396. [PMID: 39410016 PMCID: PMC11475521 DOI: 10.3390/cancers16193396] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Identical translocations involving the TFE3 gene and various partners have been found in both renal and soft tissue tumors, like alveolar soft part sarcoma (ASPSCR1), ossifying fibromyxoid tumor (PHF1), epithelioid hemangioendothelioma, and the clear cell stromal tumor of the lung (YAP1). Methods: Herein, we review in detail the clinicopathologic and molecular data of TFE3-rearranged renal tumors and propose our perspective, which may shed light on this emerging conundrum. Results: Among the kidney tumors carrying TFE3 translocations, most are morphologically heterogeneous carcinomas labeling for the tubular marker PAX8. The others are mesenchymal neoplasms known as PEComas, characterized by epithelioid cells co-expressing smooth muscle actin, cathepsin-K, melanogenesis markers, and sometimes melanin pigment deposition. Over the past 30 years, numerous TFE3 fusion partners have been identified, with ASPL/ASPSCR1, PRCC, SFPQ/PSF, and NONO being the most frequent. Conclusions: It is not well understood why similar gene fusions can give rise to renal tumors with different morpho-immunophenotypes, which may contribute to the recent disagreement regarding their classification. However, as these two entities, respectively, epithelial and mesenchymal in nature, are widely recognized by the pathology community and their clinicopathologic features well established, we overall believe it is still better to retain the names TFE3-rearranged renal cell carcinoma and TFE3-rearranged PEComa.
Collapse
Affiliation(s)
- Anna Caliò
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134 Verona, Italy; (A.C.); (S.M.); (M.B.); (P.A.); (F.M.M.)
| | - Stefano Marletta
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134 Verona, Italy; (A.C.); (S.M.); (M.B.); (P.A.); (F.M.M.)
- Division of Pathology, Humanitas Istituto Clinico Catanese, 95045 Catania, Italy
| | - Matteo Brunelli
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134 Verona, Italy; (A.C.); (S.M.); (M.B.); (P.A.); (F.M.M.)
| | - Pietro Antonini
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134 Verona, Italy; (A.C.); (S.M.); (M.B.); (P.A.); (F.M.M.)
| | - Filippo Maria Martelli
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134 Verona, Italy; (A.C.); (S.M.); (M.B.); (P.A.); (F.M.M.)
| | - Lisa Marcolini
- Department of Pathology, Pederzoli Hospital, 37019 Peschiera del Garda, Italy; (L.M.); (L.S.)
| | - Lavinia Stefanizzi
- Department of Pathology, Pederzoli Hospital, 37019 Peschiera del Garda, Italy; (L.M.); (L.S.)
| | - Guido Martignoni
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37134 Verona, Italy; (A.C.); (S.M.); (M.B.); (P.A.); (F.M.M.)
- Department of Pathology, Pederzoli Hospital, 37019 Peschiera del Garda, Italy; (L.M.); (L.S.)
| |
Collapse
|
6
|
Castillo VF, Trpkov K, Saleeb R. Contemporary review of papillary renal cell carcinoma-current state and future directions. Virchows Arch 2024; 485:391-405. [PMID: 38995356 DOI: 10.1007/s00428-024-03865-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
Historically, papillary renal cell carcinoma (PRCC) was divided into two types, type 1 and type 2, based solely on morphology. However, it is apparent that PRCC is far more complex and represents a histological, clinical, and molecular spectrum. There has been a significant evolution in our understanding of PRCC, highlighted by the recognition of new and molecularly defined entities that were previously included in PRCC type 2. This contemporary review addresses the evolving concepts regarding the PRCC, including why it is no longer needed to subtype PRCC, the current molecular landscape, prognostic parameters, and PRCC variants, including biphasic PRCC, papillary renal neoplasm with reverse polarity, and Warthin-like PRCC. Pathologists should also be aware of the potential mimickers of both low-grade and high-grade PRCCs as well as some new and emerging entities that may show papillary growth that should be excluded in the diagnostic workup. The evolving knowledge of PRCC biomarkers, morphologic patterns, and PRCC variants could also have important implications for clinical management. Lastly, the heterogeneity within the PRCC spectrum needs to be further studied, aiming to better stratify PRCC for appropriate clinical management and systemic therapy.
Collapse
Affiliation(s)
- Vincent Francis Castillo
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Kiril Trpkov
- Department of Pathology and Laboratory Medicine, Alberta Precision Laboratories and University of Calgary, Calgary, Alberta, Canada
| | - Rola Saleeb
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada.
- Department of Laboratory Medicine, Unity Health Toronto, 30 Bond Street, Toronto, Ontario, M5B 1W8, Canada.
| |
Collapse
|
7
|
Mukherjee S, Basu K, Basu KS, Chatterjee U. MiT family translocation-associated renal cell carcinoma: A report of two cases in children. INDIAN J PATHOL MICR 2024; 67:469-471. [PMID: 38391376 DOI: 10.4103/ijpm.ijpm_385_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/16/2022] [Indexed: 02/24/2024] Open
Abstract
ABSTRACT Renal cell carcinoma is uncommon in children and must be distinguished from the more common Wilms' tumor. Here, we present two cases of renal cell carcinoma in children both of whom presented with hematuria. Accurate diagnosis is essential in order to differentiate it from epithelial predominant Wilms' tumor which has vastly different prognosis and treatment. Immunohistochemistry for TFE3 is useful in establishing the diagnosis.
Collapse
Affiliation(s)
| | - Keya Basu
- Department of Pathology, IPGME&R, Kolkata, West Bengal, India
| | - Kalyani S Basu
- Department of Pediatric Surgery, NRS Medical College, Kolkata, West Bengal, India
| | | |
Collapse
|
8
|
Yu L, He L. Aberrant expression of TFE3 in granular cell tumor: Four cases in pediatrics. Pediatr Blood Cancer 2024; 71:e30811. [PMID: 38073015 DOI: 10.1002/pbc.30811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/24/2024]
Affiliation(s)
- Lianyuan Yu
- Department of Pathology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Lejian He
- Department of Pathology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
9
|
Li P, Xu Q, Chen M, Zhu J, Wang Y, Mumin MA, Huang K, Jiang Z, Liang H, Deng Q, Wang Z, Liao B, Chen W, Cao Y, Cao J, Luo J. A nomogram based on TFE3 IHC results and clinical factors as a preliminary screening scheme for TFE3-rearranged renal cell carcinoma. Cancer Med 2024; 13:e6813. [PMID: 38477529 PMCID: PMC10935875 DOI: 10.1002/cam4.6813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/30/2023] [Accepted: 11/29/2023] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND TFE3 immunohistochemistry (TFE3-IHC) is controversial in the diagnosis of TFE3-rearranged renal cell carcinoma (TFE3-rearranged RCC). This study is to investigate the accuracy and sensitivity of IHC and establish a predictive model to diagnose TFE3-rearranged RCC. METHODS Retrospective analysis was performed by collecting IHC and fluorescence in situ hybridization (FISH) results from 228 patients. IHC results were evaluated using three scoring systems. Scoring system 1 is graded based on nuclear staining intensity, scoring system 2 is graded based on the percentage of stained tumor cell nuclei, and scoring system 3 is graded based on both the nuclear staining intensity and the percentage. We collected patients' IHC results and clinical information. Important variables were screened based on univariate logistic regression analysis. Then, independent risk factors were established through multivariate logistic regression, and a nomogram model was constructed. The model was validated in internal test set and external validation set. The receiver operating characteristic curve (ROC curve), calibration curve, and decision curve analysis (DCA) were generated to assess discriminative ability of the model. RESULTS The accuracy of IHC based on three scoring systems were 0.829, 0.772, and 0.807, respectively. The model included four factors including age, gender, lymph node metastasis and IHC results. Area under the curve (AUC) values were 0.935 for the training set, 0.934 for the internal test set, 0.933 for all 228 patients, and 0.916 for the external validation set. CONCLUSIONS TFE3 IHC has high accuracy in the diagnosis of TFE3-rearranged RCC. Clinical information such as age and lymph node metastasis are independent risk factors, which can be used as a supplement to the results of TFE3 IHC. This study confirms the value of IHC in the diagnosis of TFE3-rearranged RCC. The accuracy of the diagnosis can be improved by incorporating IHC with other clinical risk factors.
Collapse
Affiliation(s)
- Pengju Li
- Department of UrologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Quanhui Xu
- Department of UrologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Minyu Chen
- Department of UrologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Jiangquan Zhu
- Department of UrologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Yinghan Wang
- Department of UrologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Mukhtar A. Mumin
- Department of UrologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Kangbo Huang
- Department of UrologyThe Cancer Center of Sun Yat‐sen UniversityGuangzhouChina
| | - Zeying Jiang
- Department of PathologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Hui Liang
- Department of UrologyAffiliated Longhua People's Hospital, Southern Medical UniversityShenzhenChina
| | - Qiong Deng
- Department of UrologyAffiliated Longhua People's Hospital, Southern Medical UniversityShenzhenChina
| | - Zhu Wang
- Department of UrologyAffiliated Longhua People's Hospital, Southern Medical UniversityShenzhenChina
| | - Bing Liao
- Department of PathologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Wenfang Chen
- Department of PathologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Yun Cao
- Department of PathologyThe Cancer Center of Sun Yat‐sen UniversityGuangzhouChina
| | - Jiazheng Cao
- Department of UrologyJiangmen Central HospitalJiangmenChina
| | - Junhang Luo
- Department of UrologyThe First Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
10
|
Kamanda S, Huanca-Amesquita L, Milla E, Argani P, Epstein JI. Clinicopathologic Classification of Renal Cell Carcinoma in Patients ≤40 Years Old From Peru. Int J Surg Pathol 2024; 32:35-45. [PMID: 37062985 PMCID: PMC10577151 DOI: 10.1177/10668969231167539] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
INTRODUCTION There are scant data on renal cell carcinoma (RCC) from relatively younger patients in South America using contemporary classification. METHODS Fifty-nine consecutively treated patients with RCC (≤40 years old) were assessed from the National Institute of Neoplastic Diseases in Peru from 2008 to 2020 (34 males; 25 females), age range of 13 to 40 years. RESULTS Most common presenting symptoms were flank pain (n = 40), hematuria (n = 19), and weight loss (n = 12). Associated conditions included 4 patients with proven or presumed tuberous sclerosis and 1 patient with von Hippel Lindau syndrome, all with clear cell RCC. Tumor histopathology was clear cell RCC in 32 of 59 (54%), chromophobe RCC in 6 of 59 (10%), and 5 of 59 (8%) each of papillary RCC and MiT family translocation-associated RCC. Four of 59 (7%) were FH-deficient RCC and 2 of 59 (3%) remained unclassified. The remaining tumors were isolated examples of clear cell papillary renal cell tumor, eosinophilic solid and cystic RCC (ESC RCC), RCC with fibromyomatous stroma, sarcomatoid RCC, and sarcomatoid clear cell RCC. Of the 4 FH-deficient RCCs, none had the classic morphology. The 5 MiT family translocation RCCs had variable morphology. There were 41 tumors without recurrence or metastases, 3 tumors with local recurrence only, 8 tumors with metastases only, and 7 tumors with both local recurrence and metastases. CONCLUSIONS The current study demonstrates the importance of special studies in accurately classifying RCC in younger individuals. The distribution of RCC subtypes in younger individuals is similar between 2 representative large institutions of the United States and Peru.
