1
|
Martin MA, Brizzi A, Xi X, Galiwango RM, Moyo S, Ssemwanga D, Blenkinsop A, Redd AD, Abeler-Dörner L, Fraser C, Reynolds SJ, Quinn TC, Kagaayi J, Bonsall D, Serwadda D, Nakigozi G, Kigozi G, Grabowski MK, Ratmann O. Quantifying prevalence and risk factors of HIV multiple infection in Uganda from population-based deep-sequence data. PLoS Pathog 2025; 21:e1013065. [PMID: 40262080 PMCID: PMC12055032 DOI: 10.1371/journal.ppat.1013065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 05/06/2025] [Accepted: 03/21/2025] [Indexed: 04/24/2025] Open
Abstract
People living with HIV can acquire secondary infections through a process called superinfection, giving rise to simultaneous infection with genetically distinct variants (multiple infection). Multiple infection provides the necessary conditions for the generation of novel recombinant forms of HIV and may worsen clinical outcomes and increase the rate of transmission to HIV seronegative sexual partners. To date, studies of HIV multiple infection have relied on insensitive bulk-sequencing, labor intensive single genome amplification protocols, or deep-sequencing of short genome regions. Here, we identified multiple infections in whole-genome or near whole-genome HIV RNA deep-sequence data generated from plasma samples of 2,029 people living with viremic HIV who participated in the population-based Rakai Community Cohort Study (RCCS). We estimated individual- and population-level probabilities of being multiply infected and assessed epidemiological risk factors using the novel Bayesian deep-phylogenetic multiple infection model (deep - phyloMI) which accounts for bias due to partial sequencing success and false-negative and false-positive detection rates. We estimated that between 2010 and 2020, 4.09% (95% highest posterior density interval (HPD) 2.95%-5.45%) of RCCS participants with viremic HIV multiple infection at time of sampling. Participants living in high-HIV prevalence communities along Lake Victoria were 2.33-fold (95% HPD 1.3-3.7) more likely to harbor a multiple infection compared to individuals in lower prevalence neighboring communities. This work introduces a high-throughput surveillance framework for identifying people with multiple HIV infections and quantifying population-level prevalence and risk factors of multiple infection for clinical and epidemiological investigations.
Collapse
Affiliation(s)
- Michael A. Martin
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Andrea Brizzi
- Department of Mathematics, Imperial College London, London, United Kingdom
| | - Xiaoyue Xi
- Department of Mathematics, Imperial College London, London, United Kingdom
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
| | | | - Sikhulile Moyo
- Botswana Harvard AIDS Institute Partnership, Botswana Harvard HIV Reference Laboratory, Gaborone, Botswana
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Deogratius Ssemwanga
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- Uganda Virus Research Institute, Entebbe, Uganda
| | | | - Andrew D. Redd
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Lucie Abeler-Dörner
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Christophe Fraser
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Steven J. Reynolds
- Rakai Health Sciences Program, Kalisizo, Uganda
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thomas C. Quinn
- Rakai Health Sciences Program, Kalisizo, Uganda
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joseph Kagaayi
- Rakai Health Sciences Program, Kalisizo, Uganda
- Makerere University School of Public Health, Kampala, Uganda
| | - David Bonsall
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | | | | | - M. Kate Grabowski
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Rakai Health Sciences Program, Kalisizo, Uganda
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Oliver Ratmann
- Department of Mathematics, Imperial College London, London, United Kingdom
| | | |
Collapse
|
2
|
Yuan D, Zhao F, Liu S, Liu Y, Yan H, Liu L, Su B, Wang B. Dual Infection of Different Clusters of HIV in People Living with HIV Worldwide: A Meta-Analysis Based on Next-Generation Sequencing Studies. AIDS Patient Care STDS 2024; 38:348-357. [PMID: 38957963 DOI: 10.1089/apc.2024.0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
To understand the global dual HIV infection (DI) profiles comprehensively, the databases Cochrane Library, Embase, PubMed, and Web of Science were the data sources up to March 31, 2024 (PROSPERO: CRD42023388328). Stata and R-language software were used to analyze the extracted data. Publication bias was assessed using Egger's test. Sensitivity analysis was conducted to evaluate the stability of the combined effect values. Data from 17 eligible studies across four continents (Africa, Asia, Europe, and North America) with 1,475 subjects were used. The combined dual infection rate (DIR) was 10.47% (95% CI: 7.11%-14.38%) without a time trend (p = 0.105). The DIRs of target population groups differed significantly, with FSWs having the highest DIR (15.14%), followed by general population (12.08%), MSM (11.84%), and DUs (9.76%). The subtype profiles of 122 patients with dual infection were extracted, and the results showed that intrasubtype infections were predominant in coinfection (16/22, 72.73%) and superinfection (68/100, 68.00%) groups, with the subtype pattern B and B accounts for the largest proportion. The global dual infection rate may be underestimated, even though the data fluctuated around 10% and showed no time trend. The occurrence of DI indicated that individuals still do not acquire sufficient resistance to HIV even after primary infection, which could potentially compromise the patient's treatment effect and lead to the emergence of new subtypes, posing a significant challenge to HIV prevention, control, and treatment, suggesting that behavioral counseling and health education for all HIV-infected individuals are still crucial during the antiviral therapy.
Collapse
Affiliation(s)
- Defu Yuan
- Department of Epidemiology and Health Statistics, School of Public Health, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, Nanjing, China
| | - Fei Zhao
- Beijing Key Laboratory for HIV/AIDS Research, Central Laboratory, Sino-French Joint Laboratory for HIV/AIDS Research, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Shanshan Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, Nanjing, China
| | - Yangyang Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, Nanjing, China
| | - Hongxia Yan
- Beijing Key Laboratory for HIV/AIDS Research, Central Laboratory, Sino-French Joint Laboratory for HIV/AIDS Research, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Lifeng Liu
- Beijing Key Laboratory for HIV/AIDS Research, Central Laboratory, Sino-French Joint Laboratory for HIV/AIDS Research, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Central Laboratory, Sino-French Joint Laboratory for HIV/AIDS Research, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Bei Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, Nanjing, China
| |
Collapse
|
3
|
Mori M, Ode H, Kubota M, Nakata Y, Kasahara T, Shigemi U, Okazaki R, Matsuda M, Matsuoka K, Sugimoto A, Hachiya A, Imahashi M, Yokomaku Y, Iwatani Y. Nanopore Sequencing for Characterization of HIV-1 Recombinant Forms. Microbiol Spectr 2022; 10:e0150722. [PMID: 35894615 PMCID: PMC9431566 DOI: 10.1128/spectrum.01507-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/06/2022] [Indexed: 11/23/2022] Open
Abstract
High genetic diversity, including the emergence of recombinant forms (RFs), is one of the most prominent features of human immunodeficiency virus type 1 (HIV-1). Conventional detection of HIV-1 RFs requires pretreatments, i.e., cloning or single-genome amplification, to distinguish them from dual- or multiple-infection variants. However, these processes are time-consuming and labor-intensive. Here, we constructed a new nanopore sequencing-based platform that enables us to obtain distinctive genetic information for intersubtype RFs and dual-infection HIV-1 variants by using amplicons of HIV-1 near-full-length genomes or two overlapping half-length genome fragments. Repeated benchmark tests of HIV-1 proviral DNA revealed consensus sequence inference with a reduced error rate, allowing us to obtain sufficiently accurate sequence data. In addition, we applied the platform for sequence analyses of 9 clinical samples with suspected HIV-1 RF infection or dual infection according to Sanger sequencing-based genotyping tests for HIV-1 drug resistance. For each RF infection case, replicated analyses involving our nanopore sequencing-based platform consistently produced long consecutive analogous consensus sequences with mosaic genomic structures consisting of two different subtypes. In contrast, we detected multiple heterologous sequences in each dual-infection case. These results demonstrate that our new nanopore sequencing platform is applicable to identify the full-length HIV-1 genome structure of intersubtype RFs as well as dual-infection heterologous HIV-1. Since the genetic diversity of HIV-1 continues to gradually increase, this system will help accelerate full-length genome analysis and molecular epidemiological surveillance for HIV-1. IMPORTANCE HIV-1 is characterized by large genetic differences, including HIV-1 recombinant forms (RFs). Conventional genetic analyses require time-consuming pretreatments, i.e., cloning or single-genome amplification, to distinguish RFs from dual- or multiple-infection cases. In this study, we developed a new analytical system for HIV-1 sequence data obtained by nanopore sequencing. The error rate of this method was reduced to ~0.06%. We applied this system for sequence analyses of 9 clinical samples with suspected HIV-1 RF infection or dual infection, which were extracted from 373 cases of HIV patients based on our retrospective analysis of HIV-1 drug resistance genotyping test results. We found that our new nanopore sequencing platform is applicable to identify the full-length HIV-1 genome structure of intersubtype RFs as well as dual-infection heterologous HIV-1. Our protocol will be useful for epidemiological surveillance to examine HIV-1 transmission as well as for genotypic tests of HIV-1 drug resistance in clinical settings.
