1
|
Bai H, Lewitus E, Li Y, Thomas PV, Zemil M, Merbah M, Peterson CE, Thuraisamy T, Rees PA, Hajduczki A, Dussupt V, Slike B, Mendez-Rivera L, Schmid A, Kavusak E, Rao M, Smith G, Frey J, Sims A, Wieczorek L, Polonis V, Krebs SJ, Ake JA, Vasan S, Bolton DL, Joyce MG, Townsley S, Rolland M. Contemporary HIV-1 consensus Env with AI-assisted redesigned hypervariable loops promote antibody binding. Nat Commun 2024; 15:3924. [PMID: 38724518 PMCID: PMC11082178 DOI: 10.1038/s41467-024-48139-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
An effective HIV-1 vaccine must elicit broadly neutralizing antibodies (bnAbs) against highly diverse Envelope glycoproteins (Env). Since Env with the longest hypervariable (HV) loops is more resistant to the cognate bnAbs than Env with shorter HV loops, we redesigned hypervariable loops for updated Env consensus sequences of subtypes B and C and CRF01_AE. Using modeling with AlphaFold2, we reduced the length of V1, V2, and V5 HV loops while maintaining the integrity of the Env structure and glycan shield, and modified the V4 HV loop. Spacers are designed to limit strain-specific targeting. All updated Env are infectious as pseudoviruses. Preliminary structural characterization suggests that the modified HV loops have a limited impact on Env's conformation. Binding assays show improved binding to modified subtype B and CRF01_AE Env but not to subtype C Env. Neutralization assays show increases in sensitivity to bnAbs, although not always consistently across clades. Strikingly, the HV loop modification renders the resistant CRF01_AE Env sensitive to 10-1074 despite the absence of a glycan at N332.
Collapse
Affiliation(s)
- Hongjun Bai
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Eric Lewitus
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Yifan Li
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Paul V Thomas
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Michelle Zemil
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Mélanie Merbah
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Caroline E Peterson
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Thujitha Thuraisamy
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Phyllis A Rees
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Agnes Hajduczki
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Vincent Dussupt
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Bonnie Slike
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Letzibeth Mendez-Rivera
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Annika Schmid
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Erin Kavusak
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Mekhala Rao
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Gabriel Smith
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Jessica Frey
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Alicea Sims
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Lindsay Wieczorek
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Victoria Polonis
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Shelly J Krebs
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Julie A Ake
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Sandhya Vasan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Diane L Bolton
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - M Gordon Joyce
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Samantha Townsley
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | - Morgane Rolland
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA.
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA.
| |
Collapse
|
2
|
Townsley SM, Donofrio GC, Jian N, Leggat DJ, Dussupt V, Mendez-Rivera L, Eller LA, Cofer L, Choe M, Ehrenberg PK, Geretz A, Gift S, Grande R, Lee A, Peterson C, Piechowiak MB, Slike BM, Tran U, Joyce MG, Georgiev IS, Rolland M, Thomas R, Tovanabutra S, Doria-Rose NA, Polonis VR, Mascola JR, McDermott AB, Michael NL, Robb ML, Krebs SJ. B cell engagement with HIV-1 founder virus envelope predicts development of broadly neutralizing antibodies. Cell Host Microbe 2021; 29:564-578.e9. [PMID: 33662277 DOI: 10.1016/j.chom.2021.01.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/08/2020] [Accepted: 01/27/2021] [Indexed: 12/22/2022]
Abstract
Determining which immunological mechanisms contribute to the development of broad neutralizing antibodies (bNAbs) during HIV-1 infection is a major goal to inform vaccine design. Using samples from a longitudinal HIV-1 acute infection cohort, we found key B cell determinants within the first 14-43 days of viremia that predict the development of bNAbs years later. Individuals who develop neutralization breadth had significantly higher B cell engagement with the autologous founder HIV envelope (Env) within 1 month of initial viremia. A higher frequency of founder-Env-specific naive B cells was associated with increased B cell activation and differentiation and predictive of bNAb development. These data demonstrate that the initial B cell interaction with the founder HIV Env is important for the development of broadly neutralizing antibodies and provide evidence that events within HIV acute infection lead to downstream functional outcomes.
Collapse
Affiliation(s)
- Samantha M Townsley
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Gina C Donofrio
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Ningbo Jian
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - David J Leggat
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | - Vincent Dussupt
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Letzibeth Mendez-Rivera
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Leigh Anne Eller
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Lauryn Cofer
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Misook Choe
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; Emerging Infectious Diseases Branch, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Philip K Ehrenberg
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Aviva Geretz
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Syna Gift
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Rebecca Grande
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Anna Lee
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Caroline Peterson
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; Emerging Infectious Diseases Branch, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Mary Bryson Piechowiak
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Bonnie M Slike
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Ursula Tran
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - M Gordon Joyce
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; Emerging Infectious Diseases Branch, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Ivelin S Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Morgane Rolland
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Rasmi Thomas
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | | | - Victoria R Polonis
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - John R Mascola
- Vaccine Research Center, NIAID, NIH, Bethesda, MD 20892, USA
| | | | - Nelson L Michael
- Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Merlin L Robb
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Shelly J Krebs
- U.S. Military HIV Research Program, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA.
| |
Collapse
|
3
|
Bissa M, Forlani G, Zanotto C, Tosi G, De Giuli Morghen C, Accolla RS, Radaelli A. Fowlpoxvirus recombinants coding for the CIITA gene increase the expression of endogenous MHC-II and Fowlpox Gag/Pro and Env SIV transgenes. PLoS One 2018; 13:e0190869. [PMID: 29385169 PMCID: PMC5791965 DOI: 10.1371/journal.pone.0190869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/21/2017] [Indexed: 01/12/2023] Open
Abstract
A complete eradication of an HIV infection has never been achieved by vaccination and the search for new immunogens that can induce long-lasting protective responses is ongoing. Avipoxvirus recombinants are host-restricted for replication to avian species and they do not have the undesired side effects induced by vaccinia recombinants. In particular, Fowlpox (FP) recombinants can express transgenes over long periods and can induce protective immunity in mammals, mainly due to CD4-dependent CD8+ T cells. In this context, the class II transactivator (CIITA) has a pivotal role in triggering the adaptive immune response through induction of the expression of class-II major histocompatibility complex molecule (MHC-II), that can present antigens to CD4+ T helper cells. Here, we report on construction of novel FPgp and FPenv recombinants that express the highly immunogenic SIV Gag-pro and Env structural antigens. Several FP-based recombinants, with single or dual genes, were also developed that express CIITA, driven from H6 or SP promoters. These recombinants were used to infect CEF and Vero cells in vitro and determine transgene expression, which was evaluated by real-time PCR and Western blotting. Subcellular localisation of the different proteins was evaluated by confocal microscopy, whereas HLA-DR or MHC-II expression was measured by flow cytometry. Fowlpox recombinants were also used to infect syngeneic T/SA tumour cells, then injected into Balb/c mice to elicit MHC-II immune response and define the presentation of the SIV transgene products in the presence or absence of FPCIITA. Antibodies to Env were measured by ELISA. Our data show that the H6 promoter was more efficient than SP to drive CIITA expression and that CIITA can enhance the levels of the gag/pro and env gene products only when infection is performed by FP single recombinants. Also, CIITA expression is higher when carried by FP single recombinants than when combined with FPgp or FPenv constructs and can induce HLA-DR cell surface expression. However, in-vivo experiments did not show any significant increase in the humoral response. As CIITA already proved to elicit immunogenicity by improving antigen presentation, further in-vivo experiments should be performed to increase the immune responses. The use of prime/boost immunisation protocols and the oral administration route of the recombinants may enhance the immunogenicity of Env peptides presented by MHC-II and provide CD4+ T-cell stimulation.