Collapse
Affiliation(s)
- Sonia Kamanda
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | | | - Esperanza Milla
- Department of Pathology, National Institute of Neoplastic Diseases, Lima, Peru
| | - Pedram Argani
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Jonathan I. Epstein
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Departments of Urology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Departments of Oncology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| |
Collapse
|
11
|
Fritchie KJ, Dermawan JK, Astbury C, Sharma A, Bakhshwin A, Fuller L, Agrawal S, Wieland CN, Greipp PT, Azzato EM, Folpe AL, Billings SD. Novel NONO::TFE3 fusion and ALK co-expression identified in a subset of cutaneous microcystic/reticular schwannoma. Virchows Arch 2023; 483:237-243. [PMID: 37468653 DOI: 10.1007/s00428-023-03605-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Microcystic/reticular schwannoma (MRS) is a benign variant of schwannoma with a predilection for the gastrointestinal tract and skin. To date, genetic characterization of this tumor is limited. Prompted by the identification of TFE3::NONO fusion and ALK overexpression in an index case of MRS, a cohort of tumors was collected from institutional and consultation archives of two institutions. Next-generation sequencing (NGS), TFE3 fluorescence in situ hybridization (FISH), and TFE3 and ALK immunohistochemistry were performed, while clinicopathologic variables were documented. Eighteen MRS cases were identified (35 to 85 years) arising in the skin (n=8), gastrointestinal tract (n=5), adrenal gland (n=3), abdominal wall (n=1), and unknown site (n=1). Tumors showed a circumscribed to multinodular to plexiform low-power architecture with variable amounts of microcystic/reticular and solid schwannian components. Mitotic figures were scarce (0-1/10 HPFs), and atypia was absent. S100 protein and/or SOX10 immunoreactivity was noted in the microcystic/reticular and schwannian areas of all cases. NGS performed on two cutaneous tumors yielded NONO exon 12 fusion with TFE3 exon 4, and these lesions also showed HMB45 and ALK expression. Two additional cases showed ALK expression (1 weak), while a third was positive for TFE3, but these cases failed to show ALK or TFE3 rearrangement by FISH/NGS. There were no morphologic variables that correlated with the presence of NONO::TFE3. We identified a subset of microcystic/reticular schwannomas with NONO::TFE3 fusions and ALK co-expression, adding to the cohort of mesenchymal neoplasms that show ALK overexpression without rearrangement of the ALK gene.
Collapse
Affiliation(s)
- Karen J Fritchie
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, 2119 E 93rd Street, L15, Cleveland, OH, 44195, USA.
| | - Josephine K Dermawan
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, 2119 E 93rd Street, L15, Cleveland, OH, 44195, USA
| | - Caroline Astbury
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, 2119 E 93rd Street, L15, Cleveland, OH, 44195, USA
| | - Anurag Sharma
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, 2119 E 93rd Street, L15, Cleveland, OH, 44195, USA
| | - Ahmed Bakhshwin
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, 2119 E 93rd Street, L15, Cleveland, OH, 44195, USA
| | - Lanisha Fuller
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, 2119 E 93rd Street, L15, Cleveland, OH, 44195, USA
| | - Shruti Agrawal
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Dermatology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Carilyn N Wieland
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Dermatology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Patricia T Greipp
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Elizabeth M Azzato
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, 2119 E 93rd Street, L15, Cleveland, OH, 44195, USA
| | - Andrew L Folpe
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Steven D Billings
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, 2119 E 93rd Street, L15, Cleveland, OH, 44195, USA
| |
Collapse
|
12
|
Naviwala MS, Dawood T, Uddin Z, Chundriger Q, Jalbani IK. The Transition From Localized to Metastatic: A Case Report of Adult TFE3-Positive Xp11.2 Translocation Renal Cell Carcinoma. Cureus 2023; 15:e43378. [PMID: 37700986 PMCID: PMC10494990 DOI: 10.7759/cureus.43378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2023] [Indexed: 09/14/2023] Open
Abstract
Xp11.2 translocation renal cell carcinoma (Xp11.2 RCC) is a rare tumor, occurring more frequently in childhood than in adulthood. It results from Xp11.2 chromosome translocations and the fusion of the transcription factor E3 (TFE3) gene. In this context, we present a case report of an 18-year-old female who was diagnosed with Xp11.2 RCC following open radical nephrectomy and lymph node dissection on the left side. The histopathological analysis indicated stage T3aN1Mx disease, which was confirmed through immunohistochemistry (IHC) and fluorescent in situ hybridization (FISH). The patient remained under observation until March 2023 when systemic scans uncovered the presence of ascites, peritoneal carcinomatosis, and left supraclavicular lymphadenopathy. A subsequent biopsy reaffirmed the primary disease, leading to the planning of systemic treatment involving tyrosine kinase inhibitors (TKIs) and immunotherapy. However, due to financial constraints, the patient's treatment options were limited to sunitinib initially. The current plan involves reevaluation after three months using scans to determine the subsequent course of treatment. Our case report offers crucial insights into the clinical presentation, diagnosis, and treatment of this rare malignancy. This enhances medical understanding, guides research, and improves the management of similar cases. Case reports like this share practical experiences, shaping future studies and patient care.
Collapse
Affiliation(s)
| | | | - Zeeshan Uddin
- Pathology and Laboratory Medicine, Aga Khan University Hospital, Karachi, PAK
| | | | | |
Collapse
|
13
|
Argani P, Matoso A, Baraban EG, Epstein JI, Antonescu CR. MED15::TFE3 Renal Cell Carcinomas: Report of Two New Cases and Review of the Literature Confirming Nearly Universal Multilocular Cystic Morphology. Int J Surg Pathol 2023; 31:409-414. [PMID: 36591911 PMCID: PMC10175165 DOI: 10.1177/10668969221143455] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We report two novel cases of Xp11 translocation renal cell carcinomas with the MED15::TFE3 gene fusion in adult females aged 40 and 74 years. Both cases were extensively cystic and contained only minimal clear cells lining cysts and within septal walls, raising the differential diagnosis of multilocular cystic renal neoplasm of low malignant potential. By immunohistochemistry, both neoplasms labeled for PAX8, TFE3, cathepsin K and Melan A but not for HMB45. On review of the published literature and the two cases reported herein, over 90% of MED15::TFE3 renal cell carcinomas (RCCs) have been described as cystic. The correlation of the MED15::TFE3 fusion with extensively cystic morphology represents the strongest association of TFE3 fusion partner with clinicopathological features among TFE3-rearranged RCC reported to date.
Collapse
Affiliation(s)
- Pedram Argani
- Departments of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Departments of Oncology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Andres Matoso
- Departments of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Departments of Oncology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Departments of Urology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Ezra G. Baraban
- Departments of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Jonathan I. Epstein
- Departments of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Departments of Oncology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Departments of Urology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | | |
Collapse
|
14
|
Hu X, Tan C, Zhu G. Clinical Characteristics of Molecularly Defined Renal Cell Carcinomas. Curr Issues Mol Biol 2023; 45:4763-4777. [PMID: 37367052 DOI: 10.3390/cimb45060303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Kidney tumors comprise a broad spectrum of different histopathological entities, with more than 0.4 million newly diagnosed cases each year, mostly in middle-aged and older men. Based on the description of the 2022 World Health Organization (WHO) classification of renal cell carcinoma (RCC), some new categories of tumor types have been added according to their specific molecular typing. However, studies on these types of RCC are still superficial, many types of these RCC currently lack accurate diagnostic standards in the clinic, and treatment protocols are largely consistent with the treatment guidelines for clear cell RCC (ccRCC), which might result in worse treatment outcomes for patients with these types of molecularly defined RCC. In this article, we conduct a narrative review of the literature published in the last 15 years on molecularly defined RCC. The purpose of this review is to summarize the clinical features and the current status of research on the detection and treatment of molecularly defined RCC.
Collapse
Affiliation(s)
- Xinfeng Hu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Congzhu Tan
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Guodong Zhu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
15
|
Sangoi AR, Al-Obaidy KI, Cheng L, Kao CS, Chan E, Sadasivan S, Levin AM, Alvarado-Cabrero I, Kunju LP, Mehra R, Mannan R, Wang X, Dhillon J, Tretiakova M, Smith SC, Hes O, Williamson SR. Clear cell renal cell carcinoma with focal psammomatous calcifications: a rare occurrence mimicking translocation carcinoma. Histopathology 2023; 82:684-690. [PMID: 36564980 DOI: 10.1111/his.14854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
AIMS Renal cell carcinoma (RCC) with clear cells and psammoma-like calcifications would often raise suspicion for MITF family translocation RCC. However, we have rarely encountered tumours consistent with clear cell RCC that contain focal psammomatous calcifications. METHODS AND RESULTS We identified clear cell RCCs with psammomatous calcifications from multiple institutions and performed immunohistochemistry and fluorescence and RNA in-situ hybridisation (FISH and RNA ISH). Twenty-one tumours were identified: 12 men, nine women, aged 45-83 years. Tumour size was 2.3-14.0 cm (median = 6.75 cm). Nucleolar grade was 3 (n = 14), 2 (n = 4) or 4 (n = 3). In addition to clear cell pattern, morphology included eosinophilic (n = 12), syncytial giant cell (n = 4), rhabdoid (n = 2), branched glandular (n = 1), early spindle cell (n = 1) and poorly differentiated components (n = 1). Labelling for CA9 was usually 80-100% of the tumour cells (n = 17 of 21), but was sometimes decreased in areas of eosinophilic cells (n = 4). All (19 of 19) were positive for CD10. Most (19 of 20) were positive for AMACR (variable staining = 20-100%). Staining was negative for keratin 7, although four showed rare positive cells (four of 20). Results were negative for cathepsin K (none of 19), melan A (none of 17), HMB45 (none of 17), TFE3 (none of 5), TRIM63 RNA ISH (none of 13), and TFE3 (none of 19) and TFEB rearrangements (none of 12). Seven of 19 (37%) showed chromosome 3p deletion. One (one of 19) showed trisomy 7 and 17 without papillary features. CONCLUSIONS Psammomatous calcifications in RCC with a clear cell pattern suggests a diagnosis of MITF family translocation RCC; however, psammomatous calcifications can rarely be found in true clear cell RCC.
Collapse
Affiliation(s)
| | | | - Liang Cheng
- Brown University Warren Albert Medical School, Providence, RI, USA
| | - Chia-Sui Kao
- Stanford Medicine/Stanford University, Stanford, CA, USA
| | - Emily Chan
- University of California, San Francisco, CA, USA
| | | | - Albert M Levin
- Mexican Oncology Hospital SXXI, IMSS, Mexico City, Mexico
| | | | | | | | | | | | - Jasreman Dhillon
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | | | | | - Ondrej Hes
- Biopticka Laboratory, Plzen, Czech Republic
| | | |
Collapse
|
16
|
Takamatsu D, Kohashi K, Kiyozawa D, Kinoshita F, Ieiri K, Baba M, Eto M, Oda Y. TFE3-immunopositive papillary renal cell carcinoma: A clinicopathological, immunohistochemical, and genetic study. Pathol Res Pract 2023; 242:154313. [PMID: 36669395 DOI: 10.1016/j.prp.2023.154313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/14/2023] [Indexed: 01/18/2023]
Abstract
It is possible that PRCCs may still contain a variety of unknown histologic subtypes. Some PRCCs express high expression of TFE3 protein without TFE3 gene rearrangement, but no reports have investigated the significance of this. Here we attempted to examine clinicopathological and molecular significance of the TFE3-immunopositive PRCC. We reviewed the histology and immunohistochemistry in 58 PRCCs. TFE3 immunoexpression was recognized in 7 cases. Because TFE3 immunostaining shows false-positive, to ensure the integrity of TFE3 immunostaining, the immunostaining was performed under strict control of internal controls and western blotting was performed on 2 positive cases and 5 negative cases, and differences in protein expression between two groups were confirmed. Significant immunohistochemical expressions of autophagy/lysosome proteins were observed in TFE3-positive group. No TFE3 gene arrangement was detected in all positive cases by fluorescence in situ hybridization. Whole-exome sequencing was performed on 6 TFE3-positive and 2 TFE3-negative cases. Gain of chromosome 7 was found in five of 6 TFE3-positive cases (83%). TFE3-positive group was correlated significantly with higher pTstage, cNstage, WHO/ISUP nuclear grade, and decreased OS. TFE3-immunopositive PRCC group had a poorer prognosis than TFE3-negative PRCC group and showed correlation with expressions of autophagy/lysosome proteins, suggesting that enhancement of autophagy/lysosome function drives an environment of energy metabolism that is favorable for cancer. It is necessary to recognize that there is TFE3-immunopositive group without TFE3 gene rearrangement within PRCC. Because of its aggressive biological behaviour, TFE3 can act as a biomarker in PRCC; moreover, autophagy-inhibiting drugs may have therapeutic effects on TFE3-immunopositive PRCC.
