1
|
Benito JM, Jiménez-Carretero D, Valentín-Quiroga J, Mahillo I, Ligos JM, Restrepo C, Cabello A, López-Collazo E, Sánchez-Cabo F, Górgolas M, Rallón N. Long-Term Elite Controllers of HIV-1 Infection Exhibit a Deep Perturbation of Monocyte Homeostasis. Int J Mol Sci 2025; 26:3926. [PMID: 40362169 PMCID: PMC12071947 DOI: 10.3390/ijms26093926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/07/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025] Open
Abstract
Elite controllers (ECs) represent a unique subset of people living with HIV (PLWHs), who can suppress viral replication without requiring antiretroviral therapy (ART). However, despite this viral control, ECs exhibit increased incidences of various comorbid conditions and heightened systemic inflammation, which has been linked to monocyte activation. In this study, we performed an in-depth phenotypic analysis of monocytes in a cohort of long-term ECs (LTECs) and compared them to non-controller patients with ART-mediated control of HIV replication and to non-controller patients with uncontrolled viral replication. A total of 67 participants were included: 22 LTECs, 15 non-controllers on ART (onART), 10 non-controllers without ART (offART), and 20 uninfected controls (UCs) as a reference group. Monocyte phenotypes were analyzed using spectral flow cytometry with a 13-marker panel. The data were analyzed using two approaches: (a) FCS Express software v.7 to define different subsets of monocytes and assess the levels of expression of eight different monocyte functional markers and (b) R software v.4.1.1 for unsupervised multidimensional analysis, including batch correction, dimensionality reduction, and clustering analysis. Monocyte phenotypic profiling was conducted using three different approaches: (1) assessment of monocyte subsets (classical, intermediate, and non-classical monocytes); (2) evaluation of the levels of expression of eight monocyte functional markers, and (3) characterization of monocyte clusters defined through the dimensionality reduction of flow cytometry data (56 different clusters). The monocyte phenotype of the onART group closely resembled that of the UC group. In contrast, LTECs exhibited important alterations in the monocyte phenotype compared to that of the UCs, including (a) an increased proportion of intermediate monocytes and a decreased proportion of classical monocytes (p < 0.01), (b) altered expressions of functional markers across monocyte subsets (p < 0.05), and (c) alterations in sixteen different monocyte clusters (twelve decreased and four increased, p < 0.05). Many of these alterations were also observed when comparing the LTEC and onART groups. Our findings suggest that monocyte-driven mechanisms may contribute to HIV control in LTECs; however, some of these alterations could also promote systemic inflammation and immune activation. These observations provide a compelling rationale for considering therapeutic interventions in this unique population of PLWHs.
Collapse
Affiliation(s)
- José M. Benito
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28003 Madrid, Spain
- Hospital Universitario Rey Juan Carlos, 28933 Móstoles, Spain
| | - Daniel Jiménez-Carretero
- Unidad de Bioinformática, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Jaime Valentín-Quiroga
- Grupo de Respuesta Inmune Innata, IdiPAZ, Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Ignacio Mahillo
- Department of Statistics, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28049 Madrid, Spain
| | | | - Clara Restrepo
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28003 Madrid, Spain
- Hospital Universitario Rey Juan Carlos, 28933 Móstoles, Spain
| | - Alfonso Cabello
- Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Eduardo López-Collazo
- Grupo de Respuesta Inmune Innata, IdiPAZ, Hospital Universitario La Paz, 28046 Madrid, Spain
| | - Fátima Sánchez-Cabo
- Unidad de Bioinformática, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Miguel Górgolas
- Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Norma Rallón
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28003 Madrid, Spain
- Hospital Universitario Rey Juan Carlos, 28933 Móstoles, Spain
| |
Collapse
|
2
|
Nganou-Makamdop K. Clinical and experimental treatment of residual immune activation in people living with HIV. Clin Exp Immunol 2025; 219:uxaf023. [PMID: 40243265 PMCID: PMC12062964 DOI: 10.1093/cei/uxaf023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/13/2025] [Accepted: 04/14/2025] [Indexed: 04/18/2025] Open
Abstract
Potent inflammatory responses stemming from innate and T cell activation are initiated during acute human immunodeficiency virus infection. Suppression of the virus replication by antiretroviral therapy reduces but does not normalize immune activation. By now, it is clear that residual immune activation can persist even after years of antiretroviral therapy and associates with increased risks for co-morbidities, thereby raising interest for strategies that can resolve the residual immune activation in people with human immunodeficiency virus on antiretrovirals. This brief review reports the human studies with various drugs with anti-inflammatory properties and their effects on measures of systemic immune activation on people with human immunodeficiency virus. Along with the possible reasons for conflicting outcomes, considerations for ongoing and future approaches are outlined.
Collapse
Affiliation(s)
- Krystelle Nganou-Makamdop
- Department of Internal Medicine 3, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
3
|
Li C, Xu W, Li L, Zhou Y, Yao G, Chen G, Xu L, Yang N, Yan Z, Zhu C, Fang S, Qiao Y, Bai J, Li M. Concrete-Inspired Bionic Bone Glue Repairs Osteoporotic Bone Defects by Gluing and Remodeling Aging Macrophages. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408044. [PMID: 39455287 PMCID: PMC11672322 DOI: 10.1002/advs.202408044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/15/2024] [Indexed: 10/28/2024]
Abstract
Osteoporotic fractures are characterized by abnormal inflammation, deterioration of the bone microenvironment, weakened mechanical properties, and difficulties in osteogenic differentiation. The chronic inflammatory state characterized by aging macrophages leads to delayed or non-healing of the fracture or even the formation of bone defects. The current bottleneck in clinical treatment is to achieve strong fixation of the comminuted bone fragments and effective regulation of the complex microenvironment of aging macrophages. Inspired by cement and gravel in concrete infrastructure, a biomimetic bone glue with poly(lactic-co-glycolic acid) microspheres is developed and levodopa/oxidized chitosan hydrogel stabilized on an organic-inorganic framework of nanohydroxyapatite, named DOPM. DOPM is characterized via morphological and mechanical characterization techniques, in vitro experiments with bone marrow mesenchymal stromal cells, and in vivo experiments with an aged SD rat model exhibiting osteoporotic bone defects. DOPM exhibited excellent adhesion properties, good biocompatibility, and significant osteogenic differentiation. Transcriptomic analysis revealed that DOPM improved the inflammatory microenvironment by inhibiting the NF-κB signaling pathway and promoting aging macrophage polarization toward M2 macrophages, thus significantly accelerating bone defect repair and regeneration. This biomimetic bone glue, which enhances osteointegration and reestablishes the homeostasis of aging macrophages, has potential applications in the treatment of osteoporotic bone defects.
Collapse
Affiliation(s)
- Chong Li
- Department of OrthopedicsCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230022China
- Department of OrthopedicsAnhui Provincial Hospital Affiliated to Anhui Medical UniversityHefeiAnhui230022China
| | - Wei Xu
- Department of OrthopedicsCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230022China
| | - Lei Li
- Department of OrthopedicsCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230022China
| | - Yonghui Zhou
- Department of OrthopedicsCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230022China
| | - Gang Yao
- Department of OrthopedicsCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230022China
| | - Guang Chen
- Department of OrthopedicsCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230022China
| | - Lei Xu
- Department of OrthopedicsCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230022China
| | - Ning Yang
- Department of OrthopedicsCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230022China
| | - Zhanjun Yan
- Department of OrthopedicsThe Ninth People's Hospital of SuzhouSuzhouJiangsu215006China
| | - Chen Zhu
- Department of OrthopedicsCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230022China
| | - Shiyuan Fang
- Department of OrthopedicsCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230022China
- Department of OrthopedicsAnhui Provincial Hospital Affiliated to Anhui Medical UniversityHefeiAnhui230022China
| | - Yusen Qiao
- Department of OrthopedicsThe First Affiliated Hospital of Soochow University188 Shizi RoadSuzhouJiangsu215006China
| | - Jiaxiang Bai
- Department of OrthopedicsCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230022China
| | - Meng Li
- Department of OrthopedicsCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230022China
| |
Collapse
|
4
|
Barger LN, El Naggar OS, Ha B, Romano G. Melanoma in people living with HIV: Immune landscape dynamics and the role of immuno- and antiviral therapies. Cancer Metastasis Rev 2024; 44:9. [PMID: 39609320 PMCID: PMC11604825 DOI: 10.1007/s10555-024-10230-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024]
Abstract
The intersection of HIV and melanoma presents a complex and unique challenge, marked by distinct patterns in incidence, mortality, and treatment response. Higher mortality rates among people with HIV who develop melanoma underscore an urgent need to identify the factors influencing these outcomes. Investigating immune system dynamics, the effects of anti-retroviral drugs, and the evolving landscape of cancer immunotherapy in this population holds promise for new insights, though significant uncertainties remain. Over the past 25 years, melanoma research has demonstrated that a robust immune response is critical for effective treatment. In the context of chronic HIV infection, viral reservoirs enable the virus to persist despite anti-retroviral therapy and foster dysregulated myeloid and T cell compartments. The resulting chronic inflammation weakens the immune system and damages tissues, potentially creating "cold" tumor microenvironments that are less responsive to therapy. In this challenging context, animal models become invaluable for uncovering underlying biological mechanisms. While these models do not fully replicate human HIV infection, they provide essential insights into critical questions and inform the development of tailored treatments for this patient population. Clinically, increasing trial participation and creating a centralized, accessible repository for HIV and cancer samples and data are vital. Achieving these goals requires institutions to address barriers to research participation among people with HIV, focusing on patient-centered initiatives that leverage biomedical research to improve their outcomes and extend their lives.
Collapse
Affiliation(s)
- Lindsay N Barger
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Olivia S El Naggar
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Binh Ha
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Gabriele Romano
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA.
- Immune Cell Regulation & Targeting Program, Sidney Kimmel Comprehensive Cancer Center Consortium, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Anzurez A, Runtuwene L, Dang TTT, Nakayama-Hosoya K, Koga M, Yoshimura Y, Sasaki H, Miyata N, Miyazaki K, Takahashi Y, Suzuki T, Yotsuyanagi H, Tachikawa N, Matano T, Kawana-Tachikawa A. Characterization of the Proinflammatory Cytokine Profile during Acute SARS-CoV-2 Infection in People with Human Immunodeficiency Virus. Jpn J Infect Dis 2024; 77:301-310. [PMID: 38945856 DOI: 10.7883/yoken.jjid.2024.184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Persistent inflammation during chronic human immunodeficiency virus (HIV) infection may affect the immune response against severe acute respiratory syndrome-coronavirus 2 (SARS- CoV-2) infection. Plasma levels of multiple proinflammatory cytokines during acute SARS-CoV-2 infection were measured in people with HIV (PWH) with effective combination antiretroviral therapy. There were no significant differences in any of the measured cytokines between severity levels of coronavirus disease 2019 (COVID-19) in PWH, while most were significantly higher in HIV-uninfected individuals with severe COVID-19, suggesting that excess cytokines release by hyperinflammatory responses do not occur in individuals with severe COVID-19 with HIV infection. The strong associations between the cytokines observed in HIV-uninfected individuals, particularly between IFN-α/TNF-α and other cytokines, were lost in PWH. The steady-state plasma levels of IP-10, ICAM-1, and CD62E were significantly higher in PWH, indicating that they were in an enhanced inflammatory state. The absence of several inter-cytokine correlations was observed in in vitro lipopolysaccharide stimulus-driven cytokine production in PWH. These data suggest that inflammatory responses during SARS-CoV-2 infection in PWH are distinct from those in HIV-uninfected individuals, partially because of the underlying inflammatory state and/or impairment of innate immune cells.
Collapse
Affiliation(s)
- Alitzel Anzurez
- AIDS Research Center, National Institute of Infectious Diseases, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Japan
| | - Lucky Runtuwene
- AIDS Research Center, National Institute of Infectious Diseases, Japan
| | - Thi Thu Thao Dang
- AIDS Research Center, National Institute of Infectious Diseases, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Japan
| | | | - Michiko Koga
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Japan
| | - Yukihiro Yoshimura
- Department of Infectious Diseases, Yokohama Municipal Citizens' Hospital, Japan
| | - Hiroaki Sasaki
- Department of Infectious Diseases, Yokohama Municipal Citizens' Hospital, Japan
| | - Nobuyuki Miyata
- Department of Infectious Diseases, Yokohama Municipal Citizens' Hospital, Japan
| | - Kazuhito Miyazaki
- Department of Infectious Diseases, Yokohama Municipal Citizens' Hospital, Japan
- Department of Respiratory Medicine, Yokohama Municipal Citizens' Hospital, Japan
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Japan
| | - Hiroshi Yotsuyanagi
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Japan
| | - Natsuo Tachikawa
- Department of Infectious Diseases, Yokohama Municipal Citizens' Hospital, Japan
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Japan
- Department of AIDS Vaccine Development, Institute of Medical Science, University of Tokyo, Japan
| | - Ai Kawana-Tachikawa
- AIDS Research Center, National Institute of Infectious Diseases, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Japan
- Department of AIDS Vaccine Development, Institute of Medical Science, University of Tokyo, Japan
| |
Collapse
|
6
|
Takahashi N, Eltalkhawy YM, Nasu K, Abdelnaser RA, Monde K, Habash SA, Nasser H, Hiyoshi M, Ishimoto T, Suzu S. IL-10 induces activated phenotypes of monocytes observed in virally-suppressed HIV-1-infected individuals. Biochem Biophys Res Commun 2024; 729:150342. [PMID: 38981402 DOI: 10.1016/j.bbrc.2024.150342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
Despite viral suppression by effective combined antiretroviral therapy, HIV-1-infected individuals have an increased risk of non-AIDS-related overall morbidity, which is due to the persistent chronic inflammation exemplified by the activation of monocytes, such as increased CD16high subset, and elevated plasma level of soluble CD163 (sCD163) and soluble CD14 (sCD14). Here, we show that IL-10, which has been recognized as anti-inflammatory, induces these activated phenotypes of monocytes in vitro. IL-10 increased CD16high monocytes, which was due to the upregulation of CD16 mRNA expression and completely canceled by an inhibitor of Stat3. Moreover, IL-10 increased the production of sCD163 and sCD14 by monocytes, which was consistent with the upregulation of cell surface expression of CD163 and CD14, and mRNA expression of CD163. However, unlike the IL-10-indeuced upregulation of CD16, that of CD14 was minimally affected by the Stat3 inhibitor. Furthermore, the IL-10-induced upregulation of CD163 protein and mRNA was partially inhibited by the Stat3 inhibitor, but completely canceled by an inhibitor of AMPK, an upstream kinase of Stat3 and PI3K/Akt/mTORC1 pathways. In this study, we also found that HIV-1 pathogenic protein Nef, which is known to persist in plasma of virally-suppressed individuals, induced IL-10 production in monocyte-derived macrophages. Our results may suggest that IL-10, which is inducible by Nef-activated macrophages, is one of drivers for activated phenotypes of monocytes in virally-suppressed individuals, and that IL-10 induces the increased CD16high monocytes and elevated level of sCD163 and sCD14 through the activation of different signaling pathways.
