1
|
Hsieh AYY, Cai R, Bernard NF, Tremblay CL, Côté HCF. Evidence of Greater Immune Aging among Untreated HIV Slow Progressors than Antiretroviral-controlled People Living with HIV. J Infect 2025:106511. [PMID: 40398500 DOI: 10.1016/j.jinf.2025.106511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2025] [Accepted: 05/12/2025] [Indexed: 05/23/2025]
Abstract
BACKGROUND Uncontrolled HIV viremia results in the progression to AIDS, however this can be stopped with antiretroviral therapy (ART). Slow progressors are rare individuals who can prevent or delay HIV disease progression without ART. It is unknown whether they experience immune aging akin to normal progressors on ART. METHODS We investigated persons living with HIV (PWH) who were either HIV slow progressors (n=58), PWH on ART with undetectable HIV viremia (n=58), PWH not on ART with detectable viremia (n=56), and 56 controls without HIV. The groups were well matched for age and sex. A panel of T-cell differentiation and immune aging markers were measured, along with T and B cell subset telomere length, adjusting for major confounders. RESULTS Relative to the ART-suppressed HIV group, slow progressors showed immune aging markers indicative of more advanced aging, including lower CD8 naïve:effector memory ratio (standardized effect size -0.41 [95% CI -0.74,-0.07]), and shorter telomere length in B cells (-0.52 [-0.97,-0.07]), CD4 T cells (-0.58 [-0.94,-0.23]), and proliferative CD8 cells (-0.41 [-0.80,-0.01]). Comparison of slow progressors with the control group without HIV showed the same effects. Further, within the slow progressor group, immune aging patterns for the subgroup of elite controllers were not different. CONCLUSIONS Our findings indicate that despite natural host control of HIV replication, slow progressors show evidence of disproportionately advanced immune aging. This reinforces the potential benefit of ART and emphasizes the need to both diagnose slow progressors, and study their potential age-related comorbidities.
Collapse
Affiliation(s)
- Anthony Y Y Hsieh
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Renying Cai
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada; Edwin S.H. Leong Healthy Aging Program, University of British Columbia, Vancouver, British Columbia
| | - Nicole F Bernard
- Research Institute, McGill University Health Centre, Montréal, QC, Canada; Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada; Infectious Diseases, Immunology and Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada; Division of Clinical Immunology, McGill University Health Centre, Montréal, QC, Canada
| | - Cecile L Tremblay
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, QC. Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Hélène C F Côté
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada; Edwin S.H. Leong Healthy Aging Program, University of British Columbia, Vancouver, British Columbia.
| |
Collapse
|
2
|
Barger LN, El Naggar OS, Ha B, Romano G. Melanoma in people living with HIV: Immune landscape dynamics and the role of immuno- and antiviral therapies. Cancer Metastasis Rev 2024; 44:9. [PMID: 39609320 PMCID: PMC11604825 DOI: 10.1007/s10555-024-10230-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024]
Abstract
The intersection of HIV and melanoma presents a complex and unique challenge, marked by distinct patterns in incidence, mortality, and treatment response. Higher mortality rates among people with HIV who develop melanoma underscore an urgent need to identify the factors influencing these outcomes. Investigating immune system dynamics, the effects of anti-retroviral drugs, and the evolving landscape of cancer immunotherapy in this population holds promise for new insights, though significant uncertainties remain. Over the past 25 years, melanoma research has demonstrated that a robust immune response is critical for effective treatment. In the context of chronic HIV infection, viral reservoirs enable the virus to persist despite anti-retroviral therapy and foster dysregulated myeloid and T cell compartments. The resulting chronic inflammation weakens the immune system and damages tissues, potentially creating "cold" tumor microenvironments that are less responsive to therapy. In this challenging context, animal models become invaluable for uncovering underlying biological mechanisms. While these models do not fully replicate human HIV infection, they provide essential insights into critical questions and inform the development of tailored treatments for this patient population. Clinically, increasing trial participation and creating a centralized, accessible repository for HIV and cancer samples and data are vital. Achieving these goals requires institutions to address barriers to research participation among people with HIV, focusing on patient-centered initiatives that leverage biomedical research to improve their outcomes and extend their lives.
Collapse
Affiliation(s)
- Lindsay N Barger
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Olivia S El Naggar
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Binh Ha
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Gabriele Romano
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA.
- Immune Cell Regulation & Targeting Program, Sidney Kimmel Comprehensive Cancer Center Consortium, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Caetano DG, Toledo TS, de Lima ACS, Giacoia-Gripp CBW, de Almeida DV, de Lima SMB, Azevedo ADS, Morata M, Grinsztejn B, Cardoso SW, da Costa MD, Brandão LGP, Bispo de Filippis AM, Scott-Algara D, Coelho LE, Côrtes FH. Impact of HIV-Related Immune Impairment of Yellow Fever Vaccine Immunogenicity in People Living with HIV-ANRS 12403. Vaccines (Basel) 2024; 12:578. [PMID: 38932307 PMCID: PMC11209244 DOI: 10.3390/vaccines12060578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
The yellow fever (YF) vaccine is one of the safest and most effective vaccines currently available. Still, its administration in people living with HIV (PLWH) is limited due to safety concerns and a lack of consensus regarding decreased immunogenicity and long-lasting protection for this population. The mechanisms associated with impaired YF vaccine immunogenicity in PLWH are not fully understood, but the general immune deregulation during HIV infection may play an important role. To assess if HIV infection impacts YF vaccine immunogenicity and if markers of immune deregulation could predict lower immunogenicity, we evaluated the association of YF neutralization antibody (NAb) titers with the pre-vaccination frequency of activated and exhausted T cells, levels of pro-inflammatory cytokines, and frequency of T cells, B cells, and monocyte subsets in PLWH and HIV-negative controls. We observed impaired YF vaccine immunogenicity in PLWH with lower titers of YF-NAbs 30 days after vaccination, mainly in individuals with CD4 count <350 cells/mm3. At the baseline, those individuals were characterized by having a higher frequency of activated and exhausted T cells and tissue-like memory B cells. Elevated levels of those markers were also observed in individuals with CD4 count between 500 and 350 cells/mm3. We observed a negative correlation between the pre-vaccination level of CD8+ T cell exhaustion and CD4+ T cell activation with YF-NAb titers at D365 and the pre-vaccination level of IP-10 with YF-NAb titers at D30 and D365. Our results emphasize the impact of immune activation, exhaustion, and inflammation in YF vaccine immunogenicity in PLWH.
Collapse
Affiliation(s)
- Diogo Gama Caetano
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro 21040-360, Brazil; (D.G.C.); (T.S.T.); (A.C.S.d.L.); (C.B.W.G.-G.); (D.V.d.A.)
| | - Thais Stelzer Toledo
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro 21040-360, Brazil; (D.G.C.); (T.S.T.); (A.C.S.d.L.); (C.B.W.G.-G.); (D.V.d.A.)
| | - Ana Carolina Souza de Lima
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro 21040-360, Brazil; (D.G.C.); (T.S.T.); (A.C.S.d.L.); (C.B.W.G.-G.); (D.V.d.A.)
| | - Carmem Beatriz Wagner Giacoia-Gripp
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro 21040-360, Brazil; (D.G.C.); (T.S.T.); (A.C.S.d.L.); (C.B.W.G.-G.); (D.V.d.A.)
| | - Dalziza Victalina de Almeida
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro 21040-360, Brazil; (D.G.C.); (T.S.T.); (A.C.S.d.L.); (C.B.W.G.-G.); (D.V.d.A.)
| | - Sheila Maria Barbosa de Lima
- Departamento de Desenvolvimento Experimental e Pré-Clínico (DEDEP), Bio-Manguinhos/Fiocruz, Rio de Janeiro 21040-900, Brazil;
| | - Adriana de Souza Azevedo
- Laboratório de Análise Imunomolecular (LANIM), Bio-Manguinhos/Fiocruz, Rio de Janeiro 21040-900, Brazil;
| | - Michelle Morata
- Instituto Nacional de Infectologia Evandro Chagas/Fiocruz, Rio de Janeiro 21040-360, Brazil; (M.M.); (B.G.); (S.W.C.); (L.E.C.)
| | - Beatriz Grinsztejn
- Instituto Nacional de Infectologia Evandro Chagas/Fiocruz, Rio de Janeiro 21040-360, Brazil; (M.M.); (B.G.); (S.W.C.); (L.E.C.)
| | - Sandra Wagner Cardoso
- Instituto Nacional de Infectologia Evandro Chagas/Fiocruz, Rio de Janeiro 21040-360, Brazil; (M.M.); (B.G.); (S.W.C.); (L.E.C.)
| | - Marcellus Dias da Costa
- Laboratório de Pesquisa em Imunização e Vigilância em Saúde (LIVS), Instituto Nacional de Infectologia Evandro Chagas/Fiocruz, Rio de Janeiro 21040-360, Brazil; (M.D.d.C.); (L.G.P.B.)