Collapse
Affiliation(s)
- Dai Takamatsu
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, Japan
| | - Kenichi Kohashi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, Japan
| | - Daisuke Kiyozawa
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, Japan
| | - Fumio Kinoshita
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, Japan
| | - Kosuke Ieiri
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, Japan
| | - Masaya Baba
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, Japan.
| |
Collapse
|
17
|
Demko N, Glennon KI, Arseneault M, Lach K, Nishimura T, Tanguay S, Riazalhosseini Y, Brimo F. A Sarcomatoid Renal Cell Carcinoma with Clear Cell Papillary-Like Primary Tumor and Lymph Node Metastasis: A Diagnostic Conundrum. Int J Surg Pathol 2022:10668969221145011. [PMID: 36562104 DOI: 10.1177/10668969221145011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Clear cell papillary renal cell tumor (CCPRCT) is a distinct clinical entity with characteristic pathological features and non-aggressive clinical behavior. Diagnostically challenging cases present when there are immunomorphological findings of CCPRCT associated with heterogeneous morphologies, aggressive histological features, and advanced pathological stages-so-called CCPRCT-like tumors. In this report, we describe a heterogeneous, multifocal renal tumor with immunomorphological characteristics of CCPRCT but with associated aggressive features such as sarcomatoid and necrotic areas, perirenal and sinus fat involvement, and most notably, lymph node metastasis composed entirely of classic CCPRCT morphology and immunophenotype. Immunohistochemical and fluorescence in situ hybridization studies did not support a translocation renal cell carcinoma. Molecular analyses did not identify common mutations or chromosomal abnormalities seen in clear cell renal cell carcinoma or ELOC-mutated renal cell carcinoma. This case highlights that rare renal cell tumors remain difficult to classify and the distinction between CCPRCT and CCPRCT-like tumors remains to be better defined.
Collapse
Affiliation(s)
- Nadine Demko
- Department of Anatomical Pathology, 5620McGill University, Montréal, Québec, Canada
| | - Kate I Glennon
- Department of Human Genetics, 5620McGill University, Montréal, Québec, Canada.,McGill Genome Centre, 5620McGill University, Montréal, Québec, Canada
| | - Madeleine Arseneault
- Department of Human Genetics, 5620McGill University, Montréal, Québec, Canada.,McGill Genome Centre, 5620McGill University, Montréal, Québec, Canada
| | - Katherine Lach
- Department of Anatomical Pathology, 5620McGill University, Montréal, Québec, Canada
| | - Tamiko Nishimura
- Department of Human Genetics, 5620McGill University, Montréal, Québec, Canada.,McGill Genome Centre, 5620McGill University, Montréal, Québec, Canada
| | - Simon Tanguay
- Division of Urology, 5620McGill University, Montréal, Québec, Canada
| | - Yasser Riazalhosseini
- Department of Human Genetics, 5620McGill University, Montréal, Québec, Canada.,McGill Genome Centre, 5620McGill University, Montréal, Québec, Canada
| | - Fadi Brimo
- Department of Anatomical Pathology, 5620McGill University, Montréal, Québec, Canada
| |
Collapse
|
18
|
Zhu Y, Xia C, Ou Y, Zhang C, Li L, Yang D. TFEB-associated renal cell carcinoma: A case report and literature review. Medicine (Baltimore) 2022; 101:e31870. [PMID: 36550835 PMCID: PMC9771232 DOI: 10.1097/md.0000000000031870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
RATIONALE TFEB-associated renal cell carcinoma is very rare and belongs to the microphthalmia - associated transcription family translocation renal cell carcinoma. PATIENT CONCERNS Hospitalized for fever, a 29-year-old male patient had a left kidney lesion without any additional discomfort. DIAGNOSES Histopathological and immunohistochemical results were corresponding with TFEB renall cell carcinoma features. INTERVENTIONS Surgical resection of the tumor was performed. OUTCOMES After 8 months of follow-up, no tumor recurrence was observed. LESSONS TFEB-associated renal cell carcinoma is rare. The diagnosis is explicit. However, the optimal treatment needs to be further explored.
Collapse
Affiliation(s)
- Yong Zhu
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Chengxing Xia
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yitian Ou
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Chao Zhang
- Department of Oncology, Qujing First People’s Hospital, Qujing, Yunnan, China
| | - Lin Li
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Delin Yang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- * Correspondence: Delin Yang, Department of Urology, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Kunming, Yunnan 650101, China (e-mail: )
| |
Collapse
|
19
|
MiT translocation renal cell carcinoma: A review of the literature from molecular characterization to clinical management. Biochim Biophys Acta Rev Cancer 2022; 1877:188823. [DOI: 10.1016/j.bbcan.2022.188823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/17/2022] [Accepted: 10/04/2022] [Indexed: 11/23/2022]
|
20
|
Dong X, Chen Y, Pan J, Ma W, Zhou P, Chen M, Guo H, Gan W. Clinicopathological features and prognosis of TFE3-positive renal cell carcinoma. Front Oncol 2022; 12:1017425. [PMID: 36276115 PMCID: PMC9582134 DOI: 10.3389/fonc.2022.1017425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/22/2022] [Indexed: 11/26/2022] Open
Abstract
Background This study aimed to investigate the expression profile of TFE3 in renal cell carcinoma (RCC) and the clinicopathological features as well as prognosis of TFE3-positive RCC. Methods Tissue sections from 796 patients with RCC were collected for immunohistochemical staining of TFE3. Molecular TFE3 rearrangement tests were also carried out on the TFE3-positive RCCs using fluorescence in situ hybridization and RNA-sequencing assays. Both clinicopathological features and follow-up information were collected for further analysis. Results The present study showed that 91 patients with RCC (91/796, 11.4%) were TFE3 positive expression but only 31 (31/91, 34.1%) of the patients were diagnosed with Xp11.2 translocation RCC. Further, it was found that the patients with TFE3-positive RCCs were more likely to develop lymph node and distant metastasis at diagnosis as well as presented a significantly higher WHO/ISUP nuclear grade and AJCC stage as compared with patients with TFE3-negative RCCs (p<0.01). Results of univariate and multivariate analyses showed that TFE3 positive expression was an independent prognostic factor associated with poor progression-free survival. Further, the findings of survival analysis showed that patients with positive TFE3 expression showed a shorter progression-free survival as compared with the patients with negative expression of TFE3 (p<0.001). In addition, results of the survival analysis found that there was no significant difference in progression-free survival between the Xp11.2 translocation RCC and TFE3-positive non-Xp11.2 translocation RCC groups (p=0.9607). Conclusion This study found that nuclear TFE3 expression is not specific to the Xp11.2 translocation RCC. Moreover, the positive TFE3 expression is associated with tumor progression and poor prognosis in patients with RCC irrespective of the presence of TFE3 translocation.
Collapse
Affiliation(s)
- Xiang Dong
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuxin Chen
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jun Pan
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wenliang Ma
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Peng Zhou
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Ming Chen
- Department of Pathology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hongqian Guo
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Weidong Gan
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Weidong Gan,
| |
Collapse
|
21
|
Zhang L, Lubin D, Sinard JH, Dickson BC, Antonescu CR, Wu H, Panni RZ, Dogan S, Untch BR, Ghossein RA, Xu B. Primary Mesenchymal Tumors of the Thyroid Gland: A Modern Retrospective Cohort Including the First Case of TFE3-Translocated Malignant Perivascular Epithelioid Cell Tumor (PEComa). Head Neck Pathol 2022; 16:716-727. [PMID: 35218514 PMCID: PMC9424363 DOI: 10.1007/s12105-022-01428-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/06/2022] [Indexed: 12/19/2022]
Abstract
Primary mesenchymal tumors of the thyroid gland are extremely rare, with only case reports and small case series documented in the English literature, many of which were published prior to the era of molecular pathology. In the current study, we aim to present a contemporary multi-centric cohort of thyroid mesenchymal tumors. Nineteen primary thyroid mesenchymal tumors were collected from three tertiary centers. Their clinicopathologic features, immunoprofile, molecular alterations, and outcome were described. Eight cases were classified as benign or intermediate with solitary fibrous tumor being the most common histotype (n = 3). The remaining 11 cases were malignant, including three angiosarcomas, one epithelioid hemangioendothelioma, one adamantinoma-like Ewing sarcoma, one biphasic synovial sarcoma, one malignant melanocytic peripheral nerve sheath tumor (melanotic schwannoma), one myxofibrosarcoma, and two undifferentiated pleomorphic/spindle sarcomas (one of which was radiation-induced). Six tumors showed characteristic diagnostic translocations. We herein also described the first case of thyroid malignant perivascular epithelioid cell tumor (PEComa) with RBM10-TFE3 fusion in a 35-year-old female patient. Thyroid mesenchymal tumors, benign or malignant, are rare with a broad spectrum of possible diagnoses. A comprehensive examination to include histology, immunohistochemistry, and molecular testing is essential for the correct diagnosis and to distinguish them from anaplastic thyroid carcinoma. PEComa may occur as a primary tumor of the thyroid gland, expanding the histologic spectrum of thyroid mesenchymal tumors.
Collapse
Affiliation(s)
- Lingxin Zhang
- Department of Pathology, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Daniel Lubin
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - John H Sinard
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Brendan C Dickson
- Department of Pathology, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Cristina R Antonescu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Hao Wu
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Roheena Z Panni
- Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Snjezana Dogan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Brian R Untch
- Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Ronald A Ghossein
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Bin Xu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
22
|
Argani P, Wobker SE, Gross JM, Matoso A, Fletcher CD, Antonescu CR. PEComa-like Neoplasms Characterized by ASPSCR1-TFE3 Fusion: Another Face of TFE3-related Mesenchymal Neoplasia. Am J Surg Pathol 2022; 46:1153-1159. [PMID: 35848761 PMCID: PMC9298479 DOI: 10.1097/pas.0000000000001894] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Identical TFE3-related gene fusions may be found in renal cell carcinoma and mesenchymal neoplasms such as alveolar soft part sarcoma and TFE3-rearranged perivascular epithelioid cell tumor (PEComa). Among mesenchymal neoplasms, the ASPSCR1-TFE3 gene fusion has previously been described only in alveolar soft part sarcoma. We report 3 unusual mesenchymal neoplasms harboring the ASPSCR1-TFE3 gene fusion, the morphologic phenotype of which more closely matches PEComa rather than alveolar soft part sarcoma. All 3 neoplasms occurred in females ranging in age from 18 to 34 years and were located in the viscera (kidney, bladder, and uterus). All 3 contained nests of epithelioid cells bounded by fibrovascular septa. However, all were associated with hyalinized stroma, tight nested architecture, mixed spindle cell and epithelioid pattern, clear cytoplasm, and lacked significant discohesion. Overall, morphologic features closely resembled PEComa, being distinct from the typical alveolar soft part sarcoma phenotype. While none of the neoplasms labeled for HMB45, cytokeratin, or PAX8 all showed positivity for TFE3 and cathepsin K, and all except 1 were positive for smooth muscle actin. One patient developed a liver metastasis 7 years after nephrectomy. These cases bridge the gap between 2 TFE3-rearranged neoplasms, specifically alveolar soft part sarcoma and Xp11 translocation PEComa, highlighting the relatedness and overlap among Xp11 translocation neoplasms. While most TFE3-rearranged neoplasms can be confidently placed into a specific diagnostic category such as alveolar soft part sarcoma, PEComa, or Xp11 translocation renal cell carcinoma, occasional cases have overlapping features, highlighting the potential role that the cell of origin and the specific gene fusion play in the phenotype of these neoplasms.
Collapse
Affiliation(s)
- Pedram Argani
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Oncology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Sara E. Wobker
- Departments of Pathology and Laboratory Medicine and Urology, University of North Carolina, Chapel Hill, NC, USA
| | - John M. Gross
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Oncology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Andres Matoso
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Oncology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Urology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | | | | |
Collapse
|
23
|
Kmeid M, Akgul M. TFE3 Rearrangement and Expression in Renal Cell Carcinoma. Int J Surg Pathol 2022:10668969221108517. [PMID: 35912477 DOI: 10.1177/10668969221108517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
TFE3 rearranged Renal cell carcinoma (RCC) is not very common, and demonstrates unique heterogenous morphological features overlapping other recognized entities and distinct immunoprofile. It can be seen in any age group, therefore practicing pathologists should be aware of the distinctive clinical settings and histologic findings associated with these tumors and subsequently employ an adequate panel of ancillary studies in order to confirm the diagnosis. Recognizing these entities remains crucial for future clinical trials and development of novel therapies.