Collapse
MESH Headings
- Humans
- Interleukin-10/metabolism
- Monocytes/metabolism
- Monocytes/immunology
- HIV Infections/immunology
- HIV Infections/virology
- HIV Infections/metabolism
- HIV Infections/blood
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/genetics
- Antigens, CD/metabolism
- Antigens, CD/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- HIV-1
- Receptors, IgG/metabolism
- Lipopolysaccharide Receptors/metabolism
- STAT3 Transcription Factor/metabolism
- Phenotype
- Up-Regulation
- Cells, Cultured
Collapse
Affiliation(s)
- Naofumi Takahashi
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.
| | - Youssef M Eltalkhawy
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Kanako Nasu
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Randa A Abdelnaser
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Kazuaki Monde
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Sara A Habash
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Hesham Nasser
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Masateru Hiyoshi
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Takatsugu Ishimoto
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shinya Suzu
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
7
|
Obare LM, Temu T, Mallal SA, Wanjalla CN. Inflammation in HIV and Its Impact on Atherosclerotic Cardiovascular Disease. Circ Res 2024; 134:1515-1545. [PMID: 38781301 PMCID: PMC11122788 DOI: 10.1161/circresaha.124.323891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
People living with HIV have a 1.5- to 2-fold increased risk of developing cardiovascular disease. Despite treatment with highly effective antiretroviral therapy, people living with HIV have chronic inflammation that makes them susceptible to multiple comorbidities. Several factors, including the HIV reservoir, coinfections, clonal hematopoiesis of indeterminate potential (CHIP), microbial translocation, and antiretroviral therapy, may contribute to the chronic state of inflammation. Within the innate immune system, macrophages harbor latent HIV and are among the prominent immune cells present in atheroma during the progression of atherosclerosis. They secrete inflammatory cytokines such as IL (interleukin)-6 and tumor necrosis-α that stimulate the expression of adhesion molecules on the endothelium. This leads to the recruitment of other immune cells, including cluster of differentiation (CD)8+ and CD4+ T cells, also present in early and late atheroma. As such, cells of the innate and adaptive immune systems contribute to both systemic inflammation and vascular inflammation. On a molecular level, HIV-1 primes the NLRP3 (NLR family pyrin domain containing 3) inflammasome, leading to an increased expression of IL-1β, which is important for cardiovascular outcomes. Moreover, activation of TLRs (toll-like receptors) by HIV, gut microbes, and substance abuse further activates the NLRP3 inflammasome pathway. Finally, HIV proteins such as Nef (negative regulatory factor) can inhibit cholesterol efflux in monocytes and macrophages through direct action on the cholesterol transporter ABCA1 (ATP-binding cassette transporter A1), which promotes the formation of foam cells and the progression of atherosclerotic plaque. Here, we summarize the stages of atherosclerosis in the context of HIV, highlighting the effects of HIV, coinfections, and antiretroviral therapy on cells of the innate and adaptive immune system and describe current and future interventions to reduce residual inflammation and improve cardiovascular outcomes among people living with HIV.
Collapse
Affiliation(s)
- Laventa M. Obare
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN (L.M.O., S.A.M., C.N.W.)
| | - Tecla Temu
- Department of Pathology, Harvard Medical School, Boston, MA (T.T.)
| | - Simon A. Mallal
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN (L.M.O., S.A.M., C.N.W.)
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN (S.A.M.)
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN (S.A.M.)
- Institute for Immunology and Infectious Diseases, Murdoch University, WA, Western Australia (S.A.M.)
| | - Celestine N. Wanjalla
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN (L.M.O., S.A.M., C.N.W.)
| |
Collapse
|
8
|
Anderko RR, DePuyt AE, Bronson R, Bullotta AC, Aga E, Bosch RJ, Jones RB, Eron JJ, Mellors JW, Gandhi RT, McMahon DK, Macatangay BJ, Rinaldo CR, Mailliard RB. Persistence of a Skewed Repertoire of NK Cells in People with HIV-1 on Long-Term Antiretroviral Therapy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1564-1578. [PMID: 38551350 PMCID: PMC11073922 DOI: 10.4049/jimmunol.2300672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
HIV-1 infection greatly alters the NK cell phenotypic and functional repertoire. This is highlighted by the expansion of a rare population of FcRγ- NK cells exhibiting characteristics of traditional immunologic memory in people with HIV (PWH). Although current antiretroviral therapy (ART) effectively controls HIV-1 viremia and disease progression, its impact on HIV-1-associated NK cell abnormalities remains unclear. To address this, we performed a longitudinal analysis detailing conventional and memory-like NK cell characteristics in n = 60 PWH during the first 4 y of ART. Throughout this regimen, a skewed repertoire of cytokine unresponsive FcRγ- memory-like NK cells persisted and accompanied an overall increase in NK surface expression of CD57 and KLRG1, suggestive of progression toward immune senescence. These traits were linked to elevated serum inflammatory biomarkers and increasing Ab titers to human CMV, with human CMV viremia detected in approximately one-third of PWH at years 1-4 of ART. Interestingly, 40% of PWH displayed atypical NK cell subsets, representing intermediate stages of NK-poiesis based on single-cell multiomic trajectory analysis. Our findings indicate that NK cell irregularities persist in PWH despite long-term ART, underscoring the need to better understand the causative mechanisms that prevent full restoration of immune health in PWH.
Collapse
Affiliation(s)
- Renee R. Anderko
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Allison E. DePuyt
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Rhianna Bronson
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Arlene C. Bullotta
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Evgenia Aga
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ronald J. Bosch
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - R. Brad Jones
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Joseph J. Eron
- Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - John W. Mellors
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rajesh T. Gandhi
- Infectious Disease Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Deborah K. McMahon
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bernard J. Macatangay
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Charles R. Rinaldo
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Robbie B. Mailliard
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Mu W, Patankar V, Kitchen S, Zhen A. Examining Chronic Inflammation, Immune Metabolism, and T Cell Dysfunction in HIV Infection. Viruses 2024; 16:219. [PMID: 38399994 PMCID: PMC10893210 DOI: 10.3390/v16020219] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Chronic Human Immunodeficiency Virus (HIV) infection remains a significant challenge to global public health. Despite advances in antiretroviral therapy (ART), which has transformed HIV infection from a fatal disease into a manageable chronic condition, a definitive cure remains elusive. One of the key features of HIV infection is chronic immune activation and inflammation, which are strongly associated with, and predictive of, HIV disease progression, even in patients successfully treated with suppressive ART. Chronic inflammation is characterized by persistent inflammation, immune cell metabolic dysregulation, and cellular exhaustion and dysfunction. This review aims to summarize current knowledge of the interplay between chronic inflammation, immune metabolism, and T cell dysfunction in HIV infection, and also discusses the use of humanized mice models to study HIV immune pathogenesis and develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Wenli Mu
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Vaibhavi Patankar
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Scott Kitchen
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Anjie Zhen
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
10
|
Yu F, Ma C, Jin X, Zhao H, Xiao J, Li L, Song S, Xie X, Yang S, Tang Y, Wang L, Zhang F. Mitochondrial disturbance related to increased caspase-1 of CD4 +T cells in HIV-1 infection. BMC Infect Dis 2024; 24:129. [PMID: 38267841 PMCID: PMC10809604 DOI: 10.1186/s12879-023-08485-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/26/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND In HIV-1 infection, more than 95% of CD4+T cells die of caspase-1 mediated pyroptosis. What governs the increased susceptibility of CD4+T cells to pyroptosis is poorly understood. METHODS Blood samples were obtained from 31 untreated HIV-infected patients (UNT), 29 antiretroviral therapy treated HIV-infected patients (ART), and 21 healthy control donors (HD). Plasma levels of IL-18 and IL-1β, caspase-1 expression, mitochondrial mass (MM) and mitochondrial fusion/fisson genes of CD4+T subsets were measured. RESULTS A significantly higher IL-18 level in plasma and MM level of CD4+T cells were found in HIV-infected patients (UNT and ART) compared to HD, and the MMhigh phenotype was manifested, related to increased caspase-1 expression. Moreover, the increased MM was more pronounced in the early differentiated and inactivated CD4+T cells. However, higher MM was not intrinsically linked to T cell differentiation disorder or excessive activation of the CD4+T cells. Mechanistically, the increased MM was significantly correlated with an elevated level of expression of the mitochondrial fusion gene mitofusin1. CONCLUSION An increase in MM was associated with heightened sensitivity of CD4+T cells to pyroptosis, even in early differentiated and inactivated CD4+T cells, in patients with HIV-1 infection, regardless of whether patients were on antiretroviral therapy or not. These new revelations have uncovered a previously unappreciated challenge to immune reconstitution with antiretroviral therapy.
Collapse
Affiliation(s)
- Fengting Yu
- Medical School, University of Chinese Academy of Sciences, Beijing, 101400, China
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Chengjie Ma
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Xia Jin
- Human Viral Diseases and Vaccine Translation Research Unit, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Hongxin Zhao
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Jiang Xiao
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Li Li
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Shujing Song
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaohui Xie
- Department of Infectious Diseases, Peking University Ditan Teaching, Hospital, Beijing, China
| | - Siyuan Yang
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Yunxia Tang
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Linghang Wang
- Beijing Ditan Hospital, Capital Medical University, Beijing, China.
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China.
| | - Fujie Zhang
- Medical School, University of Chinese Academy of Sciences, Beijing, 101400, China.
- Beijing Ditan Hospital, Capital Medical University, Beijing, China.
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China.
| |
Collapse
|
11
|
Kroll KW, Woolley G, Terry K, Premeaux TA, Shikuma CM, Corley MJ, Bowler S, Ndhlovu LC, Reeves RK. Multiplex Analysis of Cytokines and Chemokines in Persons Aging With or Without HIV. AIDS Res Hum Retroviruses 2023; 39:367-380. [PMID: 37097212 PMCID: PMC11074629 DOI: 10.1089/aid.2022.0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
People with HIV (PWH) on combination antiretroviral therapy (cART) are living longer lives due to modern cART advances and increased routine medical care. The full landscape of aging with HIV is unclear; given that HIV emerged relatively recently in human history and initially had a high mortality rate, there has not been a substantially aged population to evaluate. In this study, we set out to perform high-throughput plasma analyte profiling by multiplex analysis, focusing on various T helper (Th)-related cytokines, chemokines, and proinflammatory and anti-inflammatory cytokines. The primary goals being to provide reference ranges of these analytes for aging PWH cohorts, as well as testing the utility of high-throughput multiplex plasma assays. The cohort used in this study comprised age-matched healthy donors (32.6-73.5 years of age), PWH on cART (26.7-60.2 years of age), and viremic PWH (27.5-59.4 years of age). The patients in each group were then stratified across the age span to examine age-related impacts of these plasma biomarkers. Our results largely indicate feasibility of plasma analyte monitoring by multiplex and demonstrate a high degree of person-to-person variability regardless of age and HIV status. Nonetheless, we find multiple associations with age, duration of known infection, and viral load, all of which appear to be driven by either prolonged HIV disease progression or long-term use of cART.
Collapse
Affiliation(s)
- Kyle W. Kroll
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University, School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, School of Medicine, Durham, North Carolina, USA
| | - Griffin Woolley
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University, School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, School of Medicine, Durham, North Carolina, USA
| | - Karen Terry
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University, School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, School of Medicine, Durham, North Carolina, USA
| | - Thomas A. Premeaux
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | | | - Michael J. Corley
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Scott Bowler
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Lishomwa C. Ndhlovu
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - R. Keith Reeves
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University, School of Medicine, Durham, North Carolina, USA
- Department of Surgery, Duke University, School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
12
|
Chow DC, Saiki KMW, Siriwardhana C, Lozano-Gerona J, Vanapruks S, Ogle J, Premeaux TA, Ndhlovu LC, Boisvert WA. Increased transmigration of intermediate monocytes associated with atherosclerotic burden in people with HIV on antiretroviral therapy. AIDS 2023; 37:1177-1179. [PMID: 36927653 PMCID: PMC10164056 DOI: 10.1097/qad.0000000000003534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
This study evaluated the association between the transmigration of monocyte subpopulations that contributes to atherosclerosis development, along with surrogate biomarkers of inflammation and atherosclerosis, through carotid intima-media thickness (cIMT) measurements of 72 people with HIV (PWH) on suppressive antiretroviral therapy (ART). We found that the transmigration of intermediate monocytes was positively correlated with D-dimer and cIMT, suggesting that intermediate monocytes may have a greater propensity to promote cardiovascular disease (CVD) in PWH on ART.
Collapse
Affiliation(s)
- Dominic C Chow
- Hawai'i Center for AIDS, Department of Medicine, John A. Burns School of Medicine
| | - Katelyn M W Saiki
- Hawai'i Center for AIDS, Department of Medicine, John A. Burns School of Medicine
| | | | - Javier Lozano-Gerona
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii
| | - Selena Vanapruks
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii
| | - Jenie Ogle
- Internal Medicine, Tripler Army Medical Center, Honolulu, HI
| | - Thomas A Premeaux
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - Lishomwa C Ndhlovu
- Hawai'i Center for AIDS, Department of Medicine, John A. Burns School of Medicine
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - William A Boisvert
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii
| |
Collapse
|
13
|
Grifoni A, Alonzi T, Alter G, Noonan DM, Landay AL, Albini A, Goletti D. Impact of aging on immunity in the context of COVID-19, HIV, and tuberculosis. Front Immunol 2023; 14:1146704. [PMID: 37292210 PMCID: PMC10246744 DOI: 10.3389/fimmu.2023.1146704] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/11/2023] [Indexed: 06/10/2023] Open
Abstract
Knowledge of aging biology needs to be expanded due to the continuously growing number of elderly people worldwide. Aging induces changes that affect all systems of the body. The risk of cardiovascular disease and cancer increases with age. In particular, the age-induced adaptation of the immune system causes a greater susceptibility to infections and contributes to the inability to control pathogen growth and immune-mediated tissue damage. Since the impact of aging on immune function, is still to be fully elucidated, this review addresses some of the recent understanding of age-related changes affecting key components of immunity. The emphasis is on immunosenescence and inflammaging that are impacted by common infectious diseases that are characterized by a high mortality, and includes COVID-19, HIV and tuberculosis.