Collapse
Affiliation(s)
- Mikiko Mori
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
- Division of Basic Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hirotaka Ode
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Mai Kubota
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Yoshihiro Nakata
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
- Division of Basic Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takaaki Kasahara
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
- Division of Basic Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Urara Shigemi
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Reiko Okazaki
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Masakazu Matsuda
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Kazuhiro Matsuoka
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Atsuko Sugimoto
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Atsuko Hachiya
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Mayumi Imahashi
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Yoshiyuki Yokomaku
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Yasumasa Iwatani
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
- Division of Basic Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
4
|
Casado C, Pernas M, Rava M, Ayerdi O, Vera M, Alenda R, Jiménez P, Docando F, Olivares I, Zaballos A, Vicario JL, Rodríguez C, Del Romero J, Lopez-Galindez C. High-Risk Sexual Practices Contribute to HIV-1 Double Infection Among Men Who Have Sex with Men in Madrid. AIDS Res Hum Retroviruses 2020; 36:896-904. [PMID: 32722915 DOI: 10.1089/aid.2020.0068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Data on the prevalence of double infection (DI) in HIV individuals are lacking in Spain. To fill this gap, we analyzed the prevalence of DI in a cohort of men who have sex with men (MSM) and examined factors contributing to DI. We selected 81 MSM attending Centro Sanitario Sandoval, a sexually transmitted diseases clinic in Madrid. We obtained by ultra-deep sequencing the proviral sequences in gag and env genes and performed a phylogenetic analysis for the identification of DI. Clinical, behavioral, host, and viral factors were studied for its association with DI. We detected six individuals with DI and one case of superinfection with a global prevalence of 8.6%. The genetic distance among the subtype B viruses in monoinfected individuals (24.4%) was lower than the distance between the two viruses in subtype B DI individuals (29.5%). Individuals with a high number of sexual contacts (>25 partners/year) had an 8.66 times higher risk of DI (p = .017). In this MSM cohort the prevalence of HIV DI was estimated at 8.6%. DI was strongly associated with the number of sexual partners. Because of the pathogenic consequences of HIV DI, this high prevalence should promote public health programs targeted at high-risk population such as MSM for the control of HIV infection and DI. HIV DI should be considered for a better clinical management of these individuals.
Collapse
Affiliation(s)
- Concepción Casado
- Unidad de Virología Molecular, Laboratorio de Referencia e Investigación en Retrovirus, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - María Pernas
- Unidad de Virología Molecular, Laboratorio de Referencia e Investigación en Retrovirus, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Rava
- Centro Nacional de Epidemiologia, Instituto Carlos III, Madrid, Spain
| | - Oskar Ayerdi
- Centro Sanitario Sandoval, Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Mar Vera
- Centro Sanitario Sandoval, Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Raquel Alenda
- Centro de Transfusiones de la Comunidad de Madrid, Madrid, Spain
| | - Pilar Jiménez
- Unidad de Genómica, Área de Unidades Centrales Científico-Técnicas, Instituto de Salud Carlos III, Madrid, Spain
| | - Félix Docando
- Unidad de Virología Molecular, Laboratorio de Referencia e Investigación en Retrovirus, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Olivares
- Unidad de Virología Molecular, Laboratorio de Referencia e Investigación en Retrovirus, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Angel Zaballos
- Unidad de Genómica, Área de Unidades Centrales Científico-Técnicas, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Carmen Rodríguez
- Centro Sanitario Sandoval, Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Jorge Del Romero
- Centro Sanitario Sandoval, Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Cecilio Lopez-Galindez
- Unidad de Virología Molecular, Laboratorio de Referencia e Investigación en Retrovirus, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
5
|
HIV controllers suppress viral replication and evolution and prevent disease progression following intersubtype HIV-1 superinfection. AIDS 2019; 33:399-410. [PMID: 30531316 DOI: 10.1097/qad.0000000000002090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the impact of intersubtype HIV-1 superinfection on viremia, reservoir reseeding, viral evolution and disease progression in HIV controllers (HIC). DESIGN A longitudinal analysis of two Brazilian HIC individuals (EEC09 and VC32) previously identified as dually infected with subtypes B and F1 viruses. METHODS Changes in plasma viremia, total HIV-1 DNA levels, CD4+ T-cell counts and HIV-1 quasispecies composition were measured over time. HIV-1 env diversity in peripheral blood mononuclear cell (PBMC) and plasma samples was accessed by single genome amplification and next-generation sequencing approaches, respectively. Viral evolution was evaluated by estimating nucleotide diversity and divergence. RESULTS Individual EEC09 was probably initially infected with a CCR5-tropic subtype B strain and sequentially superinfected with a CXCR4-tropic subtype B strain and with a subtype F1 variant. Individual VC32 was infected with a subtype B strain and superinfected with a subtype F1 variant. The intersubtype superinfection events lead to a moderate increase in viremia and extensive turnover of viral population in plasma but exhibited divergent impact on the size and composition of cell-associated HIV DNA population. Both individuals maintained virologic control (<2000 copies/ml) and presented no evidence of viral evolution or immunologic progression for at least 2 years after the intersubtype superinfection event. CONCLUSION These data revealed that some HIC are able to repeatedly limit replication and evolution of superinfecting viral strains of a different subtype with no signs of disease progression.