Collapse
Affiliation(s)
- Michel Kmeid
- Department of Pathology and Laboratory Medicine, 138207Albany Medical Center, Albany, NY, USA
| | - Mahmut Akgul
- Department of Pathology and Laboratory Medicine, 138207Albany Medical Center, Albany, NY, USA
| |
Collapse
|
24
|
Huang YY, Yang WR, Geng YH, Zhang Y. Significance of immunohistochemistry and FISH of TFE3 in the diagnosis of alveolar soft part sarcoma: A case report. Medicine (Baltimore) 2022; 101:e29861. [PMID: 35801771 PMCID: PMC9259144 DOI: 10.1097/md.0000000000029861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
RATIONALE Alveolar soft part sarcoma (ASPS) is a rare soft tissue sarcoma harboring an ASPL-TFE3 fusion gene. Herein, we report a case of ASPS associated with brain metastasis. Immunohistochemistry (IHC) for TFE3 antigen expression and fluorescence in situ hybridization (FISH) for TFE3 rearrangement were performed to arrive at an accurate diagnosis. PATIENT CONCERNS A 47-year-old man was hospitalized for a headache and numbness of the lower limbs. DIAGNOSES Preoperative computed tomography and magnetic resonance imaging revealed 2 brain masses, 1 each in the right parietal and temporal bones. We diagnosed this case as ASPS with brain metastasis based on histological morphology, IHC, and FISH. INTERVENTIONS The patient underwent right skull titanium mesh implantation and supratentorial superficial lesion resection. OUTCOMES : The patient recovered well after discharged from hospital. LESSONS The diagnosis of ASPS depends on careful clinical, radiographic, histopathological, IHC, and FISH assessments to arrive at the correct diagnosis. Thus, TFE3 may be useful in the diagnosis and treatment of ASPS.
Collapse
Affiliation(s)
- Yan-Ying Huang
- Department of Pathology, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, People’s Republic of China
| | - Wan-Rui Yang
- Department of Pathology, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, People’s Republic of China
| | - Yan-Hua Geng
- Department of Pathology, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, People’s Republic of China
| | - Yue Zhang
- Department of Radiology, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, People’s Republic of China
- *Correspondence: Yue Zhang, Department of Radiology, Hangzhou Red-Cross Hospital, 208 Huancheng Road East, Hangzhou, Zhejiang 310003, People’s Republic of China (e-mail: )
| |
Collapse
|
25
|
Abstract
PURPOSE OF THE REVIEW Papillary renal cell carcinoma (pRCC) is the second most frequent renal cancer subtype and represents 15-20% of all RCC. Classification of pRCC is changing because novel tumour entities have been discovered in the last years. In this review, we summarise recent studies relevant for the understanding of the molecular complexity and the broader differential diagnosis of pRCC. RECENT FINDINGS It has been 25 years ago, that pRCC was morphologically subdivided into type 1 and type 2. Recently described tumour entities in the 2022 WHO classification challenged this concept and allow a new view on the molecular background in pRCC. Biphasic hyalinizing psammomatous RCC and papillary renal neoplasm with reversed polarity are emerging tumour entities derived from the new concept of molecularly defined RCC subtypes. Immune checkpoint inhibition and tyrosine kinase inhibitors have been introduced as the new backbone in the first-line treatment of advanced pRCCs. To identify novel targeted treatments for patients with pRCC it is crucial to investigate the specific molecular background of pRCC considering emerging pRCC subtypes. SUMMARY In the future, a deeper understanding of the correlation between molecular aberrations and new pRCC subtypes may improve the classification of pRCC patients and could reveal potential predictive biomarkers for each subgroup.
Collapse
Affiliation(s)
- Silvia Angori
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - João Lobo
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP)
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), R. Dr António Bernardino de Almeida
- Department of Pathology and Molecular Immunology, ICBAS–School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
Tretiakova MS. Chameleon TFE3-translocation RCC and How Gene Partners Can Change Morphology: Accurate Diagnosis Using Contemporary Modalities. Adv Anat Pathol 2022; 29:131-140. [PMID: 35180736 DOI: 10.1097/pap.0000000000000332] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Translocation renal cell carcinoma (tRCC) with TFE3 gene rearrangements has been born as a distinct entity 20 years ago. These relatively rare tumors were notable among other RCC subtypes because of their disproportionally high incidence among children and young adults. Initial reports were focused on describing unifying morphologic criteria and typical clinical presentation. Follow-up studies of ancillary immunohistochemical and hybridization techniques provided additional diagnostic tools allowing recognition of tRCC tumors in practice. However, a growing body of literature also expanded the clinicomorphologic spectrum of tRCCs, to include a significant morphologic overlap with other RCC variants thus blurring the diagnostic clarity of this entity. More recent molecular studies utilizing next-generation sequencing technology accelerated recognition of numerous novel gene partners fusing at different breakpoints with the TFE3 gene. Accumulating data indicates that morphologic and clinical heterogeneity of tRCC could be explained by fusion subtypes, and knowledge of TFE3 partnering genes may be important in predicting tumor behavior. Herein we provided a comprehensive analysis of ∼400 tRCC cases with known TFE3 fusion partners, estimated their relative incidence and summarized clinicomorphologic features associated with most common fusion subtypes. Our data was based on an extensive literature review and had a special focus on comparing immunohistochemistry, fluorescent in situ hybridization and contemporary molecular studies for the accurate diagnosis of tRCC.
Collapse
Affiliation(s)
- Maria S Tretiakova
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA
| |
Collapse
|
27
|
Aldera AP, Ramburan A, John J. TFE3-rearranged renal cell carcinoma with osseous metaplasia and indolent behaviour. Urol Case Rep 2022; 42:102041. [PMID: 35530544 PMCID: PMC9073298 DOI: 10.1016/j.eucr.2022.102041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
TFE3-rearranged renal cell carcinoma (RCC) is a rare but well characterised histological subtype of RCC with an aggressive clinical course and propensity for late metastases. Osseous metaplasia is an uncommon but well documented finding in clear cell, papillary and chromophobe RCC. We present the first case of a TFE3-rearranged RCC to be found harbouring metaplastic bone in a 47-year-old woman who presented with a slowly enlarging left flank mass over a 10 year period. This case report adds to the clinicopathological description of TFE3-rearranged RCC and suggests that larger studies are required to fully elucidate the prognosis of these tumours.
Collapse
Affiliation(s)
- Alessandro Pietro Aldera
- Division of Anatomical Pathology, Faculty of Health Sciences, University of Cape Town, South Africa
- JDW Pathology Inc, Cape Town, South Africa
- Corresponding author. 19 Upper Camp Road, Chapters House, Maitland, 7405, Cape Town, South Africa.
| | - Amsha Ramburan
- Division of Anatomical Pathology, Faculty of Health Sciences, University of Cape Town, South Africa
- National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa
| | - Jeff John
- Division of Urology, Department of Surgery, Frere Hospital and Walter Sisulu University, East London, South Africa
| |
Collapse
|
28
|
Salles DC, Asrani K, Woo J, Vidotto T, Liu HB, Vidal I, Matoso A, Netto GJ, Argani P, Lotan TL. GPNMB
expression identifies
TSC1
/2/
mTOR
‐associated and
MiT
family translocation‐driven renal neoplasms. J Pathol 2022; 257:158-171. [PMID: 35072947 PMCID: PMC9310781 DOI: 10.1002/path.5875] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/21/2021] [Accepted: 01/22/2022] [Indexed: 11/20/2022]
Abstract
GPNMB (glycoprotein nonmetastatic B) and other TFE3/TFEB transcriptional targets have been proposed as markers for microphthalmia (MiT) translocation renal cell carcinomas (tRCCs). We recently demonstrated that constitutive mTORC1 activation via TSC1/2 loss leads to increased activity of TFE3/TFEB, suggesting that the pathogenesis and molecular markers for tRCCs and TSC1/2‐associated tumors may be overlapping. We examined GPNMB expression in human kidney and angiomyolipoma (AML) cell lines with TSC2 and/or TFE3/TFEB loss produced using CRISPR–Cas9 genome editing as well as in a mouse model of Tsc2 inactivation‐driven renal tumorigenesis. Using an automated immunohistochemistry (IHC) assay for GPNMB, digital image analysis was employed to quantitatively score expression in clear cell RCC (ccRCC, n = 87), papillary RCC (papRCC, n = 53), chromophobe RCC (chRCC, n = 34), oncocytoma (n = 4), TFE3‐ or TFEB‐driven tRCC (n = 56), eosinophilic solid and cystic RCC (ESC, n = 6), eosinophilic vacuolated tumor (EVT, n = 4), and low‐grade oncocytic tumor (LOT, n = 3), as well as AML (n = 29) and perivascular epithelioid cell tumors (PEComas, n = 8). In cell lines, GPNMB was upregulated following TSC2 loss in a MiT/TFE‐ and mTORC1‐dependent fashion. Renal tumors in Tsc2+/− A/J mice showed upregulation of GPNMB compared with normal kidney. Mean GPNMB expression was significantly higher in tRCC than in ccRCC (p < 0.0001), papRCC (p < 0.0001), and chRCC (p < 0.0001). GPNMB expression in TSC1/2/MTOR alteration‐associated renal tumors (including ESC, LOT, AML, and PEComa) was comparable to that in tRCC. The immunophenotype of tRCC and TSC1/2/MTOR alteration‐associated renal tumors is highly overlapping, likely due to the increased activity of TFE3/TFEB in both, revealing an important caveat regarding the use of TFE3/TFEB‐transcriptional targets as diagnostic markers. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Daniela C. Salles
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
| | - Kaushal Asrani
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
| | - Juhyung Woo
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
| | - Thiago Vidotto
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
| | - Hans B. Liu
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
| | - Igor Vidal
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
| | - Andres Matoso
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
| | - George J. Netto
- Department of Pathology University of Alabama Birmingham Alabama USA
| | - Pedram Argani
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
| | - Tamara L. Lotan
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
- Department of Urology Johns Hopkins University School of Medicine Baltimore MD USA
- Department of Oncology Johns Hopkins University School of Medicine Baltimore MD USA
| |
Collapse
|
29
|
TFE3 and TFEB-rearranged renal cell carcinomas: an immunohistochemical panel to differentiate from common renal cell neoplasms. Virchows Arch 2022; 481:877-891. [PMID: 35980471 PMCID: PMC9734233 DOI: 10.1007/s00428-022-03380-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/08/2022] [Accepted: 07/15/2022] [Indexed: 01/22/2023]
Abstract
TFE3/TFEB-rearranged renal cell carcinomas are characterized by translocations involving TFE3 and TFEB genes. Despite the initial description of typical morphology, their histological spectrum is wide, mimicking common subtypes of renal cell tumors. Thus, the diagnosis is challenging requiring the demonstration of the gene rearrangement, usually by FISH. However, this technique is limited in most laboratories and immunohistochemical TFE3/TFEB analysis is inconsistent. We sought to identify a useful immunohistochemical panel using the most common available markers to recognize those tumors. We performed an immunohistochemical panel comparing 27 TFE3-rearranged and 10 TFEB-rearranged renal cell carcinomas to the most common renal cell tumors (150 clear cell, 100 papillary, 50 chromophobe renal cell carcinomas, 18 clear cell papillary renal cell tumors, and 50 oncocytomas). When dealing with neoplasms characterized by cells with clear cytoplasm, CA9 is a helpful marker to exclude clear cell renal cell carcinoma. GATA3, AMACR, and CK7 are useful to rule out clear cell papillary renal cell tumor. CK7 is negative in TFE3/TFEB-rearranged renal cell carcinoma and positive in papillary renal cell carcinoma, being therefore useful in this setting. Parvalbumin and CK7/S100A1 respectively are of paramount importance when TFE3/TFEB-rearranged renal cell carcinoma resembles oncocytoma and chromophobe renal cell carcinoma. Moreover, in TFEB-rearranged renal cell carcinoma, cathepsin K and melanogenesis markers are constantly positive, whereas TFE3-rearranged renal cell carcinoma stains for cathepsin K in roughly half of the cases, HMB45 in 8% and Melan-A in 22%. In conclusion, since TFE3/TFEB-rearranged renal cell carcinoma may mimic several histotypes, an immunohistochemical panel to differentiate them from common renal cell tumors should include cathepsin K, CA9, CK7, and parvalbumin.