| | - Luciana Gomes Pedro Brandão
- Laboratório de Pesquisa em Imunização e Vigilância em Saúde (LIVS), Instituto Nacional de Infectologia Evandro Chagas/Fiocruz, Rio de Janeiro 21040-360, Brazil; (M.D.d.C.); (L.G.P.B.)
| | | | | | - Lara Esteves Coelho
- Instituto Nacional de Infectologia Evandro Chagas/Fiocruz, Rio de Janeiro 21040-360, Brazil; (M.M.); (B.G.); (S.W.C.); (L.E.C.)
| | - Fernanda Heloise Côrtes
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro 21040-360, Brazil; (D.G.C.); (T.S.T.); (A.C.S.d.L.); (C.B.W.G.-G.); (D.V.d.A.)
| |
Collapse
|
4
|
Love M, Behrens-Bradley N, Ahmad A, Wertheimer A, Klotz S, Ahmad N. Plasma Levels of Secreted Cytokines in Virologically Controlled HIV-Infected Aging Adult Individuals on Long-Term Antiretroviral Therapy. Viral Immunol 2024; 37:202-215. [PMID: 38717822 PMCID: PMC11238844 DOI: 10.1089/vim.2023.0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
HIV-infected (HIV+) aging adult individuals who have achieved undetectable viral load and improved CD4 T cell counts due to long-term antiretroviral therapy (ART) may continue to experience inflammation and immunosenescence. Therefore, we evaluated the plasma levels of proinflammatory and anti-inflammatory cytokines in 173 HIV+ aging adult individuals with age ranging from 22 to 81 years on long-term ART with viral load mostly <20 HIV RNA copies/mL and compared with 92 HIV-uninfected (HIV- or healthy controls) aging individuals. We found that the median levels of TNF-α, IFN-γ, IL-1β, IL-6, and IL-10 were higher (p < 0.001 to <0.0001) and IL-17 trended lower in HIV+ individuals than healthy controls. Increasing CD4 T cell counts in the HIV+ cohort did not significantly change the circulating cytokine levels, although levels of IL-1β increased. However, IL-17 levels significantly decreased with increasing CD4 counts in the healthy controls and yet unchanged in the HIV+ cohort. Of note, the levels of circulating IL-17 were significantly reduced comparatively in the healthy controls where the CD4 count was below 500, yet once above 500 the levels of CD4, IL-17 levels were comparable with the HIV+ cohort. With increasing CD8 T cell counts, the levels of these cytokines were not significantly altered, although levels of TNF-α, IFN-γ, and IL-6 declined, whereas IL-1β and IL-17 were slightly elevated. Furthermore, increasing age of the HIV+ cohort did not significantly impact the cytokine levels although a slight increase in TNF-α, IL-6, IL-10, and IL-17 was observed. Similarly, these cytokines were not significantly modulated with increasing levels of undetectable viral loads, whereas some of the HIV+ individuals had higher levels of TNF-α, IFN-γ, and IL-1β. In summary, our findings show that HIV+ aging adult individuals with undetectable viral load and restored CD4 T cell counts due to long-term ART still produce higher levels of both proinflammatory and anti-inflammatory cytokines compared with healthy controls, suggesting some level of inflammation.
Collapse
Affiliation(s)
- Maria Love
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
| | | | - Aasim Ahmad
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
| | - Anne Wertheimer
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, USA
- Department of BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Stephen Klotz
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Nafees Ahmad
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
5
|
Anikeeva N, Steblyanko M, Kuri-Cervantes L, Buggert M, Betts MR, Sykulev Y. The immune synapses reveal aberrant functions of CD8 T cells during chronic HIV infection. Nat Commun 2022; 13:6436. [PMID: 36307445 PMCID: PMC9616955 DOI: 10.1038/s41467-022-34157-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 10/14/2022] [Indexed: 02/05/2023] Open
Abstract
Chronic HIV infection causes persistent low-grade inflammation that induces premature aging of the immune system including senescence of memory and effector CD8 T cells. To uncover the reasons of gradually diminished potency of CD8 T cells from people living with HIV, here we expose the T cells to planar lipid bilayers containing ligands for T-cell receptor and a T-cell integrins and analyze the cellular morphology, dynamics of synaptic interface formation and patterns of the cellular degranulation. We find a large fraction of phenotypically naive T cells from chronically infected people are capable to form mature synapse with focused degranulation, a signature of a differentiated T cells. Further, differentiation of aberrant naive T cells may lead to the development of anomalous effector T cells undermining their capacity to control HIV and other pathogens that could be contained otherwise.
Collapse
Affiliation(s)
- Nadia Anikeeva
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Maria Steblyanko
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Leticia Kuri-Cervantes
- Department of Microbiology and Institute of Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marcus Buggert
- Department of Microbiology and Institute of Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Michael R Betts
- Department of Microbiology and Institute of Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuri Sykulev
- Departments of Immunology and Medical Oncology, Thomas Jefferson University, Philadelphia, PA, USA.
- Sydney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Sehl ME, Breen EC, Shih R, Chen L, Wang R, Horvath S, Bream JH, Duggal P, Martinson J, Wolinsky SM, Martinez-Maza O, Ramirez CM, Jamieson BD. Increased Rate of Epigenetic Aging in Men Living With HIV Prior to Treatment. Front Genet 2022; 12:796547. [PMID: 35295196 PMCID: PMC8919029 DOI: 10.3389/fgene.2021.796547] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/06/2021] [Indexed: 01/26/2023] Open
Abstract
Background: Epigenetic aging is accelerated in tissues of persons living with HIV (PLWH) and may underlie the early onset of age-related illnesses. This study examines the rate-of-change in epigenetic age in PLWH following HIV infection but before HAART, using archived longitudinal samples from the Multicenter AIDS Cohort Study. Methods: DNA was isolated from cryopreserved peripheral blood mononuclear cells from 101 men living with HIV, with baseline visit <2.5 years after HIV seroconversion (Visit 1) and follow-up visit <1.5 years before the initiation of HAART (Visit 2), and 100 HIV-uninfected men matched on age and visits with comparable time intervals. DNA methylation (DNAm) age was estimated for five clocks (Pan-tissue, Extrinsic, Phenotypic, Grim, and Skin & Blood age), and a DNAm-based estimate of telomere length (DNAmTL). Multivariate linear regression models were used to examine baseline factors associated with rate-of-aging, defined as (DNAm age visit 2-DNAm age visit 1)/(age visit 2-age visit 1). Results: Epigenetic age increased approximately twice as fast in PLWH as uninfected controls (Pan-tissue, Extrinsic, and Phenotypic clocks). Shortening of DNAmTL was nearly 3-fold faster in PLWH than controls. Faster rate-of-aging was associated with HIV status (Pan-Tissue, Extrinsic, Phenotypic, and DNAmTL), white race (Extrinsic, DNAmTL), higher cumulative HIV viral load (Grim), and lower baseline DNAm age (Phenotypic, Skin & Blood). Conclusion: Epigenetic rates-of-aging were significantly faster for untreated PLWH. Our findings expand on the important impact of HIV infection on biologic aging, both in elevating epigenetic age and increasing the rate-of-aging in the years following infection.
Collapse
Affiliation(s)
- Mary E. Sehl
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, United States
| | - Elizabeth Crabb Breen
- Cousins Center for Psychoneuroimmunology, Department of Psychiatry and Behavioral Sciences, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, United States
| | - Roger Shih
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, United States
| | - Larry Chen
- UCLA Computational and Systems Biology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ruibin Wang
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jay H. Bream
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Immunology Training Program, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Priya Duggal
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Jeremy Martinson
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Steven M. Wolinsky
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Otoniel Martinez-Maza
- Departments of Obstetrics and Gynecology and Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, United States
- Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, United States
| | - Christina M. Ramirez
- Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, United States
| | - Beth D. Jamieson
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
7
|
Auma AWN, Shive CL, Kostadinova L, Anthony DD. Variable Normalization of Naïve CD4+ Lymphopenia and Markers of Monocyte and T Cell Activation over the Course of Direct-Acting Anti-Viral Treatment of Chronic Hepatitis C Virus Infection. Viruses 2021; 14:50. [PMID: 35062255 PMCID: PMC8780994 DOI: 10.3390/v14010050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic hepatitis C virus (HCV) infection is associated with naïve CD4+ T cell lymphopenia and long-standing/persistent elevation of cellular and soluble immune activation parameters, the latter heightened in the setting of HIV co-infection. The underlying mechanisms are not completely understood. However, we recently reported that accelerated peripheral cell death may contribute to naïve CD4+ T cell loss and that mechanistic relationships between monocyte activation, T cell activation, and soluble inflammatory mediators may also contribute. Chronic HCV infection can be cured by direct-acting anti-viral (DAA) therapy, and success is defined as sustained virological response (SVR, undetectable HCV RNA (ribonucleic acid) at 12 weeks after DAA treatment completion). However, there is no general consensus on the short-term and long-term immunological outcomes of DAA therapy. Here, we consolidate previous reports on the partial normalization of naïve CD4+ lymphopenia and T cell immune activation and the apparent irreversibility of monocyte activation following DAA therapy in HCV infected and HCV/HIV co-infected individuals. Further, advanced age and cirrhosis are associated with delayed or abrogation of immune reconstitution after DAA therapy, an indication that non-viral factors also likely contribute to host immune dysregulation in HCV infection.