Collapse
|
6
|
Full-Length Envelope Analyzer (FLEA): A tool for longitudinal analysis of viral amplicons. PLoS Comput Biol 2018; 14:e1006498. [PMID: 30543621 PMCID: PMC6314628 DOI: 10.1371/journal.pcbi.1006498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 01/02/2019] [Accepted: 09/10/2018] [Indexed: 01/07/2023] Open
Abstract
Next generation sequencing of viral populations has advanced our understanding of viral population dynamics, the development of drug resistance, and escape from host immune responses. Many applications require complete gene sequences, which can be impossible to reconstruct from short reads. HIV env, the protein of interest for HIV vaccine studies, is exceptionally challenging for long-read sequencing and analysis due to its length, high substitution rate, and extensive indel variation. While long-read sequencing is attractive in this setting, the analysis of such data is not well handled by existing methods. To address this, we introduce FLEA (Full-Length Envelope Analyzer), which performs end-to-end analysis and visualization of long-read sequencing data. FLEA consists of both a pipeline (optionally run on a high-performance cluster), and a client-side web application that provides interactive results. The pipeline transforms FASTQ reads into high-quality consensus sequences (HQCSs) and uses them to build a codon-aware multiple sequence alignment. The resulting alignment is then used to infer phylogenies, selection pressure, and evolutionary dynamics. The web application provides publication-quality plots and interactive visualizations, including an annotated viral alignment browser, time series plots of evolutionary dynamics, visualizations of gene-wide selective pressures (such as dN/dS) across time and across protein structure, and a phylogenetic tree browser. We demonstrate how FLEA may be used to process Pacific Biosciences HIV env data and describe recent examples of its use. Simulations show how FLEA dramatically reduces the error rate of this sequencing platform, providing an accurate portrait of complex and variable HIV env populations. A public instance of FLEA is hosted at http://flea.datamonkey.org. The Python source code for the FLEA pipeline can be found at https://github.com/veg/flea-pipeline. The client-side application is available at https://github.com/veg/flea-web-app. A live demo of the P018 results can be found at http://flea.murrell.group/view/P018. Viral populations constantly evolve and diversify. In this article we introduce a method, FLEA, for reconstructing and visualizing the details of evolutionary changes. FLEA specifically processes data from sequencing platforms that generate reads that are long, but error-prone. To study the evolutionary dynamics of entire genes during viral infection, data is collected via long-read sequencing at discrete time points, allowing us to understand how the virus changes over time. However, the experimental and sequencing process is imperfect, so the resulting data contain not only real evolutionary changes, but also mutations and other genetic artifacts caused by sequencing errors. Our method corrects most of these errors by combining thousands of erroneous sequences into a much smaller number of unique consensus sequences that represent biologically meaningful variation. The resulting high-quality sequences are used for further analysis, such as building an evolutionary tree that tracks and interprets the genetic changes in the viral population over time. FLEA is open source, and is freely available online.
Collapse
|
7
|
Song H, Giorgi EE, Ganusov VV, Cai F, Athreya G, Yoon H, Carja O, Hora B, Hraber P, Romero-Severson E, Jiang C, Li X, Wang S, Li H, Salazar-Gonzalez JF, Salazar MG, Goonetilleke N, Keele BF, Montefiori DC, Cohen MS, Shaw GM, Hahn BH, McMichael AJ, Haynes BF, Korber B, Bhattacharya T, Gao F. Tracking HIV-1 recombination to resolve its contribution to HIV-1 evolution in natural infection. Nat Commun 2018; 9:1928. [PMID: 29765018 PMCID: PMC5954121 DOI: 10.1038/s41467-018-04217-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 04/10/2018] [Indexed: 11/29/2022] Open
Abstract
Recombination in HIV-1 is well documented, but its importance in the low-diversity setting of within-host diversification is less understood. Here we develop a novel computational tool (RAPR (Recombination Analysis PRogram)) to enable a detailed view of in vivo viral recombination during early infection, and we apply it to near-full-length HIV-1 genome sequences from longitudinal samples. Recombinant genomes rapidly replace transmitted/founder (T/F) lineages, with a median half-time of 27 days, increasing the genetic complexity of the viral population. We identify recombination hot and cold spots that differ from those observed in inter-subtype recombinants. Furthermore, RAPR analysis of longitudinal samples from an individual with well-characterized neutralizing antibody responses shows that recombination helps carry forward resistance-conferring mutations in the diversifying quasispecies. These findings provide insight into molecular mechanisms by which viral recombination contributes to HIV-1 persistence and immunopathogenesis and have implications for studies of HIV transmission and evolution in vivo.
Collapse
Affiliation(s)
- Hongshuo Song
- Duke Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Elena E Giorgi
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87544, USA
| | - Vitaly V Ganusov
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Fangping Cai
- Duke Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Gayathri Athreya
- Office for Research & Discovery, University of Arizona, Tucson, AZ, 85721, USA
| | - Hyejin Yoon
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87544, USA
| | - Oana Carja
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Bhavna Hora
- Duke Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Peter Hraber
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87544, USA
| | | | - Chunlai Jiang
- Duke Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
- National Engineering Laboratory For AIDS Vaccine, College of Life Science, Jilin University, Changchun, Jilin, 130012, China
| | - Xiaojun Li
- Duke Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Shuyi Wang
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hui Li
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jesus F Salazar-Gonzalez
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- MRC/UVRI and LSHTM Uganda Research Unit, Plot 51-57, Nakiwogo Road, Entebbe, Uganda
| | - Maria G Salazar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Nilu Goonetilleke
- Departments of Microbiology and Immunology & Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - David C Montefiori
- Duke Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Myron S Cohen
- Departments of Microbiology and Immunology & Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - George M Shaw
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Beatrice H Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Andrew J McMichael
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Barton F Haynes
- Duke Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Bette Korber
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87544, USA
| | - Tanmoy Bhattacharya
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87544, USA
- Santa Fe Institute, Santa Fe, NM, 87501, USA
| | - Feng Gao
- Duke Human Vaccine Institute and Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA.
- National Engineering Laboratory For AIDS Vaccine, College of Life Science, Jilin University, Changchun, Jilin, 130012, China.
| |
Collapse
|
8
|
Hebberecht L, Vancoillie L, Schauvliege M, Staelens D, Dauwe K, Mortier V, Verhofstede C. Frequency of occurrence of HIV-1 dual infection in a Belgian MSM population. PLoS One 2018; 13:e0195679. [PMID: 29624605 PMCID: PMC5889168 DOI: 10.1371/journal.pone.0195679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 03/27/2018] [Indexed: 12/20/2022] Open
Abstract
Introduction HIV-1 dual infection is a condition that results from infection with at least two HIV-1 variants from different sources. The scarceness of information on this condition is partly due to the fact that its detection is technically challenging. Using next-generation sequencing we defined the extent of HIV-1 dual infection in a cohort of men who have sex with men (MSM). Material & methods Eighty-six MSM, diagnosed with HIV-1 subtype B infection between 2008 and 2013 were selected for next-generation sequencing of the HIV-1 envelope V3. Sequencing was performed on 2 plasma samples collected with an interval of > 6 months before the initiation of antiretroviral therapy. Maximum likelihood phylogenetic trees were inspected for dual infection, defined as the presence of two or more monophyletic clusters with ≥ 90% bootstrap support and a mean between-cluster genetic distance of ≥ 10%. To confirm dual infection, deep V3 sequencing of intermediate samples was performed as well as clonal sequencing of the HIV-1 protease-reverse transcriptase gene. Results Five of the 74 patients (6.8%) for whom deep sequencing was successful, showed clear evidence of dual infection. In 4 of them, the second strain was absent in the first sample but occurred in subsequent samples. This was highly suggestive for superinfection. In 3 patients both virus variants were of subtype B, in 2 patients at least one of the variants was a subtype B/non-B recombinant virus. Conclusions Dual infection was confirmed in 6.8% of MSM diagnosed with HIV-1 in Belgium. This prevalence is probably an underestimation, because stringent criteria were used to classify viral variants as originating from a new infection event.