Collapse
|
30
|
Ge Y, Lin X, Zhang Q, Lin D, Luo L, Wang H, Li Z. Xp11.2 Translocation Renal Cell Carcinoma With TFE3 Rearrangement: Distinct Morphological Features and Prognosis With Different Fusion Partners. Front Oncol 2021; 11:784993. [PMID: 34917511 PMCID: PMC8668609 DOI: 10.3389/fonc.2021.784993] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/08/2021] [Indexed: 01/20/2023] Open
Abstract
BackgroundRenal cell carcinoma (RCC) associated with Xp11.2 translocation/TFE3 gene fusion is a rare and new subtype of RCC and was classified by the WHO in 2004. Since then, multiple 5′ fusion partners for TFE3 have been reported; however, the impact of individual fusion variant on specific clinicopathologic features of Xp11.2 RCCs has not been well defined.MethodsFour Xp11.2 translocation RCCs were identified by morphological, immunostaining, and fluorescence in situ hybridization (FISH) assays from 200 patients who attended Guangdong General Hospital between January 2017 and January 2020. All these four cases were further analyzed by RNA sequencing to explore their TFE3 gene fusion partners. The clinicopathologic features, including clinical manifestations, pathological findings, treatment strategies, clinical outcomes, and follow-up information on Xp11.2 translocation RCCs, were recorded and evaluated.ResultsThese four cases affected one male and three females. The median age was 13 years at the time of diagnosis (range = 4–20 years). All the examined tumors were unilateral and unifocal. The largest diameter of these tumors ranged from 2.0 to 10.0 cm, and the average was 5.55 cm. Regional lymph node or distant metastasis developed in two patients. Three cases demonstrated known fusions: ASPCR1–TFE3 (two cases) and PRCC–TFE3 (one case). However, one case showed an unreported VCP–TFE3 fusion gene in Xp11.2 translocation RCCs. Immunohistochemistry results revealed tumor cells diffusely positive for TFE3, but have no consistency in other markers. Moreover, there were different clinical prognoses among the different variant TFE3 rearrangements; RCC patients with VCP–TFE3 translocation had worse prognosis compared to those with other fusion types. Follow-up were available for all the patients and ranged from 3 to 36 months. Three patients were without evidence of disease progression, while that with VCP–TFE3 fusion died of the disease 3 months after the diagnosis.ConclusionIn conclusion, our data expand the list of TFE3 gene fusion partners and the clinicopathologic features of Xp11.2 RCCs with specific TFE3 gene fusions. We identified a novel VCP–TFE3 fusion in Xp11.2 translocation RCCs for the first time, which has unique morphology and worse prognosis than those with other variant TFE3 rearrangements. Integration of morphological, immunohistochemical, and molecular methods is often necessary for the precise diagnosis and optimal clinical management of malignant tumors.
Collapse
Affiliation(s)
- Yan Ge
- Department of Pathology, Guangdong Provincial People’s Hospital/Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xingtao Lin
- Department of Pathology, Guangdong Provincial People’s Hospital/Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qingling Zhang
- Department of Pathology, Guangdong Provincial People’s Hospital/Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Danyi Lin
- Department of Pathology, Guangdong Provincial People’s Hospital/Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Luqiao Luo
- Department of Pathology, Guangdong Provincial People’s Hospital/Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Huiling Wang
- Department of General Surgery, Guangdong Provincial People’s Hospital/Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Huiling Wang, ; Zhi Li,
| | - Zhi Li
- Department of Pathology, Guangdong Provincial People’s Hospital/Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Huiling Wang, ; Zhi Li,
| |
Collapse
|
31
|
Harada S, Caliò A, Janowski KM, Morlote D, Rodriguez Pena MD, Canete-Portillo S, Harbi D, DeFrank G, Magi-Galluzzi C, Netto GJ, Martignoni G, Mackinnon AC. Diagnostic utility of one-stop fusion gene panel to detect TFE3/TFEB gene rearrangement and amplification in renal cell carcinomas. Mod Pathol 2021; 34:2055-2063. [PMID: 34148064 DOI: 10.1038/s41379-021-00858-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 12/20/2022]
Abstract
MiT family translocation renal cell carcinoma (MiT-RCC) harbors translocations involving the TFE3 or TFEB genes. RCC with TFEB amplification is also identified and is associated with a more aggressive clinical course. Accurate diagnosis of MiT-RCC is crucial for patient management. In this study, we evaluated the performance of the Archer FusionPlex assay for detection of MiT-RCC with TFE3 or TFEB translocations and TFEB amplifications. RNA was extracted from 49 RCC FFPE tissue samples with known TFE3/TFEB status (26 TFE3 FISH positive, 12 TFEB FISH positive, 4 TFEB amplified (1 case both split and amplified), and 8 FISH negative) using the Covaris extraction kit. Target enriched cDNA libraries were prepared using the Archer FusionPlex kit and sequenced on the Illumina NextSeq 550. We demonstrate that the age of the specimen, quality of RNA, and sequencing metrics are important for fusion detection. Fusions were identified in 20 of 21 cases less than 2 years old, and TFE3/TFEB rearrangements were detected in all cases with Fusion QC ≥ 100. The assay identified intrachromosomal inversions in two cases (TFE3-RBM10 and NONO-TFE3), usually difficult to identify by FISH assays. TFEB mRNA expression and the TFEB/TFE3 mRNA expression ratio were significantly higher in RCCs with TFEB fusion and TFEB gene amplification compared to tumors without TFEB fusion or amplification. A cutoff TFEB/TFE3 ratio of 0.5 resulted in 97.3% concordance to FISH results with no false negatives. Our study demonstrates that the FusionPlex assay successfully identifies TFE3 and TFEB fusions including intrachromosomal inversions. Age of the specimen and certain sequencing metrics are important for successful fusion detection. Furthermore, mRNA expression levels may be used for predicting cases harboring TFEB amplification, thereby streamlining testing. This assay enables accurate molecular detection of multiple subtypes of MiT-RCCs in a convenient workflow.
Collapse
Affiliation(s)
- Shuko Harada
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Anna Caliò
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Karen M Janowski
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Diana Morlote
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Sofia Canete-Portillo
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Djamel Harbi
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gina DeFrank
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - George J Netto
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Guido Martignoni
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Verona, Italy.,Department of Pathology, Pederzoli Hospital, Peschiera del Garda, Italy
| | - Alexander C Mackinnon
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
32
|
Argani P. Translocation carcinomas of the kidney. Genes Chromosomes Cancer 2021; 61:219-227. [PMID: 34704642 DOI: 10.1002/gcc.23007] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/24/2021] [Indexed: 01/19/2023] Open
Abstract
The MiT subfamily of transcription factors includes TFE3, TFEB, TFEC, and MITF. Gene fusions involving two of these transcription factors have been well-characterized in renal cell carcinoma (RCC). The TFE3-rearranged RCC (also known as Xp11 translocation RCC) was first officially recognized in the 2004 World Health Organization (WHO) renal tumor classification. The TFEB-rearranged RCC, which typically harbor a t(6;11)(p21;q12) translocation which results in a MALAT1-TFEB gene fusion, were first officially recognized in the 2016 WHO renal tumor classification. These two subtypes of translocation RCC have many similarities. Both disproportionately involve young patients, although adult translocation RCC overall outnumber pediatric cases. Both often have unusual and distinctive morphologies; the TFE3-rearranged RCCs frequently have clear cells with papillary architecture and abundant psammoma bodies, while the TFEB-rearranged RCCs frequently have a biphasic appearance with both small and large epithelioid cells and nodules of basement membrane material. However, the morphology of these two neoplasms can overlap, with one mimicking the other or other more common renal neoplasms. Both of these RCC underexpress epithelial immunohistochemical markers, such as cytokeratin and epithelial membrane antigen, relative to most other RCC. Unlike other RCC, both frequently express the cysteine protease cathepsin k and often express melanocytic markers like HMB45 and Melan A. Finally, TFE3 and TFEB have overlapping functional activity as these two transcription factors frequently heterodimerize and bind to the same targets. Therefore, these two neoplasms are now grouped together under the heading of "MiT family translocation RCC." Approximately 50 renal cell carcinomas with gene fusions involving the anaplastic lymphoma kinase (ALK) gene have now been reported. While those with a Vinculin-ALK fusion have distinctive features (predilection to affect children with sickle cell trait and to show solid architecture with striking cytoplasmic vacuolization), other ALK-fusion RCCs have more varied clinical presentations and pathologic features. This review summarizes our current knowledge of these recently described RCC.
Collapse
Affiliation(s)
- Pedram Argani
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Departments of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
33
|
Lobo J, Ohashi R, Helmchen BM, Rupp NJ, Rüschoff JH, Moch H. The Morphological Spectrum of Papillary Renal Cell Carcinoma and Prevalence of Provisional/Emerging Renal Tumor Entities with Papillary Growth. Biomedicines 2021; 9:1418. [PMID: 34680535 PMCID: PMC8533532 DOI: 10.3390/biomedicines9101418] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 12/11/2022] Open
Abstract
Renal cell carcinoma (RCC) represents a heterogeneous disease, encompassing an increasing number of tumor subtypes. Post-2016, the World Health Organization (WHO) classification recognized that the spectrum of papillary renal cell carcinoma is evolving and has long surpassed the dichotomic simplistic "type 1 versus type 2" classification. The differential diagnosis of pRCC includes several new provisional/emerging entities with papillary growth. Type 2 tumors have been cleared out of several confounding entities, now regarded as independent tumors with specific clinical and molecular backgrounds. In this work we describe the prevalence and characteristics of emerging papillary tumor entities in two renal tumor cohorts (one consisting of consecutive papillary tumors from a single institute, the other consisting of consultation cases from several centers). After a review of 154 consecutive pRCC cases, 58% remained type 1 pRCC, and 34% type 2 pRCC. Papillary renal neoplasm with reversed polarity (1.3%), biphasic hyalinizing psammomatous RCC (1.3%), and biphasic squamoid/alveolar RCC (4.5%) were rare. Among 281 consultation cases, 121 (43%) tumors had a dominant papillary growth (most frequently MiT family translocation RCCs, mucinous tubular and spindle cell carcinoma and clear cell papillary RCC). Our data confirm that the spectrum of RCCs with papillary growth represents a major diagnostical challenge, frequently requiring a second expert opinion. Papillary renal neoplasm with reversed polarity, biphasic hyalinizing psammomatous RCC, and biphasic squamoid/alveolar RCC are rarely sent out for a second opinion, but correct classification and knowledge of these variants will improve our understanding of the clinical behavior of renal tumors with papillary growth.
Collapse
Affiliation(s)
- João Lobo
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal;
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS—School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Riuko Ohashi
- Histopathology Core Facility, Faculty of Medicine, Niigata University, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata 951-8510, Japan;
- Division of Molecular and Diagnostic Pathology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-Dori, Chuo-Ku, Niigata 951-8510, Japan
| | - Birgit M. Helmchen
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstrasse 12, 8091 Zurich, Switzerland; (B.M.H.); (N.J.R.); (J.H.R.)
| | - Niels J. Rupp
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstrasse 12, 8091 Zurich, Switzerland; (B.M.H.); (N.J.R.); (J.H.R.)
| | - Jan H. Rüschoff
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstrasse 12, 8091 Zurich, Switzerland; (B.M.H.); (N.J.R.); (J.H.R.)
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstrasse 12, 8091 Zurich, Switzerland; (B.M.H.); (N.J.R.); (J.H.R.)
- Faculty of Medicine, University of Zurich, Rämistrasse 71, 8006 Zurich, Switzerland
| |
Collapse
|
34
|
Di Mauro I, Dadone-Montaudie B, Sibony M, Ambrosetti D, Molinie V, Decaussin-Petrucci M, Bland V, Arbaud C, Cenciu B, Arbib F, Just PA, Derman J, Rioux-Leclercq N, Pedeutour F. RBM10-TFE3 fusions: A FISH-concealed anomaly in adult renal cell carcinomas displaying a variety of morphological and genomic features: Comprehensive study of six novel cases. Genes Chromosomes Cancer 2021; 60:772-784. [PMID: 34358382 DOI: 10.1002/gcc.22985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/05/2021] [Accepted: 07/16/2021] [Indexed: 11/07/2022] Open
Abstract
The accurate diagnosis of Xp11-translocation renal cell carcinoma (RCC) in adults is challenging. TFE3 (located on chromosome X) fuses with a partner gene generally located on another chromosome. In rare cases TFE3 may fuse with a neighboring gene: RBM10. Because TFE3 false-positive immunostaining is a common pitfall in many laboratories, demonstration of the chromosomal rearrangement is required in order to ascertain the diagnosis. Fluorescence in situ hybridization (FISH)-that has been considered as the gold standard method-reaches its limits for detecting small Xp11 paracentric inversions. We performed a comprehensive clinical, histological and genomic study of six novel cases of RCC with RBM10-TFE3 fusion. Using FISH, TFE3 rearrangement was equivocal in one case and negative in others. RBM10-TFE3 fusion was discovered using targeted RNA sequencing (RNASeq). As all the previously reported cases (mean age: 50), the six patients were adults (mean age: 42), suggesting an epidemiologic difference between RBM10-TFE3 RCC and tumors harboring some other partner genes, such as ASPSCR1 that rather occur in children. Array-comparative genomic hybridization showed several alterations, notably a gain of 17q in four cases with papillary features and loss of 3p in one case with clear cells. Our study demonstrates that, though rare among adult cases of RCC, RBM10-TFE3 fusion is not exceptional and warrants appropriate molecular detection. Notably, it would be worthy to systemically investigate by RNASeq challenging RCC with type-2 papillary features and 17q gain.