Collapse
Affiliation(s)
- Massimiliano Bissa
- Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, Milan, Italy
| | - Greta Forlani
- Department of Experimental Medicine, University of Insubria, Via O. Rossi 9, Varese, Italy
| | - Carlo Zanotto
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, via Vanvitelli 32, Milan, Italy
| | - Giovanna Tosi
- Department of Experimental Medicine, University of Insubria, Via O. Rossi 9, Varese, Italy
| | - Carlo De Giuli Morghen
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, via Vanvitelli 32, Milan, Italy
- Catholic University “Our Lady of Good Counsel”, Rr. Dritan Hoxha, Tirana, Albania
| | - Roberto S. Accolla
- Department of Experimental Medicine, University of Insubria, Via O. Rossi 9, Varese, Italy
| | - Antonia Radaelli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, Milan, Italy
- CNR Institute of Neurosciences, Cellular and Molecular Pharmacology Section, University of Milan, via Vanvitelli 32, Milan, Italy
- * E-mail:
| |
Collapse
|
4
|
Andrade-Ochoa S, García-Machorro J, Bello M, Rodríguez-Valdez L, Flores-Sandoval C, Correa-Basurto J. QSAR, DFT and molecular modeling studies of peptides from HIV-1 to describe their recognition properties by MHC-I. J Biomol Struct Dyn 2017; 36:2312-2330. [DOI: 10.1080/07391102.2017.1352538] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- S. Andrade-Ochoa
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de Fármacos, de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Delegación Miguel Hidalgo, C.P. 11340, Ciudad de México, Mexico
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomas 11340, Ciudad de México, Mexico
| | - J. García-Machorro
- Laboratorio de Medicina de Conservación, de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Delegación Miguel Hidalgo, C.P. 11340, Ciudad de México, Mexico
| | - Martiniano Bello
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de Fármacos, de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Delegación Miguel Hidalgo, C.P. 11340, Ciudad de México, Mexico
| | - L.M. Rodríguez-Valdez
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario s/n, C.P. 31125, Chihuahua, Chih, Mexico
| | - C.A. Flores-Sandoval
- Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas 152, Col. San Bartolo Atepehuacan 07730, Ciudad de México, Mexico
| | - J. Correa-Basurto
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de Fármacos, de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Delegación Miguel Hidalgo, C.P. 11340, Ciudad de México, Mexico
| |
Collapse
|
5
|
Richardson S, Seekaew P, Koblin B, Vazquez T, Nandi V, Tieu HV. Barriers and facilitators of HIV vaccine and prevention study participation among Young Black MSM and transwomen in New York City. PLoS One 2017; 12:e0181702. [PMID: 28723970 PMCID: PMC5517061 DOI: 10.1371/journal.pone.0181702] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 07/04/2017] [Indexed: 11/23/2022] Open
Abstract
Background Black men who have sex with men (MSM), and Transwomen (TW) shoulder disproportionate burden of HIV. However, they are unrepresented in HIV vaccine trials. We investigated the perceptions of that factors associated with HIV vaccine trials participation among Black MSM and TW in New York. Methods Self-administered online questionnaires were administered to 18–29 years of NYC residents who identified as Black MSM and TW, assessing demographics, awareness and willingness to participate in HIV vaccine trials, barriers and facilitators associated with willingness, and sexual behaviors. Frequency summation was performed to determine barriers and facilitators, and logistic regression analysis was performed to determine factors association with expressed willingness. Results Black MSM and TW who reported engaging in risk behaviors had a 61% lower likelihood of participating in HIV vaccine trials when compared to those who did not report engaging in any risk behavior. Facilitators associated with trial participation were: cash compensation, confidentiality regarding participation, public transportation vouchers, gift cards, and food or grocery vouchers as potential facilitators for trial participation. Conversely, fear of side effects from the vaccine, concerns about testing positive on routine HIV testing due to an HIV vaccine, limited knowledge of research trials, and fear of being judged as HIV-positive were perceived as barriers. Conclusions These findings provided insights into the considerations and perceptions of Black MSM and TW towards HIV vaccine trials. However, further studies are needed to delineate the complex mechanisms underlying the decision-making process and establish approaches to increase study participation in this population.
Collapse
Affiliation(s)
- Sharise Richardson
- University of Miami School of Medicine, Miami, Florida, United States of America
| | - Pich Seekaew
- Department of Prevention, Thai Red Cross AIDS Research Center, Bangkok, Thailand
- * E-mail:
| | - Beryl Koblin
- Laboratory of Infectious Disease Prevention, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| | - Tasha Vazquez
- Laboratory of Infectious Disease Prevention, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| | - Vijay Nandi
- Laboratory of Infectious Disease Prevention, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| | - Hong-Van Tieu
- Laboratory of Infectious Disease Prevention, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| |
Collapse
|
6
|
Induction of Heterologous Tier 2 HIV-1-Neutralizing and Cross-Reactive V1/V2-Specific Antibodies in Rabbits by Prime-Boost Immunization. J Virol 2016; 90:8644-60. [PMID: 27440894 DOI: 10.1128/jvi.00853-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/13/2016] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED Poxvirus prime-protein boost used in the RV144 trial remains the only immunization strategy shown to elicit a modest level of protection against HIV-1 acquisition in humans. Although neutralizing antibodies (NAb) were generated, they were against sensitive viruses, not the more resistant "tier 2" isolates that dominate circulating strains. Instead, risk reduction correlated with antibodies recognizing epitopes in the V1/V2 region of HIV-1 envelope glycoprotein (Env). Here, we examined whether tier 2 virus NAb and V1/V2-specific non-NAb could be elicited by a poxvirus prime-gp120 boost strategy in a rabbit model. We studied two clade B Envs that differ in multiple parameters, including tissue origin, neutralization sensitivity, and presence of the N197 (N7) glycan that was previously shown to modulate the exposure of conserved epitopes on Env. We demonstrate that immunized rabbits generated cross-reactive neutralizing activities against >50% of the tier 2 global HIV-1 isolates tested. Some of these activities were directed against the CD4 binding site (CD4bs). These rabbits also generated antibodies that recognized protein scaffolds bearing V1/V2 sequences from diverse HIV-1 isolates and mediated antibody-dependent cellular cytotoxicity. However, there are subtle differences in the specificities and the response rates of V1/V2-specific antibodies between animals immunized with different Envs, with or without the N7 glycan. These findings demonstrate that antibody responses that have been correlated with protection against HIV-1 acquisition in humans can be elicited in a preclinical model by a poxvirus prime-gp120 boost strategy and that improvements may be achievable by optimizing the nature of the priming and boosting immunogens. IMPORTANCE The only vaccine approach shown to elicit any protective efficacy against HIV-1 acquisition is based on a poxvirus prime-protein boost regimen (RV144 Thai trial). Reduction of risk was associated with nonneutralizing antibodies targeting the V1/V2 loops of the envelope protein gp120. However, the modest efficacy (31.2%) achieved in this trial highlights the need to examine approaches and factors that may improve vaccine-induced responses, including cross-reactive neutralizing activities. We show here that rabbits immunized with a novel recombinant vaccinia virus prime-gp120 protein boost regimen generated antibodies that recognize protein scaffolds bearing V1/V2 sequences from diverse HIV-1 isolates and mediated antibody-dependent cellular cytotoxicity. Importantly, immunized rabbits also showed neutralizing activities against heterologous tier 2 HIV-1 isolates. These findings may inform the design of prime-boost immunization approaches and help improve the protective efficacy of candidate HIV-1 vaccines.
Collapse
|
7
|
Fernández-Escobar M, Baldanta S, Reyburn H, Guerra S. Use of functional genomics to understand replication deficient poxvirus-host interactions. Virus Res 2016; 216:1-15. [PMID: 26519757 DOI: 10.1016/j.virusres.2015.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/06/2015] [Accepted: 10/07/2015] [Indexed: 10/22/2022]
Abstract
High-throughput genomics technologies are currently being used to study a wide variety of viral infections, providing insight into which cellular genes and pathways are regulated after infection, and how these changes are related, or not, to efficient elimination of the pathogen. This article will focus on how gene expression studies of infections with non-replicative poxviruses currently used as vaccine vectors provide a global perspective of the molecular events associated with the viral infection in human cells. These high-throughput genomics approaches have the potential to lead to the identification of specific new properties of the viral vector or novel cellular targets that may aid in the development of more effective pox-derived vaccines and antivirals.