Collapse
Affiliation(s)
- Laura Hebberecht
- Aids Reference Laboratory, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Leen Vancoillie
- Aids Reference Laboratory, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Marlies Schauvliege
- Aids Reference Laboratory, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Delfien Staelens
- Aids Reference Laboratory, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Kenny Dauwe
- Aids Reference Laboratory, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Virginie Mortier
- Aids Reference Laboratory, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Chris Verhofstede
- Aids Reference Laboratory, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|
9
|
Intrasubtype B HIV-1 Superinfection Correlates with Delayed Neutralizing Antibody Response. J Virol 2017; 91:JVI.00475-17. [PMID: 28615205 DOI: 10.1128/jvi.00475-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 06/05/2017] [Indexed: 11/20/2022] Open
Abstract
Understanding whether the neutralizing antibody (NAb) response impacts HIV-1 superinfection and how superinfection subsequently modulates the NAb response can help clarify correlates of protection from HIV exposures and better delineate pathways of NAb development. We examined associations between the development of NAb and the occurrence of superinfection in a well-characterized, antiretroviral therapy (ART)-naive, primary infection cohort of men who have sex with men. Deep sequencing was applied to blood plasma samples from the cohort to detect cases of superinfection. We compared the NAb activity against autologous and heterologous viruses between 10 participants with intrasubtype B superinfection and 19 monoinfected controls, matched to duration of infection and risk behavior. Three to 6 months after primary infection, individuals who would later become superinfected had significantly weaker NAb activity against tier 1 subtype B viruses (P = 0.003 for SF-162 and P = 0.017 for NL4-3) and marginally against autologous virus (P = 0.054). Lower presuperinfection NAb responses correlated with weaker gp120 binding and lower plasma total IgG titers. Soon after superinfection, the NAb response remained lower, but between 2 and 3 years after primary infection, NAb levels strengthened and reached those of controls. Superinfecting viruses were typically not susceptible to neutralization by presuperinfection plasma. These observations suggest that recently infected individuals with a delayed NAb response against primary infecting and tier 1 subtype B viruses are more susceptible to superinfection.IMPORTANCE Our findings suggest that within the first year after HIV infection, a relatively weak neutralizing antibody response against primary and subtype-specific neutralization-sensitive viruses increases susceptibility to superinfection in the face of repeated exposures. As natural infection progresses, the immune response strengthens significantly in some superinfected individuals. These findings will inform HIV vaccine design by providing testable correlates of protection from initial HIV infection.
Collapse
|
10
|
Vesa J, Chaillon A, Wagner GA, Anderson CM, Richman DD, Smith DM, Little SJ. Increased HIV-1 superinfection risk in carriers of specific human leukocyte antigen alleles. AIDS 2017; 31:1149-1158. [PMID: 28244954 PMCID: PMC5559224 DOI: 10.1097/qad.0000000000001445] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The aim of this study was to characterize the demographic, behavioural, clinical and immunogenetic determinants of HIV-1 superinfection in a high-risk cohort of MSM. DESIGN A retrospective cohort study of prospectively followed MSM. METHODS Ninety-eight MSM with acute or early HIV-1 monoinfection were followed for a median of 15.6 months. Demographic and human leukocyte antigen (HLA) genotype data were collected at enrolment. Sexual behaviour, clinical and the infection status (monoinfection or superinfection) data were recorded at each visit (at enrolment and thereafter at a median of 4.2-month intervals). HIV-1 superinfection risk was determined by Cox regression and Kaplan-Meier survival analysis. RESULTS Ten individuals (10.2%) had superinfection during follow-up. Cox regression did not show significantly increased superinfection risk for individuals with an increased amount of condomless anal intercourse, lower CD4 T-cell count or higher viral load, but higher number of sexual contacts demonstrated a trend towards significance [hazard ratio, 4.74; 95% confidence interval (95% CI), 0.87-25.97; P = 0.073]. HLA-A*29 (hazard ratio, 4.10; 95% CI, 0.88-14.76; P = 0.069), HLA-B*35 (hazard ratio, 4.64; 95% CI, 1.33-18.17; P = 0.017), HLA-C*04 (hazard ratio, 5.30; 95% CI, 1.51-20.77; P = 0.010), HLA-C*16 (hazard ratio, 4.05; 95% CI, 0.87-14.62; P = 0.071), HLA-DRB1*07 (hazard ratio, 3.29; 95% CI, 0.94-12.90; P = 0.062) and HLA-DRB1*08 (hazard ratio, 15.37; 95% CI, 2.11-79.80; P = 0.011) were associated with an increased risk of superinfection at α = 0.10, whereas HLA-DRB1*11 was associated with decreased superinfection risk (hazard ratio, 0.13; 95% CI, 0.00-1.03; P = 0.054). CONCLUSION HLA genes may, in part, elucidate the genetic basis of differential superinfection risk, and provide important information for the development of efficient prevention and treatment strategies of HIV-1 superinfection.
Collapse
Affiliation(s)
- Jouni Vesa
- University of California San Diego, La Jolla
| | | | | | | | - Douglas D. Richman
- University of California San Diego, La Jolla
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA
| | - Davey M. Smith
- University of California San Diego, La Jolla
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA
| | | |
Collapse
|
11
|
Contrasting antibody responses to intrasubtype superinfection with CRF02_AG. PLoS One 2017; 12:e0173705. [PMID: 28288209 PMCID: PMC5348025 DOI: 10.1371/journal.pone.0173705] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/25/2017] [Indexed: 11/22/2022] Open
Abstract
HIV superinfection describes the sequential infection of an individual with two or more unrelated HIV strains. Intersubtype superinfection has been shown to cause a broader and more potent heterologous neutralizing antibody response when compared to singly infected controls, yet the effects of intrasubtype superinfection remain controversial. Longitudinal samples were analyzed phylogenetically for pol and env regions using Next-Generation Sequencing and envelope cloning. The impact of CRF02_AG intrasubtype superinfection was assessed for heterologous neutralization and antibody binding responses. We compared two cases of CRF02_AG intrasubtype superinfection that revealed complete replacement of the initial virus by superinfecting CRF02_AG variants with signs of recombination. NYU6564, who became superinfected at an early time point, exhibited greater changes in antibody binding profiles and generated a more potent neutralizing antibody response post-superinfection compared to NYU6501. In contrast, superinfection occurred at a later time point in NYU6501 with strains harboring significantly longer V1V2 regions with no observable changes in neutralization patterns. Here we show that CRF02_AG intrasubtype superinfection can induce a cross-subtype neutralizing antibody response, and our data suggest timing and/or superinfecting viral envelope characteristics as contributing factors. These results highlight differential outcomes in intrasubtype superinfection and provide the first insight into cases with CRF02_AG, the fourth most prevalent HIV-1 strain worldwide.
Collapse
|
12
|
Novitsky V, Moyo S, Wang R, Gaseitsiwe S, Essex M. Deciphering Multiplicity of HIV-1C Infection: Transmission of Closely Related Multiple Viral Lineages. PLoS One 2016; 11:e0166746. [PMID: 27893822 PMCID: PMC5125632 DOI: 10.1371/journal.pone.0166746] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/02/2016] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND A single viral variant is transmitted in the majority of HIV infections. However, about 20% of heterosexually transmitted HIV infections are caused by multiple viral variants. Detection of transmitted HIV variants is not trivial, as it involves analysis of multiple viral sequences representing intra-host HIV-1 quasispecies. METHODOLOGY We distinguish two types of multiple virus transmission in HIV infection: (1) HIV transmission from the same source, and (2) transmission from different sources. Viral sequences representing intra-host quasispecies in a longitudinally sampled cohort of 42 individuals with primary HIV-1C infection in Botswana were generated by single-genome amplification and sequencing and spanned the V1C5 region of HIV-1C env gp120. The Maximum Likelihood phylogeny and distribution of pairwise raw distances were assessed at each sampling time point (n = 217; 42 patients; median 5 (IQR: 4-6) time points per patient, range 2-12 time points per patient). RESULTS Transmission of multiple viral variants from the same source (likely from the partner with established HIV infection) was found in 9 out of 42 individuals (21%; 95 CI 10-37%). HIV super-infection was identified in 2 patients (5%; 95% CI 1-17%) with an estimated rate of 3.9 per 100 person-years. Transmission of multiple viruses combined with HIV super-infection at a later time point was observed in one individual. CONCLUSIONS Multiple HIV lineages transmitted from the same source produce a monophyletic clade in the inferred phylogenetic tree. Such a clade has transiently distinct sub-clusters in the early stage of HIV infection, and follows a predictable evolutionary pathway. Over time, the gap between initially distinct viral lineages fills in and initially distinct sub-clusters converge. Identification of cases with transmission of multiple viral lineages from the same source needs to be taken into account in cross-sectional estimation of HIV recency in epidemiological and population studies.