Collapse
Affiliation(s)
- Ilaria Di Mauro
- Laboratory of Solid Tumor Genetics, University Hospital of Nice-Côte d'Azur University, Nice, France.,Laboratory of Solid Tumor Genetics, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284/INSERM U1081, Nice, France
| | - Bérengère Dadone-Montaudie
- Laboratory of Solid Tumor Genetics, University Hospital of Nice-Côte d'Azur University, Nice, France.,Laboratory of Solid Tumor Genetics, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284/INSERM U1081, Nice, France
| | - Mathilde Sibony
- Department of Pathology, Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Paris-Centre, Hôpital Cochin, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Damien Ambrosetti
- Central Laboratory of Pathology, University Hospital of Nice-Côte d'Azur University, Nice, France
| | - Vincent Molinie
- Pathology Department, Aix en Provence Hospital, Aix en Provence, France
| | | | | | - Claire Arbaud
- Pathology Department, Métropole Savoie Hospital, Chambéry, France
| | - Béatrice Cenciu
- Oncology Department, Andrée Rosemon Hospital, Cayenne, France
| | | | - Pierre-Alexandre Just
- Department of Pathology, Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires Paris-Centre, Hôpital Cochin, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jonathan Derman
- Department of Pathology, Henri-Mondor Hospital, Créteil, France
| | | | - Florence Pedeutour
- Laboratory of Solid Tumor Genetics, University Hospital of Nice-Côte d'Azur University, Nice, France.,Laboratory of Solid Tumor Genetics, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284/INSERM U1081, Nice, France
| | -
- CARARE French Network (CAncers RAres du Rein: Rare Renal Cancers Network of the National Institute of Cancer, INCa), France
| |
Collapse
|
35
|
Webster BR, Rompre-Brodeur A, Daneshvar M, Pahwa R, Srinivasan R. Kidney cancer: from genes to therapy. Curr Probl Cancer 2021; 45:100773. [PMID: 34261604 DOI: 10.1016/j.currproblcancer.2021.100773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 11/30/2022]
Abstract
Renal cell carcinoma incidence is rising worldwide with increasing subtype stratification by the World Health Organization. Each subtype has unique genetic alterations, cell biology changes and clinical findings. Such genetic alterations offer the potential for individualized therapeutic approaches that are rapidly progressing. This review highlights the most common subtypes of renal cell carcinoma, including both hereditary and sporadic forms, with a focus on genetic changes, clinical findings and ongoing clinical trials.
Collapse
Affiliation(s)
- Bradley R Webster
- Center for Cancer Research, Urologic Oncology Branch, National Cancer Institute/NIH, 10 Center Drive, CRC Room 2W-5940, Bethesda, MD 20892, USA
| | - Alexis Rompre-Brodeur
- Center for Cancer Research, Urologic Oncology Branch, National Cancer Institute/NIH, 10 Center Drive, CRC Room 2W-5940, Bethesda, MD 20892, USA
| | - Michael Daneshvar
- Center for Cancer Research, Urologic Oncology Branch, National Cancer Institute/NIH, 10 Center Drive, CRC Room 2W-5940, Bethesda, MD 20892, USA
| | - Roma Pahwa
- Center for Cancer Research, Urologic Oncology Branch, National Cancer Institute/NIH, 10 Center Drive, CRC Room 2W-5940, Bethesda, MD 20892, USA
| | - Ramaprasad Srinivasan
- Center for Cancer Research, Urologic Oncology Branch, National Cancer Institute/NIH, 10 Center Drive, CRC Room 2W-5940, Bethesda, MD 20892, USA.
| |
Collapse
|
36
|
Baniak N, Barletta JA, Hirsch MS. Key Renal Neoplasms With a Female Predominance. Adv Anat Pathol 2021; 28:228-250. [PMID: 34009777 DOI: 10.1097/pap.0000000000000301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Renal neoplasms largely favor male patients; however, there is a growing list of tumors that are more frequently diagnosed in females. These tumors include metanephric adenoma, mixed epithelial and stromal tumor, juxtaglomerular cell tumor, mucinous tubular and spindle cell carcinoma, Xp11.2 (TFE3) translocation-associated renal cell carcinoma, and tuberous sclerosis complex (somatic or germline) associated renal neoplasms. The latter category is a heterogenous group with entities still being delineated. Eosinophilic solid and cystic renal cell carcinoma is the best-described entity, whereas, eosinophilic vacuolated tumor is a proposed entity, and the remaining tumors are currently grouped together under the umbrella of tuberous sclerosis complex/mammalian target of rapamycin-related renal neoplasms. The entities described in this review are often diagnostic considerations when evaluating renal mass tissue on biopsy or resection. For example, Xp11.2 translocation renal cell carcinoma is in the differential when a tumor has clear cell cytology and papillary architecture and occurs in a young or middle-aged patient. In contrast, tuberous sclerosis complex-related neoplasms often enter the differential for tumors with eosinophilic cytology. This review provides an overview of the clinical, gross, microscopic, immunohistochemical, genetic, and molecular alterations in key renal neoplasms occurring more commonly in females; differential diagnoses are also discussed regardless of sex predilection.
Collapse
Affiliation(s)
- Nicholas Baniak
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Justine A Barletta
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Michelle S Hirsch
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
37
|
New developments in existing WHO entities and evolving molecular concepts: The Genitourinary Pathology Society (GUPS) update on renal neoplasia. Mod Pathol 2021; 34:1392-1424. [PMID: 33664427 DOI: 10.1038/s41379-021-00779-w] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 12/28/2022]
Abstract
The Genitourinary Pathology Society (GUPS) reviewed recent advances in renal neoplasia, particularly post-2016 World Health Organization (WHO) classification, to provide an update on existing entities, including diagnostic criteria, molecular correlates, and updated nomenclature. Key prognostic features for clear cell renal cell carcinoma (RCC) remain WHO/ISUP grade, AJCC/pTNM stage, coagulative necrosis, and rhabdoid and sarcomatoid differentiation. Accrual of subclonal genetic alterations in clear cell RCC including SETD2, PBRM1, BAP1, loss of chromosome 14q and 9p are associated with variable prognosis, patterns of metastasis, and vulnerability to therapies. Recent National Comprehensive Cancer Network (NCCN) guidelines increasingly adopt immunotherapeutic agents in advanced RCC, including RCC with rhabdoid and sarcomatoid changes. Papillary RCC subtyping is no longer recommended, as WHO/ISUP grade and tumor architecture better predict outcome. New papillary RCC variants/patterns include biphasic, solid, Warthin-like, and papillary renal neoplasm with reverse polarity. For tumors with 'borderline' features between oncocytoma and chromophobe RCC, a term "oncocytic renal neoplasm of low malignant potential, not further classified" is proposed. Clear cell papillary RCC may warrant reclassification as a tumor of low malignant potential. Tubulocystic RCC should only be diagnosed when morphologically pure. MiTF family translocation RCCs exhibit varied morphologic patterns and fusion partners. TFEB-amplified RCC occurs in older patients and is associated with more aggressive behavior. Acquired cystic disease (ACD) RCC-like cysts are likely precursors of ACD-RCC. The diagnosis of renal medullary carcinoma requires a negative SMARCB1 (INI-1) expression and sickle cell trait/disease. Mucinous tubular and spindle cell carcinoma (MTSCC) can be distinguished from papillary RCC with overlapping morphology by losses of chromosomes 1, 4, 6, 8, 9, 13, 14, 15, and 22. MTSCC with adverse histologic features shows frequent CDKN2A/2B (9p) deletions. BRAF mutations unify the metanephric family of tumors. The term "fumarate hydratase deficient RCC" ("FH-deficient RCC") is preferred over "hereditary leiomyomatosis and RCC syndrome-associated RCC". A low threshold for FH, 2SC, and SDHB immunohistochemistry is recommended in difficult to classify RCCs, particularly those with eosinophilic morphology, occurring in younger patients. Current evidence does not support existence of a unique tumor subtype occurring after chemotherapy/radiation in early childhood.
Collapse
|
38
|
Gallan AJ, Parilla M, Segal J, Ritterhouse L, Antic T. BAP1-Mutated Clear Cell Renal Cell Carcinoma. Am J Clin Pathol 2021; 155:718-728. [PMID: 33210135 DOI: 10.1093/ajcp/aqaa176] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES While aberrations in the VHL gene and chromosome 3p resulting in clear cell renal cell carcinoma (CCRCC) are well established, we know that additional mutations in chromatin remodeling genes PBRM1, SETD2, and BRCA1-associated protein 1 (BAP1) contribute to pathogenesis in some cases. Given the known aggressive clinical behavior of BAP1-mutated CCRCC, we sought to define the pathologic phenotype of BAP1-mutated CCRCC. METHODS We identified 14 cases of molecularly proven BAP1-mutated CCRCC and investigated their clinicopathologic features. RESULTS BAP1-mutated CCRCC frequently showed papillary, tubulopapillary, or expanded nested architecture; demonstrated granular to diffusely eosinophilic cytoplasm with prominent eosinophilic globules; and contained high-grade nuclei. This morphology demonstrates significant overlap with Xp11 translocation renal cell carcinoma (RCC). Immunohistochemistry notably demonstrates loss of BAP1 expression in almost all tumors, in addition to strong p504S expression. A conventional CCRCC component was frequently present adjacent to the characteristic BAP1 areas and showed retained BAP1 expression and only patchy p504S. Approximately two-thirds of BAP1-mutated CCRCCs were stage pT3, renal vein invasion was common, and 50% developed metastases. CONCLUSIONS Herein, we describe the histologic and immunohistochemical findings in BAP1-mutated CCRCC, which has important implications for utilization of molecular testing, prognosis, future therapeutics, and distinction from other RCC subtypes such as Xp11 translocation RCC.
Collapse
Affiliation(s)
| | - Megan Parilla
- Department of Pathology, University of Chicago, Chicago, IL
| | - Jeremy Segal
- Department of Pathology, University of Chicago, Chicago, IL
| | | | - Tatjana Antic
- Department of Pathology, University of Chicago, Chicago, IL
| |
Collapse
|
39
|
Uncommon Localization of Extrarenal Xp11.2 Translocation-associated Renal Cell Carcinoma (RCC): Case Report. Appl Immunohistochem Mol Morphol 2021; 28:e33-e35. [PMID: 28877071 DOI: 10.1097/pai.0000000000000576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The World Health Organization has recognized Xp11.2 translocation-associated renal cell carcinoma (RCC) as a distinct neoplasm that arises within the kidney. Although many reports of extrarenal carcinoma may be found in the literature, to the best of our knowledge, Xp11 translocation-associated RCC with intact kidneys has not been documented. This report describes a multilobulated right retroperitoneal soft tissue mass (7.9×5.3×12.6 cm) of a 37-year-old man complaining of abdominal pain in the right side. The patient underwent a computed tomography-guided biopsy. Microscopic evaluation reveals a tumor with papillary and sheaths architectures with cells revealing clear to eosinophilic cytoplasm. Immunohistochemical evaluation on the biopsy reveals that the tumor is positive for PAX-8, CD10, and TFE3. It is negative for CK7, EMA, Vimentin, RCC, CK8/18, D20, CD3, PLAP, OCT4, CD30, MART-1, Inhibin, S-100, HMB-45, Desmin, SMA, and DOG-1. The diagnosis was malignant epithelioid neoplasm and the diagnosis of translocation RCC was suggested. Excision was recommended. The patient underwent right radical nephrectomy with removal of this large mass. Pathologic examination showed a large cystic and solid, nonhomogenous mass with some necrotic areas, originating from the perirenal fat between the adrenal gland and the kidney. Microscopic features showed a tumor with papillary, rhabdoid, and clear cell features. Immunohistochemical stains showed that the tumor cells positively expressed AMACR, PAX-8, CD10, RCC, and TFE3, but were negative for cytokeratins, vimentin, HMB-45, desmin, SMA, EMA, and MSA. Cytogenetic studies confirmed the diagnosis of Xp11.2 translocation-associated RCC with positive TFE3 gene rearrangement. To the best of our knowledge, this type of extrarenal tumor has never been reported.