Collapse
Affiliation(s)
- Ann W. N. Auma
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA; (A.W.N.A.); (C.L.S.)
| | - Carey L. Shive
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA; (A.W.N.A.); (C.L.S.)
- Cleveland VA Medical Center, Cleveland, OH 44106, USA;
| | | | - Donald D. Anthony
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA; (A.W.N.A.); (C.L.S.)
- Cleveland VA Medical Center, Cleveland, OH 44106, USA;
- Metro Health Medical Center, Division of Rheumatology, Cleveland, OH 44106, USA
| |
Collapse
|
8
|
Garrido C, Hurst JH, Lorang CG, Aquino JN, Rodriguez J, Pfeiffer TS, Singh T, Semmes EC, Lugo DJ, Rotta AT, Turner NA, Burke TW, McClain MT, Petzold EA, Permar SR, Moody MA, Woods CW, Kelly MS, Fouda GG. Asymptomatic or mild symptomatic SARS-CoV-2 infection elicits durable neutralizing antibody responses in children and adolescents. JCI Insight 2021; 6:150909. [PMID: 34228642 PMCID: PMC8492306 DOI: 10.1172/jci.insight.150909] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/30/2021] [Indexed: 11/17/2022] Open
Abstract
As SARS-CoV-2 continues to spread globally, questions have emerged regarding the strength and durability of immune responses in specific populations. In this study, we evaluated humoral immune responses in 69 children and adolescents with asymptomatic or mild symptomatic SARS-CoV-2 infection. We detected robust IgM, IgG, and IgA antibody responses to a broad array of SARS-CoV-2 antigens at the time of acute infection and 2 and 4 months after acute infection in all participants. Notably, these antibody responses were associated with virus-neutralizing activity that was still detectable 4 months after acute infection in 94% of children. Moreover, antibody responses and neutralizing activity in sera from children and adolescents were comparable or superior to those observed in sera from 24 adults with mild symptomatic infection. Taken together, these findings indicate that children and adolescents with mild or asymptomatic SARS-CoV-2 infection generate robust and durable humoral immune responses that can likely contribute to protection from reinfection.
Collapse
Affiliation(s)
| | - Jillian H. Hurst
- Department of Pediatrics, Division of Infectious Diseases
- Children’s Health & Discovery Institute, Department of Pediatrics, and
| | | | | | - Javier Rodriguez
- Children’s Clinical Research Unit, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina, USA
| | | | | | - Eleanor C. Semmes
- Duke Human Vaccine Institute
- Children’s Health & Discovery Institute, Department of Pediatrics, and
- Medical Scientist Training Program, Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Debra J. Lugo
- Department of Pediatrics, Division of Infectious Diseases
| | - Alexandre T. Rotta
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, and
| | - Nicholas A. Turner
- Department of Medicine, Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
| | - Thomas W. Burke
- Center for Applied Genomics and Precision Medicine, Duke University, Durham, North Carolina, USA
| | - Micah T. McClain
- Department of Medicine, Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
- Durham Veterans Affairs Medical Center, Durham, North Carolina, USA
- Center for Applied Genomics and Precision Medicine, Duke University, Durham, North Carolina, USA
| | - Elizabeth A. Petzold
- Center for Applied Genomics and Precision Medicine, Duke University, Durham, North Carolina, USA
| | - Sallie R. Permar
- Department of Pediatrics, Weill Cornell School of Medicine, New York City, New York, USA
| | - M. Anthony Moody
- Duke Human Vaccine Institute
- Department of Pediatrics, Division of Infectious Diseases
| | - Christopher W. Woods
- Duke Human Vaccine Institute
- Department of Medicine, Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, USA
- Durham Veterans Affairs Medical Center, Durham, North Carolina, USA
- Center for Applied Genomics and Precision Medicine, Duke University, Durham, North Carolina, USA
| | | | - Genevieve G. Fouda
- Duke Human Vaccine Institute
- Department of Pediatrics, Division of Infectious Diseases
| |
Collapse
|
9
|
Garrido C, Hurst JH, Lorang CG, Aquino JN, Rodriguez J, Pfeiffer TS, Singh T, Semmes EC, Lugo DJ, Rotta AT, Turner NA, Burke TW, McClain MT, Petzold EA, Permar SR, Moody MA, Woods CW, Kelly MS, Fouda GG. Asymptomatic or mild symptomatic SARS-CoV-2 infection elicits durable neutralizing antibody responses in children and adolescents. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021. [PMID: 33907760 DOI: 10.1101/2021.04.17.21255663] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
As SARS-CoV-2 continues to spread globally, questions have emerged regarding the strength and durability of immune responses in specific populations. In this study, we evaluated humoral immune responses in 69 children and adolescents with asymptomatic or mild symptomatic SARS-CoV-2 infection. We detected robust IgM, IgG, and IgA antibody responses to a broad array of SARS-CoV-2 antigens at the time of acute infection and 2 and 4 months after acute infection in all participants. Notably, these antibody responses were associated with virus neutralizing activity that was still detectable 4 months after acute infection in 94% of children. Moreover, antibody responses and neutralizing activity in sera from children and adolescents were comparable or superior to those observed in sera from 24 adults with mild symptomatic infection. Taken together, these findings indicate children and adolescents with mild or asymptomatic SARS-CoV-2 infection generate robust and durable humoral immune responses that are likely to protect from reinfection.
Collapse
|
10
|
Bănică L, Vlaicu O, Jipa R, Abagiu A, Nicolae I, Neaga E, Oţelea D, Paraschiv S. Exhaustion and senescence of CD4 and CD8 T cells that express co-stimulatory molecules CD27 and CD28 in subjects that acquired HIV by drug use or by sexual route. Germs 2021; 11:66-77. [PMID: 33898343 DOI: 10.18683/germs.2021.1242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 12/31/2022]
Abstract
Introduction The human immunodeficiency virus (HIV) infection leads to immune activation, senescence and exhaustion of T cells. Co-stimulatory molecules play important roles in controlling these processes. The CD28 signaling triggers efficient T cell activation, while CD27 provides survival signals to CD28- T cells. Loss of these molecules was associated with senescent phenotype and resistance to checkpoint inhibitors.Romania has faced an HIV outbreak among people who inject drugs (PWID), most of them chronically infected with hepatitis C virus (HCV). HIV/HCV co-infection was associated with increased immune activation and rapid disease progression. Methods We evaluated by flow cytometry the expression of CD27, CD28, CD38, HLA-DR, CD57 and PD-1 on CD4 and CD8 T cells from 34 subjected infected with HIV (22 PWID and 12 people who acquired HIV by sexual route - PWHS) and 18 HIV-negative individuals (controls). Results We found that as compared to controls, HIV patients, regardless of infection route, have high percentages of intermediately differentiated (CD27+CD28-) and low percentages of less differentiated (CD27+CD28+) CD8 T cells. Significantly higher levels of CD8+CD27+CD28- T cells were found in PWHS than in PWID. A lower percentage of intermediately and highly differentiated (CD27-CD28-) CD8 T cells express CD57 in people living with HIV (PLWH) than in controls. Increased levels of less and intermediately differentiated CD4 and CD8 T cells expressing PD-1 were identified in PLWH, especially in PWID; these directly correlated with HIV viral load and T cell activation and negatively correlated with CD4 counts. Conclusions Our data show that induction of PD-1 on T cells expressing co-stimulatory molecules CD27 and/or CD28 might contribute to poor control of HIV infection and to immune activation.