Collapse
Affiliation(s)
- Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, United States
| | - Tonino Alonzi
- Translational Research Unit, National Institute for Infectious Diseases “Lazzaro Spallanzani”-IRCCS, Rome, Italy
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard, Cambridge, MA, United States
| | - Douglas McClain Noonan
- Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Alan L. Landay
- Department of Internal Medicine, Rush Medical College, Chicago, IL, United States
| | | | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases “Lazzaro Spallanzani”-IRCCS, Rome, Italy
| |
Collapse
|
14
|
Mokgalaboni K, Phoswa WN, Yates S, Lebelo SL, Madiba S, Modjadji P. A Systematic Review and Meta-Analysis on the Impact of Statin Treatment in HIV Patients on Antiretroviral Therapy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20095668. [PMID: 37174188 PMCID: PMC10177940 DOI: 10.3390/ijerph20095668] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
The rate of new human immunodeficiency virus (HIV) infections globally is alarming. Although antiretroviral therapy (ART) improves the quality of life among this group of patients, ARTs are associated with risk of cardiovascular diseases (CVD). Moreover, virally suppressed patients still experience immune activation associated with HIV migration from reservoir sites. Statins are widely recommended as therapeutic agents to control ART-related CVD; however, their impacts on the cluster of differentiation (CD)4 count and viral load are inconsistent. To assess the effect of statins on markers of HIV infections, immune activation and cholesterol, we thoroughly reviewed evidence from randomised controlled trials. We found 20 relevant trials from three databases with 1802 people living with HIV (PLHIV) on statin-placebo treatment. Our evidence showed no significant effect on CD4 T-cell count standardised mean difference (SMD): (-0.59, 95% confidence intervals (CI): (-1.38, 0.19), p = 0.14) following statin intervention in PLHIV on ART. We also found no significant difference in baseline CD4 T-cell count (SD: (-0.01, 95%CI: (-0.25, 0.23), p = 0.95). Our findings revealed no significant association between statins and risk of viral rebound in PLHIV with undetectable viral load risk ratio (RR): (1.01, 95% CI: (0.98, 1.04), p = 0.65). Additionally, we found a significant increase in CD8+CD38+HLA-DR+ T-cells (SMD (1.10, 95% CI: (0.93, 1.28), p < 0.00001) and CD4+CD38+HLA-DR+ T-cells (SMD (0.92, 95% CI: (0.32, 1.52), p = 0.003). Finally, compared to placebo, statins significantly reduced total cholesterol (SMD: (-2.87, 95% CI: (-4.08, -1.65), p < 0.0001)). Our results suggest that the statin lipid-lowering effect in PLHIV on ART may elevate immune activation without influencing the viral load and CD4 count. However, due to the limited evidence synthesised in this meta-analysis, we recommend that future powered trials with sufficient sample sizes evaluate statins' effect on CD4 count and viral load, especially in virally suppressed patients.
Collapse
Affiliation(s)
- Kabelo Mokgalaboni
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida Campus, Johannesburg 1709, South Africa
| | - Wendy Nokhwezi Phoswa
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida Campus, Johannesburg 1709, South Africa
| | - Samantha Yates
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida Campus, Johannesburg 1709, South Africa
| | - Sogolo Lucky Lebelo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida Campus, Johannesburg 1709, South Africa
| | - Sphiwe Madiba
- Faculty of Health Sciences, University of Limpopo, Polokwane 0700, South Africa
| | - Perpetua Modjadji
- Non-Communicable Disease Research Unit, South African Medical Research Council, Cape Town 7505, South Africa
| |
Collapse
|
15
|
Kroll KW, Woolley G, Terry K, Premeaux TA, Shikuma CM, Corley MJ, Bowler S, Ndhlovu LC, Reeves RK. Multiplex analysis of cytokines and chemokines in persons aging with or without HIV. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.30.526135. [PMID: 36778301 PMCID: PMC9915515 DOI: 10.1101/2023.01.30.526135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
People with HIV (PWH) on combined antiretroviral therapy (cART) are living longer lives due to modern cART advances and increased routine medical care. The full landscape of aging with HIV is unclear; given that HIV emerged relatively recently in human history and initially had a high mortality rate, there has not been a substantially aged population to evaluate. In the present study, we set out to perform high throughput plasma analyte profiling by multiplex analysis, focusing on various T helper (Th)-related cytokines, chemokines, and pro- and anti-inflammatory cytokines. The primary goals being to provide reference ranges of these analytes for aging PWH cohorts, as well as testing the utility of high throughput multiplex plasma assays. The cohort used in this study was comprised of age-matched healthy donors (aged 32.6-73.5), PWH on cART (aged 26.7-60.2), and viremic PWH (aged 27.5-59.4). The patients in each group were then stratified across the age span to examine age-related impacts of these plasma biomarkers. Our results largely indicate feasibility of plasma analyte monitoring by multiplex and demonstrate a high degree of person-to-person variability regardless of age and HIV status. Nonetheless, we find multiple associations with age, duration of known infection, and viral load, all of which appear to be driven by either prolonged HIV disease progression or long-term use of cART.
Collapse
|
16
|
Polanka BM, Gupta SK, So-Armah KA, Freiberg MS, Zapolski TCB, Hirsh AT, Stewart JC. Examining Depression as a Risk Factor for Cardiovascular Disease in People with HIV: A Systematic Review. Ann Behav Med 2023; 57:1-25. [PMID: 35481701 PMCID: PMC9773373 DOI: 10.1093/abm/kaab119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND People with human immunodeficiency virus (HIV) have an increased risk of cardiovascular disease (CVD) not fully accounted for by traditional or HIV-specific risk factors. Successful management of HIV does not eliminate this excess risk. Thus, there is a need to identify novel risk factors for CVD among people with HIV (PWH). PURPOSE Our objective was to systematically review the literature on one such candidate CVD risk factor in PWH-depression. METHODS A systematic literature search of PubMed, PsycINFO, EMBASE, Web of Science, and CINAHL was performed to identify published English-language studies examining associations of depression with clinical CVD, subclinical CVD, and biological mechanisms (immune activation, systemic inflammation, altered coagulation) among PWH between the earliest date and June 22, 2021. RESULTS Thirty-five articles were included. For clinical CVD (k = 8), findings suggests that depression is consistently associated with an increased risk of incident CVD. For subclinical CVD (k = 5), one longitudinal analysis reported a positive association, and four cross-sectional analyses reported null associations. For immune activation (k = 13), systemic inflammation (k = 17), and altered coagulation (k = 5), findings were mixed, and there was considerable heterogeneity in sample characteristics and methodological quality across studies. CONCLUSIONS Depression may be an independent risk factor for CVD among PWH. Additional research is needed to confirm depression's association with clinical CVD and to determine whether depression is consistently and meaningfully associated with subclinical CVD and biological mechanisms of CVD in HIV. We propose a research agenda for this emerging area.
Collapse
Affiliation(s)
- Brittanny M Polanka
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Samir K Gupta
- Division of Infectious Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kaku A So-Armah
- Division of General Internal Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Matthew S Freiberg
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Tamika C B Zapolski
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Adam T Hirsh
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Jesse C Stewart
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| |
Collapse
|
17
|
Azzoni L, Giron LB, Vadrevu S, Zhao L, Lalley-Chareczko L, Hiserodt E, Fair M, Lynn K, Trooskin S, Mounzer K, Abdel-Mohsen M, Montaner LJ. Methadone use is associated with increased levels of sCD14, immune activation, and inflammation during suppressed HIV infection. J Leukoc Biol 2022; 112:733-744. [PMID: 35916053 DOI: 10.1002/jlb.4a1221-678rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 11/10/2022] Open
Abstract
Opioid use has negative effects on immune responses and may impair immune reconstitution in persons living with HIV (PLWH) infection undergoing antiretroviral treatment (ART). The effects of treatment with μ opioid receptor (MOR) agonists (e.g., methadone, MET) and antagonists (e.g., naltrexone, NTX) on immune reconstitution and immune activation in ART-suppressed PLWH have not been assessed in-depth. We studied the effects of methadone or naltrexone on measures of immune reconstitution and immune activation in a cross-sectional community cohort of 30 HIV-infected individuals receiving suppressive ART and medications for opioid use disorder (MOUD) (12 MET, 8 NTX and 10 controls). Plasma markers of inflammation and immune activation were measured using ELISA, Luminex, or Simoa. Plasma IgG glycosylation was assessed using capillary electrophoresis. Cell subsets and activation were studied using whole blood flow cytometry. Individuals in the MET group, but no in the NTX group, had higher plasma levels of inflammation and immune activation markers than controls. These markers include soluble CD14 (an independent predictor of morbidity and mortality during HIV infection), proinflammatory cytokines, and proinflammatory IgG glycans. This effect was independent of time on treatment. Our results indicate that methadone-based MOUD regimens may sustain immune activation and inflammation in ART-treated HIV-infected individuals. Our pilot study provides the foundation and rationale for future longitudinal functional studies of the impact of MOUD regimens on immune reconstitution and residual activation after ART-mediated suppression.
Collapse
Affiliation(s)
- Livio Azzoni
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Leila B Giron
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Surya Vadrevu
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Ling Zhao
- Perelman School of Medicine - University of PA, Philadelphia, Pennsylvania, USA
| | | | - Emily Hiserodt
- Philadelphia FIGHT Community Health Centers, Philadelphia, Pennsylvania, USA
| | - Matthew Fair
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Kenneth Lynn
- Perelman School of Medicine - University of PA, Philadelphia, Pennsylvania, USA
| | - Stacey Trooskin
- Philadelphia FIGHT Community Health Centers, Philadelphia, Pennsylvania, USA
| | - Karam Mounzer
- Philadelphia FIGHT Community Health Centers, Philadelphia, Pennsylvania, USA
| | - Mohamed Abdel-Mohsen
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Luis J Montaner
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| |
Collapse
|
18
|
Vallejo J, Saigusa R, Gulati R, Armstrong Suthahar SS, Suryawanshi V, Alimadadi A, Durant CP, Ghosheh Y, Roy P, Ehinger E, Pattarabanjird T, Hanna DB, Landay AL, Tracy RP, Lazar JM, Mack WJ, Weber KM, Adimora AA, Hodis HN, Tien PC, Ofotokun I, Heath SL, Shemesh A, McNamara CA, Lanier LL, Hedrick CC, Kaplan RC, Ley K. Combined protein and transcript single-cell RNA sequencing in human peripheral blood mononuclear cells. BMC Biol 2022; 20:193. [PMID: 36045343 PMCID: PMC9434837 DOI: 10.1186/s12915-022-01382-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/01/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Cryopreserved peripheral blood mononuclear cells (PBMCs) are frequently collected and provide disease- and treatment-relevant data in clinical studies. Here, we developed combined protein (40 antibodies) and transcript single-cell (sc)RNA sequencing (scRNA-seq) in PBMCs. RESULTS Among 31 participants in the Women's Interagency HIV Study (WIHS), we sequenced 41,611 cells. Using Boolean gating followed by Seurat UMAPs (tool for visualizing high-dimensional data) and Louvain clustering, we identified 50 subsets among CD4+ T, CD8+ T, B, NK cells, and monocytes. This resolution was superior to flow cytometry, mass cytometry, or scRNA-seq without antibodies. Combined protein and transcript scRNA-seq allowed for the assessment of disease-related changes in transcriptomes and cell type proportions. As a proof-of-concept, we showed such differences between healthy and matched individuals living with HIV with and without cardiovascular disease. CONCLUSIONS In conclusion, combined protein and transcript scRNA sequencing is a suitable and powerful method for clinical investigations using PBMCs.
Collapse
Affiliation(s)
- Jenifer Vallejo
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Ryosuke Saigusa
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Rishab Gulati
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | | | | | - Ahmad Alimadadi
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | | | - Yanal Ghosheh
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Payel Roy
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Erik Ehinger
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Tanyaporn Pattarabanjird
- Carter Immunology Center, Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - David B Hanna
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alan L Landay
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Russell P Tracy
- Departments of Pathology & Laboratory Medicine and Biochemistry, University of Vermont Larner College of Medicine, Colchester, VT, USA
| | - Jason M Lazar
- Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Wendy J Mack
- Department of Medicine and Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Atherosclerosis Research Unit, University of Southern California, Los Angeles, CA, USA
| | - Kathleen M Weber
- Cook County Health/Hektoen Institute of Medicine, Chicago, IL, USA
| | - Adaora A Adimora
- Department of Medicine, University of North Carolina School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Howard N Hodis
- Department of Medicine and Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Atherosclerosis Research Unit, University of Southern California, Los Angeles, CA, USA
| | - Phyllis C Tien
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Igho Ofotokun
- Department of Medicine, Infectious Disease Division and Grady Health Care System, Emory University School of Medicine, Atlanta, GA, USA
| | - Sonya L Heath
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Avishai Shemesh
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Coleen A McNamara
- Carter Immunology Center, Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Lewis L Lanier
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Catherine C Hedrick
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Fred Hutchinson Cancer Research Center, Public Health Sciences Division, Seattle, WA, USA
| | - Klaus Ley
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA.
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA.
- Immunology Center of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
19
|
Mensching L, Hoelzemer A. NK Cells, Monocytes and Macrophages in HIV-1 Control: Impact of Innate Immune Responses. Front Immunol 2022; 13:883728. [PMID: 35711433 PMCID: PMC9197227 DOI: 10.3389/fimmu.2022.883728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/29/2022] [Indexed: 01/12/2023] Open
Abstract
Rapid and synchronized responses of innate immune cells are an integral part of managing viral spread in acute virus infections. In human immunodeficiency virus type 1 (HIV-1) infection, increased immune control has been associated with the expression of certain natural killer (NK) cell receptors. Further, immune activation of monocytes/macrophages and the presence of specific cytokines was linked to low levels of HIV-1 replication. In addition to the intrinsic antiviral capabilities of NK cells and monocytes/macrophages, interaction between these cell types has been shown to substantially enhance NK cell function in the context of viral infections. This review discusses the involvement of NK cells and monocytes/macrophages in the effective control of HIV-1 and highlights aspects of innate immune crosstalk in viral infections that may be of relevance to HIV-1 infection.