Collapse
|
40
|
Mirsadraei L, Vo D, Ren Q, Deng FM, Melamed J. Multilocular cystic renal cell tumors with Xp11 translocation-associated renal cell carcinoma features; report of 2 cases and review of literature. HUMAN PATHOLOGY: CASE REPORTS 2021. [DOI: 10.1016/j.ehpc.2021.200518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
41
|
Wang Y, Wang Y, Feng M, Lian X, Lei Y, Zhou H. Renal cell carcinoma associated with Xp11.2 translocation/transcription factor E3 gene fusion: an adult case report and literature review. J Int Med Res 2021; 48:300060520942095. [PMID: 33026261 PMCID: PMC7545772 DOI: 10.1177/0300060520942095] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Renal cell carcinoma (RCC) associated with Xp11.2 translocation/transcription factor E3 (TFE3) gene fusion is a rare and independent subtype of RCC included in the classification of MiT (microphthalmia-associated transcriptional factor) family translocation RCC. Herein, we report an adult case of Xp11.2 translocation RCC, and review the relevant literature to improve our understanding of the pathogenesis, epidemiology, clinical manifestations, diagnosis, differential diagnosis, treatment, and other aspects of the disease.
Collapse
Affiliation(s)
- Yuxiong Wang
- The Second Department of Urology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yuantao Wang
- The Second Department of Urology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Mingliang Feng
- The Second Department of Urology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xin Lian
- The Second Department of Urology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yongsheng Lei
- The Second Department of Urology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Honglan Zhou
- The Second Department of Urology, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
42
|
Shi Q, Liu N, Zhu Y, Qu F, Xu L, Li X, Zhang G, Guo H, Li D, Gan W. A new risk-scoring system to predict Xp11.2 translocation renal cell carcinoma in adults. J Int Med Res 2021; 49:300060521997661. [PMID: 33752453 PMCID: PMC7995454 DOI: 10.1177/0300060521997661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Objective The objective was to derive and validate a practical scoring system for preoperative diagnosis of Xp11.2 translocation renal cell carcinoma (RCC) in adults. Methods Epidemiology, symptomatology, and imaging methods were correlated between patients with common RCC and those with Xp11.2 translocation RCC using a derivation study (N = 6352) and a validation study (N = 127). Univariate analysis of risk factors was performed to derive a scoring system to predict the occurrence of Xp11.2 translocation RCC in adults. The Hosmer–Lemeshow goodness-of-fit test and receiver operating characteristic (ROC) curve were used to validate the scoring system. Results Based on odd ratios, three low-risk factors (sex, gross haematuria, and intratumoural calcification) and three high-risk factors (age, unenhanced computed tomography density, and enhancement pattern) were given weighted scores of 1 and 2, respectively. Patients who scored 3 to 5 points underwent an additional magnetic resonance imaging examination. The final scoring system had a sensitivity of 81.0% and a specificity of 98.0%. Conclusion We established a practical scoring system for the preoperative diagnosis of Xp11.2 translocation RCC in adults, which can be optimised through further clinical findings in the future.
Collapse
Affiliation(s)
- Qiancheng Shi
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Ning Liu
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yiqi Zhu
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Feng Qu
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Linfeng Xu
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Xiaogong Li
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Gutian Zhang
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Hongqian Guo
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Weidong Gan
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China.,Department of Urology, Drum Tower Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
43
|
Wu Y, Chen S, Zhang M, Liu K, Jing J, Pan K, Zhang L, Xu B, Lu X, Chen M. Factors Associated with Survival From Xp11.2 Translocation Renal Cell Carcinoma Diagnosis-A Systematic Review and Pooled Analysis. Pathol Oncol Res 2021; 27:610360. [PMID: 34257577 PMCID: PMC8262176 DOI: 10.3389/pore.2021.610360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/03/2021] [Indexed: 12/15/2022]
Abstract
Purpose: Xp11.2 translocation renal cell carcinoma (Xp11.2 tRCC) is a rare subtype of renal cell carcinoma (RCC), characterized by translocations of Xp11.2 breakpoints, involving of the transcription factor three gene (TFE3). The aim of our study was to comprehensively characterize the clinical characteristics and outcomes, and to identify risk factors associated with OS and PFS in Xp11.2 tRCC patients. Methods: Literature search on Xp11.2 tRCC was performed using databases such as pubmed EMBASE and Web of Science. Studies were eligible if outcomes data (OS and/or PFS) were reported for patients with a histopathologically confirmed Xp11.2 tRCC. PFS and OS were evaluated using the univariable and multivariable Cox regression model. Results: There were 80 eligible publications, contributing 415 patients. In multivariable analyses, the T stage at presentation was significantly associated with PFS (HR: 3.87; 95% CI: 1.70 to 8.84; p = 0.001). The median time of PFS was 72 months. In the multivariable analyses, age at diagnosis (HR: 2.16; 95% CI: 1.03 to 4.50; p = 0.041), T stage at presentation (HR: 4.44; 95% CI: 2.16 to 9.09; p < 0.001) and metastasis status at presentation (HR: 2.67; 95% CI: 1.12 to 6.41; p = 0.027) were all associated with OS, with a median follow-up time of 198 months. Conclusion: T stage at presentation is the only factor that is associated with both PFS and OS in patients with Xp11.2 tRCC. Also, patients over 45 or with metastases are more likely to have poorer OS.
Collapse
Affiliation(s)
- Yuqing Wu
- Surgical Research Center, Institute of Urology, School of Medicine, Southeast University, Nanjing, China.,Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Saisai Chen
- Surgical Research Center, Institute of Urology, School of Medicine, Southeast University, Nanjing, China.,Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Minhao Zhang
- Surgical Research Center, Institute of Urology, School of Medicine, Southeast University, Nanjing, China.,Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Kuangzheng Liu
- Surgical Research Center, Institute of Urology, School of Medicine, Southeast University, Nanjing, China.,Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Jibo Jing
- Surgical Research Center, Institute of Urology, School of Medicine, Southeast University, Nanjing, China.,Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Kehao Pan
- Surgical Research Center, Institute of Urology, School of Medicine, Southeast University, Nanjing, China.,Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Lihua Zhang
- Department of Pathology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Bin Xu
- Surgical Research Center, Institute of Urology, School of Medicine, Southeast University, Nanjing, China.,Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Xiaoming Lu
- Department of Urology, Yancheng Third People's Hospital, Yancheng, China
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China.,Lishui People's Hospital, Nanjing, China
| |
Collapse
|
44
|
Zhu Y, Pu X, Dong X, Ji C, Guo H, Li D, Zhao X, Gan W. Molecular Heterogeneity of Xp11.2 Translocation Renal Cell Carcinoma: The Correlation Between Split Signal Pattern in FISH and Prognosis. Cancer Manag Res 2021; 13:2419-2431. [PMID: 33758541 PMCID: PMC7979328 DOI: 10.2147/cmar.s297457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/16/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Xp11.2 translocation renal cell carcinoma (Xp11.2 tRCC) is a distinct subtype of renal cell carcinoma (RCC) characterized by chromosomal translocations involving TFE3 gene. TFE3 break-apart fluorescence in situ hybridization (FISH) assay is an effective tool to diagnose Xp11.2 tRCC. The aim of this study is to evaluate the correlation between split signal pattern in FISH and the clinicopathological characteristics of Xp11.2 tRCC. PATIENTS AND METHODS We reviewed 2037 RCC patients who underwent partial nephrectomy or radical nephrectomy from January 2007 to March 2020 in our institution. Forty-nine cases were diagnosed as Xp11.2 tRCC and their split signal patterns were evaluated. X-tile software was used to determine the optimal cut-off value of the percentage of split signal in FISH. Kaplan-Meier analysis and Cox regression analysis were performed to assess the relationship between signal pattern of FISH and the prognosis. RESULTS Among the 49 patients, 13 patients and 36 patients were classified into high and low split signal group, respectively. Nine cases showed extra amplification signal pattern and 40 cases showed typical translocation signal pattern. Multivariate analysis demonstrated that high percentage of split signal and amplification signal pattern were the independent predictors for progression-free survival (PFS) whereas only pT stage was associated independently with overall survival (OS). CONCLUSION Xp11.2 tRCC cases with high percentage of split signals or amplification signal pattern may have a worse outcome, and the two indicators need to be highlighted in clinical practice.
Collapse
Affiliation(s)
- Yiqi Zhu
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, People’s Republic of China
| | - Xiaohong Pu
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, People’s Republic of China
| | - Xiang Dong
- Department of Urology, Drum Tower Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Changwei Ji
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, People’s Republic of China
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, People’s Republic of China
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, People’s Republic of China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, People’s Republic of China
| | - Xiaozhi Zhao
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, People’s Republic of China
| | - Weidong Gan
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
45
|
Giunchi F, Franceschini T, Fiorentino M. A narrative review of individualized treatments of genitourinary tumors: is the future brighter with molecular evaluations? Transl Androl Urol 2021; 10:1553-1561. [PMID: 33850789 PMCID: PMC8039592 DOI: 10.21037/tau-20-1185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Few molecular prognostic and predictive biomarkers have been identified so far in genitourinary tumors. We started from a literature search to explore the status of the art of molecular pathology tests as diagnostic, prognostic, predictive biomarkers in genitourinary cancers. Next generation sequencing approaches now provide mind-changing information in the fields of kidney cancer diagnosis, predictive oncology of urothelial cancer, understanding the causes of testicular and penile cancer, and the comprehension of the drivers of prostate cancer progression beyond androgen regulation. The classification of kidney cancer will be based soon on molecular changes. The causes of non-HPV related penile cancer are largely unknown. The emerging high incidence of testicular cancer could be explained only on the basis of molecular changes. The response to novel therapeutic agents in prostatic and urothelial cancer will require thorough molecular tumor characterization. The hereditary risk of patients with early onset prostate cancer and their potential treatment with targeted therapy requires germline and somatic genetic assays. The implementation of effective biomarkers for the response to immune check-point inhibitors in genitourinary cancer is based on the assessment of inflammatory expression profiles and the tumor mutational burden. This review deals with the current tests and provides a tentative foresee of the future molecular biomarkers of genitourinary cancer.
Collapse
Affiliation(s)
| | - Tania Franceschini
- Metropolitan Department of Pathology, University of Bologna, Bologna, Italy
| | | |
Collapse
|
46
|
Athanazio DA, Amorim LS, da Cunha IW, Leite KRM, da Paz AR, de Paula Xavier Gomes R, Tavora FRF, Faraj SF, Cavalcanti MS, Bezerra SM. Classification of renal cell tumors – current concepts and use of ancillary tests: recommendations of the Brazilian Society of Pathology. SURGICAL AND EXPERIMENTAL PATHOLOGY 2021. [DOI: 10.1186/s42047-020-00084-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AbstractClassification of renal cell carcinomas has become more challenging. The 2016 WHO classification included 14 different subtypes and 4 emerging/provisional entities, and recent literature indicates new entities to be incorporated. Nomenclature is based on cytoplasmic appearance, architecture, combination of morphologies, anatomic location, underlying disease, familial syndromes, and specific genetic alterations. Immunohistochemistry is useful in selected cases while it can be insufficient in entities that require molecular confirmation of a specific gene alteration. The aim of these recommendations is to provide a reasonable and optimized approach for the use of ancillary tests in subtyping renal tumors, particularly in resource-limited settings.