Collapse
Affiliation(s)
- Leontina Bănică
- PhD, Molecular Diagnostics Laboratory, National Institute for Infectious Diseases "Prof. Dr. Matei Balş", No. 1 Dr. Calistrat Grozovici street, Bucharest 021105, Romania
| | - Ovidiu Vlaicu
- PhD, Molecular Diagnostics Laboratory, National Institute for Infectious Diseases "Prof. Dr. Matei Balş", No. 1 Dr. Calistrat Grozovici street, Bucharest 021105, Romania
| | - Raluca Jipa
- MD, Clinical Department, National Institute for Infectious Diseases "Prof. Dr. Matei Balş", No. 1 Dr. Calistrat Grozovici street, Bucharest 021105, Romania
| | - Adrian Abagiu
- MD, Clinical Department, National Institute for Infectious Diseases "Prof. Dr. Matei Balş", No. 1 Dr. Calistrat Grozovici street, Bucharest 021105, Romania
| | - Ionelia Nicolae
- MSc, Molecular Diagnostics Laboratory, National Institute for Infectious Diseases "Prof. Dr. Matei Balş", No. 1 Dr. Calistrat Grozovici street, Bucharest 021105, Romania
| | - Emil Neaga
- PhD, Molecular Diagnostics Laboratory, National Institute for Infectious Diseases "Prof. Dr. Matei Balş", No. 1 Dr. Calistrat Grozovici street, Bucharest 021105, Romania
| | - Dan Oţelea
- MD, PhD, Molecular Diagnostics Laboratory, National Institute for Infectious Diseases "Prof. Dr. Matei Balş", No. 1 Dr. Calistrat Grozovici street, Bucharest 021105, Romania
| | - Simona Paraschiv
- PhD, Molecular Diagnostics Laboratory, National Institute for Infectious Diseases "Prof. Dr. Matei Balş", No. 1 Dr. Calistrat Grozovici street, Bucharest 021105, Romania, Virology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
11
|
Behrens NE, Love M, Bandlamuri M, Bernhardt D, Wertheimer A, Klotz SA, Ahmad N. Characterization of HIV-1 Envelope V3 Region Sequences from Virologically Controlled HIV-Infected Older Patients on Long Term Antiretroviral Therapy. AIDS Res Hum Retroviruses 2021; 37:233-245. [PMID: 33287636 DOI: 10.1089/aid.2020.0139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Although many HIV-infected patients have attained older age owing to the success of antiretroviral therapy (ART) in controlling viremia and increasing CD4 T cell counts, HIV continues to persist in several target cells. We have characterized 514 HIV-1 envelope V3 region sequences (94-96 amino acids [aa]) from 25 HIV-infected older patients' peripheral blood mononuclear cell DNA on long-term ART with controlled viremia (undetectable viral load) and improved CD4 T cell counts. Phylogenetic analysis revealed that the V3 region sequences of each patient formed distinct clusters that were well separated and discriminated from other patients' sequences. The coding potential of the V3 region, including several patient-specific amino acid motifs and functional domains, including the two cysteines sandwiching the V3 loop, the central GPGR motif with variation at one position in some sequences, the base GDIR motif, and the N-glycosylation sites were generally conserved. The patients' V3 region sequences contained amino acid motifs conferring affinity mostly for CCR5 coreceptor, suggesting R5 phenotype. There was a low degree of heterogeneity and lower estimates of genetic diversity in all 25 patients' V3 region sequences. Twelve of 25 patients' V3 region sequences were found to be under positive selection pressure. Analysis of the several cytotoxic T lymphocytes (CTL) epitopes showed variation, whereas some of known neutralizing antibodies (nAbs) epitopes showed conservation in patients' V3 region sequences. In conclusion, a low degree of genetic variability and maintenance of functional domains with R5 phenotypes, and variation in CTL and conservation of nAb epitopes were the hallmarks of V3 region sequences from our 25 virologically controlled HIV-infected older patients on long-term ART.
Collapse
Affiliation(s)
- Nicole E. Behrens
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Maria Love
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Meghana Bandlamuri
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Dana Bernhardt
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Anne Wertheimer
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Stephen A. Klotz
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Nafees Ahmad
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
12
|
Sehl ME, Rickabaugh TM, Shih R, Martinez-Maza O, Horvath S, Ramirez CM, Jamieson BD. The Effects of Anti-retroviral Therapy on Epigenetic Age Acceleration Observed in HIV-1-infected Adults. Pathog Immun 2020; 5:291-311. [PMID: 33501399 PMCID: PMC7815056 DOI: 10.20411/pai.v5i1.376] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/08/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND HIV-1 infection is associated with acceleration of age-related methylation patterns in peripheral blood and brain of infected individuals although the relative contributions of HIV-1 infection versus its treatment to the observed accelerations in biological aging have not yet been investigated. METHODS In this longitudinal study of the effects of antiretroviral therapy (ART) on epigenetic aging patterns, we extracted DNA from peripheral blood mononuclear cells from 15 HIV-1-infected individuals infected at three time points: 6 months-1year pre-ART, 6-12 months post-initiation of ART, and 18-24 months after initiating ART. We compared these trajectories with those of 15 age-matched uninfected control participants at three time points with similar intervals. Methylation studies were performed using the Infinium methylation 450 arrays. We examined four epigenetic clock measurements: Age acceleration residual (AAR), Extrinsic (EEAA), Phenotypic (PEAA), and Grim (GEAA) epigenetic age acceleration. Weighted correlation network (WGCNA) analysis was used to identify clusters of highly co-methylated CpGs. RESULTS We found that prior to the initiation of ART all four epigenetic measures were significantly higher in HIV-1-infected individuals compared with uninfected individuals (P<0.001 for AAR, P=0.008 for EEAA, P=0.012 for GEAA, P<0.001 for PEAA using Wilcoxon rank sum tests between serostatus groups). These effects persisted after the initiation of ART, although the magnitude of these differences diminished. At 18-24 months post-ART initiation (time point 3), PEAA and GEAA were no longer significantly different between HIV-1-infected and uninfected individuals (P=0.059 for PEAA, P=0.11 for GEAA), while AAR and EEAA remained significantly higher in HIV-1-infected individuals compared with uninfected individuals. We further examined for global patterns of methylation differences between HIV-1-infected and uninfected at each time point, and found 14 groups of co-methylated CpGs that were significantly different between groups at baseline, and remained different after the initiation of ART. Conclusion: We confirm that epigenetic age acceleration associated with HIV-1 infection is most dramatic before ART initiation, and this observation is consistent across four epigenetic clock measurements, as well as in additional groups of co-methylated CpGs identified using WGCNA. Following initiation of ART, there is a partial reduction in age acceleration in all measures, with loss of any significant difference in PEAA and GEAA between serostatus groups. Our findings support the need for future studies examining for a link between epigenetic age acceleration and clinical outcomes in HIV-1-infected individuals.
Collapse
Affiliation(s)
- Mary E. Sehl
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine, UCLA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA
- These authors contributed equally to this work
| | - Tammy M. Rickabaugh
- Department of Pediatrics, Division of Hematology-Oncology, David Geffen School of Medicine, UCLA
- These authors contributed equally to this work
| | - Roger Shih
- Department of Pediatrics, Division of Hematology-Oncology, David Geffen School of Medicine, UCLA
| | | | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, UCLA
- Department of Biostatistics, Jonathan and Karin Fielding School of Public Health, UCLA
| | - Christina M. Ramirez
- Department of Biostatistics, Jonathan and Karin Fielding School of Public Health, UCLA
| | - Beth D. Jamieson
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine, UCLA
| |
Collapse
|
13
|
The age-related trajectory of visual attention neural function is altered in adults living with HIV: A cross-sectional MEG study. EBioMedicine 2020; 61:103065. [PMID: 33099087 PMCID: PMC7585051 DOI: 10.1016/j.ebiom.2020.103065] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Abstract
Background Despite living a normal lifespan, at least 35% of persons with HIV (PWH) in resource-rich countries develop HIV-associated neurocognitive disorder (HAND). This high prevalence of cognitive decline may reflect accelerated ageing in PWH, but the evidence supporting an altered ageing phenotype in PWH has been mixed. Methods We examined the impact of ageing on the orienting of visual attention in PWH using dynamic functional mapping with magnetoencephalography (MEG) in 173 participants age 22–72 years-old (94 uninfected controls, 51 cognitively-unimpaired PWH, and 28 with HAND). All MEG data were imaged using a state-of-the-art beamforming approach and neural oscillatory responses during attentional orienting were examined for ageing, HIV, and cognitive status effects. Findings All participants responded slower during trials that required attentional reorienting. Our functional mapping results revealed HIV-by-age interactions in left prefrontal theta activity, alpha oscillations in the left parietal, right cuneus, and right frontal eye-fields, and left dorsolateral prefrontal beta activity (p<.005). Critically, within PWH, we observed a cognitive status-by-age interaction, which revealed that ageing impacted the oscillatory gamma activity serving attentional reorienting differently in cognitively-normal PWH relative to those with HAND in the left temporoparietal, inferior frontal gyrus, and right prefrontal cortices (p<.005). Interpretation This study provides key evidence supporting altered ageing trajectories across vital attention circuitry in PWH, and further suggests that those with HAND exhibit unique age-related changes in the oscillatory dynamics serving attention function. Additionally, our neural findings suggest that age-related changes in PWH may serve a compensatory function. Funding National Institutes of Health, USA.