Collapse
Affiliation(s)
- Leonore Mensching
- Research Department Virus Immunology, Leibniz Institute of Virology (LIV), Hamburg, Germany.,I. Department of Internal Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Angelique Hoelzemer
- Research Department Virus Immunology, Leibniz Institute of Virology (LIV), Hamburg, Germany.,I. Department of Internal Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| |
Collapse
|
20
|
Xufré C, González T, Leal L, Trubey CM, Lifson JD, Gatell JM, Alcamí J, Climent N, García F, Sánchez-Palomino S. Highly Efficient Autologous HIV-1 Isolation by Coculturing Macrophage With Enriched CD4 + T Cells From HIV-1 Patients. FRONTIERS IN VIROLOGY (LAUSANNE, SWITZERLAND) 2022; 2:869431. [PMID: 35967461 PMCID: PMC9364968 DOI: 10.3389/fviro.2022.869431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We described a novel HIV autologous isolation method based in coculturing macrophages and CD4+T-cell-enriched fractions from peripheral blood collected from antiretroviral-treated (ART) HIV patients. This method allows the isolation of high viral titers of autologous viruses, over 1010HIV RNA copies/ml, and reduces the time required to produce necessary amounts for virus for use as antigens presented by monocyte-derived myeloid cells in HIV therapeutic vaccine approaches. By applying these high titer and autologous virus produced in the patient-derived cells, we intended to elicit a boost of the immunological system response in HIV therapeutic vaccines in clinical trials.
Collapse
Affiliation(s)
- Cristina Xufré
- AIDS Research Group, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Tanía González
- AIDS Research Group, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) of Infectious Diseases, Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Lorna Leal
- AIDS Research Group, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
- Infectious Diseases Service, Hospital Clinic, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Charles M. Trubey
- AIDS and Cancer Virus Program Inc., Frederick National Laboratory, Frederick, MD, United States
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program Inc., Frederick National Laboratory, Frederick, MD, United States
| | - José María Gatell
- AIDS Research Group, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - José Alcamí
- AIDS Research Group, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) of Infectious Diseases, Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- AIDS Immunopathology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Núria Climent
- AIDS Research Group, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) of Infectious Diseases, Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Felipe García
- Centro de Investigación Biomédica en Red (CIBER) of Infectious Diseases, Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Infectious Diseases Service, Hospital Clinic, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Sonsoles Sánchez-Palomino
- AIDS Research Group, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red (CIBER) of Infectious Diseases, Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
21
|
Wallis ZK, Williams KC. Monocytes in HIV and SIV Infection and Aging: Implications for Inflamm-Aging and Accelerated Aging. Viruses 2022; 14:409. [PMID: 35216002 PMCID: PMC8880456 DOI: 10.3390/v14020409] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/04/2022] [Accepted: 02/15/2022] [Indexed: 12/11/2022] Open
Abstract
Before the antiretroviral therapy (ART) era, people living with HIV (PLWH) experienced complications due to AIDS more so than aging. With ART and the extended lifespan of PLWH, HIV comorbidities also include aging-most likely due to accelerated aging-as well as a cardiovascular, neurocognitive disorders, lung and kidney disease, and malignancies. The broad evidence suggests that HIV with ART is associated with accentuated aging, and that the age-related comorbidities occur earlier, due in part to chronic immune activation, co-infections, and possibly the effects of ART alone. Normally the immune system undergoes alterations of lymphocyte and monocyte populations with aging, that include diminished naïve T- and B-lymphocyte numbers, a reliance on memory lymphocytes, and a skewed production of myeloid cells leading to age-related inflammation, termed "inflamm-aging". Specifically, absolute numbers and relative proportions of monocytes and monocyte subpopulations are skewed with age along with myeloid mitochondrial dysfunction, resulting in increased accumulation of reactive oxygen species (ROS). Additionally, an increase in biomarkers of myeloid activation (IL-6, sCD14, and sCD163) occurs with chronic HIV infection and with age, and may contribute to immunosenescence. Chronic HIV infection accelerates aging; meanwhile, ART treatment may slow age-related acceleration, but is not sufficient to stop aging or age-related comorbidities. Overall, a better understanding of the mechanisms behind accentuated aging with HIV and the effects of myeloid activation and turnover is needed for future therapies.
Collapse
|
22
|
Masters MC, Landay AL, Robbins PD, Tchkonia T, Kirkland JL, Kuchel GA, Niedernhofer LJ, Palella FJ. Chronic HIV Infection and Aging: Application of a Geroscience-Guided Approach. J Acquir Immune Defic Syndr 2022; 89:S34-S46. [PMID: 35015744 PMCID: PMC8751288 DOI: 10.1097/qai.0000000000002858] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/16/2022]
Abstract
ABSTRACT The ability of virally suppressive antiretroviral therapy use to extend the life span of people with HIV (PWH) implies that the age of PWH will also increase. Among PWH, extended survival comes at a cost of earlier onset and increased rates of aging-associated comorbidities and geriatric syndromes, with persistent inflammation and immune dysregulation consequent to chronic HIV infection and to antiretroviral therapy use contributing to an overall decrease in health span. The geroscience hypothesis proposes that the root causes of most aging-related chronic diseases and conditions is the aging process itself. Hence, therapeutically targeting fundamental aging processes could have a greater impact on alleviating or delaying aging-associated comorbidities than addressing each disease individually. Extending the geroscience hypothesis to PWH, we speculate that targeting basic mechanisms of aging will improve overall health with age. Clinical features and pathophysiologic mechanisms of chronic diseases in PWH qualitatively resemble those seen in older adults without HIV. Therefore, drugs that target any of the pillars of aging, including metformin, rapamycin, and nicotinamide adenine dinucleotide precursors, may also slow the rate of onset of age-associated comorbidities and geriatric syndromes in PWH. Drugs that selectively induce apoptosis of senescent cells, termed senolytics, may also improve health span among PWH. Preliminary evidence suggests that senescent cell burden is increased in PWH, implying that senescent cells are an excellent therapeutic target for extending health span. Recently initiated clinical trials evaluating senolytics in age-related diseases offer insights into the design and potential implementation of similar trials for PWH.
Collapse
Affiliation(s)
- Mary C. Masters
- Department of Medicine, Division of Infectious Diseases, Northwestern University, Chicago, IL
| | - Alan L. Landay
- Department of Internal Medicine, Section of Geriatric Medicine Rush University Medical Center, Chicago, IL
| | - Paul D. Robbins
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN; and
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN; and
| | - James L. Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN; and
| | | | - Laura J. Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN
| | - Frank J. Palella
- Department of Medicine, Division of Infectious Diseases, Northwestern University, Chicago, IL
| |
Collapse
|
23
|
Bai R, Li Z, Lv S, Wang R, Hua W, Wu H, Dai L. Persistent Inflammation and Non-AIDS Comorbidities During ART: Coming of the Age of Monocytes. Front Immunol 2022; 13:820480. [PMID: 35479083 PMCID: PMC9035604 DOI: 10.3389/fimmu.2022.820480] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/14/2022] [Indexed: 11/17/2022] Open
Abstract
Monocytes are innate immune cells that serve as the first line of defense against pathogens by engulfing and destroying pathogens or by processing and presenting antigens to initiate adaptive immunity and stimulate immunological responses. Monocytes are classified into three types: classical, intermediate, and non-classical monocytes, each of which plays a particular function in response to pathogens. Human immunodeficiency virus type 1 (HIV-1) infection disrupts the balance of monocyte subsets, and the quantity and function of monocytes will not fully recover even with long-term antiretroviral therapy (ART). Monocytes are vital for the establishment and maintenance of HIV-1 latent viral reservoirs and are closely related to immune dysfunction even after ART. Therefore, the present review focuses on the phenotypic function of monocytes and their functions in HIV-1 infection to elucidate their roles in HIV patients.
Collapse
Affiliation(s)
- Ruojing Bai
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Zhen Li
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Shiyun Lv
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Ran Wang
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Wei Hua
- Travel Clinic, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hao Wu
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Lili Dai
- Travel Clinic, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
24
|
Mandala WL, Liu MKP. SARS-CoV-2 and HIV-1: Should HIV-1-Infected Individuals in Sub-Saharan Africa Be Considered a Priority Group for the COVID-19 Vaccines? Front Immunol 2021; 12:797117. [PMID: 34858440 PMCID: PMC8630634 DOI: 10.3389/fimmu.2021.797117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 12/23/2022] Open
Abstract
Since its emergence in 2019 SARS-CoV-2 has proven to have a higher level of morbidity and mortality compared to the other prevailing coronaviruses. Although initially most African countries were spared from the devastating effect of SARS-CoV-2, at present almost every country has been affected. Although no association has been established between being HIV-1-infected and being more vulnerable to contracting COVID-19, HIV-1-infected individuals have a greater risk of developing severe COVID-19 and of COVID-19 related mortality. The rapid development of the various types of COVID-19 vaccines has gone a long way in mitigating the devastating effects of the virus and has controlled its spread. However, global vaccine deployment has been uneven particularly in Africa. The emergence of SARS-CoV-2 variants, such as Beta and Delta, which seem to show some subtle resistance to the existing vaccines, suggests COVID-19 will still be a high-risk infection for years. In this review we report on the current impact of COVID-19 on HIV-1-infected individuals from an immunological perspective and attempt to make a case for prioritising COVID-19 vaccination for those living with HIV-1 in Sub-Saharan Africa (SSA) countries like Malawi as one way of minimising the impact of COVID-19 in these countries.
Collapse
Affiliation(s)
- Wilson Lewis Mandala
- Academy of Medical Sciences, Malawi University of Science and Technology (MUST), Thyolo, Malawi
| | - Michael K. P. Liu
- Centre for Immunology and Vaccinology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
25
|
Kvistad D, Pallikkuth S, Sirupangi T, Pahwa R, Kizhner A, Petrovas C, Villinger F, Pahwa S. IL-21 enhances influenza vaccine responses in aged macaques with suppressed SIV infection. JCI Insight 2021; 6:e150888. [PMID: 34491910 PMCID: PMC8564910 DOI: 10.1172/jci.insight.150888] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/01/2021] [Indexed: 11/28/2022] Open
Abstract
Natural aging and HIV infection are associated with chronic low-grade systemic inflammation, immune senescence, and impaired antibody responses to vaccines such as the influenza (flu) vaccine. We investigated the role of IL-21, a CD4+ T follicular helper cell (Tfh) regulator, on flu vaccine antibody response in nonhuman primates (NHPs) in the context of age and controlled SIV mac239 infection. Three doses of the flu vaccine with or without IL-21–IgFc were administered at 3-month intervals in aged SIV+ NHPs following virus suppression with antiretroviral therapy. IL-21–treated animals demonstrated higher day 14–postboost antibody responses, which associated with expanded CD4+ T central memory cells and peripheral Tfh–expressing (pTfh–expressing) T cell immunoreceptor with Ig and ITIM domains (TIGIT), expanded activated memory B cells, and contracted CD11b+ monocytes. Draining lymph node (LN) tissue from IL-21–treated animals revealed direct association between LN follicle Tfh density and frequency of circulating TIGIT+ pTfh cells. We conclude that IL-21 enhances flu vaccine–induced antibody responses in SIV+ aged rhesus macaques (RMs), acting as an adjuvant modulating LN germinal center activity. A strategy to supplement IL-21 in aging could be a valuable addition in the toolbox for improving vaccine responses in an aging HIV+ population.
Collapse
Affiliation(s)
- Daniel Kvistad
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, Florida, USA
| | - Suresh Pallikkuth
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, Florida, USA
| | - Tirupataiah Sirupangi
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | - Rajendra Pahwa
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, Florida, USA
| | - Alexander Kizhner
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, Florida, USA
| | - Constantinos Petrovas
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, Maryland, USA.,Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Francois Villinger
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, USA
| | - Savita Pahwa
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, Florida, USA
| |
Collapse
|
26
|
Wong ME, Johnson CJ, Hearps AC, Jaworowski A. Development of a Novel In Vitro Primary Human Monocyte-Derived Macrophage Model To Study Reactivation of HIV-1 Transcription. J Virol 2021; 95:e0022721. [PMID: 34287050 PMCID: PMC8428379 DOI: 10.1128/jvi.00227-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 07/09/2021] [Indexed: 11/20/2022] Open
Abstract
Latent HIV reservoirs persist in people living with HIV despite effective antiretroviral therapy and contribute to rebound viremia upon treatment interruption. Macrophages are an important reservoir cell type, but analysis of agents that modulate latency in macrophages is limited by lack of appropriate in vitro models. We therefore generated an experimental system to investigate this by purifying nonproductively infected human monocyte-derived macrophages (MDM) following in vitro infection with an M-tropic enhanced green fluorescent protein reporter HIV clone and quantified activation of HIV transcription using live-cell fluorescence microscopy. The proportion of HIV-infected MDM was quantified by qPCR detection of HIV DNA, and GFP expression was validated as a marker of productive HIV infection by colabeling of HIV Gag protein. HIV transcription spontaneously reactivated in latently infected MDM at a rate of 0.22% ± 0.04% cells per day (mean ± the standard error of the mean, n = 10 independent donors), producing infectious virions able to infect heterologous T cells in coculture experiments, and both T cells and TZM-bl cells in a cell-free infection system using MDM culture supernatants. Polarization to an M1 phenotype with gamma interferon plus tumor necrosis factor resulted in a 2.3-fold decrease in initial HIV infection of MDM (P < 0.001, n = 8) and a 1.4-fold decrease in spontaneous reactivation (P = 0.025, n = 6), whereas M2 polarization using interleukin-4 prior to infection led to a 1.6-fold decrease in HIV infectivity (P = 0.028, n = 8) but a 2.0-fold increase in the rate of HIV reactivation in latently infected MDM (P = 0.023, n = 6). The latency reversing agents bryostatin and vorinostat, but not panobinostat, significantly induced HIV reactivation in latently infected MDM (P = 0.031 and P = 0.038, respectively, n = 6). IMPORTANCE Agents which modulate latent HIV reservoirs in infected cells are of considerable interest to HIV cure strategies. The present study characterizes a robust, reproducible model enabling quantification of HIV reactivation in primary HIV-infected human MDM which is relatively insensitive to the monocyte donor source and hence suitable for evaluating latency modifiers in MDM. The rate of initial viral infection was greater than the rate of HIV reactivation, suggesting that different mechanisms regulate these processes. HIV reactivation was sensitive to macrophage polarization, suggesting that cellular and tissue environments influence HIV reactivation in different macrophage populations. Importantly, latently infected MDM showed different susceptibilities to certain latency-reversing agents known to be effective in T cells, indicating that dedicated strategies may be required to target latently infected macrophage populations in vivo.