Collapse
|
47
|
Akgul M, Williamson SR, Ertoy D, Argani P, Gupta S, Caliò A, Reuter V, Tickoo S, Al-Ahmadie HA, Netto GJ, Hes O, Hirsch MS, Delahunt B, Mehra R, Skala S, Osunkoya AO, Harik L, Rao P, Sangoi AR, Nourieh M, Zynger DL, Smith SC, Nazeer T, Gumuskaya B, Kulac I, Khani F, Tretiakova MS, Vakar-Lopez F, Barkan G, Molinié V, Verkarre V, Rao Q, Kis L, Panizo A, Farzaneh T, Magers MJ, Sanfrancesco J, Perrino C, Gondim D, Araneta R, So JS, Ro JY, Wasco M, Hameed O, Lopez-Beltran A, Samaratunga H, Wobker SE, Melamed J, Cheng L, Idrees MT. Diagnostic approach in TFE3-rearranged renal cell carcinoma: a multi-institutional international survey. J Clin Pathol 2021; 74:291-299. [PMID: 33514585 DOI: 10.1136/jclinpath-2020-207372] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 01/07/2021] [Indexed: 12/19/2022]
Abstract
Transcription factor E3-rearranged renal cell carcinoma (TFE3-RCC) has heterogenous morphologic and immunohistochemical (IHC) features.131 pathologists with genitourinary expertise were invited in an online survey containing 23 questions assessing their experience on TFE3-RCC diagnostic work-up.Fifty (38%) participants completed the survey. 46 of 50 participants reported multiple patterns, most commonly papillary pattern (almost always 9/46, 19.5%; frequently 29/46, 63%). Large epithelioid cells with abundant cytoplasm were the most encountered cytologic feature, with either clear (almost always 10/50, 20%; frequently 34/50, 68%) or eosinophilic (almost always 4/49, 8%; frequently 28/49, 57%) cytology. Strong (3+) or diffuse (>75% of tumour cells) nuclear TFE3 IHC expression was considered diagnostic by 13/46 (28%) and 12/47 (26%) participants, respectively. Main TFE3 IHC issues were the low specificity (16/42, 38%), unreliable staining performance (15/42, 36%) and background staining (12/42, 29%). Most preferred IHC assays other than TFE3, cathepsin K and pancytokeratin were melan A (44/50, 88%), HMB45 (43/50, 86%), carbonic anhydrase IX (41/50, 82%) and CK7 (32/50, 64%). Cut-off for positive TFE3 fluorescent in situ hybridisation (FISH) was preferably 10% (9/50, 18%), although significant variation in cut-off values was present. 23/48 (48%) participants required TFE3 FISH testing to confirm TFE3-RCC regardless of the histomorphologic and IHC assessment. 28/50 (56%) participants would request additional molecular studies other than FISH assay in selected cases, whereas 3/50 participants use additional molecular cases in all cases when TFE3-RCC is in the differential.Optimal diagnostic approach on TFE3-RCC is impacted by IHC and/or FISH assay preferences as well as their conflicting interpretation methods.
Collapse
Affiliation(s)
- Mahmut Akgul
- Pathology, Albany Medical Center, Albany, New York, USA
| | - Sean R Williamson
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Dilek Ertoy
- Department of Pathology, Koc University School of Medicine, Istanbul, Turkey
| | - Pedram Argani
- Department of Pathology, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Sounak Gupta
- Department of Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Anna Caliò
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Veneto, Italy
| | - Victor Reuter
- Pathology, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Satish Tickoo
- Pathology, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Hikmat A Al-Ahmadie
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - George J Netto
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ondrej Hes
- Faculty of Medicine in Plzen, Charles University, Plzen, Czech Republic.,Medical Teaching School, University Hospital, Charles University, Plzen, Czech Republic
| | - Michelle S Hirsch
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Brett Delahunt
- Pathology and Molecular Medicine, Wellington School of Medicine and Health Sciences, Wellington South, New Zealand
| | - Rohit Mehra
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Stephanie Skala
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Adeboye O Osunkoya
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Lara Harik
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Priya Rao
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ankur R Sangoi
- Department of Pathology, El Camino Hospital, Mountain View, California, USA
| | - Maya Nourieh
- Department of Pathology, Institut Curie, Paris, France
| | - Debra L Zynger
- Department of Pathology, The Ohio State University Medical Center, Columbus, Ohio, USA
| | - Steven Cristopher Smith
- Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Tipu Nazeer
- Pathology, Albany Medical Center, Albany, New York, USA
| | - Berrak Gumuskaya
- Department of Pathology, Yildirim Beyazit University School of Medicine, Ankara, Turkey
| | - Ibrahim Kulac
- Department of Pathology, Koc University School of Medicine, Istanbul, Turkey
| | - Francesca Khani
- Department of Pathology, Cornell University Joan and Sanford I Weill Medical College, New York City, New York, USA
| | - Maria S Tretiakova
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Funda Vakar-Lopez
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Guliz Barkan
- Department of Pathology, Loyola University Health System, Maywood, Illinois, USA
| | - Vincent Molinié
- Pathology, University Hospital Center of Martinique, Fort-de-France, Martinique
| | - Virginie Verkarre
- Department of Pathology, Hôpital Européen Georges Pompidou Anatomie Pathologie, Paris, Île-de-France, France
| | - Qiu Rao
- Department of Pathology, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Lorand Kis
- Department of Pathology, Karolinska Institute, Stockholm, Sweden
| | - Angel Panizo
- Department of Pathology, Complejo Hospitalario de Navarra Servicio de Cardiologia, Pamplona, Navarra, Spain
| | - Ted Farzaneh
- Department of Pathology, Univer Irvine Healthcare, Orange County, California, USA
| | - Martin J Magers
- IHA Pathology and Laboratory Medicine, Ann Arbor, Michigan, USA
| | - Joseph Sanfrancesco
- Department of Pathology, Charleston Area Medical Center, Charleston, South Carolina, USA
| | - Carmen Perrino
- Department of Pathology, Mount Auburn Hospital, Cambridge, Massachusetts, USA
| | - Dibson Gondim
- Department of Pathology, University of Louisville, Louisville, Kentucky, USA
| | - Ronald Araneta
- Department of Pathology, Hartford Hospital, Hartford, Connecticut, USA
| | - Jeffrey S So
- Department of Pathology, St Luke's Hospital, Manila, Philippines
| | - Jae Y Ro
- Department of Pathology, Houston Methodist Hospital, Houston, Texas, USA
| | - Matthew Wasco
- Department of Pathology, St Joseph Mercy Hospital, Ann Arbor, Michigan, USA
| | - Omar Hameed
- Forward Pathology Solutions, Vanderbilt University, Kansas City, Montana, USA
| | - Antonio Lopez-Beltran
- Department of Pathology and Surgery, Cordoba University Medical School, Cordoba, Spain
| | | | - Sara E Wobker
- Department of Pathology, University of North Carolina System, Chapel Hill, North Carolina, USA
| | - Jonathan Melamed
- Department of Pathology, New York University Langone Medical Center, New York City, New York, USA
| | - Liang Cheng
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Muhammad T Idrees
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
48
|
Morphologic and Immunohistochemical Characteristics of Fluorescent In Situ Hybridization Confirmed TFE3-Gene Fusion Associated Renal Cell Carcinoma: A Single Institutional Cohort. Am J Surg Pathol 2020; 44:1450-1458. [PMID: 32701515 DOI: 10.1097/pas.0000000000001541] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
TFE3-fusion associated renal cell carcinoma (TFE3-RCC) accounts for up to 5% adults and 40% of childhood RCC. Their comprehensive immunohistochemical (IHC) profile in correlation to fluorescence in situ hybridization (FISH) testing and their role in the diagnostic approach are not well documented because of lacking published data. FISH confirmed TFE3-RCC between years 2010 and 2020 were identified from institutional electronic database and retrospectively reviewed. Eighty-five TFE3-RCC were identified. Seventy-six of 85 (89.4%) TFE3-RCC cases had positive TFE3 expression, with diffuse and strong/moderate TFE3 expression in 45 (54.2%). Three (3.5%) TFE3-RCC had negative TFE3 expression whereas 6 (7%) cases had equivocal TFE3 expression. On the other hand, positive TFE3-IHC expression was observed in 17/29 (58.6%) TFE3-FISH negative RCC cases, although only 8 (27.5%) had diffuse and moderate/strong TFE3 expression. Diffuse and strong TFE3-IHC expression was statistically significant in predicting TFE3-FISH positivity (P<0.0001) regardless of morphologic features. After univariate and multivariate analyses, TFE3-IHC was the only parameter with significant predictive value for detecting positive TFE3-FISH (P<0.0001). On univariate analysis, sex, classic morphology, age, negative AE1/AE3 or cytokeratin 7 were not predictive of TFE3-FISH positivity. Diffuse and strong nuclear TFE3-IHC expression is significantly associated with TFE3-FISH positivity and can be used as a surrogate marker to confirm translocation associated cases. TFE3-rearranged RCCs show variable histomorphologic features and TFE3-FISH should be performed in cases presenting at a younger age or, regardless of the age, tumors with unusual morphology. Despite previous reports, negative pancytokeratin and positive cathepsin K expression may not be reliable markers for TFE3-RCC.
Collapse
|
49
|
El-Zaatari Z, Divatia MK. Hereditary leiomyomatosis and renal cell carcinoma syndrome-associated renal cell carcinoma: Morphological appraisal with a comprehensive review of differential diagnoses. INDIAN J PATHOL MICR 2020; 63:S7-S17. [PMID: 32108620 DOI: 10.4103/ijpm.ijpm_877_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) is an autosomal dominant syndrome wherein affected individuals are at risk for the development of cutaneous leiomyomas, early-onset multiple uterine leiomyomas, and an aggressive subtype of renal cell cancer. HLRCC is caused by germline mutations in the fumarate hydratase (FH) gene, which inactivates the enzyme and alters the function of the tricarboxylic acid/Krebs cycle. This article reviews the hitherto described morphologic features of HLRCC-associated renal cell carcinoma (RCC) and outlines the differential diagnosis and ancillary use of immunohistochemistry and molecular diagnostics for these tumors. The morphologic spectrum of HLRCC-associated RCC is wide and histologic features, including tumor cells with prominent nucleoli, perinucleolar halos, and multiple architectural patterns within the same tumor, which are suggestive of this diagnosis. FH immunohistochemistry in conjunction with genetic counseling and germline FH testing are the important parameters for detection of this entity. These kidney tumors warrant prompt treatment as even smaller sized lesions can demonstrate aggressive behavior and systemic oncologic treatment in metastatic disease should, if possible, be part of a clinical trial. Screening procedures in HLRCC families should preferably be evaluated in large cohorts.
Collapse
Affiliation(s)
- Ziad El-Zaatari
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Weill-Cornell Medical College, Houston, Texas, USA
| | - Mukul K Divatia
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Weill-Cornell Medical College, Houston, Texas, USA
| |
Collapse
|
50
|
Schmiester M, Dolnik A, Kornak U, Pfitzner B, Hummel M, Treue D, Hartmann A, Agaimy A, Weyerer V, Lekaj A, Brakemeier S, Peters R, Öllinger R, Märdian S, Bullinger L, Striefler JK, Flörcken A. TFE3 activation in a TSC1-altered malignant PEComa: challenging the dichotomy of the underlying pathogenic mechanisms. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2020; 7:3-9. [PMID: 33180365 PMCID: PMC7737753 DOI: 10.1002/cjp2.187] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023]
Abstract
Perivascular epithelioid cell tumors (PEComas) form a family of rare mesenchymal neoplasms that typically display myomelanocytic differentiation. Upregulation of mTOR signaling due the inactivation of TSC1/2 (Tuberous Sclerosis 1 and 2) is believed to be a key oncogenic driver in this disease. Recently, a subgroup of PEComas harboring TFE3 (Transcription Factor E3) rearrangements and presenting with a distinctive morphology has been identified. TSC1/2 and TFE3 aberrations are deemed to be mutually exclusive in PEComa, with two different pathogenic mechanisms assumed to lead to tumorigenesis. Here, we challenge this dichotomy by presenting a case of a clinically aggressive TCS1‐mutated PEComa displaying a TFE3‐altered phenotype. FISH analysis was suggestive of a TFE3 inversion; however, RNA and whole genome sequencing was ultimately unable to identify a fusion involving the gene. However, a copy number increase of the chromosomal region encompassing TFE3 was detected and transcriptome analysis confirmed upregulation of TFE3, which was also seen at the protein level. Therefore, we believe that the TSC1/2‐mTOR pathway and TFE3 overexpression can simultaneously contribute to tumorigenesis in PEComa. Our comprehensive genetic analyses add to the understanding of the complex pathogenic mechanisms underlying PEComa and harbor insights for clinical treatment options.
Collapse
Affiliation(s)
- Maren Schmiester
- Department of Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Anna Dolnik
- Department of Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Uwe Kornak
- Institute of Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Berit Pfitzner
- Institute of Pathology, DRK Kliniken Berlin Westend, Berlin, Germany
| | - Michael Hummel
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Denise Treue
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Arndt Hartmann
- Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg, University Hospital Erlangen, Erlangen, Germany
| | - Abbas Agaimy
- Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg, University Hospital Erlangen, Erlangen, Germany
| | - Veronika Weyerer
- Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg, University Hospital Erlangen, Erlangen, Germany
| | - Anja Lekaj
- Institute of Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Susanne Brakemeier
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Robert Peters
- Department of Urology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Robert Öllinger
- Department of Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sven Märdian
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jana Käthe Striefler
- Department of Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Anne Flörcken
- Department of Hematology, Oncology, and Tumor Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|