Collapse
Affiliation(s)
- Vlad Novitsky
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Sikhulile Moyo
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Division of Medical Virology, Stellenbosch University, Tygerberg, South Africa
| | - Rui Wang
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | | | - M. Essex
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| |
Collapse
|
13
|
Abstract
OBJECTIVE Compared with HIV monoinfection, HIV dual infection has been associated with decreased CD4 T-cell counts and increased viral loads. The same markers are also associated with the development of HIV-associated neurocognitive disorder (HAND), which continues to be a prevalent problem in the era of combination antiretroviral therapy (ART). We sought to determine the relationship between dual infection and HAND. METHODS Participants on ART (N = 38) underwent deep sequencing of four PCR-amplified HIV coding regions derived from peripheral blood mononuclear cell DNA samples. Phylogenetic analyses were performed to evaluate whether two distinct viral lineages, that is, dual infection, were present in the same individual. All study participants underwent neurocognitive, substance use, and neuromedical assessments at each study visit. RESULTS Of 38 participants, nine (23.7%) had evidence of dual infection. Using clinical ratings, global neurocognitive impairment was identified in 21 (55%) participants, and multivariate analysis demonstrated a significant association between dual infection and impairment; odds ratio (95% confidence interval) = 18.3 (1.9, 414.2), P = 0.028. Neurocognitive impairment was also associated with lower current (P = 0.028) and nadir (P = 0.043) CD4 T-cell counts. CONCLUSIONS Deep sequencing of HIV DNA populations in blood mononuclear cell identified dual infection in nearly a quarter of HIV-infected adults receiving ART, and dual infection was associated with HAND. Dual infection may contribute to the development of HAND, perhaps because of increased viral diversity. Further investigation is needed to determine how dual infection results in worse neurocognitive performance.
Collapse
|
14
|
Wang X, Sun B, Mbondji C, Biswas S, Zhao J, Hewlett I. Differences in Activation of HIV-1 Replication by Superinfection With HIV-1 and HIV-2 in U1 Cells. J Cell Physiol 2016; 232:1746-1753. [PMID: 27662631 DOI: 10.1002/jcp.25614] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/22/2016] [Indexed: 11/09/2022]
Abstract
Macrophages contribute to HIV-1 pathogenesis by forming a viral reservoir that serve as a viral source for the infection of CD4 T cells. The relationship between HIV-1 latent infection and superinfection in macrophages has not been well studied. Using susceptible U1 cells chronically infected with HIV-1, we studied the effects of HIV superinfection on latency and differences in superinfection with HIV-1 and HIV-2 in macrophages. We found that HIV-1 (MN) superinfection displayed increased HIV-1 replication in a time-dependent manner; while cells infected with HIV-2 (Rod) initially showed increased HIV-1 replication, followed by a decrease in HIV-1 RNA production. HIV-1 superinfection upregulated/activated NF-ĸB, NFAT, AP-1, SP-1, and MAPK Erk through expression/activation of molecules, CD4, CD3, TCRβ, Zap-70, PLCγ1, and PKCΘ in T cell receptor-related signaling pathways; while HIV-2 superinfection initially increased expression/activation of these molecules followed by decreased protein expression/activation. HIV superinfection initially downregulated HDAC1 and upregulated acetyl-histone H3 and histone H3 (K4), while HIV-2 superinfection demonstrated an increase in HDAC1 and a decrease in acetyl-histone H3 and histone H3 (K4) relative to HIV-1 superinfection. U1 cells superinfected with HIV-1 or HIV-2 showed differential expression of proteins, IL-2, PARP-1, YB-1, and LysRS. These findings indicate that superinfection with HIV-1 or HIV-2 has different effects on reactivation of HIV-1 replication. HIV-1 superinfection with high load of viral replication may result in high levels of cytotoxicity relative to HIV-2 superinfection. Cells infected with HIV-2 showed lower level of HIV-1 replication, suggesting that co-infection with HIV-2 may result in slower progression toward AIDS. J. Cell. Physiol. 232: 1746-1753, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Xue Wang
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Bing Sun
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Christelle Mbondji
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Santanu Biswas
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Jiangqin Zhao
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Indira Hewlett
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
15
|
Gianella S, Kosakovsky Pond SL, Oliveira MF, Scheffler K, Strain MC, De la Torre A, Letendre S, Smith DM, Ellis RJ. Compartmentalized HIV rebound in the central nervous system after interruption of antiretroviral therapy. Virus Evol 2016; 2:vew020. [PMID: 27774305 PMCID: PMC5072458 DOI: 10.1093/ve/vew020] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
To design effective eradication strategies, it may be necessary to target HIV reservoirs in anatomic compartments other than blood. This study examined HIV RNA rebound following interruption of antiretroviral therapy (ART) in blood and cerebrospinal fluid (CSF) to determine whether the central nervous system (CNS) might serve as an independent source of resurgent viral replication. Paired blood and CSF samples were collected longitudinally from 14 chronically HIV-infected individuals undergoing ART interruption. HIV env (C2-V3), gag (p24) and pol (reverse transcriptase) were sequenced from cell-free HIV RNA and cell-associated HIV DNA in blood and CSF using the Roche 454 FLX Titanium platform. Comprehensive sequence and phylogenetic analyses were performed to search for evidence of unique or differentially represented viral subpopulations emerging in CSF supernatant as compared with blood plasma. Using a conservative definition of compartmentalization based on four distinct statistical tests, nine participants presented a compartmentalized HIV RNA rebound within the CSF after interruption of ART, even when sampled within 2 weeks from viral rebound. The degree and duration of viral compartmentalization varied considerably between subjects and between time-points within a subject. In 10 cases, we identified viral populations within the CSF supernatant at the first sampled time-point after ART interruption, which were phylogenetically distinct from those present in the paired blood plasma and mostly persisted over time (when longitudinal time-points were available). Our data suggest that an independent source of HIV RNA contributes to viral rebound within the CSF after treatment interruption. The most likely source of compartmentalized HIV RNA is a CNS reservoir that would need to be targeted to achieve complete HIV eradication.