Collapse
Affiliation(s)
- Michelle E. Wong
- Life Sciences Discipline, Burnet Institute, Melbourne, Australia
- Department of Immunology, Central Clinical School, Monash University, Melbourne, Australia
| | - Chad J. Johnson
- Bioimaging Platform, La Trobe University, Melbourne, Australia
| | - Anna C. Hearps
- Life Sciences Discipline, Burnet Institute, Melbourne, Australia
- Department of Infectious Diseases, Monash University, Melbourne, Australia
| | - Anthony Jaworowski
- Department of Infectious Diseases, Monash University, Melbourne, Australia
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| |
Collapse
|
27
|
Murray KD, Uddin MN, Tivarus ME, Sahin B, Wang HZ, Singh MV, Qiu X, Wang L, Spincemaille P, Wang Y, Maggirwar SB, Zhong J, Schifitto G. Increased risk for cerebral small vessel disease is associated with quantitative susceptibility mapping in HIV infected and uninfected individuals. Neuroimage Clin 2021; 32:102786. [PMID: 34500428 PMCID: PMC8429957 DOI: 10.1016/j.nicl.2021.102786] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/19/2021] [Accepted: 08/06/2021] [Indexed: 11/10/2022]
Abstract
The aim of this study was to assess, in the context of cerebral small vessel disease (CSVD), whether cardiovascular risk factors and white matter hyperintensities (WMHs) were associated with brain tissue susceptibility as measured by quantitative susceptibility mapping (QSM). Given that CSVD is diagnosed by the presence of lacunar strokes, periventricular and deep WMHs, increased perivascular spaces, and microbleeds, we expected that QSM could capture changes in brain tissue due to underlying CSVD pathology. We compared a cohort of 101 HIV-infected individuals (mean age ± SD = 53.2 ± 10.9 years) with mild to moderate cardiovascular risk scores, as measured by the Reynolds risk score, to 102 age-matched controls (mean age (SD) = 50.3 (15.7) years) with similar Reynolds scores. We performed brain MRI to assess CSVD burden by acquiring 3D T1-MPRAGE, 3D FLAIR, 2D T2-TSE, and mGRE for QSM. We found that signs of CSVD are significantly higher in individuals with HIV-infection compared to controls and that WMH volumes are significantly correlated with age and cardiovascular risk scores. Regional QSM was associated with cardiovascular risk factors, age, sex, and WMH volumes but not HIV status. These results suggest that QSM may be an early imaging marker reflective of alterations in brain microcirculation.
Collapse
Affiliation(s)
- Kyle D Murray
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, United States
| | - Md Nasir Uddin
- Department of Neurology, University of Rochester, Rochester, NY, United States
| | - Madalina E Tivarus
- Department of Imaging Sciences, University of Rochester, Rochester, NY, United States; Department of Neuroscience, University of Rochester, Rochester, NY, United States
| | - Bogachan Sahin
- Department of Neurology, University of Rochester, Rochester, NY, United States
| | - Henry Z Wang
- Department of Imaging Sciences, University of Rochester, Rochester, NY, United States
| | - Meera V Singh
- Department of Neurology, University of Rochester, Rochester, NY, United States
| | - Xing Qiu
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, United States
| | - Lu Wang
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, United States
| | - Pascal Spincemaille
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, United States
| | - Yi Wang
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, United States; Department of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Sanjay B Maggirwar
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, United States
| | - Jianhui Zhong
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, United States; Department of Imaging Sciences, University of Rochester, Rochester, NY, United States; Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Giovanni Schifitto
- Department of Neurology, University of Rochester, Rochester, NY, United States; Department of Imaging Sciences, University of Rochester, Rochester, NY, United States; Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, United States.
| |
Collapse
|
28
|
Differential recognition of HIV-stimulated IL-1β and IL-18 secretion through NLR and NAIP signalling in monocyte-derived macrophages. PLoS Pathog 2021; 17:e1009417. [PMID: 33861800 PMCID: PMC8109768 DOI: 10.1371/journal.ppat.1009417] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 05/10/2021] [Accepted: 02/22/2021] [Indexed: 12/29/2022] Open
Abstract
Macrophages are important drivers of pathogenesis and progression to AIDS in HIV infection. The virus in the later phases of the infection is often predominantly macrophage-tropic and this tropism contributes to a chronic inflammatory and immune activation state that is observed in HIV patients. Pattern recognition receptors of the innate immune system are the key molecules that recognise HIV and mount the inflammatory responses in macrophages. The innate immune response against HIV-1 is potent and elicits caspase-1-dependent pro-inflammatory cytokine production of IL-1β and IL-18. Although, NLRP3 has been reported as an inflammasome sensor dictating this response little is known about the pattern recognition receptors that trigger the “priming” signal for inflammasome activation, the NLRs involved or the HIV components that trigger the response. Using a combination of siRNA knockdowns in monocyte derived macrophages (MDMs) of different TLRs and NLRs as well as chemical inhibition, it was demonstrated that HIV Vpu could trigger inflammasome activation via TLR4/NLRP3 leading to IL-1β/IL-18 secretion. The priming signal is triggered via TLR4, whereas the activation signal is triggered by direct effects on Kv1.3 channels, causing K+ efflux. In contrast, HIV gp41 could trigger IL-18 production via NAIP/NLRC4, independently of priming, as a one-step inflammasome activation. NAIP binds directly to the cytoplasmic tail of HIV envelope protein gp41 and represents the first non-bacterial ligand for the NAIP/NLRC4 inflammasome. These divergent pathways represent novel targets to resolve specific inflammatory pathologies associated with HIV-1 infection in macrophages. It has been previously shown that inflammasome activation can be triggered during viral infection to produce the active cytokines IL-1β and IL-18. Our study represents a significant advance, as we now show that in fact there are distinct NLR inflammasome complexes and viral ligands for IL-1β secretion (Vpu) compared to IL-18 secretion (gp41) in response to HIV-1. Most importantly, we show that the HIV envelope protein gp41 represents the first non-bacterial ligand for the assembly of the NAIP/NLRC4 inflammasome. HIV gp41 is a viroporin, and thus our data demonstrates for the first time that the NAIP/NLRC4 inflammasome assembles for all pore-forming proteins, irrespective of whether they have a viral or bacterial origin. This is critical for the host antiviral response and has broad implications for innate immunity in general.
Collapse
|
29
|
Zhang Y, Jiang T, Li A, Li Z, Hou J, Gao M, Huang X, Su B, Wu H, Zhang T, Jiang W. Adjunct Therapy for CD4 + T-Cell Recovery, Inflammation and Immune Activation in People Living With HIV: A Systematic Review and Meta-Analysis. Front Immunol 2021; 12:632119. [PMID: 33679779 PMCID: PMC7925844 DOI: 10.3389/fimmu.2021.632119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/22/2021] [Indexed: 01/21/2023] Open
Abstract
Background: HIV infection results in immune homeostasis perturbations, which is characterized by CD4+ T-cell depletion, immune activation, and inflammation. Effective antiretroviral therapy (ART) does not fully restore immunologic and clinical health in people living with HIV (PLWH). Various drugs have been used to improve their immune status and CD4+ T-cell counts, but no measures have been tested effective. Here we conduct a systematic review and meta-analysis of existing clinical studies on improving CD4+ T-cell count while decreasing inflammation and immune activation. Methods: We retrieved possible relevant publications from a total of five electronic databases and selected eligible studies, which dealt with outcomes of medical therapy for CD4+ T-cell count recovery, inflammation, and immune activation with or without ART. We paid particular attention to immunologic non-responders with a favorable treatment regimen. Results: Thirty-three articles were included in the systematic review and meta-analysis. However, there were no safe and effective medications specific for improving CD4+ T-cell reconstitution. The immunological benefits or adverse events mainly depend on the safety, dosage, and duration of the candidate medication use, as well as whether it is combined with ART. Conclusion: Under the “safe, combined, adequate and long (SCAL)” principles, alternative approaches are needed to accelerate the recovery of CD4+ T-cells, and to prevent adverse long-term outcomes in PLWH with standard ART treatment.
Collapse
Affiliation(s)
- Yang Zhang
- Center for Infectious Diseases, Beijing YouAn Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of AIDS Research, Beijing, China.,Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Taiyi Jiang
- Center for Infectious Diseases, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Aixin Li
- Center for Infectious Diseases, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Zhen Li
- Center for Infectious Diseases, Beijing YouAn Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of AIDS Research, Beijing, China
| | - Jianhua Hou
- Center for Infectious Diseases, Beijing YouAn Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of AIDS Research, Beijing, China
| | - Meixia Gao
- Center for Infectious Diseases, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Xiaojie Huang
- Center for Infectious Diseases, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Bin Su
- Center for Infectious Diseases, Beijing YouAn Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of AIDS Research, Beijing, China
| | - Hao Wu
- Center for Infectious Diseases, Beijing YouAn Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of AIDS Research, Beijing, China
| | - Tong Zhang
- Center for Infectious Diseases, Beijing YouAn Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of AIDS Research, Beijing, China
| | - Wei Jiang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
30
|
Teer E, Joseph DE, Glashoff RH, Faadiel Essop M. Monocyte/Macrophage-Mediated Innate Immunity in HIV-1 Infection: From Early Response to Late Dysregulation and Links to Cardiovascular Diseases Onset. Virol Sin 2021; 36:565-576. [PMID: 33400091 DOI: 10.1007/s12250-020-00332-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
Although monocytes and macrophages are key mediators of the innate immune system, the focus has largely been on the role of the adaptive immune system in the context of human immunodeficiency virus (HIV) infection. Thus more attention and research work regarding the innate immune system-especially the role of monocytes and macrophages during early HIV-1 infection-is required. Blood monocytes and tissue macrophages are both susceptible targets of HIV-1 infection, and the early host response can determine whether the nature of the infection becomes pathogenic or not. For example, monocytes and macrophages can contribute to the HIV reservoir and viral persistence, and influence the initiation/extension of immune activation and chronic inflammation. Here the expansion of monocyte subsets (classical, intermediate and non-classical) provide an increased understanding of the crucial role they play in terms of chronic inflammation and also by increasing the risk of coagulation during HIV-1 infection. This review discusses the role of monocytes and macrophages during HIV-1 pathogenesis, starting from the early response to late dysregulation that occurs as a result of persistent immune activation and chronic inflammation. Such changes are also linked to downstream targets such as increased coagulation and the onset of cardiovascular diseases.
Collapse
Affiliation(s)
- Eman Teer
- Centre for Cardio-metabolic Research in Africa (CARMA), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Danzil E Joseph
- Centre for Cardio-metabolic Research in Africa (CARMA), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Richard H Glashoff
- Division of Medical Microbiology & Immunology, Department of Pathology, Stellenbosch University and NHLS, Cape Town, 7505, South Africa
| | - M Faadiel Essop
- Centre for Cardio-metabolic Research in Africa (CARMA), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa.
| |
Collapse
|
31
|
Abstract
The usage of combination antiretroviral therapy in people with HIV (PWH) has incited profound improvement in morbidity and mortality. Yet, PWH may not experience full restoration of immune function which can manifest with non-AIDS comorbidities that frequently associate with residual inflammation and can imperil quality of life or longevity. In this review, we discuss the pathogenesis underlying chronic inflammation and residual immune dysfunction in PWH, as well as potential therapeutic interventions to ameliorate them and prevent incidence or progression of non-AIDS comorbidities. Current evidence advocates that early diagnosis and prompt initiation of therapy at high CD4 counts may represent the best available approach for an improved immune recovery in PWH.
Collapse
Affiliation(s)
- Catherine W Cai
- HIV Pathogenesis Section, Laboratory of Immunoregulation, NIAID, NIH, United States
| | - Irini Sereti
- HIV Pathogenesis Section, Laboratory of Immunoregulation, NIAID, NIH, United States.
| |
Collapse
|
32
|
Murray KD, Singh MV, Zhuang Y, Uddin MN, Qiu X, Weber MT, Tivarus ME, Wang HZ, Sahin B, Zhong J, Maggirwar SB, Schifitto G. Pathomechanisms of HIV-Associated Cerebral Small Vessel Disease: A Comprehensive Clinical and Neuroimaging Protocol and Analysis Pipeline. Front Neurol 2020; 11:595463. [PMID: 33384655 PMCID: PMC7769815 DOI: 10.3389/fneur.2020.595463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Rationale: We provide an in-depth description of a comprehensive clinical, immunological, and neuroimaging study that includes a full image processing pipeline. This approach, although implemented in HIV infected individuals, can be used in the general population to assess cerebrovascular health. Aims: In this longitudinal study, we seek to determine the effects of neuroinflammation due to HIV-1 infection on the pathomechanisms of cerebral small vessel disease (CSVD). The study focuses on the interaction of activated platelets, pro-inflammatory monocytes and endothelial cells and their impact on the neurovascular unit. The effects on the neurovascular unit are evaluated by a novel combination of imaging biomarkers. Sample Size: We will enroll 110 HIV-infected individuals on stable combination anti-retroviral therapy for at least three months and an equal number of age-matched controls. We anticipate a drop-out rate of 20%. Methods and Design: Subjects are followed for three years and evaluated by flow cytometric analysis of whole blood (to measure platelet activation, platelet monocyte complexes, and markers of monocyte activation), neuropsychological testing, and brain MRI at the baseline, 18- and 36-month time points. MRI imaging follows the recommended clinical small vessel imaging standards and adds several advanced sequences to obtain quantitative assessments of brain tissues including white matter microstructure, tissue susceptibility, and blood perfusion. Discussion: The study provides further understanding of the underlying mechanisms of CSVD in chronic inflammatory disorders such as HIV infection. The longitudinal study design and comprehensive approach allows the investigation of quantitative changes in imaging metrics and their impact on cognitive performance.
Collapse
Affiliation(s)
- Kyle D Murray
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, United States
| | - Meera V Singh
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States
| | - Yuchuan Zhuang
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, United States
| | - Md Nasir Uddin
- Department of Neurology, University of Rochester, Rochester, NY, United States
| | - Xing Qiu
- Department of Biostatistics, University of Rochester, Rochester, NY, United States
| | - Miriam T Weber
- Department of Neurology, University of Rochester, Rochester, NY, United States
| | - Madalina E Tivarus
- Department of Imaging Sciences, University of Rochester, Rochester, NY, United States.,Department of Neuroscience, University of Rochester, Rochester, NY, United States
| | - Henry Z Wang
- Department of Imaging Sciences, University of Rochester, Rochester, NY, United States
| | - Bogachan Sahin
- Department of Neurology, University of Rochester, Rochester, NY, United States
| | - Jianhui Zhong
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, United States.,Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, United States.,Department of Biostatistics, University of Rochester, Rochester, NY, United States
| | - Sanjay B Maggirwar
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, United States
| | - Giovanni Schifitto
- Department of Neurology, University of Rochester, Rochester, NY, United States.,Department of Imaging Sciences, University of Rochester, Rochester, NY, United States
| |
Collapse
|
33
|
Dysfunctional Immunometabolism in HIV Infection: Contributing Factors and Implications for Age-Related Comorbid Diseases. Curr HIV/AIDS Rep 2020; 17:125-137. [PMID: 32140979 DOI: 10.1007/s11904-020-00484-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW An increasing body of evidence indicates that persons living with HIV (PLWH) display dysfunctional immunometabolism. Here, we provide an updated review of this topic and its relationship to HIV-associated immune stimuli and age-related disease. RECENT FINDINGS HIV infection alters immunometabolism by increasing reliance on aerobic glycolysis for energy and productive infection and repurposing oxidative phosphorylation machinery for immune cell proliferation and survival. Recent studies in PLWH with diabetes mellitus or cardiovascular disease have identified an association with elevated T cell and monocyte glucose metabolism, respectively. Immunometabolic dysfunction has also been observed in PLWH in frailty and additional studies suggest a role for immunometabolism in non-AIDS defining cancers and neurocognitive disease. There is a plethora of HIV-associated immune stimuli that could drive immunometabolic dysfunction and age-related disease in PLWH, but studies directly examining their relationship are lacking. Immunometabolic dysfunction is characteristic of HIV infection and is a potential link between HIV-associated stimuli and age-related comorbidities.