Collapse
Affiliation(s)
- Mercedes Fernández-Escobar
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma, E-28029 Madrid, Spain
| | - Sara Baldanta
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma, E-28029 Madrid, Spain
| | - Hugh Reyburn
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Campus Universidad Autónoma, E-28049 Madrid, Spain
| | - Susana Guerra
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma, E-28029 Madrid, Spain.
| |
Collapse
|
8
|
Conserved Role of an N-Linked Glycan on the Surface Antigen of Human Immunodeficiency Virus Type 1 Modulating Virus Sensitivity to Broadly Neutralizing Antibodies against the Receptor and Coreceptor Binding Sites. J Virol 2015; 90:829-41. [PMID: 26512079 DOI: 10.1128/jvi.02321-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/21/2015] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED HIV-1 establishes persistent infection in part due to its ability to evade host immune responses. Occlusion by glycans contributes to masking conserved sites that are targets for some broadly neutralizing antibodies (bNAbs). Previous work has shown that removal of a highly conserved potential N-linked glycan (PNLG) site at amino acid residue 197 (N7) on the surface antigen gp120 of HIV-1 increases neutralization sensitivity of the mutant virus to CD4 binding site (CD4bs)-directed antibodies compared to its wild-type (WT) counterpart. However, it is not clear if the role of the N7 glycan is conserved among diverse HIV-1 isolates and if other glycans in the conserved regions of HIV-1 Env display similar functions. In this work, we examined the role of PNLGs in the conserved region of HIV-1 Env, particularly the role of the N7 glycan in a panel of HIV-1 strains representing different clades, tissue origins, coreceptor usages, and neutralization sensitivities. We demonstrate that the absence of the N7 glycan increases the sensitivity of diverse HIV-1 isolates to CD4bs- and V3 loop-directed antibodies, indicating that the N7 glycan plays a conserved role masking these conserved epitopes. However, the effect of the N7 glycan on virus sensitivity to neutralizing antibodies directed against the V2 loop epitope is isolate dependent. These findings indicate that the N7 glycan plays an important and conserved role modulating the structure, stability, or accessibility of bNAb epitopes in the CD4bs and coreceptor binding region, thus representing a potential target for the design of immunogens and therapeutics. IMPORTANCE N-linked glycans on the HIV-1 envelope protein have been postulated to contribute to viral escape from host immune responses. However, the role of specific glycans in the conserved regions of HIV-1 Env in modulating epitope recognition by broadly neutralizing antibodies has not been well defined. We show here that a single N-linked glycan plays a unique and conserved role among conserved glycans on HIV-1 gp120 in modulating the exposure or the stability of the receptor and coreceptor binding site without affecting the integrity of the Env in mediating viral infection or the ability of the mutant gp120 to bind to CD4. The observation that the antigenicity of the receptor and coreceptor binding sites can be modulated by a single glycan indicates that select glycan modification offers a potential strategy for the design of HIV-1 vaccine candidates.
Collapse
|
9
|
Priming with a simplified intradermal HIV-1 DNA vaccine regimen followed by boosting with recombinant HIV-1 MVA vaccine is safe and immunogenic: a phase IIa randomized clinical trial. PLoS One 2015; 10:e0119629. [PMID: 25875843 PMCID: PMC4398367 DOI: 10.1371/journal.pone.0119629] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 01/05/2015] [Indexed: 11/24/2022] Open
Abstract
Background Intradermal priming with HIV-1 DNA plasmids followed by HIV-1MVA boosting induces strong and broad cellular and humoral immune responses. In our previous HIVIS-03 trial, we used 5 injections with 2 pools of HIV-DNA at separate sites for each priming immunization. The present study explores whether HIV-DNA priming can be simplified by reducing the number of DNA injections and administration of combined versus separated plasmid pools. Methods In this phase IIa, randomized trial, priming was performed using 5 injections of HIV-DNA, 1000 μg total dose, (3 Env and 2 Gag encoding plasmids) compared to two “simplified” regimens of 2 injections of HIV-DNA, 600 μg total dose, of Env- and Gag-encoding plasmid pools with each pool either administered separately or combined. HIV-DNA immunizations were given intradermally at weeks 0, 4, and 12. Boosting was performed intramuscularly with 108 pfu HIV-MVA at weeks 30 and 46. Results 129 healthy Tanzanian participants were enrolled. There were no differences in adverse events between the groups. The proportion of IFN-γ ELISpot responders to Gag and/or Env peptides after the second HIV-MVA boost did not differ significantly between the groups primed with 2 injections of combined HIV-DNA pools, 2 injections with separated pools, and 5 injections with separated pools (90%, 97% and 97%). There were no significant differences in the magnitude of Gag and/or Env IFN-γ ELISpot responses, in CD4+ and CD8+ T cell responses measured as IFN-γ/IL-2 production by intracellular cytokine staining (ICS) or in response rates and median titers for binding antibodies to Env gp160 between study groups. Conclusions A simplified intradermal vaccination regimen with 2 injections of a total of 600 μg with combined HIV-DNA plasmids primed cellular responses as efficiently as the standard regimen of 5 injections of a total of 1000 μg with separated plasmid pools after boosting twice with HIV-MVA. Trial Registration World Health Organization International Clinical Trials Registry Platform PACTR2010050002122368
Collapse
|
10
|
Du S, Wang Y, Liu C, Wang M, Zhu Y, Tan P, Ren D, Li X, Tian M, Yin R, Li C, Jin N. Immunogenicity and virulence of attenuated vaccinia virus Tian Tan encoding HIV-1 muti-epitope genes, p24 and cholera toxin B subunit in mice. J Virol Methods 2015; 219:1-9. [PMID: 25796990 DOI: 10.1016/j.jviromet.2015.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 02/16/2015] [Accepted: 03/12/2015] [Indexed: 11/19/2022]
Abstract
No effective prophylactic or therapeutic vaccine against HIV-1 in humans is currently available. This study analyzes the immunogenicity and safety of a recombinant attenuated vaccinia virus. A chimeric gene of HIV-1 multi-epitope genes containing CpG ODN and cholera toxin B subunit (CTB) was inserted into Chinese vaccinia virus Tian Tan strain (VTT) mutant strain. The recombinant virus rddVTT(-CCMp24) was assessed for immunogenicity and safety in mice. Results showed that the protein CCMp24 was expressed stably in BHK-21 infected with rddVTT(-CCMp24). And the recombinant virus induced the production of HIV-1 p24 specific immunoglobulin G (IgG), IL-2 and IL-4. The recombinant vaccine induced γ-interferon secretion against HIV peptides, and elicited a certain levels of immunological memory. Results indicated that the recombinant virus had certain immunogenicity to HIV-1. Additionally, the virulence of the recombinant virus was been attenuated in vivo of mice compared with wild type VTT (wtVTT), and the introduction of CTB and HIV Mp24 did not alter the infectivity and virulence of defective vaccinia virus.