Collapse
|
14
|
Association Between Inflammatory Pathways and Phenotypes of Pulmonary Dysfunction Using Cluster Analysis in Persons Living With HIV and HIV-Uninfected Individuals. J Acquir Immune Defic Syndr 2020; 83:189-196. [PMID: 31929407 DOI: 10.1097/qai.0000000000002234] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Persons living with HIV (PLWH) are at risk of developing different phenotypes of chronic lung disease, including chronic obstructive pulmonary disease. Mechanisms underlying these phenotypes are unclear. OBJECTIVE To identify clusters of peripheral inflammatory mediators associated with pulmonary function to determine inflammatory pathways and phenotypes of chronic obstructive pulmonary disease in PLWH and HIV-uninfected individuals. METHODS Study participants were PLWH and HIV-uninfected individuals enrolled in the Pittsburgh HIV Lung Cohort. Pulmonary function tests were performed for all participants. Chest computed tomographic scans were performed in a subset of PLWH. Plasma levels of 19 inflammatory mediators were measured by Luminex or ELISA. Clusters were identified based on the expression pattern of inflammatory mediators in PLWH and HIV-uninfected individuals, and the relationships among clinical parameters were evaluated within clusters by using cluster and network analyses. RESULTS In PLWH, we identified a distinct cluster with higher levels of Th1, Th2, and Th17 inflammatory mediators with increased complexity of these mediators and inferred presence of pathogenic Th17 cell types. Individuals in this cluster had worse airway obstruction and more radiographic emphysema. In HIV-uninfected individuals, a cluster with high-grade systemic inflammation also had worse diffusing capacity for carbon monoxide. CONCLUSIONS Inflammatory pathways associated with pulmonary dysfunction in PLWH suggest multifaceted immune dysregulation involved in different phenotypes of pulmonary dysfunction with a potential specific contribution of the Th17 pathway to airway obstruction in PLWH. Identification of these associations may help in development of treatments that could alter the course of the disease.
Collapse
|
15
|
de Magalhães MC, Sánchez-Arcila JC, Lyra ACDB, Long LFB, Vasconcellos de Souza I, Ferry FRDA, de Almeida AJ, Alves-Leon SV. Hemostasis in elderly patients with human immunodeficiency virus (HIV) infection-Cross-sectional study. PLoS One 2020; 15:e0227763. [PMID: 32049963 PMCID: PMC7015422 DOI: 10.1371/journal.pone.0227763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 12/27/2019] [Indexed: 12/22/2022] Open
Abstract
Introduction: Aging and chronic HIV infection are clinical conditions that share the states of inflammation and hypercoagulability. The life expectancy of the world population has increased in the last decades, bringing as complications the occurrence of diseases that undergoing metabolic, bone, cardiological, vascular and neurological alterations. HIV-infected patients experience these changes early and are living longer due to the success of antiretroviral therapy. The objectives of this study was to evaluate some changes in the plasma hemostatic profile of 115 HIV-reactive elderly individuals over 60 years old in the chronic phase of infection, and compare with 88 healthy uninfected elderly individuals. Plasma determinations of D-dimers, Fibrinogen, von Willebrand Factor, Antithrombin, Prothrombin Time, Activated Partial Thromboplastin Time, and platelet count were performed. In the HIV-reactive group, these variables were analyzed according to viral load, protease inhibitor use and CD4+ T lymphocyte values. After adjusted values for age and sex, the results showed higher levels of Antithrombin (103%; 88%, p = 0.0001) and Prothrombin Time activities (92.4%; 88.2%, p = 0.019) in the HIV group compared to the control group. We observed higher values of Fibrinogen in protease inhibitor users in both the male (p = 0.043) and female (p = 0.004) groups, and in the female HIV group with detected viral load (p = 0.015). The male HIV group with a CD4+ count> 400 cells / mm3 presented higher von Willebrand Factor values (p = 0.036). D-Dimers had higher values in the older age groups (p = 0.003; p = 0.042, respectively). Conclusion: Our results suggest that the elderly with chronic HIV infection with few comorbidities had a better hemostatic profile than negative control group, reflecting the success of treatment. Protease inhibitor use and age punctually altered this profile.
Collapse
Affiliation(s)
- Marilza Campos de Magalhães
- Gaffrée and Guinle University Hospital, Postgraduate Program in Neuroscience / Neurology, Federal University of Rio de Janeiro State—UNIRIO, Rio de Janeiro, RJ, Brazil
| | | | - Ana Carolina de Brito Lyra
- Gaffrée and Guinle University Hospital, Postgraduate Program in Neuroscience / Neurology, Federal University of Rio de Janeiro State—UNIRIO, Rio de Janeiro, RJ, Brazil
| | - Luiz Felipe Boufleur Long
- Gaffrée and Guinle University Hospital, Postgraduate Program in Neuroscience / Neurology, Federal University of Rio de Janeiro State—UNIRIO, Rio de Janeiro, RJ, Brazil
| | - Isabelle Vasconcellos de Souza
- Gaffrée and Guinle University Hospital, Postgraduate Program in Neuroscience / Neurology, Federal University of Rio de Janeiro State—UNIRIO, Rio de Janeiro, RJ, Brazil
| | - Fernando Raphael de Almeida Ferry
- Gaffrée and Guinle University Hospital, Postgraduate Program in Neuroscience / Neurology, Federal University of Rio de Janeiro State—UNIRIO, Rio de Janeiro, RJ, Brazil
| | - Adilson José de Almeida
- Gaffrée and Guinle University Hospital, Postgraduate Program in Neuroscience / Neurology, Federal University of Rio de Janeiro State—UNIRIO, Rio de Janeiro, RJ, Brazil
- Viral Immunology Laboratory, Oswaldo Cruz Institute (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Soniza Vieira Alves-Leon
- Gaffrée and Guinle University Hospital, Postgraduate Program in Neuroscience / Neurology, Federal University of Rio de Janeiro State—UNIRIO, Rio de Janeiro, RJ, Brazil
- * E-mail:
| |
Collapse
|
16
|
Ait-Ammar A, Kula A, Darcis G, Verdikt R, De Wit S, Gautier V, Mallon PWG, Marcello A, Rohr O, Van Lint C. Current Status of Latency Reversing Agents Facing the Heterogeneity of HIV-1 Cellular and Tissue Reservoirs. Front Microbiol 2020; 10:3060. [PMID: 32038533 PMCID: PMC6993040 DOI: 10.3389/fmicb.2019.03060] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022] Open
Abstract
One of the most explored therapeutic approaches aimed at eradicating HIV-1 reservoirs is the "shock and kill" strategy which is based on HIV-1 reactivation in latently-infected cells ("shock" phase) while maintaining antiretroviral therapy (ART) in order to prevent spreading of the infection by the neosynthesized virus. This kind of strategy allows for the "kill" phase, during which latently-infected cells die from viral cytopathic effects or from host cytolytic effector mechanisms following viral reactivation. Several latency reversing agents (LRAs) with distinct mechanistic classes have been characterized to reactivate HIV-1 viral gene expression. Some LRAs have been tested in terms of their potential to purge latent HIV-1 in vivo in clinical trials, showing that reversing HIV-1 latency is possible. However, LRAs alone have failed to reduce the size of the viral reservoirs. Together with the inability of the immune system to clear the LRA-activated reservoirs and the lack of specificity of these LRAs, the heterogeneity of the reservoirs largely contributes to the limited success of clinical trials using LRAs. Indeed, HIV-1 latency is established in numerous cell types that are characterized by distinct phenotypes and metabolic properties, and these are influenced by patient history. Hence, the silencing mechanisms of HIV-1 gene expression in these cellular and tissue reservoirs need to be better understood to rationally improve this cure strategy and hopefully reach clinical success.
Collapse
Affiliation(s)
- Amina Ait-Ammar
- Service of Molecular Virology, Department of Molecular Virology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Anna Kula
- Malopolska Centre of Biotechnology, Laboratory of Virology, Jagiellonian University, Krakow, Poland
| | - Gilles Darcis
- Infectious Diseases Department, Liège University Hospital, Liège, Belgium
| | - Roxane Verdikt
- Service of Molecular Virology, Department of Molecular Virology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Stephane De Wit
- Service des Maladies Infectieuses, CHU Saint-Pierre, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Virginie Gautier
- UCD Centre for Experimental Pathogen Host Research (CEPHR), School of Medicine, University College Dublin, Dublin, Ireland
| | - Patrick W G Mallon
- UCD Centre for Experimental Pathogen Host Research (CEPHR), School of Medicine, University College Dublin, Dublin, Ireland
| | - Alessandro Marcello
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Olivier Rohr
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Virology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| |
Collapse
|
17
|
Cribbs SK, Crothers K, Morris A. Pathogenesis of HIV-Related Lung Disease: Immunity, Infection, and Inflammation. Physiol Rev 2019; 100:603-632. [PMID: 31600121 DOI: 10.1152/physrev.00039.2018] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite anti-retroviral therapy (ART), human immunodeficiency virus-1 (HIV)-related pulmonary disease continues to be a major cause of morbidity and mortality for people living with HIV (PLWH). The spectrum of lung diseases has changed from acute opportunistic infections resulting in death to chronic lung diseases for those with access to ART. Chronic immune activation and suppression can result in impairment of innate immunity and progressive loss of T cell and B cell functionality with aberrant cytokine and chemokine responses systemically as well as in the lung. HIV can be detected in the lungs of PLWH and has profound effects on cellular immune functions. In addition, HIV-related lung injury and disease can occur secondary to a number of mechanisms including altered pulmonary and systemic inflammatory pathways, viral persistence in the lung, oxidative stress with additive effects of smoke exposure, microbial translocation, and alterations in the lung and gut microbiome. Although ART has had profound effects on systemic viral suppression in HIV, the impact of ART on lung immunology still needs to be fully elucidated. Understanding of the mechanisms by which HIV-related lung diseases continue to occur is critical to the development of new preventive and therapeutic strategies to improve lung health in PLWH.