Collapse
|
34
|
Blanco JR, Negredo E, Bernal E, Blanco J. Impact of HIV infection on aging and immune status. Expert Rev Anti Infect Ther 2020; 19:719-731. [PMID: 33167724 DOI: 10.1080/14787210.2021.1848546] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Introduction: Thanks to antiretroviral therapy (ART), persons living with HIV (PLWH), have a longer life expectancy. However, immune activation and inflammation remain elevated, even after viral suppression, and contribute to morbidity and mortality in these individuals.Areas covered: We review aspects related to immune activation and inflammation in PLWH, their consequences, and the potential strategies to reduce immune activation in HIV-infected individuals on ART.Expert opinion: When addressing a problem, it is necessary to thoroughly understand the topic. This is the main limitation faced when dealing with immune activation and inflammation in PLWH since there is no consensus on the ideal markers to evaluate immune activation or inflammation. To date, the different interventions that have addressed this problem by targeting specific mediators have not been able to significantly reduce immune activation or its consequences. Given that there is currently no curative intervention for HIV infection, more studies are necessary to understand the mechanism underlying immune activation and help to identify potential therapeutic targets that contribute to improving the life expectancy of HIV-infected individuals.
Collapse
Affiliation(s)
- Jose-Ramon Blanco
- Servicio de Enfermedades Infecciosas, Hospital Universitario San Pedro- Centro De Investigación Biomédica De La Rioja (CIBIR), La Rioja, Spain
| | - Eugenia Negredo
- Lluita Contra La Sida Foundation, Germans Trias I Pujol University Hospital, Badalona, Spain. Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic - Central University of Catalonia (Uvic - UCC), Catalonia, Spain
| | - Enrique Bernal
- Unidad De Enfermedades Infecciosas, Hospital General Universitario Reina Sofía, Universidad De Murcia, Murcia, Spain
| | - Juliá Blanco
- AIDS Research Institute-IrsiCaixa, Badalona, Barcelona, Spain.,Universitat De Vic-Central De Catalunya (UVIC-UCC), Vic, Spain
| |
Collapse
|
35
|
Bloch M, John M, Smith D, Rasmussen TA, Wright E. Managing HIV-associated inflammation and ageing in the era of modern ART. HIV Med 2020; 21 Suppl 3:2-16. [PMID: 33022087 DOI: 10.1111/hiv.12952] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES This paper aims to address the concerns around ongoing immune activation, inflammation, and resistance in those ageing with HIV that represent current challenges for clinicians. METHODS Presentations at a symposium addressing issues of ageing with HIV infection were reviewed and synthesised. RESULTS The changing natural history and demographics of human immunodeficiency virus (HIV)-infected individuals means new challenges in contemporary management. In the early years of the epidemic,management was focussed on acute, potentially life-threatening AIDS-related complications. From initial monotherapy with first-generation antiretroviral therapy (ART), the development of combination highly active ART (HAART) allowed HIV control but ART toxicities, treatment adherence and drug resistance emerged as major issues. Today, the availability of potent and tolerable ART has made viral suppression achievable in most people living with HIV (PLHIV), and clinicians are confronted with managing a chronic condition among an ageing population. The combination of diseases of ageing and the co-morbidities associated with HIV-infection, even when well controlled, results in a complex set of challenges for many older PLHIV. There is a growing appreciation that many non-AIDS-related co-morbidities are caused, at least in part, by persistent, low-grade immune activation, inflammation, and hypercoagulability, despite suppressive ART. CONCLUSIONS In order to further improve HIV management, it is important to understand the enduring effects of chronically suppressed HIV infection, the potential contribution of these factors to the ageing process, the possibility of drug resistance, and the impact of different treatment strategies, including early ART initiation.
Collapse
Affiliation(s)
- M Bloch
- Holdsworth House Medical Practice, Sydney, NSW, Australia.,Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - M John
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia.,Royal Perth Hospital, Perth, WA, Australia.,Institute of Immunology and Infectious Disease, Perth, WA, Australia
| | - D Smith
- School of Public Health and Community Medicine, University of New South Wales, Sydney, NSW, Australia.,The Albion Centre, Sydney, NSW, Australia
| | - T A Rasmussen
- Doherty Institute for Infection and Immunity, Melbourne, Vic., Australia.,University of Melbourne, Melbourne, Vic., Australia
| | - E Wright
- The Alfred Hospital, Melbourne, Vic., Australia.,Centre for Inflammatory Diseases, Monash University, Melbourne, Vic., Australia.,The Burnett Institute, Melbourne, Vic., Australia
| |
Collapse
|
36
|
De Francesco D, Sabin CA, Reiss P, Kootstra NA. Monocyte and T Cell Immune Phenotypic Profiles Associated With Age Advancement Differ Between People With HIV, Lifestyle-Comparable Controls and Blood Donors. Front Immunol 2020; 11:581616. [PMID: 33123168 PMCID: PMC7573236 DOI: 10.3389/fimmu.2020.581616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022] Open
Abstract
Motivation People with HIV on successful antiretroviral therapy show signs of premature aging and are reported to have higher rates of age-associated comorbidities. HIV-associated immune dysfunction and inflammation have been suggested to contribute to this age advancement and increased risk of comorbidities. Method Partial least squares regression (PLSR) was used to explore associations between biological age advancement and immunological changes in the T cell and monocyte compartment in people with HIV (n=40), comparable HIV-negative individuals (n=40) participating in the Comorbidity in Relation to AIDS (COBRA) cohort, and blood donors (n=35). Results We observed that age advancement in all three groups combined was associated with a monocyte immune phenotypic profile related to inflammation and a T cell immune phenotypic associated with immune senescence and chronic antigen exposure. Interestingly, a unique monocyte and T cell immune phenotypic profile predictive for age advancement was found within each group. An inflammatory monocyte immune phenotypic profile associated with age advancement in HIV-negative individuals, while the monocyte profile in blood donors and people with HIV was more reflective of loss of function. The T cell immune phenotypic profile in blood donors was related to loss of T cell function, whereas the same set of markers were related to chronic antigen stimulation and immune senescence in HIV-negative individuals. In people with HIV, age advancement was related to changes in the CD4+ T cell compartment and more reflective of immune recovery after cART treatment. Impact The identified monocyte and T cell immune phenotypic profiles that were associated with age advancement, were strongly related to inflammation, chronic antigen exposure and immune senescence. While the monocyte and T cell immune phenotypic profile within the HIV-negative individuals reflected those observed in the combined three groups, a distinct profile related to immune dysfunction, was observed within blood donors and people with HIV. These data suggest that varying exposures to lifestyle and infection-related factors may be associated with specific changes in the innate and adaptive immune system, that all contribute to age advancement.
Collapse
Affiliation(s)
- Davide De Francesco
- Institute for Global Health, University College London, London, United Kingdom
| | - Caroline A Sabin
- Institute for Global Health, University College London, London, United Kingdom
| | - Peter Reiss
- Amsterdam institute for Global Health and Development, Amsterdam, Netherlands.,Department of Global Health & Division of Infectious Disease, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,HIV Monitoring Foundation, Amsterdam, Netherlands
| | - Neeltje A Kootstra
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
37
|
Azzoni L, Metzger D, Montaner LJ. Effect of Opioid Use on Immune Activation and HIV Persistence on ART. J Neuroimmune Pharmacol 2020; 15:643-657. [PMID: 32974750 DOI: 10.1007/s11481-020-09959-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023]
Abstract
While there is an emerging consensus that engagement of the Mu opioid receptor by opioids may modulate various stages the HIV life cycle (e.g.: increasing cell susceptibility to infection, promoting viral transcription, and depressing immune responses to virally-infected cells), the overall effect on latency and viral reservoirs remains unclear. Importantly, the hypothesis that the increase in immune activation observed in chronic opioid users by direct or indirect mechanisms (i.e., microbial translocation) would lead to a larger HIV reservoir after ART-suppression has not been supported to date. The potential for a subsequent decrease in reservoirs after ART-suppression has been postulated and is supported by early reports of opioid users having lower latent HIV burden. Here, we review experimental data supporting the link between opioid use and HIV modulation, as well as the scientific premise for expecting differential changes in immune activation and HIV reservoir between different medications for opioid use disorder. A better understanding of potential changes in HIV reservoirs relative to the engagement of the Mu opioid receptor and ART-mediated immune reconstitution will help guide future cure-directed studies in persons living with HIV and opioid use disorder. Graphical Abstract Review. HIV replication, immune activation and dysbiosis: opioids may affect immune reconstitution outcomes despite viral suppression.
Collapse
Affiliation(s)
- Livio Azzoni
- HIV Immunopathogenesis Laboratory, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - David Metzger
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, 3535 Market Street, Suite 4100, Philadelphia, PA, 19104, USA
| | - Luis J Montaner
- HIV Immunopathogenesis Laboratory, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
38
|
De Pablo-Bernal RS, Jimenez-Leon MR, Tarancon-Diez L, Gutierrez-Valencia A, Serna-Gallego A, Trujillo-Rodriguez M, Alvarez-Rios AI, Milanes-Guisado Y, Espinosa N, Roca-Oporto C, Viciana P, Lopez-Cortes LF, Ruiz-Mateos E. Modulation of Monocyte Activation and Function during Direct Antiviral Agent Treatment in Patients Coinfected with HIV and Hepatitis C Virus. Antimicrob Agents Chemother 2020; 64:e00773-20. [PMID: 32571815 PMCID: PMC7449156 DOI: 10.1128/aac.00773-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022] Open
Abstract
The activation phenotypes and functional changes in monocyte subsets during hepatitis C virus (HCV) elimination in HIV/HCV-coinfected patients were evaluated. Twenty-two HIV/HCV-coinfected patients on suppressive combination antiretroviral treatment (cART) achieving HCV elimination after direct-acting antiviral (DAA) therapy and 10 HIV-monoinfected patients were included. The activation phenotype (10 markers) and polyfunctionality (intracellular interleukin-1α [IL-1α], IL-1β, IL-6, IL-8, tumor necrosis factor alpha [TNF-α], and IL-10 production) in three monocyte subsets (classical, intermediate, and nonclassical) were evaluated by flow cytometry before and at the end of treatment. Cell-associated HIV DNA levels were assayed by droplet digital PCR. After HCV clearance, there was a significant increase in classical monocyte and decreases in intermediate and nonclassical monocyte levels. The levels of the activation markers CD49d, CD40, and CX3CR1 were decreased after treatment in the monocyte subsets, reaching the levels in HIV-monoinfected patients. After lipopolysaccharide (LPS) stimulation, although polyfunctionality significantly decreased in intermediate and nonclassical monocytes, some combinations, such as the IL-1α- (IL-1α-negative) IL-1β- IL-6+ (IL-6-producing) IL-8- TNF-α- IL-10- combination, were remarkably increased at the end of treatment compared to the control group. Cell-associated HIV DNA levels correlated with activation markers before but not after treatment. HCV clearance after DAA treatment in patients on cART exerts an anti-inflammatory profile on monocyte subsets, activation phenotypes, and polyfunctionality. However, there is not a complete normalization compared with HIV-monoinfected patients.
Collapse
Affiliation(s)
- Rebeca S De Pablo-Bernal
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, CSIC, University of Seville, Seville, Spain
| | - M Reyes Jimenez-Leon
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, CSIC, University of Seville, Seville, Spain
| | - Laura Tarancon-Diez
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, CSIC, University of Seville, Seville, Spain
| | - Alicia Gutierrez-Valencia
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, CSIC, University of Seville, Seville, Spain
| | - Ana Serna-Gallego
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, CSIC, University of Seville, Seville, Spain
| | - Maria Trujillo-Rodriguez
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, CSIC, University of Seville, Seville, Spain
| | - Ana I Alvarez-Rios
- Department of Clinical Biochemistry, Virgen del Rocío University Hospital, CSIC, University of Seville, Seville, Spain
| | - Yusnelkis Milanes-Guisado
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, CSIC, University of Seville, Seville, Spain
| | - Nuria Espinosa
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, CSIC, University of Seville, Seville, Spain
| | - Cristina Roca-Oporto
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, CSIC, University of Seville, Seville, Spain
| | - Pompeyo Viciana
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, CSIC, University of Seville, Seville, Spain
| | - Luis F Lopez-Cortes
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, CSIC, University of Seville, Seville, Spain
| | - Ezequiel Ruiz-Mateos
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, CSIC, University of Seville, Seville, Spain
| |
Collapse
|
39
|
Brief Report: Aging Attenuates the Association Between Coronary Artery Calcification and Bone Loss Among HIV-Infected Persons. J Acquir Immune Defic Syndr 2020; 82:46-50. [PMID: 31107297 DOI: 10.1097/qai.0000000000002092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Studies among HIV-uninfected persons (mostly in their sixth decade of life) show that detectable coronary artery calcium (CAC) is independently associated with low bone mineral density (BMD), suggesting a possible common pathogenic mechanism. AIM We assessed the relationship between CAC and BMD, which has not been well described among younger to middle-aged HIV-infected persons. METHODS We studied participants with baseline CAC and BMD measures from a prospective cohort of HIV-infected persons enrolled in the Study to Understand the Natural History of HIV/AIDS in the Era of Effective Therapy (SUN) during 2004-2006. We used logistic regression to assess the association between detectable CAC (>0 Agatston score) and BMD (g/cm, T-score), and adjusted for known traditional and HIV-related risk factors. RESULTS Among 472 participants (76% male, 30% non-Hispanic black, median age 41 years, and 71% with HIV RNA < 400 copies/mL), the majority had no detectable CAC (82%), but had baseline osteopenia (53%) or osteoporosis (10%). In univariate analysis, participants with detectable CAC had lower femoral neck/total hip T-scores, lower femoral neck/total hip/lumbar spine BMD, and higher rates of osteopenia/osteoporosis. After adjustment for age, all associations were no longer significant; adjustment for traditional risk factors excluding age and HIV-related variables failed to attenuate these associations. CONCLUSIONS We found aging attenuates the association between detectable CAC and BMD in this cohort. Aging remains an important contributor to non-AIDS-defining illnesses. These data reinforce the importance of developing screening and prevention strategies for aging HIV-infected persons given their excess risk across a wide spectrum of end-organ complications.