Collapse
Affiliation(s)
- Shouwen Du
- College of Veterinary Medicine, Jilin University, Changchun 130062, China; Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, AMMS, Changchun 130122, China
| | - Yuhang Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, AMMS, Changchun 130122, China; Changchun Bioxun Biotech Co., Ltd., Changchun 130122, China
| | - Cunxia Liu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, AMMS, Changchun 130122, China
| | - Maopeng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, AMMS, Changchun 130122, China
| | - Yilong Zhu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, AMMS, Changchun 130122, China
| | - Peng Tan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, AMMS, Changchun 130122, China
| | - Dayong Ren
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, AMMS, Changchun 130122, China
| | - Xiao Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, AMMS, Changchun 130122, China
| | - Mingyao Tian
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, AMMS, Changchun 130122, China
| | - Ronglan Yin
- Academy of Animal Science and Veterinary Medicine in Jilin Province, Changchun 130062, China
| | - Chang Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, AMMS, Changchun 130122, China.
| | - Ningyi Jin
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, AMMS, Changchun 130122, China.
| |
Collapse
|
11
|
Wang HW, Zhu B, Hou LJ, Lu GJ, Jiao LY, Shen BS. An infectious molecular clone in early infection with HIV-1 subtype CRF01_AE strains: construction and biological properties. Mol Biol Rep 2015; 42:329-36. [PMID: 25374426 DOI: 10.1007/s11033-014-3754-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 09/16/2014] [Indexed: 10/24/2022]
Abstract
Our aim was to construct infectious molecular clones of the CRF01_AE subtype in the primary infection phase of an acute HIV-1 infections in people screened from MSM populations, as well as continue preliminary research on this virus and its biological properties pertaining to deriving viruses. Walking sequencing was performed on a half-molecular clone with target fragment inserted. Western Blot was used to detect protein expression in HIV-1 infected 293T cells. Sequence analysis of HIV-1 genomic clones showed full-length HIV-1 genomic clones without frame shift mutation or termination codon. HIV-1 p24 antigens generated from 08-IMC were slightly greater than those from infectious molecular clones pNL4-3 3 and 93JP-NH1, but without statistical difference (all P > 0.05). The relative light units of 08-ISO was higher than those of 08-IMC, but no significant difference was observed (all P > 0.05). 08-IMC-driven virus was linked to lower replication kinetics. The replication levels of pNL4-3 and 08-ISO were significantly higher than the 08-IMC replication level but close to NH1 replication level (all P < 0.05). 08-IMC could infect the cells expressing CCR5 and be replicated in the CCR5-expressing cells with a positive percentage of 24.3 %, 08-ISO may use CCR5-using macrophage-tropic isolates as coreceptor, while pNL4-3 viruses with T cell tropisms utilize the CXCR4 co-receptor. Our study showed that the infectious molecular clones of viruses in the primary infection phase have a close relationship with the major prevalent CRF01_AE strains and have high homology with the viral RNA in plasma.
Collapse
Affiliation(s)
- Hong-Wei Wang
- The First Department of Infectious, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, China
| | | | | | | | | | | |
Collapse
|
12
|
Lema D, Garcia A, De Sanctis JB. HIV vaccines: a brief overview. Scand J Immunol 2014; 80:1-11. [PMID: 24813074 DOI: 10.1111/sji.12184] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 04/22/2014] [Indexed: 02/06/2023]
Abstract
The scope of the article is to review the different approaches that have been used for HIV vaccines. The review is based on articles retrieved by PubMed and clinical trials from 1990 up to date. The article discusses virus complexity, protective and non-protective immune responses against the virus, and the most important approaches for HIV vaccine development.
Collapse
Affiliation(s)
- D Lema
- Instituto de Inmunología, Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela
| | | | | |
Collapse
|
13
|
Transcriptional and posttranscriptional regulation of cytokine gene expression in HIV-1 antigen-specific CD8+ T cells that mediate virus inhibition. J Virol 2014; 88:9514-28. [PMID: 24899193 DOI: 10.1128/jvi.00802-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED The ability of CD8+ T cells to effectively limit HIV-1 replication and block HIV-1 acquisition is determined by the capacity to rapidly respond to HIV-1 antigens. Understanding both the functional properties and regulation of an effective CD8+ response would enable better evaluation of T cell-directed vaccine strategies and may inform the design of new therapies. We assessed the antigen specificity, cytokine signature, and mechanisms that regulate antiviral gene expression in CD8+ T cells from a cohort of HIV-1-infected virus controllers (VCs) (<5,000 HIV-1 RNA copies/ml and CD4+ lymphocyte counts of >400 cells/μl) capable of soluble inhibition of HIV-1. Gag p24 and Nef CD8+ T cell-specific soluble virus inhibition was common among the VCs and correlated with substantial increases in the abundance of mRNAs encoding the antiviral cytokines macrophage inflammatory proteins MIP-1α, MIP-1αP (CCL3L1), and MIP-1β; granulocyte-macrophage colony-stimulating factor (GM-CSF); lymphotactin (XCL1); tumor necrosis factor receptor superfamily member 9 (TNFRSF9); and gamma interferon (IFN-γ). The induction of several of these mRNAs was driven through a coordinated response of both increased transcription and stabilization of mRNA, which together accounted for the observed increase in mRNA abundance. This coordinated response allows rapid and robust induction of mRNA messages that can enhance the CD8+ T cells' ability to inhibit virus upon antigen encounter. IMPORTANCE We show that mRNA stability, in addition to transcription, is key in regulating the direct anti-HIV-1 function of antigen-specific memory CD8+ T cells. Regulation at the level of RNA helps enable rapid recall of memory CD8+ T cell effector functions for HIV-1 inhibition. By uncovering and understanding the mechanisms employed by CD8+ T cell subsets with antigen-specific anti-HIV-1 activity, we can identify new strategies for comprehensive identification of other important antiviral genes. This will, in turn, enhance our ability to inhibit virus replication by informing both cure strategies and HIV-1 vaccine designs that aim to reduce transmission and can aid in blocking HIV-1 acquisition.
Collapse
|
14
|
Excler JL, Robb ML, Kim JH. HIV-1 vaccines: challenges and new perspectives. Hum Vaccin Immunother 2014; 10:1734-46. [PMID: 24637946 DOI: 10.4161/hv.28462] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The development of a safe and effective preventive HIV-1 vaccine remains a public health priority. Despite scientific difficulties and disappointing results, HIV-1 vaccine clinical development has, for the first time, established proof-of-concept efficacy against HIV-1 acquisition and identified vaccine-associated immune correlates of risk. The correlate of risk analysis showed that IgG antibodies against the gp120 V2 loop correlated with decreased risk of HIV infection, while Env-specific IgA directly correlated with increased risk. The development of vaccine strategies such as improved envelope proteins formulated with potent adjuvants and DNA and vectors expressing mosaics, or conserved sequences, capable of eliciting greater breadth and depth of potentially relevant immune responses including neutralizing and non-neutralizing antibodies, CD4+ and CD8+ cell-mediated immune responses, mucosal immune responses, and immunological memory, is now proceeding quickly. Additional human efficacy trials combined with other prevention modalities along with sustained funding and international collaboration remain key to bring an HIV-1 vaccine to licensure.
Collapse
Affiliation(s)
- Jean-Louis Excler
- U.S. Military HIV Research Program; Division of Retrovirology; Walter Reed Army Institute of Research; Bethesda, MD USA; Henry M. Jackson Foundation for the Advancement of Military Medicine; Bethesda, MD USA
| | - Merlin L Robb
- U.S. Military HIV Research Program; Division of Retrovirology; Walter Reed Army Institute of Research; Bethesda, MD USA; Henry M. Jackson Foundation for the Advancement of Military Medicine; Bethesda, MD USA
| | - Jerome H Kim
- U.S. Military HIV Research Program; Division of Retrovirology; Walter Reed Army Institute of Research; Bethesda, MD USA
| |
Collapse
|
15
|
Lindh I, Bråve A, Hallengärd D, Hadad R, Kalbina I, Strid Å, Andersson S. Oral delivery of plant-derived HIV-1 p24 antigen in low doses shows a superior priming effect in mice compared to high doses. Vaccine 2014; 32:2288-93. [PMID: 24631072 DOI: 10.1016/j.vaccine.2014.02.073] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 02/16/2014] [Accepted: 02/26/2014] [Indexed: 02/04/2023]
Abstract
During early infection with human immunodeficiency virus type 1 (HIV-1), there is a rapid depletion of CD4(+) T-cells in the gut-associated lymphoid tissue (GALT) in the gastrointestinal tract. Therefore, immediate protection at these surfaces is of high priority for the development of an HIV-1 vaccine. Thus, transgenic plants expressing HIV-1 antigens, which are exposed to immune competent cells in the GALT during oral administration, can be interesting as potential vaccine candidates. In the present study, we used two HIV-1 p24 antigen-expressing transgenic plant systems, Arabidopsis thaliana and Daucus carota, in oral immunization experiments. Both transgenic plant systems showed a priming effect in mice and induced humoral immune responses, which could be detected as anti-p24-specific IgG in sera after an intramuscular p24 protein boost. Dose-dependent antigen analyses using transgenic A. thaliana indicated that low p24 antigen doses were superior to high p24 antigen doses.