Collapse
Affiliation(s)
- Sara Gianella
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Michelli F Oliveira
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Konrad Scheffler
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Matt C Strain
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Antonio De la Torre
- Departments of Neurosciences and Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Scott Letendre
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Davey M Smith
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA; Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Ronald J Ellis
- Departments of Neurosciences and Psychiatry, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
16
|
Differences in the Selection Bottleneck between Modes of Sexual Transmission Influence the Genetic Composition of the HIV-1 Founder Virus. PLoS Pathog 2016; 12:e1005619. [PMID: 27163788 PMCID: PMC4862634 DOI: 10.1371/journal.ppat.1005619] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 04/18/2016] [Indexed: 01/18/2023] Open
Abstract
Due to the stringent population bottleneck that occurs during sexual HIV-1 transmission, systemic infection is typically established by a limited number of founder viruses. Elucidation of the precise forces influencing the selection of founder viruses may reveal key vulnerabilities that could aid in the development of a vaccine or other clinical interventions. Here, we utilize deep sequencing data and apply a genetic distance-based method to investigate whether the mode of sexual transmission shapes the nascent founder viral genome. Analysis of 74 acute and early HIV-1 infected subjects revealed that 83% of men who have sex with men (MSM) exhibit a single founder virus, levels similar to those previously observed in heterosexual (HSX) transmission. In a metadata analysis of a total of 354 subjects, including HSX, MSM and injecting drug users (IDU), we also observed no significant differences in the frequency of single founder virus infections between HSX and MSM transmissions. However, comparison of HIV-1 envelope sequences revealed that HSX founder viruses exhibited a greater number of codon sites under positive selection, as well as stronger transmission indices possibly reflective of higher fitness variants. Moreover, specific genetic “signatures” within MSM and HSX founder viruses were identified, with single polymorphisms within gp41 enriched among HSX viruses while more complex patterns, including clustered polymorphisms surrounding the CD4 binding site, were enriched in MSM viruses. While our findings do not support an influence of the mode of sexual transmission on the number of founder viruses, they do demonstrate that there are marked differences in the selection bottleneck that can significantly shape their genetic composition. This study illustrates the complex dynamics of the transmission bottleneck and reveals that distinct genetic bottleneck processes exist dependent upon the mode of HIV-1 transmission. While the global spread of HIV-1 has been fueled by sexual transmission the genetic determinants underlying the transmission bottleneck remains poorly understood. Here we characterized founder virus population diversity from next generation sequencing data in a cohort of 74 acute and early HIV-1 infected individuals. We observe that the risk of multi-variant infection in men-who-have-sex-with-men (MSM) is not greater than that observed for heterosexuals (HSX), contrary to reports of higher rates of multiple founder virus infections in higher-risk MSM transmissions. These findings were further supported through a metadata analysis of 354 acute and early HIV-1 subjects. We did, however, observe differences between HSM and MSM founder viruses, including a higher selection barrier in HSX transmission with founder viruses being more cohort consensus-like that may be reflective of increased replicative fitness. We also identified a number of residues within Envelope that behave in a risk-dependent manner and could be key for HIV-1 transmission. These novel insights improve our understanding of the HIV-1 transmission bottleneck and underscore the differential selective pressures that founder viruses within the two major transmission risk groups are subjected to.
Collapse
|
17
|
Chang CH, Kist NC, Stuart Chester TL, Sreenu VB, Herman M, Luo M, Lunn D, Bell J, Plummer FA, Ball TB, Katzourakis A, Iversen AKN. HIV-infected sex workers with beneficial HLA-variants are potential hubs for selection of HIV-1 recombinants that may affect disease progression. Sci Rep 2015; 5:11253. [PMID: 26082240 PMCID: PMC4469978 DOI: 10.1038/srep11253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/11/2015] [Indexed: 11/15/2022] Open
Abstract
Cytotoxic T lymphocyte (CTL) responses against the HIV Gag protein are associated with lowering viremia; however, immune control is undermined by viral escape mutations. The rapid viral mutation rate is a key factor, but recombination may also contribute. We hypothesized that CTL responses drive the outgrowth of unique intra-patient HIV-recombinants (URFs) and examined gag sequences from a Kenyan sex worker cohort. We determined whether patients with HLA variants associated with effective CTL responses (beneficial HLA variants) were more likely to carry URFs and, if so, examined whether they progressed more rapidly than patients with beneficial HLA-variants who did not carry URFs. Women with beneficial HLA-variants (12/52) were more likely to carry URFs than those without beneficial HLA variants (3/61) (p < 0.0055; odds ratio = 5.7). Beneficial HLA variants were primarily found in slow/standard progressors in the URF group, whereas they predominated in long-term non-progressors/survivors in the remaining cohort (p = 0.0377). The URFs may sometimes spread and become circulating recombinant forms (CRFs) of HIV and local CRF fragments were over-represented in the URF sequences (p < 0.0001). Collectively, our results suggest that CTL-responses associated with beneficial HLA variants likely drive the outgrowth of URFs that might reduce the positive effect of these CTL responses on disease progression.
Collapse
Affiliation(s)
- Chih-Hao Chang
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicolaas C Kist
- Department of Zoology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Tammy L Stuart Chester
- National HIV and Retrovirology Laboratories, JC Wilt Infectious Disease Research Centre, Winnipeg, Manitoba, Canada
| | - Vattipally B Sreenu
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Melissa Herman
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Ma Luo
- 1] National HIV and Retrovirology Laboratories, JC Wilt Infectious Disease Research Centre, Winnipeg, Manitoba, Canada [2] Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Daniel Lunn
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - John Bell
- Office of the Regius Professor of Medicine, The Richard Doll Building, University of Oxford, Oxford, United Kingdom
| | - Francis A Plummer
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - T Blake Ball
- 1] National HIV and Retrovirology Laboratories, JC Wilt Infectious Disease Research Centre, Winnipeg, Manitoba, Canada [2] Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada [3] Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Aris Katzourakis
- Department of Zoology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Astrid K N Iversen
- 1] Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom [2] Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
HIV-1 neutralizing antibody response and viral genetic diversity characterized with next generation sequencing. Virology 2014; 474:34-40. [PMID: 25463602 DOI: 10.1016/j.virol.2014.10.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 09/16/2014] [Accepted: 10/21/2014] [Indexed: 12/24/2022]
Abstract
To better understand the dynamics of HIV-specific neutralizing antibody (NAb), we examined associations between viral genetic diversity and the NAb response against a multi-subtype panel of heterologous viruses in a well-characterized, therapy-naïve primary infection cohort. Using next generation sequencing (NGS), we computed sequence-based measures of diversity within HIV-1 env, gag and pol, and compared them to NAb breadth and potency as calculated by a neutralization score. Contemporaneous env diversity and the neutralization score were positively correlated (p=0.0033), as were the neutralization score and estimated duration of infection (EDI) (p=0.0038), and env diversity and EDI (p=0.0005). Neither early env diversity nor baseline viral load correlated with future NAb breadth and potency (p>0.05). Taken together, it is unlikely that neutralizing capability in our cohort was conditioned on viral diversity, but rather that env evolution was driven by the level of NAb selective pressure.
Collapse
|
19
|
HIV-1 superinfection is associated with an accelerated viral load increase but has a limited impact on disease progression. AIDS 2014; 28:2281-6. [PMID: 25102090 DOI: 10.1097/qad.0000000000000422] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE HIV-1 superinfection occurs frequently in high-risk populations, but its clinical consequences remain poorly characterized. We undertook this study to determine the impact of HIV-1 superinfection on disease progression. DESIGN/METHODS In the largest prospective cohort study of superinfection to date, we compared measures of HIV-1 progression in women who acquired superinfection with those who did not. Clinical and laboratory data were collected at quarterly intervals. Linear mixed effects models were used to compare postacute viral load and CD4 T-cell counts over time in singly infected and superinfected women. Cox proportional hazards analysis was used to determine the effect of superinfection on time to clinical progression [CD4 cell count <200 cells/μl, antiretroviral therapy (ART) initiation or death]. RESULTS Among 144 women, 21 of whom acquired superinfection during follow-up, the rate of viral load increase was higher in superinfected than in singly infected women (P = 0.0008). In adjusted analysis, superinfected women had lower baseline viral load before superinfection (P = 0.05) and a trend for increased viral load at superinfection acquisition (P = 0.09). We also observed a borderline association of superinfection with accelerated CD4 cell count decline (P = 0.06). However, there was no significant difference in time to clinical progression events. CONCLUSION These data suggest that superinfection is associated with accelerated progression in laboratory measures of HIV-1 disease, but has a limited impact on the occurrence of clinical events. Our observation that superinfected individuals have lower baseline viral load prior to superinfection suggests that there may be host or viral determinants of susceptibility to superinfection.