Collapse
|
40
|
Insomnia as an Independent Predictor of Incident Cardiovascular Disease in HIV: Data From the Veterans Aging Cohort Study. J Acquir Immune Defic Syndr 2019; 81:110-117. [PMID: 30768487 DOI: 10.1097/qai.0000000000001981] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Insomnia is associated with increased cardiovascular disease (CVD) risk in the general population and is highly prevalent in people with HIV. The CVD risk conferred by insomnia in the HIV population is unknown. METHODS Using the Veterans Aging Cohort Study Survey Cohort, insomnia symptoms were measured and dummy coded with the item, "Difficulty falling or staying asleep?" (5-point scale from no difficulty to bothers a lot). Incident CVD event ICD-9 codes (acute myocardial infarction, stroke, or coronary artery revascularization) were identified with the Department of Veterans Affairs (VA) and Medicare administrative data and VA fee-for-service data. Those with baseline CVD were excluded. RESULTS HIV-infected (N = 3108) veterans had a median follow-up time of 10.8 years, during which 267 CVD events occurred. Compared to HIV-infected veterans with no difficulty falling or staying asleep, HIV-infected veterans bothered a lot by insomnia symptoms had an increased risk of incident CVD after adjusting for demographics [hazard ratio (HR) = 1.64, 95% confidence interval (CI): 1.16 to 2.31, P = 0.005], CVD risk factors (HR = 1.62, 95% CI: 1.14 to 2.30, P = 0.007), additional potential confounders (hepatitis C infection, renal disease, anemia, alcohol use, and cocaine use; HR = 1.70, 95% CI: 1.19 to 2.43, P = 0.003), and HIV-specific factors (HIV-1 RNA, CD4 T-cell count, and antiretroviral therapy; HR = 1.66, 95% CI: 1.16 to 2.37, P = 0.005). Additional adjustment for nonbenzodiazepine sleep medication (HR = 1.62, 95% CI: 1.13 to 2.32, P = 0.009) did not attenuate the association; however, it fell short of significance at P < 0.01 after adjustment for depressive symptoms (HR = 1.51, 95% CI: 0.98 to 2.32, P = 0.060) or antidepressant medication (HR = 1.51, 95% CI: 1.04 to 2.19, P = 0.031). CONCLUSIONS Highly bothersome insomnia symptoms were significantly associated with incident CVD in HIV-infected veterans, suggesting that insomnia may be a novel, modifiable risk factor for CVD in HIV.
Collapse
|
41
|
Plaisance-Bonstaff K, Faia C, Wyczechowska D, Jeansonne D, Vittori C, Peruzzi F. Isolation, Transfection, and Culture of Primary Human Monocytes. J Vis Exp 2019. [PMID: 31885371 DOI: 10.3791/59967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Human immunodeficiency virus (HIV) remains a major health concern despite the introduction of combined antiretroviral therapy (cART) in the mid-1990s. While antiretroviral therapy efficiently lowers systemic viral load and restores normal CD4+ T cell counts, it does not reconstitute a completely functional immune system. A dysfunctional immune system in HIV-infected individuals undergoing cART may be characterized by immune activation, early aging of immune cells, or persistent inflammation. These conditions, along with comorbid factors associated with HIV infection, add complexity to the disease, which cannot be easily reproduced in cellular and animal models. To investigate the molecular events underlying immune dysfunction in these patients, a system to culture and manipulate human primary monocytes in vitro is presented here. Specifically, the protocol allows for the culture and transfection of primary CD14+ monocytes obtained from HIV-infected individuals undergoing cART as well as from HIV-negative controls. The method involves isolation, culture, and transfection of monocytes and monocyte-derived macrophages. While commercially available kits and reagents are employed, the protocol provides important tips and optimized conditions for successful adherence and transfection of monocytes with miRNA mimics and inhibitors as well as with siRNAs.
Collapse
Affiliation(s)
- Karlie Plaisance-Bonstaff
- Department of Medicine, Louisiana State University Health Sciences Center; Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center;
| | - Celeste Faia
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center
| | | | - Duane Jeansonne
- Department of Medicine, Louisiana State University Health Sciences Center
| | - Cecilia Vittori
- Department of Medicine, Louisiana State University Health Sciences Center; Department of Biomedical and Clinical Sciences L. Sacco, University of Milan
| | - Francesca Peruzzi
- Department of Medicine, Louisiana State University Health Sciences Center; Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center;
| |
Collapse
|
42
|
Kruize Z, Kootstra NA. The Role of Macrophages in HIV-1 Persistence and Pathogenesis. Front Microbiol 2019; 10:2828. [PMID: 31866988 PMCID: PMC6906147 DOI: 10.3389/fmicb.2019.02828] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022] Open
Abstract
Current antiretroviral therapy (ART) effectively suppresses Human Immunodeficiency Virus type 1 (HIV-1) in infected individuals. However, even long term ART does not eradicate HIV-1 infected cells and the virus persists in cellular reservoirs. Beside memory CD4+ T cells, cells of the myeloid lineage, especially macrophages, are believed to be an important sanctuary for HIV-1. Monocytes and macrophages are key players in the innate immune response to pathogens and are recruited to sites of infection and inflammation. Due to their long life span and ability to reside in virtually every tissue, macrophages have been proposed to play a critical role in the establishment and persistence of the HIV-1 reservoir. Current HIV-1 cure strategies mainly focus on the concept of “shock and kill” to purge the viral reservoir. This approach aims to reactivate viral protein production in latently infected cells, which subsequently are eliminated as a consequence of viral replication, or recognized and killed by the immune system. Macrophage susceptibility to HIV-1 infection is dependent on the local microenvironment, suggesting that molecular pathways directing differentiation and polarization are involved. Current latency reversing agents (LRA) are mainly designed to reactivate the HIV-1 provirus in CD4+ T cells, while their ability to abolish viral latency in macrophages is largely unknown. Moreover, the resistance of macrophages to HIV-1 mediated kill and the presence of infected macrophages in immune privileged regions including the central nervous system (CNS), may pose a barrier to elimination of infected cells by current “shock and kill” strategies. This review focusses on the role of monocytes/macrophages in HIV-1 persistence. We will discuss mechanisms of viral latency and persistence in monocytes/macrophages. Furthermore, the role of these cells in HIV-1 tissue distribution and pathogenesis will be discussed.
Collapse
Affiliation(s)
- Zita Kruize
- Laboratory for Viral Immune Pathogenesis, Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Neeltje A Kootstra
- Laboratory for Viral Immune Pathogenesis, Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
43
|
Wong ME, Jaworowski A, Hearps AC. The HIV Reservoir in Monocytes and Macrophages. Front Immunol 2019; 10:1435. [PMID: 31297114 PMCID: PMC6607932 DOI: 10.3389/fimmu.2019.01435] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/07/2019] [Indexed: 12/11/2022] Open
Abstract
In people living with HIV (PLWH) who are failing or unable to access combination antiretroviral therapy (cART), monocytes and macrophages are important drivers of pathogenesis and progression to AIDS. The relevance of the monocyte/macrophage reservoir in PLWH receiving cART is debatable as in vivo evidence for infected cells is limited and suggests the reservoir is small. Macrophages were assumed to have a moderate life span and lack self-renewing potential, but recent discoveries challenge this dogma and suggest a potentially important role of these cells as long-lived HIV reservoirs. This, combined with new HIV infection animal models, has led to a resurgence of interest in monocyte/macrophage reservoirs. Infection of non-human primates with myeloid-tropic SIV implicates monocyte/macrophage activation and infection in the brain with neurocognitive disorders, and infection of myeloid-only humanized mouse models are consistent with the potential of the monocyte/macrophage reservoir to sustain infection and be a source of rebound viremia following cART cessation. An increased resistance to HIV-induced cytopathic effects and a reduced susceptibility to some antiretroviral drugs implies macrophages may be relevant to residual replication under cART and to rebound viremia. With a reappraisal of monocyte circulation dynamics, and the development of techniques to differentiate between self-renewing tissue-resident, and monocyte-derived macrophages in different tissues, a new framework exists to contextualize and evaluate the significance and relevance of the monocyte/macrophage HIV reservoir. In this review, we discuss recent developments in monocyte and macrophage biology and appraise current and emerging techniques to quantify the reservoir. We discuss how this knowledge influences our evaluation of the myeloid HIV reservoir, the implications for HIV pathogenesis in both viremic and virologically-suppressed PLWH and the need to address the myeloid reservoir in future treatment and cure strategies.
Collapse
Affiliation(s)
- Michelle E Wong
- Central Clinical School, Monash University, Melbourne, VIC, Australia.,Life Sciences Discipline, Burnet Institute, Melbourne, VIC, Australia
| | - Anthony Jaworowski
- Chronic Inflammatory and Infectious Diseases Program, School of Health and Biomedical Sciences, Bundoora, VIC, Australia.,Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
| | - Anna C Hearps
- Life Sciences Discipline, Burnet Institute, Melbourne, VIC, Australia.,Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
44
|
Jaworowski A, Hearps AC, Angelovich TA, Hoy JF. How Monocytes Contribute to Increased Risk of Atherosclerosis in Virologically-Suppressed HIV-Positive Individuals Receiving Combination Antiretroviral Therapy. Front Immunol 2019; 10:1378. [PMID: 31275317 PMCID: PMC6593090 DOI: 10.3389/fimmu.2019.01378] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/31/2019] [Indexed: 12/27/2022] Open
Abstract
Combination antiretroviral therapy (ART) is effective at suppressing HIV viremia to achieve persistently undetectable levels in peripheral blood in the majority of individuals with access and ability to maintain adherence to treatment. However, evidence suggests that ART is less effective at eliminating HIV-associated inflammation and innate immune activation. To the extent that residual inflammation and immune activation persist, virologically suppressed people living with HIV (PLWH) may have increased risk of inflammatory co-morbidities, and adjunctive therapies may need to be considered to reduce HIV-related inflammation and fully restore the health of virologically suppressed HIV+ individuals. Cardiovascular disease (CVD) is the single leading cause of death in the developed world and is becoming more important in PLWH with access to ART. Arterial disease due to atherosclerosis, leading to acute myocardial infarction (AMI) and stroke, is a major component of CVD. Atherosclerosis is an inflammatory disease, and epidemiological comparisons of atherosclerosis and AMI show a higher prevalence and suggest a greater risk in PLWH compared to the general population. The reasons for greater prevalence of CVD in PLWH can be broadly grouped into four categories: (a) the higher prevalence of traditional risk factors e.g., smoking and hypertension (b) dyslipidemia (also a traditional risk factor) caused by off-target effects of ART drugs (c) HIV-related inflammation and immune activation and (d) other undefined HIV-related factors. Management strategies aimed at reducing the impact of traditional risk factors in PLWH are similar to those for the general population and their effectiveness is currently being evaluated. Together with improvements in ART regimens and guidelines for treatment, and a greater awareness of its impact on CVD, the HIV-related risk of AMI and stroke is decreasing but remains elevated compared to the general community. Monocytes are key effector cells which initiate the formation of atherosclerotic plaques by migrating into the intima of coronary arteries and accumulating as foam cells full of lipid droplets. This review considers the specific role of monocytes as effector cells in atherosclerosis which progresses to AMI and stroke, and explores mechanisms by which HIV may promote an atherogenic phenotype and function independent of traditional risk factors. Altered monocyte function may represent a distinct HIV-related factor which increases risk of CVD in PLWH.
Collapse
Affiliation(s)
- Anthony Jaworowski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia.,Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, VIC, Australia.,Life Sciences Discipline, Burnet Institute, Melbourne, VIC, Australia
| | - Anna C Hearps
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, VIC, Australia.,Life Sciences Discipline, Burnet Institute, Melbourne, VIC, Australia
| | - Thomas A Angelovich
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia.,Life Sciences Discipline, Burnet Institute, Melbourne, VIC, Australia
| | - Jennifer F Hoy
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, VIC, Australia
| |
Collapse
|
45
|
Activated dendritic cells and monocytes in HIV immunological nonresponders: HIV-induced interferon-inducible protein-10 correlates with low future CD4+ recovery. AIDS 2019; 33:1117-1129. [PMID: 30789356 PMCID: PMC6511429 DOI: 10.1097/qad.0000000000002173] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Supplemental Digital Content is available in the text Objective: To explore monocyte and dendritic cell immune responses, and their association with future CD4+ gain in treated HIV patients with suboptimal CD4+ recovery. Design: A cross-sectional study of HIV-infected, virally suppressed individuals on antiretroviral therapy for at least 24 months; 41 immunological nonresponders (INRs) (CD4+ cell count <400 cells/μl) and 26 immunological responders (CD4+ cell count >600 cells/μl). Ten HIV-infected antiretroviral therapy-naive and 10 HIV-negative healthy persons served as controls. CD4+ cell counts were registered after median 2.4 and 4.7 years. Methods: Monocyte, dendritic-cell and T-cell activation and regulatory T cells (Tregs) were analyzed by flow cytometry. In INR and immunological responder subgroups matched on age and nadir CD4+ cell count, upregulation of interferon-inducible protein-10 (IP-10) and indoleamine 2,3-dioxygenase in monocytes and dendritic cells and cytokines in cell supernatants were measured in vitro in peripheral blood mononuclear cells stimulated with aldrithiol-2-inactivated HIV-1. Results: The INR group displayed higher spontaneous activation of both monocytes (HLA-DR+) and myeloid and plasmacytoid dendritic cells (HLA-DR+, CD83+ and CD86+) compared with immunological responders, and this was associated with increased T-cell activation (CD38+HLA-DR+), an effector memory T-cell phenotype and activated Tregs. The IP-10 response in monocytes after in-vitro HIV stimulation was negatively associated with prospective CD4+ gain. IP-10, indoleamine 2,3-dioxygenase and cytokines levels were comparable between the groups, but inversely correlated with activated Tregs in INRs. Conclusion: HIV-infected individuals with suboptimal immune recovery demonstrated more activated monocytes and in particular dendritic cells, compared with patients with acceptable CD4+ gain. A high level of HIV-specific IP-10 expression in monocytes may be predictive of future CD4+ recovery.