Collapse
Affiliation(s)
- Ingrid Lindh
- Örebro Life Science Center, Örebro University, SE-70182 Örebro, Sweden; School of Science and Technology, Örebro University, SE-70182 Örebro, Sweden
| | - Andreas Bråve
- Swedish Institute for Communicable Disease Control (SMI), SE-17182 Stockholm, Sweden
| | - David Hallengärd
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, SE-17177 Stockholm, Sweden
| | - Ronza Hadad
- Örebro Life Science Center, Örebro University, SE-70182 Örebro, Sweden; School of Science and Technology, Örebro University, SE-70182 Örebro, Sweden
| | - Irina Kalbina
- Örebro Life Science Center, Örebro University, SE-70182 Örebro, Sweden; School of Science and Technology, Örebro University, SE-70182 Örebro, Sweden
| | - Åke Strid
- Örebro Life Science Center, Örebro University, SE-70182 Örebro, Sweden; School of Science and Technology, Örebro University, SE-70182 Örebro, Sweden
| | - Sören Andersson
- Örebro Life Science Center, Örebro University, SE-70182 Örebro, Sweden; Department of Laboratory Medicine, Örebro University Hospital, SE-70185 Örebro, Sweden.
| |
Collapse
|
16
|
Accelerating clinical development of HIV vaccine strategies: methodological challenges and considerations in constructing an optimised multi-arm phase I/II trial design. Trials 2014; 15:68. [PMID: 24571662 PMCID: PMC3941694 DOI: 10.1186/1745-6215-15-68] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 02/05/2014] [Indexed: 11/10/2022] Open
Abstract
Background Many candidate vaccine strategies against human immunodeficiency virus (HIV) infection are under study, but their clinical development is lengthy and iterative. To accelerate HIV vaccine development optimised trial designs are needed. We propose a randomised multi-arm phase I/II design for early stage development of several vaccine strategies, aiming at rapidly discarding those that are unsafe or non-immunogenic. Methods We explored early stage designs to evaluate both the safety and the immunogenicity of four heterologous prime-boost HIV vaccine strategies in parallel. One of the vaccines used as a prime and boost in the different strategies (vaccine 1) has yet to be tested in humans, thus requiring a phase I safety evaluation. However, its toxicity risk is considered minimal based on data from similar vaccines. We newly adapted a randomised phase II trial by integrating an early safety decision rule, emulating that of a phase I study. We evaluated the operating characteristics of the proposed design in simulation studies with either a fixed-sample frequentist or a continuous Bayesian safety decision rule and projected timelines for the trial. Results We propose a randomised four-arm phase I/II design with two independent binary endpoints for safety and immunogenicity. Immunogenicity evaluation at trial end is based on a single-stage Fleming design per arm, comparing the observed proportion of responders in an immunogenicity screening assay to an unacceptably low proportion, without direct comparisons between arms. Randomisation limits heterogeneity in volunteer characteristics between arms. To avoid exposure of additional participants to an unsafe vaccine during the vaccine boost phase, an early safety decision rule is imposed on the arm starting with vaccine 1 injections. In simulations of the design with either decision rule, the risks of erroneous conclusions were controlled <15%. Flexibility in trial conduct is greater with the continuous Bayesian rule. A 12-month gain in timelines is expected by this optimised design. Other existing designs such as bivariate or seamless phase I/II designs did not offer a clear-cut alternative. Conclusions By combining phase I and phase II evaluations in a multi-arm trial, the proposed optimised design allows for accelerating early stage clinical development of HIV vaccine strategies.
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW With multiple HIV vaccine candidates suitable for efficacy evaluation in a rapidly changing HIV prevention landscape, innovative HIV vaccine trial design research is much needed to optimally utilize resources by building on lessons learned from past HIV vaccine efficacy trials. RECENT FINDINGS Several recent articles propose new vaccine efficacy trial design strategies tailored to the emerging needs in HIV vaccine evaluation. These include a focus on efficacy evaluation proximal to the vaccination series; more intensive interim monitoring for potential harm, nonefficacy and high efficacy of the vaccine; simultaneous evaluation of multiple vaccine regimens with a shared placebo group; designs that include pilot immunogenicity studies of putative immune correlates to expedite their evaluation; as well as designs tailored to evaluate vaccine efficacy in the context of partially effective nonvaccine prevention modalities. SUMMARY A more rapid evaluation of multiple vaccine candidates is possible. Weaker vaccines can be weeded out quickly. Pilot studies can be done during the trial to prepare for a timely immune correlates assessment. Evidence that emerges regarding the efficacy of nonvaccine prevention modalities will have important implications for future trial designs.
Collapse
|
18
|
Hanke T. Conserved immunogens in prime-boost strategies for the next-generation HIV-1 vaccines. Expert Opin Biol Ther 2014; 14:601-16. [PMID: 24490585 DOI: 10.1517/14712598.2014.885946] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Effective vaccines are the best solution for stopping the spread of HIV/AIDS and other infectious diseases. Their development and in-depth understanding of pathogen-host interactions rely on technological advances. AREAS COVERED Rational vaccine development can be effectively approached by conceptual separation of, on one hand, design of immunogens from improving their presentation to the immune system and, on the other, induction of antibodies from induction of killer CD8(+) T cells. The biggest roadblock for many vaccines is the pathogens' variability. This is best tackled by focusing both antibodies and T cells on the functionally most conserved regions of proteins common to many variants, including escape mutants. For vectored vaccines, these 'universal' subunit immunogens are most efficiently delivered using heterologous prime-boost regimens, which can be further optimised by adjuvantation and route of delivery. EXPERT OPINION Development of vaccines against human diseases has many features in common. Acceleration of vaccine discovery depends on basic research and new technologies. Novel strategies should be safely, but rapidly tested in humans. While out-of-the-box thinking is important, vaccine success largely depends on incremental advances best achieved through small, systematic, iterative clinical studies. Failures are inevitable, but the end rewards are huge. The future will be exciting.
Collapse
Affiliation(s)
- Tomáš Hanke
- The Jenner Institute, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ , UK
| |
Collapse
|
19
|
Abstract
A global human immunodeficiency virus-1 (HIV-1) vaccine will have to elicit immune responses capable of providing protection against a tremendous diversity of HIV-1 variants. In this review, we first describe the current state of the HIV-1 vaccine field, outlining the immune responses that are desired in a global HIV-1 vaccine. In particular, we emphasize the likely importance of Env-specific neutralizing and non-neutralizing antibodies for protection against HIV-1 acquisition and the likely importance of effector Gag-specific T lymphocytes for virologic control. We then highlight four strategies for developing a global HIV-1 vaccine. The first approach is to design specific vaccines for each geographic region that include antigens tailor-made to match local circulating HIV-1 strains. The second approach is to design a vaccine that will elicit Env-specific antibodies capable of broadly neutralizing all HIV-1 subtypes. The third approach is to design a vaccine that will elicit cellular immune responses that are focused on highly conserved HIV-1 sequences. The fourth approach is to design a vaccine to elicit highly diverse HIV-1-specific responses. Finally, we emphasize the importance of conducting clinical efficacy trials as the only way to determine which strategies will provide optimal protection against HIV-1 in humans.