Collapse
Affiliation(s)
- Sushma K Cribbs
- Pulmonary Medicine, Department of Veterans Affairs, Atlanta, Georgia; Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, Emory University, Atlanta, Georgia; Department of Medicine, Veterans Affairs Puget Sound Health Care System and Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, Washington; and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kristina Crothers
- Pulmonary Medicine, Department of Veterans Affairs, Atlanta, Georgia; Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, Emory University, Atlanta, Georgia; Department of Medicine, Veterans Affairs Puget Sound Health Care System and Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, Washington; and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Alison Morris
- Pulmonary Medicine, Department of Veterans Affairs, Atlanta, Georgia; Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, Emory University, Atlanta, Georgia; Department of Medicine, Veterans Affairs Puget Sound Health Care System and Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, Washington; and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
18
|
Furler RL, Newcombe KL, Del Rio Estrada PM, Reyes-Terán G, Uittenbogaart CH, Nixon DF. Histoarchitectural Deterioration of Lymphoid Tissues in HIV-1 Infection and in Aging. AIDS Res Hum Retroviruses 2019; 35:1148-1159. [PMID: 31474115 DOI: 10.1089/aid.2019.0156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Impaired immunity is a common symptom of aging and advanced Human Immunodeficiency Virus type 1 (HIV-1) disease. In both diseases, a decline in lymphocytic function and cellularity leads to ineffective adaptive immune responses to opportunistic infections and vaccinations. Furthermore, despite sustained myeloid cellularity there is a background of chronic immune activation and a decrease in innate immune function in aging. In HIV-1 disease, myeloid cellularity is often more skewed than in normal aging, but similar chronic activation and innate immune dysfunction typically arise. Similarities between aging and HIV-1 infection have led to several investigations into HIV-1-mediated aging of the immune system. In this article, we review various studies that report alterations of leukocyte number and function during aging, and compare those alterations with those observed during progressive HIV-1 disease. We pay particular attention to changes within lymphoid tissue microenvironments and how histoarchitectural changes seen in these two diseases affect immunity. As we review various immune compartments including peripheral blood as well as primary and secondary lymphoid organs, common themes arise that help explain the decline of immunity in the elderly and in HIV-1-infected individuals with advanced disease. In both conditions, lymphoid tissues often show signs of histoarchitectural deterioration through fat accumulation and/or fibrosis. These structural changes can be attributed to a loss of communication between leukocytes and the surrounding stromal cells that produce the extracellular matrix components and growth factors necessary for cell migration, cell proliferation, and lymphoid tissue function. Despite the common general impairment of immunity in aging and HIV-1 progression, deterioration of immunity is caused by distinct mechanisms at the cellular and tissue levels in these two diseases.
Collapse
Affiliation(s)
- Robert L. Furler
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Kevin L. Newcombe
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Perla M. Del Rio Estrada
- Departmento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” CDMX, Mexico DF, Mexico
| | - Gustavo Reyes-Terán
- Departmento de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” CDMX, Mexico DF, Mexico
| | - Christel H. Uittenbogaart
- Department of Microbiology, Immunology and Molecular Genetics, Medicine-Pediatrics, UCLA AIDS Institute and the Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California
| | - Douglas F. Nixon
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York
| |
Collapse
|
19
|
Thames AD, Irwin MR, Breen EC, Cole SW. Experienced discrimination and racial differences in leukocyte gene expression. Psychoneuroendocrinology 2019; 106:277-283. [PMID: 31029930 PMCID: PMC6589103 DOI: 10.1016/j.psyneuen.2019.04.016] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/07/2019] [Accepted: 04/18/2019] [Indexed: 01/03/2023]
Abstract
Racial disparities in health outcomes between African Americans and European Americans have been well-documented, but not fully understood. Chronic inflammation contributes to several of the diseases showing racial disparities (e.g., Human Immunodeficiency Virus [HIV]), and racial differences in stress exposure (e.g., experiences of racial discrimination) that stimulate pro-inflammatory processes that may contribute to differential health outcomes. We performed a cross-sectional bioinformatic analyses relating perceived discrimination (as measured by the Perceived Ethnic Discrimination Questionnaire [PED-Q]) to the activity of pro-inflammatory, neuroendocrine, and antiviral transcription control pathways relevant to the conserved transcriptional response to adversity (CTRA) in peripheral blood leukocytes. Subjects were 71 individuals (37 HIV-seropositive (HIV+); 34 HIV-seronegative (HIV-)) (mean age = 53 years, range 27-63), who self-identified either as African American/Black (n = 48) or European American/White (n = 23). This provided the opportunity to examine the independent effects of race and HIV, as well as the modifying role of perceived discrimination on pathways involved in CTRA. Exploratory analysis examined the interactive effects of HIV and race on pathways involved in CTRA. Relative to European Americans, African Americans showed increased activity of two key pro-inflammatory transcription control pathways (NF- кB and AP-1) and two stress-responsive signaling pathways (CREB and glucocorticoid receptor); these effects did not differ significantly as a function of HIV infection (HIV x Race interaction, all p > .10). Results suggested that differences in experiences of racial discrimination could potentially account for more than 50% of the total race-related difference in pro-inflammatory transcription factor activity. In sum, differential exposure to racial discrimination may contribute to racial disparities in health outcomes in part by activating threat-related molecular programs that stimulate inflammation and contribute to increased risk of chronic illnesses.
Collapse
Affiliation(s)
- April D Thames
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, United States.
| | - Michael R Irwin
- Cousins Center for Psychoneuroimmunology, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, United States
| | - Elizabeth C Breen
- Cousins Center for Psychoneuroimmunology, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, United States
| | - Steve W Cole
- Cousins Center for Psychoneuroimmunology, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, United States
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Human immunodeficiency virus (HIV)-associated nephropathy (HIVAN) was identified as the major renal manifestation of HIV infection early in the HIV epidemic. However, HIV infection now is associated with a different spectrum of renal lesions leading to chronic kidney disease. This review examines the changes in kidney injury occurring in the current HIV era and the factors involved in this transformation of disease expression. RECENT FINDINGS The incidence of HIVAN and opportunistic infections in HIV-infected individuals has declined in concert with the use of effective combination antiretroviral agents. Chronic kidney disease has become more prevalent as patients infected with HIV are living longer and developing non-HIV-associated diseases such as hypertension and diabetes. Additionally, noncollapsing focal and segmental glomerulosclerosis, co-infection with hepatitis C, HIV-associated immune complex kidney disease, HIV-related accelerated aging, and antiretroviral therapies contribute to progressive loss of renal function. SUMMARY HIV infection is now associated with a variety of renal lesions causing chronic kidney disease, not all of which are virally induced. It is important to determine the cause of renal functional decline in an HIV-infected patient, as this will impact patient management and prognosis.
Collapse
|
21
|
Nacka-Aleksić M, Stojanović M, Pilipović I, Stojić-Vukanić Z, Kosec D, Leposavić G. Strain differences in thymic atrophy in rats immunized for EAE correlate with the clinical outcome of immunization. PLoS One 2018; 13:e0201848. [PMID: 30086167 PMCID: PMC6080797 DOI: 10.1371/journal.pone.0201848] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/22/2018] [Indexed: 01/03/2023] Open
Abstract
An accumulating body of evidence suggests that development of autoimmune pathologies leads to thymic dysfunction and changes in peripheral T-cell compartment, which, in turn, perpetuate their pathogenesis. To test this hypothesis, thymocyte differentiation/maturation in rats susceptible (Dark Agouti, DA) and relatively resistant (Albino Oxford, AO) to experimental autoimmune encephalomyelitis (EAE) induction was examined. Irrespective of strain, immunization for EAE (i) increased the circulating levels of IL-6, a cytokine causally linked with thymic atrophy, and (ii) led to thymic atrophy reflecting partly enhanced thymocyte apoptosis associated with downregulated thymic IL-7 expression. Additionally, immunization diminished the expression of Thy-1, a negative regulator of TCRαβ-mediated signaling and activation thresholds, on CD4+CD8+ TCRαβlo/hi thymocytes undergoing selection and thereby impaired thymocyte selection/survival. This diminished the generation of mature CD4+ and CD8+ single positive TCRαβhi thymocytes and, consequently, CD4+ and CD8+ recent thymic emigrants. In immunized rats, thymic differentiation of natural regulatory CD4+Foxp3+CD25+ T cells (nTregs) was particularly affected reflecting a diminished expression of IL-7, IL-2 and IL-15. The decline in the overall thymic T-cell output and nTreg generation was more pronounced in DA than AO rats. Additionally, differently from immunized AO rats, in DA ones the frequency of CD28- cells secreting cytolytic enzymes within peripheral blood CD4+ T lymphocytes increased, as a consequence of thymic atrophy-related replicative stress (mirrored in CD4+ cell memory pool expansion and p16INK4a accumulation). The higher circulating level of TNF-α in DA compared with AO rats could also contribute to this difference. Consistently, higher frequency of cytolytic CD4+ granzyme B+ cells (associated with greater tissue damage) was found in spinal cord of immunized DA rats compared with their AO counterparts. In conclusion, the study indicated that strain differences in immunization-induced changes in thymopoiesis and peripheral CD4+CD28- T-cell generation could contribute to rat strain-specific clinical outcomes of immunization for EAE.