Collapse
|
46
|
Luo L, Han Y, Song X, Zhu T, Zeng Y, Li T. CD16-expressing monocytes correlate with arterial stiffness in HIV-infected ART-naïve men. HIV CLINICAL TRIALS 2019; 19:39-45. [PMID: 29770747 DOI: 10.1080/15284336.2018.1437863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Objectives To determine the association of the markers of monocyte activation and arterial stiffness among HIV-infected antiretroviral therapy (ART)-naïve men. Methods Sixty HIV-infected ART-naïve men and 20 HIV-uninfected male controls without symptoms or history of cardiovascular disease were recruited. Pulse wave velocity (PWV) were used as the marker of arterial stiffness and determined using a pulse pressure analyzer. The percentage of CD16-expressing monocytes was used as a marker of monocyte activation. Plasma neopterin concentration, one of the monocyte/macrophage activation markers and plasma tissue factor (TF), the coagulation marker in response to inflammatory stimuli, were also analyzed. Multivariate analyses were used to explore the association of the percentage of CD16-expressing monocytes with arterial stiffness in HIV-infected men. Results HIV-infected ART-naïve men demonstrated significantly higher PWV (1252.8 ± 161.6 vs.1159.2 ± 108.3 cm/s, p = 0.018). The percentage of CD16-expressing monocytes was significantly higher in HIV-infected men comparing male controls (23.4 ± 6.0% vs. 19.6 ± 4.6%, p = 0.012). Plasma concentrations of neopterin (0.91 vs. 0.64 ng/ml), p < 0.001) and TF (5.29 vs. 4.43 pg/ml, p = 0.04) were higher in HIV-infected men comparing controls. In the multivariate model for PWV among HIV-infected men, the percentage of CD16-expressing monocytes (p = 0.023) and age (p = 0.017) were significantly associated with PWV. HIV viral load, CD4 count, percentage of CD8+CD38+T cells and percentage of CD8+HLA-DR+ T cells were not associated with PWV. Discussion Higher level of monocyte activation marker is associated with higher level of arterial stiffness in ART naïve HIV-infected men. HIV viral load, CD4 count, and the markers of CD8 T cell activation were unrelated to PWV.
Collapse
Affiliation(s)
- Ling Luo
- a Department of Infectious Diseases , Peking Union Medical College Hospital, Chinese Academy of Medical Sciences , Beijing , China
| | - Yang Han
- a Department of Infectious Diseases , Peking Union Medical College Hospital, Chinese Academy of Medical Sciences , Beijing , China
| | - Xiaojing Song
- a Department of Infectious Diseases , Peking Union Medical College Hospital, Chinese Academy of Medical Sciences , Beijing , China
| | - Ting Zhu
- a Department of Infectious Diseases , Peking Union Medical College Hospital, Chinese Academy of Medical Sciences , Beijing , China
| | - Yong Zeng
- b Department of Cardiovascular Diseases , Peking Union Medical College Hospital, Chinese Academy of Medical Sciences , Beijing , China
| | - Taisheng Li
- a Department of Infectious Diseases , Peking Union Medical College Hospital, Chinese Academy of Medical Sciences , Beijing , China
| |
Collapse
|
47
|
Abstract
Current antiretroviral therapy (ART) effectively suppresses Human Immunodeficiency Virus type 1 (HIV-1) in infected individuals. However, even long term ART does not eradicate HIV-1 infected cells and the virus persists in cellular reservoirs. Beside memory CD4+ T cells, cells of the myeloid lineage, especially macrophages, are believed to be an important sanctuary for HIV-1. Monocytes and macrophages are key players in the innate immune response to pathogens and are recruited to sites of infection and inflammation. Due to their long life span and ability to reside in virtually every tissue, macrophages have been proposed to play a critical role in the establishment and persistence of the HIV-1 reservoir. Current HIV-1 cure strategies mainly focus on the concept of "shock and kill" to purge the viral reservoir. This approach aims to reactivate viral protein production in latently infected cells, which subsequently are eliminated as a consequence of viral replication, or recognized and killed by the immune system. Macrophage susceptibility to HIV-1 infection is dependent on the local microenvironment, suggesting that molecular pathways directing differentiation and polarization are involved. Current latency reversing agents (LRA) are mainly designed to reactivate the HIV-1 provirus in CD4+ T cells, while their ability to abolish viral latency in macrophages is largely unknown. Moreover, the resistance of macrophages to HIV-1 mediated kill and the presence of infected macrophages in immune privileged regions including the central nervous system (CNS), may pose a barrier to elimination of infected cells by current "shock and kill" strategies. This review focusses on the role of monocytes/macrophages in HIV-1 persistence. We will discuss mechanisms of viral latency and persistence in monocytes/macrophages. Furthermore, the role of these cells in HIV-1 tissue distribution and pathogenesis will be discussed.
Collapse
Affiliation(s)
- Zita Kruize
- Laboratory for Viral Immune Pathogenesis, Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Neeltje A Kootstra
- Laboratory for Viral Immune Pathogenesis, Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection & Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
48
|
Levy ME, Greenberg AE, Magnus M, Younes N, Castel A, Subramanian T, Binkley J, Taylor R, Rayeed N, Hou Q, Akridge C, Purinton S, Naughton J, D'Angelo L, Rakhmanina N, Kharfen M, Serlin M, Kumar P, Parenti D, Monroe A, Happ LP, Jaurretche M, Peterson J, Wilcox R, Rana S, Horberg M, Fernandez R, Hebou A, Dieffenbach C, Masur H, Bordon J, Teferi G, Benator D, Ruiz ME, Goldstein D, Hardy D. Immunosuppression and HIV Viremia Associated with More Atherogenic Lipid Profile in Older People with HIV. AIDS Res Hum Retroviruses 2019; 35:81-91. [PMID: 30353737 DOI: 10.1089/aid.2018.0145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To explore reasons for the disproportionate metabolic and cardiovascular disease burdens among older HIV-infected persons, we investigated whether associations of CD4 count and HIV viral load (VL) with non-high-density lipoprotein cholesterol (non-HDL-C) and high-density lipoprotein cholesterol [HDL-C] differed by age. Longitudinal clinical and laboratory data were collected between 2011 and 2016 for HIV-infected outpatients in the DC Cohort study. Using data for patients aged ≥21 years with ≥1 cholesterol result and contemporaneous CD4/VL results, we created multivariable linear regression models with generalized estimating equations. Among 3,912 patients, the median age was 50 years, 78% were male, 76% were non-Hispanic black, 93% were using antiretroviral therapy, 8% had a CD4 count <200 cells/μL, and 18% had an HIV VL ≥200 copies/mL. Overall, CD4 count <200 (vs. >500) cells/μL and VL ≥200 copies/mL were associated with lower non-HDL-C concentrations (p < .01), but associations were more positive with increasing age (CD4-age/VL-age interactions, p < .01). CD4 count <200 cells/μL was associated with lower non-HDL-C among patients aged <50 years [β = -7.8 mg/dL (95% confidence interval, CI: -13.2 to -2.4)] but higher non-HDL-C among patients aged 60-69 years [β = +8.1 mg/dL (95% CI: 0.02-16.2)]. VL ≥200 copies/mL was associated with lower non-HDL-C among patients aged <50 years [β = -3.3 mg/dL (95% CI: -6.7 to 0.1)] but higher non-HDL-C among patients aged ≥70 years [β = +16.0 mg/dL (95% CI: -1.4 to 33.3)], although precision was reduced in age-stratified analyses. Although no age differences were detected for HDL-C, VL ≥200 copies/mL was more strongly associated with lower HDL-C concentrations when CD4 count was <200 cells/μL [β = -7.0 mg/dL (95% CI: -9.7 to -4.3)] versus 200-500 cells/μL [β = -4.2 (95% CI: -5.9 to -2.6)] or >500 cells/μL [β = -2.2 (95% CI: -3.7 to -0.8)] (CD4-VL interaction, p < .01). We detected a novel age-modified relationship between immunosuppression and viremia and atherogenic cholesterol patterns. These findings may contribute to our understanding of the high risk of dyslipidemia observed among persons aging with HIV.
Collapse
Affiliation(s)
- Matthew E. Levy
- Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, The George Washington University, Washington, District of Columbia
| | - Alan E. Greenberg
- Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, The George Washington University, Washington, District of Columbia
| | - Manya Magnus
- Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, The George Washington University, Washington, District of Columbia
| | - Naji Younes
- Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, The George Washington University, Washington, District of Columbia
| | - Amanda Castel
- Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, The George Washington University, Washington, District of Columbia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Iannetta M, Savinelli S, Rossi R, Mascia C, Marocco R, Vita S, Zuccalà P, Zingaropoli MA, Mengoni F, Massetti AP, Falciano M, d'Ettorre G, Ciardi MR, Mastroianni CM, Vullo V, Lichtner M. Myeloid and lymphoid activation markers in AIDS and non-AIDS presenters. Immunobiology 2018; 224:231-241. [PMID: 30522891 DOI: 10.1016/j.imbio.2018.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 01/21/2023]
Abstract
HIV infection is characterized by a state of chronic activation of the immune system, which is not completely reversed by antiretroviral treatment (ART). The aim of this study was to assess myeloid and lymphoid activation markers during HIV infection, before and one year after ART initiation, in AIDS and non-AIDS presenters. Treatment naïve HIV positive patients were enrolled in this study. Myeloid dendritic cell (mDC), plasmacytoid dendritic cell (pDC), slanDC, monocyte and T-lymphocyte cell counts and activation status, were assessed by flow cytometry in peripheral blood samples. Soluble (s)CD14 and sCD163 were assessed in plasma samples using ELISA assays. Statistical analyses were performed using GraphPad Prism and Minitab Express. Thirty-four ART naïve HIV-1 infected subjects were enrolled in this study (22 non-AIDS and 12 AIDS presenters). Seventeen healthy donors (HD) were included as control group. Although circulating mDC levels resulted unchanged, HLA-DR expression was decreased on mDCs of HIV positive subjects compared to HD (p < 0,0001). AIDS presenters showed the lowest level of expression of HLA-DR on mDCs. Circulating levels of pDCs were decreased in HIV patients compared to HD (p < 0,001), without any changes in HLA-DR expression. SlanDC cell counts were extremely reduced in AIDS presenters, compared to non-AIDS presenters and HD (p < 0,01 and p < 0,0001, respectively) and showed higher HLA-DR expression in HIV patients compared to HD (p < 0,01). Intermediate monocyte (IM) cell counts were increased in AIDS and non-AIDS presenters compared to HD (p < 0,001 and p < 0,001 respectively). Furthermore, IM expansion was directly correlated to HIV viral load (p = 0,036) and independent from CD4 cell counts and activation levels. Plasma concentrations of sCD14 and sCD163 resulted increased in HIV infected subjects compared to HD (p < 0,0001 and p < 0,001), with the highest levels observed in AIDS presenters. After 1 year, ART was able to increase pDC and decrease IM absolute cell counts and modify HLA-DR expression on mDCs and slanDCs, approaching the levels observed in HD. ART reduced also CD4 and CD8 activation levels. In conclusion, in untreated HIV infected subjects circulating dendritic cells resulted altered either in numbers or in HLA-DR expression, especially in AIDS presenters. IM absolute counts were equally increased in AIDS and non-AIDS presenters. ART was able to reduce myeloid and lymphoid inflammation in both advanced and non-advanced HIV patients, confirming the role of ART in hampering disease progression and immune activation associated non-AIDS events.
Collapse
Affiliation(s)
- Marco Iannetta
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Stefano Savinelli
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Raffaella Rossi
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Claudia Mascia
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Raffaella Marocco
- Infectious Diseases Unit, Sapienza University, Santa Maria Goretti Hospital, Via Canova, 04100, Latina, Italy
| | - Serena Vita
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy; Infectious Diseases Unit, Sapienza University, Santa Maria Goretti Hospital, Via Canova, 04100, Latina, Italy
| | - Paola Zuccalà
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Maria Antonella Zingaropoli
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Fabio Mengoni
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Anna Paola Massetti
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Mario Falciano
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Gabriella d'Ettorre
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Maria Rosa Ciardi
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Claudio Maria Mastroianni
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Vincenzo Vullo
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Miriam Lichtner
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy; Infectious Diseases Unit, Sapienza University, Santa Maria Goretti Hospital, Via Canova, 04100, Latina, Italy
| |
Collapse
|
50
|
Tomalka AG, Resto-Garay I, Campbell KS, Popkin DL. In vitro Evidence That Combination Therapy With CD16-Bearing NK-92 Cells and FDA-Approved Alefacept Can Selectively Target the Latent HIV Reservoir in CD4+ CD2hi Memory T Cells. Front Immunol 2018; 9:2552. [PMID: 30455699 PMCID: PMC6230627 DOI: 10.3389/fimmu.2018.02552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/17/2018] [Indexed: 12/24/2022] Open
Abstract
Elimination of the latent HIV reservoir remains the biggest hurdle to achieve HIV cure. In order to specifically eliminate HIV infected cells they must be distinguishable from uninfected cells. CD2 was recently identified as a potential marker enriched in the HIV-1 reservoir on CD4+ T cells, the largest, longest-lived and best-characterized constituent of the HIV reservoir. We previously proposed to repurpose FDA-approved alefacept, a humanized α-CD2 fusion protein, to reduce the HIV reservoir in CD2hi CD4+ memory T cells. Here, we show the first evidence that alefacept can specifically target and reduce CD2hi HIV infected cells in vitro. We explore a variety of natural killer (NK) cells as mediators of antibody-dependent cell-mediated cytotoxicity (ADCC) including primary NK cells, expanded NK cells as well as the CD16 transduced NK-92 cell line which is currently under study in clinical trials as a treatment for cancer. We demonstrate that CD16.NK-92 has a natural preference to kill CD2hi CD45RA- memory T cells, specifically CD45RA- CD27+ central memory/transitional memory (TCM/TM) subset in both healthy and HIV+ patient samples as well as to reduce HIV DNA from HIV+ samples from donors well controlled on antiretroviral therapy. Lastly, alefacept can combine with CD16.NK-92 to decrease HIV DNA in some patient samples and thus may yield value as part of a strategy toward sustained HIV remission.
Collapse
Affiliation(s)
- Amanda G. Tomalka
- Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Ivelisse Resto-Garay
- Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Kerry S. Campbell
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Institute for Cancer Research, Philadelphia, PA, United States
| | - Daniel L. Popkin
- Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|