Collapse
Affiliation(s)
- Kathryn E Stephenson
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | |
Collapse
|
20
|
Georgiev IS, Rudicell RS, Saunders KO, Shi W, Kirys T, McKee K, O'Dell S, Chuang GY, Yang ZY, Ofek G, Connors M, Mascola JR, Nabel GJ, Kwong PD. Antibodies VRC01 and 10E8 neutralize HIV-1 with high breadth and potency even with Ig-framework regions substantially reverted to germline. THE JOURNAL OF IMMUNOLOGY 2014; 192:1100-1106. [PMID: 24391217 DOI: 10.4049/jimmunol.1302515] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abs capable of effectively neutralizing HIV-1 generally exhibit very high levels of somatic hypermutation, both in their CDR and framework-variable regions. In many cases, full reversion of the Ab-framework mutations back to germline results in substantial to complete loss of HIV-1-neutralizing activity. However, it has been unclear whether all or most of the observed framework mutations would be necessary or whether a small subset of these mutations might be sufficient for broad and potent neutralization. To address this issue and to explore the dependence of neutralization activity on the level of somatic hypermutation in the Ab framework, we applied a computationally guided framework-reversion procedure to two broadly neutralizing anti-HIV-1 Abs, VRC01 and 10E8, which target two different HIV-1 sites of vulnerability. Ab variants in which up to 78% (38 of 49 for VRC01) and 89% (31 of 35 for 10E8) of framework mutations were reverted to germline retained breadth and potency within 3-fold of the mature Abs when evaluated on a panel of 21 diverse viral strains. Further, a VRC01 variant with an ∼50% framework-reverted L chain showed a 2-fold improvement in potency over the mature Ab. Our results indicate that only a small number of Ab-framework mutations may be sufficient for high breadth and potency of HIV-1 neutralization by Abs VRC01 and 10E8. Partial framework revertants of HIV-1 broadly neutralizing Abs may present advantages over their highly mutated counterparts as Ab therapeutics and as targets for immunogen design.
Collapse
Affiliation(s)
- Ivelin S Georgiev
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Rebecca S Rudicell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kevin O Saunders
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Tatsiana Kirys
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Zhi-Yong Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Gilad Ofek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Mark Connors
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Gary J Nabel
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
21
|
Hefferon KL. Broadly neutralizing antibodies and the promise of universal vaccines: where are we now? Immunotherapy 2014; 6:51-7. [DOI: 10.2217/imt.13.150] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent research has provided strong support for the utility of broadly neutralizing antibodies generated against viruses, which inherently possess a high degree of antigenic variability (such as influenza virus or HIV) as a feasible means to prevent infection. Many of these antibodies share the ability to bind to highly conserved regions within the stem of the virus ‘spike’ or surface glycoprotein, in such a way that they interfere with virus entry, including membrane fusion. As a result, broadly neutralizing antibodies could be supplied to patients as a form of passive immunotherapy, as well as play a role in the design of new ‘universal’ vaccines and antiviral agents. The following article describes the most recent innovations in this exciting field.
Collapse
Affiliation(s)
- Kathleen L Hefferon
- University of Toronto, Toronto, Ontario, Canada and Cornell University, Ithaca, NY, USA
| |
Collapse
|
22
|
Immunopathogenesis of simian immunodeficiency virus infection in nonhuman primates. Curr Opin HIV AIDS 2013; 8:273-9. [PMID: 23615117 DOI: 10.1097/coh.0b013e328361cf5b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Soon after the discovery of HIV-infected humans, rhesus macaques in a colony at the New England Primate Research Center showed similar signs of a progressive immune suppression. The discovery of the simian immunodeficiency virus (SIV)-associated disease opened the door to study an AIDS-like illness in nonhuman primates (NHP). Even after 3 decades, this animal model remains an invaluable tool to provide a greater insight into HIV immunopathogenesis. In this review, recent progress in deciphering pathways of immunopathogenesis in SIV-infected NHP is discussed. RECENT FINDINGS The immense diversity of mutations in SIV stocks prepared at different laboratories has recently been realized. The massive expansion of the enteric virome is a key finding in SIV-induced immunopathogenesis. Defining the function of host restriction factors, like the recently discovered SAMHD1, helps to evaluate the impact of the innate immune responses on virus replication. Utilization of pyrosequencing and defining molecular mechanisms of major histocompatibility complex (MHC) class I restriction helps to understand how the virus evades CD8 T-cell responses. The definition of MHC class I molecules in different NHP species provides new animal models to study SIV immunopathogenesis. T follicular helper cells have gained major interest in characterizing humoral immune responses in SIV infection and AIDS vaccine strategies. The ability of natural hosts to remain disease-free despite ongoing replication of SIV is continuing to puzzle the field. SUMMARY The HIV research field continues to realize the immense complexity of the host virus interaction. NHP present an invaluable tool to make progress towards an effective AIDS vaccine.
Collapse
|
23
|
Virnik K, Hockenbury M, Ni Y, Beren J, Pavlakis GN, Felber BK, Berkower I. Live attenuated rubella vectors expressing SIV and HIV vaccine antigens replicate and elicit durable immune responses in rhesus macaques. Retrovirology 2013; 10:99. [PMID: 24041113 PMCID: PMC3849444 DOI: 10.1186/1742-4690-10-99] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 08/22/2013] [Indexed: 01/13/2023] Open
Abstract
Background Live attenuated viruses are among our most potent and effective vaccines. For human immunodeficiency virus, however, a live attenuated strain could present substantial safety concerns. We have used the live attenuated rubella vaccine strain RA27/3 as a vector to express SIV and HIV vaccine antigens because its safety and immunogenicity have been demonstrated in millions of children. One dose protects for life against rubella infection. In previous studies, rubella vectors replicated to high titers in cell culture while stably expressing SIV and HIV antigens. Their viability in vivo, however, as well as immunogenicity and antibody persistence, were unknown. Results This paper reports the first successful trial of rubella vectors in rhesus macaques, in combination with DNA vaccines in a prime and boost strategy. The vectors grew robustly in vivo, and the protein inserts were highly immunogenic. Antibody titers elicited by the SIV Gag vector were greater than or equal to those elicited by natural SIV infection. The antibodies were long lasting, and they were boosted by a second dose of replication-competent rubella vectors given six months later, indicating the induction of memory B cells. Conclusions Rubella vectors can serve as a vaccine platform for safe delivery and expression of SIV and HIV antigens. By presenting these antigens in the context of an acute infection, at a high level and for a prolonged duration, these vectors can stimulate a strong and persistent immune response, including maturation of memory B cells. Rhesus macaques will provide an ideal animal model for demonstrating immunogenicity of novel vectors and protection against SIV or SHIV challenge.
Collapse
Affiliation(s)
- Konstantin Virnik
- Lab of Immunoregulation, Division of Viral Products, Office of Vaccines, Center for Biologics, FDA, NIH Campus, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Translational research insights from completed HIV vaccine efficacy trials. J Acquir Immune Defic Syndr 2013; 63 Suppl 2:S150-4. [PMID: 23764628 DOI: 10.1097/qai.0b013e31829a3985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The development of a safe and effective HIV vaccine remains a challenge. The modest efficacy seen in the RV144 vaccine trial represented an important milestone for the field. Results from all efficacy studies done to date have generated new information, which has advanced the HIV vaccine field in important ways. In this article, we review the translational research insights from the vaccine efficacy trials completed and fully analyzed to date. We also describe the recent advances in the search for broadly neutralizing antibodies and discuss potential approaches to circumvent the challenge posed by the enormous diversity of HIV-1. The experience from the past 5 years highlights the importance of conducting efficacy studies that continue to move us closer toward the goal of a safe, effective, durable, and universal HIV preventive vaccine.