Collapse
Affiliation(s)
- Mirjana Nacka-Aleksić
- Department of Physiology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Marija Stojanović
- Department of Physiology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Ivan Pilipović
- Immunology Research Centre “Branislav Janković”, Institute of Virology, Vaccines and Sera “Torlak”, Belgrade, Serbia
| | - Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Duško Kosec
- Immunology Research Centre “Branislav Janković”, Institute of Virology, Vaccines and Sera “Torlak”, Belgrade, Serbia
| | - Gordana Leposavić
- Department of Physiology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
- * E-mail:
| |
Collapse
|
22
|
Behrens NE, Wertheimer A, Klotz SA, Ahmad N. Reduction in terminally differentiated T cells in virologically controlled HIV-infected aging patients on long-term antiretroviral therapy. PLoS One 2018; 13:e0199101. [PMID: 29897981 PMCID: PMC5999291 DOI: 10.1371/journal.pone.0199101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/31/2018] [Indexed: 12/14/2022] Open
Abstract
Several studies have shown an increased accumulation of terminally differentiated T cells during HIV infection, suggestive of exhaustion/senescence, causing dysregulation of T cell homeostasis and function and rapid HIV disease progression. We have investigated whether long-term antiretroviral therapy (ART), which controls viremia and restores CD4 T cell counts, is correlated with reduction in terminally differentiated T cells, improved ratios of naïve to memory and function of T cells in 100 virologically controlled HIV-infected patients. We show that while the median frequencies of terminally differentiated CD4+ and CD8+ T cells (CD28-, CD27-, CD57+ and CD28-CD57+), were higher in the virologically controlled HIV-infected patients’ cohort compared with uninfected individuals’ cohort, the frequencies of these cells significantly decreased with increasing CD4 T cell counts in HIV-infected patients. Although, the naïve CD4+ and CD8+ T cells were lower in HIV patients’ cohort than uninfected cohort, there was a significant increase in both naïve CD4+ and CD8+ T cells with increasing CD4 T cell counts in HIV-infected patients. The underlying mechanism behind this increased naïve CD4+ and CD8+ T cells in HIV-infected patients was due to an increase in recent thymic emigrants, CD4+CD31+, as compared to CD4+CD31-. The CD4+ T cells of HIV-infected patients produced cytokines, including IL-2, IL-10 and IFN-γ comparable to uninfected individuals. In conclusion, virologically controlled HIV-infected patients on long-term ART show a significant reduction in terminally differentiated T cells, suggestive of decreased exhaustion/senescence, and improvement in the ratios of naïve to memory and function of T cells.
Collapse
Affiliation(s)
- Nicole E Behrens
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Anne Wertheimer
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona, United States of America.,Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, United States of America.,Bio5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Stephen A Klotz
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Nafees Ahmad
- Department of Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
23
|
Franzese O, Barbaccia ML, Bonmassar E, Graziani G. Beneficial and Detrimental Effects of Antiretroviral Therapy on HIV-Associated Immunosenescence. Chemotherapy 2018; 63:64-75. [PMID: 29533947 DOI: 10.1159/000487534] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 02/06/2018] [Indexed: 02/28/2024]
Abstract
Since the introduction of highly active antiretroviral therapy more than 2 decades ago, HIV-related deaths have dramatically decreased and HIV infection has become a chronic disease. Due to the inability of antiretroviral drugs to eradicate the virus, treatment of HIV infection requires a systemic lifelong therapy. However, even when successfully treated, HIV patients still show increased incidence of age-associated co-morbidities compared with uninfected individuals. Virus- induced immunosenescence, a process characterized by a progressive decline of immune system function, contributes to the premature ageing observed in HIV patients. Although antiretroviral therapy has significantly improved both the quality and length of patient lives, the life expectancy of treated patients is still shorter compared with that of uninfected individuals. In particular, while antiretroviral therapy can contrast some features of HIV-associated immunosenescence, several anti-HIV agents may themselves contribute to other aspects of immune ageing. Moreover, older HIV patients tend to have a worse immunological response to the antiviral therapy. In this review we will examine the available evidence on the role of antiretroviral therapy in the control of the main features regulating immunosenescence.
Collapse
|
24
|
Pastor L, Urrea V, Carrillo J, Parker E, Fuente-Soro L, Jairoce C, Mandomando I, Naniche D, Blanco J. Dynamics of CD4 and CD8 T-Cell Subsets and Inflammatory Biomarkers during Early and Chronic HIV Infection in Mozambican Adults. Front Immunol 2018; 8:1925. [PMID: 29354131 PMCID: PMC5760549 DOI: 10.3389/fimmu.2017.01925] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/15/2017] [Indexed: 12/13/2022] Open
Abstract
During primary HIV infection (PHI), there is a striking cascade response of inflammatory cytokines and many cells of the immune system show altered frequencies and signs of extensive activation. These changes have been shown to have a relevant role in predicting disease progression; however, the challenges of identifying PHI have resulted in a lack of critical information about the dynamics of early pathogenic events. We studied soluble inflammatory biomarkers and changes in T-cell subsets in individuals at PHI (n = 40), chronic HIV infection (CHI, n = 56), and HIV-uninfected (n = 58) recruited at the Manhiça District Hospital in Mozambique. Plasma levels of 49 biomarkers were determined by Luminex and ELISA. T-cell immunophenotyping was performed by multicolor flow cytometry. Plasma HIV viremia, CD4, and CD8 T cell counts underwent rapid stabilization after PHI. However, several immunological parameters, including Th1-Th17 CD4 T cells and activation or exhaustion of CD8 T cells continued decreasing until more than 9 months postinfection. Importantly, no sign of immunosenescence was observed over the first year of HIV infection. Levels of IP-10, MCP-1, BAFF, sCD14, tumor necrosis factor receptor-2, and TRAIL were significantly overexpressed at the first month of infection and underwent a prompt decrease in the subsequent months while, MIG and CD27 levels began to increase 1 month after infection and remained overexpressed for almost 1 year postinfection. Early levels of soluble biomarkers were significantly associated with subsequently exhausted CD4 T-cells or with CD8 T-cell activation. Despite rapid immune control of virus replication, the stabilization of the T-cell subsets occurs months after viremia and CD4 count plateau, suggesting persistent immune dysfunction and highlighting the potential benefit of early treatment initiation that could limit immunological damage.
Collapse
Affiliation(s)
- Lucía Pastor
- AIDS Research Institute-IrsiCaixa, Hospital Germans Trias i Pujol, Badalona, Spain.,ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain.,Institut Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona, Spain.,Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | - Victor Urrea
- AIDS Research Institute-IrsiCaixa, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Jorge Carrillo
- AIDS Research Institute-IrsiCaixa, Hospital Germans Trias i Pujol, Badalona, Spain.,ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Erica Parker
- School of Paediatrics and Child Health, University of Western Australia, Perth, WA, Australia
| | - Laura Fuente-Soro
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | - Chenjerai Jairoce
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | - Inacio Mandomando
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | - Denise Naniche
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | - Julià Blanco
- AIDS Research Institute-IrsiCaixa, Hospital Germans Trias i Pujol, Badalona, Spain.,Institut Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona, Spain.,Universitat de Vic-Universitat Central de Catalunya, Vic, Spain
| |
Collapse
|
25
|
Gonzalez-Serna A, Ferrando-Martinez S, Tarancon-Diez L, De Pablo-Bernal RS, Dominguez-Molina B, Jiménez JL, Muñoz-Fernández MÁ, Leal M, Ruiz-Mateos E. Increased CD127+ and decreased CD57+ T cell expression levels in HIV-infected patients on NRTI-sparing regimens. J Transl Med 2017; 15:259. [PMID: 29262860 PMCID: PMC5738860 DOI: 10.1186/s12967-017-1367-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/12/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND NRTIs-sparing regimens exert favourable profiles on T-cell homeostasis associated parameters. Our aim was to analyze the effect of NRTIs sparing regimen (NRTI-sparing-cART) vs NRTIs-containing regimen (NRTI-cART), on T-cell homeostasis associated parameters in naive HIV-infected patients. METHODS Biomarkers of cell survival (CD127) and replicative senescence (CD57), were measured by multiparametric flow cytometry for T-cell phenotyping on peripheral blood mononuclear cells (PBMCs) samples just before (baseline) and after 48 weeks of undetectable viral load in patients on NRTI-sparing-cART (N = 13) and NRTI-cART (N = 14). After 48 weeks a subgroup of patients (n = 5) on NRTI-cART switched to NRTI-sparing-cART for another additional 48 weeks. In vitro assays were performed on PBMCs from HIV-uninfected healthy donors exposed or not to HIV. To analyze the independent factors associated with type of cART bivariate and stepwise multivariate analysis were performed after adjusting for basal CD4+, CD8+ and nadir CD4+ T-cell counts. RESULTS After 48 weeks of a NRTI-sparing-cART vs NRTI-cART patients have higher effector memory (EM) CD4+ CD127+ T-cell levels, lower EM CD4+ CD57+ T-cell levels, higher CD8+ CD127+ T-cell levels, lower CD8+ CD57+ T-cell levels and higher memory CD8+ T-cell levels. This effect was confirmed in the subgroup of patients who switched to NRTI-sparing-cART. In vitro assays confirmed that the deleterious effect of a NRTIs-containing regimen was due to NRTIs. CONCLUSIONS The implementation of NRTI-sparing regimens, with a favourable profile in CD127 and CD57 T-cell expression, could benefit cART-patients. These results could have potential implications in a decrease in the number of Non-AIDS events.