Collapse
|
20
|
Ritchie AJ, Cai F, Smith NMG, Chen S, Song H, Brackenridge S, Abdool Karim SS, Korber BT, McMichael AJ, Gao F, Goonetilleke N. Recombination-mediated escape from primary CD8+ T cells in acute HIV-1 infection. Retrovirology 2014; 11:69. [PMID: 25212771 PMCID: PMC4180588 DOI: 10.1186/s12977-014-0069-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 07/31/2014] [Indexed: 12/02/2022] Open
Abstract
Background A major immune evasion mechanism of HIV-1 is the accumulation of non-synonymous mutations in and around T cell epitopes, resulting in loss of T cell recognition and virus escape. Results Here we analyze primary CD8+ T cell responses and virus escape in a HLA B*81 expressing subject who was infected with two T/F viruses from a single donor. In addition to classic escape through non-synonymous mutation/s, we also observed rapid selection of multiple recombinant viruses that conferred escape from T cells specific for two epitopes in Nef. Conclusions Our study shows that recombination between multiple T/F viruses provide greater options for acute escape from CD8+ T cell responses than seen in cases of single T/F virus infection. This process may contribute to the rapid disease progression in patients infected by multiple T/F viruses. Electronic supplementary material The online version of this article (doi:10.1186/s12977-014-0069-9) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
HIV-1 superinfection with a triple-class drug-resistant strain in a patient successfully controlled with antiretroviral treatment. AIDS 2014; 28:1840-4. [PMID: 24911350 DOI: 10.1097/qad.0000000000000342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We report a case of HIV-1 superinfection (HSI) with a clade B, triple-class resistant virus in a patient successfully controlling viremia with continuous combination antiretroviral therapy started 8 years earlier during primary HIV infection. The course of HIV infection prior to HSI was monitored in both the source partner and recipient (8 and 11 years, respectively) and 4 years following HSI. This case report demonstrates re-infection with HIV-1 despite effective combination antiretroviral therapy.
Collapse
|
22
|
Prevalence of HIV-1 dual infection in long-term nonprogressor-elite controllers. J Acquir Immune Defic Syndr 2014; 64:225-31. [PMID: 23714744 DOI: 10.1097/qai.0b013e31829bdc85] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Human immunodeficiency virus type 1 (HIV-1) dual infection (DI) in long-term nonprogressor-elite controller patients (LTNP-EC) has been described only in sporadic cases and then, consequences in disease progression are not clearly established. To fill-up this limited knowledge, we analyzed, for the first time, the prevalence, host genetic polymorphisms, and clinical consequences of HIV-1 DI in a group of LTNP-EC. METHODS For DI detection, nucleotide sequences in env gene from viruses from 20 LTNP-EC were analyzed by maximum likelihood. Epidemiological and clinical parameters and host factors of patients were also studied. RESULTS DI was detected in 4 (20%) of the 20 LTNP-EC, of which 3 maintained the elite controller status. CD4⁺ T-cell counts were not different between single and DI patients although higher CD8⁺ T-cell counts were observed in DI patients, and, consequently, the CD4⁺/CD8⁺ ratios were lower in LTNP-EC DI patients. CONCLUSIONS Prevalence of HIV-1 DIs in LTNP-EC is similar to other groups of HIV-1 patients; in addition, DI was not associated with loss of disease control in the patients. These DI LTNP-EC patients showed, in comparison with single infected patients, higher numbers of CD8⁺ T cells and lower CD4⁺/CD8⁺ ratios.
Collapse
|
23
|
Wagner GA, Pacold ME, Kosakovsky Pond SL, Caballero G, Chaillon A, Rudolph AE, Morris SR, Little SJ, Richman DD, Smith DM. Incidence and prevalence of intrasubtype HIV-1 dual infection in at-risk men in the United States. J Infect Dis 2013; 209:1032-8. [PMID: 24273040 DOI: 10.1093/infdis/jit633] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Human immunodeficiency virus type 1 (HIV-1) dual infection (DI) has been associated with decreased CD4 T-cell counts and increased viral loads; however, the frequency of intrasubtype DI is poorly understood. We used ultradeep sequencing (UDS) to estimate the frequency of DI in a primary infection cohort of predominantly men who have sex with men (MSM). METHODS HIV-1 genomes from longitudinal blood samples of recently infected, therapy-naive participants were interrogated with UDS. DI was confirmed when maximum sequence divergence was excessive and supported by phylogenetic analysis. Coinfection was defined as DI at baseline; superinfection was monoinfection at baseline and DI at a later time point. RESULTS Of 118 participants, 7 were coinfected and 10 acquired superinfection. Superinfection incidence rate was 4.96 per 100 person-years (95% confidence interval [CI], 2.67-9.22); 6 occurred in the first year and 4 in the second. Overall cumulative prevalence of intrasubtype B DI was 14.4% (95% CI, 8.6%-22.1%). Primary HIV-1 incidence was 4.37 per 100 person-years (95% CI, 3.56-5.36). CONCLUSIONS Intrasubtype DI was frequent and comparable to primary infection rates among MSM in San Diego; however, superinfection rates declined over time. DI is likely an important component of the HIV epidemic dynamics, and development of stronger immune responses to the initial infection may protect from superinfection.
Collapse
|
24
|
Dynamics of viral evolution and neutralizing antibody response after HIV-1 superinfection. J Virol 2013; 87:12737-44. [PMID: 24049166 DOI: 10.1128/jvi.02260-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Investigating the incidence and prevalence of HIV-1 superinfection is challenging due to the complex dynamics of two infecting strains. The superinfecting strain can replace the initial strain, be transiently expressed, or persist along with the initial strain in distinct or in recombined forms. Various selective pressures influence these alternative scenarios in different HIV-1 coding regions. We hypothesized that the potency of the neutralizing antibody (NAb) response to autologous viruses would modulate viral dynamics in env following superinfection in a limited set of superinfection cases. HIV-1 env pyrosequencing data were generated from blood plasma collected from 7 individuals with evidence of superinfection. Viral variants within each patient were screened for recombination, and viral dynamics were evaluated using nucleotide diversity. NAb responses to autologous viruses were evaluated before and after superinfection. In 4 individuals, the superinfecting strain replaced the original strain. In 2 individuals, both initial and superinfecting strains continued to cocirculate. In the final individual, the surviving lineage was the product of interstrain recombination. NAb responses to autologous viruses that were detected within the first 2 years of HIV-1 infection were weak or absent for 6 of the 7 recently infected individuals at the time of and shortly following superinfection. These 6 individuals had detectable on-going viral replication of distinct superinfecting virus in the env coding region. In the remaining case, there was an early and strong autologous NAb response, which was associated with extensive recombination in env between initial and superinfecting strains. This extensive recombination made superinfection more difficult to identify and may explain why the detection of superinfection has typically been associated with low autologous NAb titers.
Collapse
|
25
|
Redd AD, Quinn TC, Tobian AAR. Frequency and implications of HIV superinfection. THE LANCET. INFECTIOUS DISEASES 2013; 13:622-8. [PMID: 23726798 PMCID: PMC3752600 DOI: 10.1016/s1473-3099(13)70066-5] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
HIV superinfection occurs when an individual with HIV is infected with a new distinct HIV viral strain. Superinfection has been reported throughout the world, and studies have recorded incidence rates of 0-7·7% per year. Use of next-generation sequencing has improved detection of superinfection, which can be transmitted by injecting drug use and sexual intercourse. Superinfection might have incidence rates comparable to those of initial HIV infection. Clinicians should encourage safe sexual and injecting drug use practices for HIV-infected patients because superinfection has detrimental effects on clinical outcomes and could pose a concern for large-scale antiretroviral treatment plans. The occurrence of superinfection has implications for vaccine research, since it seems initial HIV infection is not fully protective against a subsequent infection. Additional collaborative research could benefit care of patients and inform future vaccine design.