Collapse
|
25
|
Chung J, DiGiusto DL, Rossi JJ. Combinatorial RNA-based gene therapy for the treatment of HIV/AIDS. Expert Opin Biol Ther 2013; 13:437-45. [PMID: 23394377 DOI: 10.1517/14712598.2013.761968] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION HIV/AIDS continues to be a worldwide health problem and viral eradication has been an elusive goal. HIV+ patients are currently treated with combination antiretroviral therapy (cART) which is not curative. For many patients, cART is inaccessible, intolerable or unaffordable. Therefore, a new class of therapeutics for HIV is required to overcome these limitations. Cell and gene therapy for HIV has been proposed as a way to provide a functional cure for HIV in the form of a virus/infection resistant immune system. AREAS COVERED In this review, the authors describe the standard therapy for HIV/AIDS, its limitations, current areas of investigation and the potential of hematopoietic stem cells modified with anti-HIV RNAs as a means to affect a functional cure for HIV. EXPERT OPINION Cell and gene therapy for HIV/AIDS is a promising alternative to antiviral drug therapy and may provide a functional cure. In order to show clinical benefit, multiple mechanisms of inhibition of HIV entry and lifecycle are likely to be required. Among the most promising antiviral strategies is the use of transgenic RNA molecules that provide protection from HIV infection. When these molecules are delivered as gene-modified hematopoietic stem and progenitor cells, long-term repopulation of the patient's immune system with gene-modified progeny has been observed.
Collapse
Affiliation(s)
- Janet Chung
- Beckman Research Institute of City of Hope, Department of Molecular and Cell Biology, 1500 East Duarte Road, CA 91010, USA
| | | | | |
Collapse
|
26
|
Evolutionarily conserved epitopes on human immunodeficiency virus type 1 (HIV-1) and feline immunodeficiency virus reverse transcriptases detected by HIV-1-infected subjects. J Virol 2013; 87:10004-15. [PMID: 23824804 DOI: 10.1128/jvi.00359-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anti-human immunodeficiency virus (HIV) cytotoxic T lymphocyte (CTL)-associated epitopes, evolutionarily conserved on both HIV type 1 (HIV-1) and feline immunodeficiency virus (FIV) reverse transcriptases (RT), were identified using gamma interferon (IFN-γ) enzyme-linked immunosorbent spot (ELISpot) and carboxyfluorescein diacetate succinimide ester (CFSE) proliferation assays followed by CTL-associated cytotoxin analysis. The peripheral blood mononuclear cells (PBMC) or T cells from HIV-1-seropositive (HIV(+)) subjects were stimulated with overlapping RT peptide pools. The PBMC from the HIV(+) subjects had more robust IFN-γ responses to the HIV-1 peptide pools than to the FIV peptide pools, except for peptide-pool F3. In contrast, much higher and more frequent CD8(+) T-cell proliferation responses were observed with the FIV peptide pools than with the HIV peptide pools. HIV-1-seronegative subjects had no proliferation or IFN-γ responses to the HIV and FIV peptide pools. A total of 24% (40 of 166) of the IFN-γ responses to HIV pools and 43% (23 of 53) of the CD8(+) T-cell proliferation responses also correlated to responses to their counterpart FIV pools. Thus, more evolutionarily conserved functional epitopes were identified by T-cell proliferation than by IFN-γ responses. In the HIV(+) subjects, peptide-pool F3, but not the HIV H3 counterpart, induced the most IFN-γ and proliferation responses. These reactions to peptide-pool F3 were highly reproducible and persisted over the 1 to 2 years of testing. All five individual peptides and epitopes of peptide-pool F3 induced IFN-γ and/or proliferation responses in addition to inducing CTL-associated cytotoxin responses (perforin, granzyme A, granzyme B). The epitopes inducing polyfunctional T-cell activities were highly conserved among human, simian, feline, and ungulate lentiviruses, which indicated that these epitopes are evolutionarily conserved. These results suggest that FIV peptides could be used in an HIV-1 vaccine.
Collapse
|
27
|
Liu C, Du S, Li C, Wang Y, Wang M, Li Y, Yin R, Li X, Ren D, Qin Y, Ren J, Jin N. Immunogenicity analysis following human immunodeficiency virus recombinant DNA and recombinant vaccinia virus Tian Tan prime-boost immunization. SCIENCE CHINA. LIFE SCIENCES 2013; 56:531-540. [PMID: 23645103 DOI: 10.1007/s11427-013-4484-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 04/13/2013] [Indexed: 10/26/2022]
Abstract
This study assessed and compared the immunogenicity of various immunization strategies in mice using combinations of recombinant DNA (pCCMp24) and recombinant attenuated vaccinia virus Tian Tan (rddVTT-CCMp24). Intramuscular immunization was performed on days 0 (prime) and 21 (boost). The immunogenicity of the vaccine schedules was determined by measuring human immunodeficiency virus (HIV)-specific binding antibody levels and cytokine (interleukin-2 and interleukin-4) concentrations in peripheral blood, analyzing lymphocyte proliferation capacity against HIV epitopes and CD4(+)/CD8(+) cell ratio, and monitoring interferon-gamma levels at different times post-immunization. The results showed that pCCMp24, rddVTT-CCMp24 and their prime-boost immunization induced humoral and cellular immune responses. The pCCMp24/rddVTT-CCMp24 immunization strategy increased CD8(+) T cells and induced more IFN-γ-secreting cells compared with single-shot rDNA. The prime-boost immunization strategy also induced the generation of cellular immunological memory to HIV epitope peptides. These results demonstrated that prime-boost immunization with rDNA and rddVTT-CCMp24 had a tendency to induce greater cellular immune response than single-shot vaccinations, especially IFN-γ response, providing a basis for further studies.
Collapse
Affiliation(s)
- Cunxia Liu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Palucka K, Banchereau J. Human dendritic cell subsets in vaccination. Curr Opin Immunol 2013; 25:396-402. [PMID: 23725656 DOI: 10.1016/j.coi.2013.05.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/18/2013] [Accepted: 05/03/2013] [Indexed: 12/22/2022]
Abstract
Owing to their properties, dendritic cells (DCs) are often called 'nature's adjuvants' and thus have become the natural targets for antigen delivery. DCs provide an essential link between the innate and the adaptive immune responses. DCs are at the center of the immune system owing to their ability to control both tolerance and immunity. DCs are thus key targets for both preventive and therapeutic vaccination. Herein, we will discuss recent progresses in our understanding of DC subsets physiology as it applies to vaccination.
Collapse
Affiliation(s)
- Karolina Palucka
- Ralph M. Steinmann Center for Cancer Vaccines, Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, TX, USA.
| | | |
Collapse
|
29
|
A brief history of the global effort to develop a preventive HIV vaccine. Vaccine 2013; 31:3502-18. [PMID: 23707164 DOI: 10.1016/j.vaccine.2013.05.018] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 05/01/2013] [Accepted: 05/07/2013] [Indexed: 01/09/2023]
Abstract
Soon after HIV was discovered as the cause of AIDS in 1983-1984, there was an expectation that a preventive vaccine would be rapidly developed. In trying to achieve that goal, three successive scientific paradigms have been explored: induction of neutralizing antibodies, induction of cell mediated immunity, and exploration of combination approaches and novel concepts. Although major progress has been made in understanding the scientific basis for HIV vaccine development, efficacy trials have been critical in moving the field forward. In 2009, the field was reinvigorated with the modest results obtained from the RV144 trial conducted in Thailand. Here, we review those vaccine development efforts, with an emphasis on events that occurred during the earlier years. The goal is to provide younger generations of scientists with information and inspiration to continue the search for an HIV vaccine.
Collapse
|
30
|
Virnik K, Ni Y, Berkower I. Enhanced expression of HIV and SIV vaccine antigens in the structural gene region of live attenuated rubella viral vectors and their incorporation into virions. Vaccine 2013; 31:2119-25. [PMID: 23474312 DOI: 10.1016/j.vaccine.2013.02.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/31/2013] [Accepted: 02/25/2013] [Indexed: 10/27/2022]
Abstract
Despite the urgent need for an HIV vaccine, its development has been hindered by virus variability, weak immunogenicity of conserved epitopes, and limited durability of the immune response. For other viruses, difficulties with immunogenicity were overcome by developing live attenuated vaccine strains. However, there is no reliable method of attenuation for HIV, and an attenuated strain would risk reversion to wild type. We have developed rubella viral vectors, based on the live attenuated vaccine strain RA27/3, which are capable of expressing important HIV and SIV vaccine antigens. The rubella vaccine strain has demonstrated safety, immunogenicity, and long lasting protection in millions of children. Rubella vectors combine the growth and immunogenicity of live rubella vaccine with the antigenicity of HIV or SIV inserts. This is the first report showing that live attenuated rubella vectors can stably express HIV and SIV vaccine antigens at an insertion site located within the structural gene region. Unlike the Not I site described previously, the new site accommodates a broader range of vaccine antigens without interfering with essential viral functions. In addition, antigens expressed at the structural site were controlled by the strong subgenomic promoter, resulting in higher levels and longer duration of antigen expression. The inserts were expressed as part of the structural polyprotein, processed to free antigen, and incorporated into rubella virions. The rubella vaccine strain readily infects rhesus macaques, and these animals will be the model of choice for testing vector growth in vivo and immunogenicity.
Collapse
Affiliation(s)
- Konstantin Virnik
- Lab of Immunoregulation, Division of Viral Products, Office of Vaccines, Center for Biologics, FDA, Bldg 29, Room 523, NIH Campus, Bethesda, MD 20892, United States
| | | | | |
Collapse
|
31
|
Conformational epitope consisting of the V3 and V4 loops as a target for potent and broad neutralization of simian immunodeficiency viruses. J Virol 2013; 87:5424-36. [PMID: 23468483 DOI: 10.1128/jvi.00201-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inducing neutralizing antibodies (NAb) is the key to developing a protective vaccine against human immunodeficiency virus type 1 (HIV-1). To clarify the neutralization mechanism of simian immunodeficiency virus (SIV), we analyzed NAb B404, which showed potent and broad neutralizing activity against various SIV strains. In 4 SIVsmH635FC-infected macaques, B404-like antibodies using the specific VH3 gene with a long complementarity-determining region 3 loop and λ light chain were the major NAbs in terms of the number and neutralizing potency. This biased NAb induction was observed in all 4 SIVsmH635FC-infected macaques but not in 2 macaques infected with a SIV mix, suggesting that induction of B404-like NAbs depended on the inoculated virus. Analysis using Env mutants revealed that the V3 and V4 loops were critical for B404 binding. The reactivity to the B404 epitope on trimeric, but not monomeric, Env was enhanced by CD4 ligation. The B404-resistant variant, which was induced by passages with increasing concentrations of B404, accumulated amino acid substitutions in the C2 region of gp120. Molecular dynamics simulations of the gp120 outer domains indicated that the C2 mutations could effectively alter the structural dynamics of the V3/V4 loops and their neighboring regions. These results suggest that a conformational epitope consisting of the V3 and V4 loops is the target for potent and broad neutralization of SIV. Identifying the new neutralizing epitope, as well as specifying the VH3 gene used for epitope recognition, will help to develop HIV-1 vaccines.
Collapse
|
32
|
Keebler D, Walwyn D, Welte A. Biology as population dynamics: heuristics for transmission risk. Am J Reprod Immunol 2012. [PMID: 23194160 DOI: 10.1111/aji.12040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Population-type models, accounting for phenomena such as population lifetimes, mixing patterns, recruitment patterns, genetic evolution and environmental conditions, can be usefully applied to the biology of HIV infection and viral replication. A simple dynamic model can explore the effect of a vaccine-like stimulus on the mortality and infectiousness, which formally looks like fertility, of invading virions; the mortality of freshly infected cells; and the availability of target cells, all of which impact on the probability of infection. Variations on this model could capture the importance of the timing and duration of different key events in viral transmission, and hence be applied to questions of mucosal immunology. The dynamical insights and assumptions of such models are compatible with the continuum of between- and within-individual risks in sexual violence and may be helpful in making sense of the sparse data available on the association between HIV transmission and sexual violence.
Collapse
Affiliation(s)
- Daniel Keebler
- South African Centre for Epidemiological Modelling and Analysis, Stellenbosch University, 19 Jonkershoek Road, Stellenbosch, South Africa
| | | | | |
Collapse
|
33
|
Abstract
The complex interplay between the host immune response and HIV has been the subject of intense research over the last 25 years. HIV and simian immunodeficiency virus (SIV) CD8 T cells have been of particular interest since they were demonstrated to be temporally associated with reduction in virus load shortly following transmission. Here, we briefly review the phenotypic and functional properties of HIV-specific and SIV-specific CD8 T-cell subsets during HIV infection and consider the influence of viral variation with specific responses that are associated with disease progression or control. The development of an effective HIV/AIDS vaccine combined with existing successful prevention and treatment strategies is essential for preventing new infections. In the context of previous clinical HIV/AIDS vaccine trials, we consider the challenges faced by therapeutic and vaccine strategies designed to elicit effective HIV-specific CD8 T cells.
Collapse
|
34
|
Abstract
From the publication of the first AIDS issue onwards, major advances have been made in the field of innate immunity during HIV infection. Innate immunity can be defined as the first and unspecific lines of defense constitutively present and ready to be mobilized upon infection. Although a large body of literature adamantly highlights that innate immunity is a critical weapon of defense against HIV and its simian parents (simian immunodeficiency virus, SIV), innate immunity is still underexplored. Focusing on innate immunity may open new paths for the development of innovative therapeutics and vaccine strategies against HIV. Understanding innate immunity may shed light on the natural protection occurring in rare HIV-1-infected individuals who control their infection. This review focuses on innate mechanisms sensing HIV-1 entry and controlling HIV-1 infection, as well as promoting inflammation and shaping adaptive immunity.
Collapse
|
35
|
The history of antiretroviral therapy and of its implementation in resource-limited areas of the world. AIDS 2012; 26:1231-41. [PMID: 22706009 DOI: 10.1097/qad.0b013e32835521a3] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
HIV/AIDS not only represents the most severe epidemic in modern times, but also the greatest public health challenge in history. The response of the scientific community has been impressive and in just a few years, turned an inevitably fatal disease into a chronic manageable although not yet curable condition. The development of antiretroviral therapy is not only the history of scientific advancements: it is the result of the passionate 'alliance' towards a common goal between researchers, doctors and nurses, pharmaceutical industries, regulators, public health officials and the community of HIV-infected patients, which is rather unique in the history of medicine. In addition, the rapid and progressive development of antiretroviral therapy has not only proven to be life-saving for many millions but has been instrumental in unveiling the inequities in access to health between rich and poor countries of the world. Optimal benefits indeed, are not accessible to all people living with HIV, with challenges to coverage and sustainability in low and middle income countries. This paper will review the progress made, starting from the initial despairing times, till the current battle towards universal access to treatment and care for all people living with HIV.
Collapse
|
36
|
Abstract
HIV type 1 (HIV-1) displays a greater degree of genetic and antigenic variability than any other virus studied. This diversity reflects a high mutation rate during viral replication with a large turnover of virus, and a high tolerance of variation while maintaining reproductive capacity. Generation of diversity is a common property of lentiviruses such as HIV. Differences in virulence and in transmissibility are seen between different HIV-1 strains which may have clinical implications. The great degree of HIV diversity presents challenges to maintaining sensitivity to antiretroviral therapy and to the development of preventive strategies such as microbicides and vaccines.
Collapse
|
37
|
|