Collapse
Affiliation(s)
- Andrew D Redd
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
26
|
Hightower GK, May SJ, Pérez-Santiago J, Pacold ME, Wagner GA, Little SJ, Richman DD, Mehta SR, Smith DM, Pond SLK. HIV-1 clade B pol evolution following primary infection. PLoS One 2013; 8:e68188. [PMID: 23840830 PMCID: PMC3695957 DOI: 10.1371/journal.pone.0068188] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 05/27/2013] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Characterize intra-individual HIV-1 subtype B pol evolution in antiretroviral naive individuals. DESIGN Longitudinal cohort study of individuals enrolled during primary infection. METHODS Eligible individuals were antiretroviral naïve participants enrolled in the cohort from December 1997-December 2005 and having at least two blood samples available with the first one collected within a year of their estimated date of infection. Population-based pol sequences were generated from collected blood samples and analyzed for genetic divergence over time in respect to dual infection status, HLA, CD4 count and viral load. RESULTS 93 participants were observed for a median of 1.8 years (Mean = 2.2 years, SD =1.9 years). All participants classified as mono-infected had less than 0.7% divergence between any two of their pol sequences using the Tamura-Nei model (TN93), while individuals with dual infection had up to 7.0% divergence. The global substitution rates (substitutions/nucleotide/year) for mono and dually infected individuals were significantly different (p<0.001); however, substitution rates were not associated with HLA haplotype, CD4 or viral load. CONCLUSIONS Even after a maximum of almost 9 years of follow-up, all mono-infected participants had less than 1% divergence between baseline and longitudinal sequences, while participants with dual infection had 10 times greater divergence. These data support the use of HIV-1 pol sequence data to evaluate transmission events, networks and HIV-1 dual infection.
Collapse
Affiliation(s)
- George K. Hightower
- Department of Medicine, University of California San Diego, La Jolla, California United States of America
| | - Susanne J. May
- Department of Biostatistics, University of Washington, Seattle, Washington United States of America
| | - Josué Pérez-Santiago
- Department of Medicine, University of California San Diego, La Jolla, California United States of America
| | - Mary E. Pacold
- Life Technologies, San Francisco, California United States of America
| | - Gabriel A. Wagner
- Department of Medicine, University of California San Diego, La Jolla, California United States of America
| | - Susan J. Little
- Department of Medicine, University of California San Diego, La Jolla, California United States of America
| | - Douglas D. Richman
- Department of Medicine, University of California San Diego, La Jolla, California United States of America
- Veterans Administration San Diego Healthcare System, San Diego, California, United States of America
| | - Sanjay R. Mehta
- Department of Medicine, University of California San Diego, La Jolla, California United States of America
| | - Davey M. Smith
- Department of Medicine, University of California San Diego, La Jolla, California United States of America
- Veterans Administration San Diego Healthcare System, San Diego, California, United States of America
- * E-mail:
| | - Sergei L. Kosakovsky Pond
- Department of Medicine, University of California San Diego, La Jolla, California United States of America
| |
Collapse
|
27
|
Fisher MP, Ramchand R, Bana S, Iguchi MY. Risk behaviors among HIV-positive gay and bisexual men at party-oriented vacations. J Stud Alcohol Drugs 2013. [PMID: 23200162 DOI: 10.15288/jsad.2013.74.158] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE This study examined substance use (intended and actual), unprotected sex, and HIV disclosure practices (disclosure and questioning) among HIV-positive men who have sex with men (MSM) at two party-oriented vacations, where substance use and sexual risk may be heightened. METHOD A random sample of 489 MSM attending one of two party-oriented vacations participated in PartyIntents, a short-term longitudinal survey. Nearly half (47%) completed a follow-up assessment at the event or online for up to 2 weeks after the event. We examined rates of baseline intentions to use substances, actual substance use, and unprotected intercourse among HIV-positive men in attendance.Rates among HIV-negative men were estimated for comparison. Multiple logistic regression was used to assess the impact of illegal drug use and HIV status on unprotected anal intercourse (UAI). RESULTS HIV-positive attendees (17%) were significantly more likely than HIV-negative attendees to use nitrite inhalants (or "poppers") (24.3% vs. 10.7%). HIV-positive attendees were also significantly more likely to have insertive UAI (64.3% vs. 34.1%) and receptive UAI (68.8% vs. 22.2%). Multivariate models showed associations between HIV status and illegal drug use with UAI (for HIV status, odds ratio [OR] = 4.5, p = .001; for any illegal drug use, OR = 16.4, p < .001). There was no evidence that the influence of drug use moderated risk by HIV status. Rates of HIV disclosure and questioning did not differ by HIV status. CONCLUSIONS HIV-positive men attending these events engaged in higher rates of illegal drug use and sexual risk than HIV-negative men. Prevention campaigns targeting MSM at high-risk events should include messages geared toward HIV-positive men.
Collapse
|
28
|
Wagner GA, Pacold ME, Vigil E, Caballero G, Morris SR, Kosakovsky Pond SL, Little SJ, Richman DD, Gianella S, Smith DM. Using ultradeep pyrosequencing to study HIV-1 coreceptor usage in primary and dual infection. J Infect Dis 2013; 208:271-4. [PMID: 23599311 DOI: 10.1093/infdis/jit168] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
HIV-1 dual infection (DI) and CXCR4 (X4) coreceptor usage are associated with accelerated disease progression but frequency and dynamics of coreceptor usage during DI is unknown. Ultradeep sequencing was used to interrogate for DI and infer coreceptor usage in longitudinal blood samples of 102 subjects. At baseline, X4 usage was high (23 subjects harbored X4 variants) and was not associated with infection duration or DI. Coreceptor usage changed over time in 12 of 47 participants, and X4 usage emerged in 4 of 41 monoinfections vs 2 of 5 superinfections (P = .12), suggesting a weak statistical trend toward occurrence of superinfection and acquiring X4 usage.
Collapse
|
29
|
Higher HIV-1 genetic diversity is associated with AIDS and neuropsychological impairment. Virology 2012; 433:498-505. [PMID: 22999095 DOI: 10.1016/j.virol.2012.08.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 08/01/2012] [Accepted: 08/20/2012] [Indexed: 11/21/2022]
Abstract
Standard methods used to estimate HIV-1 population diversity are often resource intensive (e.g., single genome amplification, clonal amplification and pyrosequencing) and not well suited for large study cohorts. Additional approaches are needed to address the relationships between intraindividual HIV-1 genetic diversity and 2 disease. With a small cohort of individuals, we validated three methods for measuring diversity: Shannon entropy and average pairwise distance (APD) using single genome sequences, and counts of mixed bases (i.e. ambiguous nucleotides) from population based sequences. In a large cohort, we then used the mixed base approach to determine associations between measure HIV-1 diversity and HIV associated disease. Normalized counts of mixed bases correlated with Shannon Entropy at both the nucleotide (rho=0.72, p=0.002) and amino acid level (rho=0.59, p=0.015), and APD (rho=0.75, p=0.001). Among participants who underwent neuropsychological and clinical assessments (n=187), increased HIV-1 population diversity was associated with both a diagnosis of AIDS and neuropsychological impairment.
Collapse
|