Collapse
Affiliation(s)
- A Gonzalez-Serna
- Molecular Immunobiology Laboratory, Health Research Institute Gregorio Marañon, Spanish HIV HGM BioBank, Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), General Universitary Hospital Gregorio Marañon, C/Dr. Esquerdo 46, 28007, Madrid, Spain. .,Viral and Immune Infection Unit Center, Institute of Health Carlos III, Molecular Immunobiology Laboratory, General Universitary Hospital Gregorio Marañon, Majadahonda Campus, Madrid, Spain.
| | - S Ferrando-Martinez
- Laboratory of Immunovirology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, C/Avenida Manuel Siurot s/n, 41013, Seville, Spain
| | - L Tarancon-Diez
- Laboratory of Immunovirology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, C/Avenida Manuel Siurot s/n, 41013, Seville, Spain
| | - R S De Pablo-Bernal
- Laboratory of Immunovirology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, C/Avenida Manuel Siurot s/n, 41013, Seville, Spain
| | - B Dominguez-Molina
- Laboratory of Immunovirology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, C/Avenida Manuel Siurot s/n, 41013, Seville, Spain
| | - J L Jiménez
- Molecular Immunobiology Laboratory, Health Research Institute Gregorio Marañon, Spanish HIV HGM BioBank, Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), General Universitary Hospital Gregorio Marañon, C/Dr. Esquerdo 46, 28007, Madrid, Spain.,Viral and Immune Infection Unit Center, Institute of Health Carlos III, Molecular Immunobiology Laboratory, General Universitary Hospital Gregorio Marañon, Majadahonda Campus, Madrid, Spain
| | - M Á Muñoz-Fernández
- Molecular Immunobiology Laboratory, Health Research Institute Gregorio Marañon, Spanish HIV HGM BioBank, Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), General Universitary Hospital Gregorio Marañon, C/Dr. Esquerdo 46, 28007, Madrid, Spain.,Viral and Immune Infection Unit Center, Institute of Health Carlos III, Molecular Immunobiology Laboratory, General Universitary Hospital Gregorio Marañon, Majadahonda Campus, Madrid, Spain
| | - M Leal
- Laboratory of Immunovirology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, C/Avenida Manuel Siurot s/n, 41013, Seville, Spain
| | - E Ruiz-Mateos
- Laboratory of Immunovirology, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, C/Avenida Manuel Siurot s/n, 41013, Seville, Spain. .,Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen del Rocio, Instituto de Biomedicina de Sevilla (IBiS), Universidad de Sevilla, Centro Superior de Investigaciones Científicas, Seville, Spain.
| |
Collapse
|
26
|
Gross AM, Jaeger PA, Kreisberg JF, Licon K, Jepsen KL, Khosroheidari M, Morsey BM, Swindells S, Shen H, Ng CT, Flagg K, Chen D, Zhang K, Fox HS, Ideker T. Methylome-wide Analysis of Chronic HIV Infection Reveals Five-Year Increase in Biological Age and Epigenetic Targeting of HLA. Mol Cell 2017; 62:157-168. [PMID: 27105112 DOI: 10.1016/j.molcel.2016.03.019] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 12/29/2015] [Accepted: 03/16/2016] [Indexed: 12/31/2022]
Abstract
HIV-infected individuals are living longer on antiretroviral therapy, but many patients display signs that in some ways resemble premature aging. To investigate and quantify the impact of chronic HIV infection on aging, we report a global analysis of the whole-blood DNA methylomes of 137 HIV+ individuals under sustained therapy along with 44 matched HIV- individuals. First, we develop and validate epigenetic models of aging that are independent of blood cell composition. Using these models, we find that both chronic and recent HIV infection lead to an average aging advancement of 4.9 years, increasing expected mortality risk by 19%. In addition, sustained infection results in global deregulation of the methylome across >80,000 CpGs and specific hypomethylation of the region encoding the human leukocyte antigen locus (HLA). We find that decreased HLA methylation is predictive of lower CD4 / CD8 T cell ratio, linking molecular aging, epigenetic regulation, and disease progression.
Collapse
Affiliation(s)
- Andrew M Gross
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA 92093, USA; Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Philipp A Jaeger
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jason F Kreisberg
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Katherine Licon
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kristen L Jepsen
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mahdieh Khosroheidari
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Brenda M Morsey
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Susan Swindells
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hui Shen
- Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Cherie T Ng
- aTyr Pharmaceuticals, San Diego, CA 92121, USA
| | - Ken Flagg
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Guangzhou Kang Rui Biological Pharmaceutical Technology Company Ltd., Guangzhou 510005, China
| | - Daniel Chen
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kang Zhang
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Ophthalmology and Biomaterials and Tissue Engineering Center, Institute for Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Veterans Administration Healthcare System, San Diego, CA 92093, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Howard S Fox
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Trey Ideker
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA 92093, USA; Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
27
|
Topographies of Cortical and Subcortical Volume Loss in HIV and Aging in the cART Era. J Acquir Immune Defic Syndr 2017; 73:374-383. [PMID: 27454251 DOI: 10.1097/qai.0000000000001111] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Studies of HIV-associated brain atrophy often focus on a priori brain regions of interest, which can introduce bias. A data-driven, minimally biased approach was used to analyze changes in brain volumetrics associated with HIV and their relationship to aging, viral factors, combination antiretroviral therapy (cART), and gender, and smoking. DESIGN A cross-sectional study of 51 HIV-uninfected (HIV-) and 146 HIV-infected (HIV+) participants. METHODS Structural MRI of participants was analyzed using principal component analysis (PCA) to reduce dimensionality and determine topographies of volumetric changes. Neuropsychological (NP) assessment was examined using global and domain-specific scores. The effects of HIV disease factors (eg, viral load, CD4, etc.) on brain volumes and neuropsychological were investigated using penalized regression (LASSO). RESULTS Two components of interest were visualized using principal component analysis. An aging effect predominated for both components. The first component, a cortically weighted topography, accounted for a majority of variance across participants (43.5% of variance) and showed independent effects of HIV and smoking. A secondary, subcortically weighted topography (4.6%) showed HIV-status accentuated age-related volume loss. In HIV+ patients, the cortical topography correlated with global neuropsychological scores and nadir CD4, whereas subcortical volume loss was associated with recent viral load. CONCLUSIONS Cortical regions showed the most prominent volumetric changes because of aging and HIV. Within HIV+ participants, cortical volumes were associated with immune history, whereas subcortical changes correlated with current immune function. Cognitive function was primarily associated with cortical volume changes. Observed volumetric changes in chronic HIV+ patients may reflect both past infection history and current viral status.
Collapse
|
28
|
Abstract
: The increased prevalence of age-related comorbidities and mortality is worrisome in ageing HIV-infected patients. Here, we aim to analyse the different ageing mechanisms with regard to HIV infection. Ageing results from the time-dependent accumulation of random cellular damage. Epigenetic modifications and mitochondrial DNA haplogroups modulate ageing. In antiretroviral treatment-controlled patients, epigenetic clock appears to be advanced, and some haplogroups are associated with HIV infection severity. Telomere shortening is enhanced in HIV-infected patients because of HIV and some nucleoside analogue reverse transcriptase inhibitors. Mitochondria-related oxidative stress and mitochondrial DNA mutations are increased during ageing and also by some nucleoside analogue reverse transcriptase inhibitors. Overall, increased inflammation or 'inflammageing' is a major driver of ageing and could result from cell senescence with secreted proinflammatory mediators, altered gut microbiota, and coinfections. In HIV-infected patients, the level of inflammation and innate immunity activation is enhanced and related to most comorbidities and to mortality. This status could result, in addition to age, from the virus itself or viral protein released from reservoirs, from HIV-enhanced gut permeability and dysbiosis, from antiretroviral treatment, from frequent cytomegalovirus and hepatitis C virus coinfections, and also from personal and environmental factors, as central fat accumulation or smoking. Adaptive immune activation and immunosenescence are associated with comorbidities and mortality in the general population but are less predictive in HIV-infected patients. Biomarkers to evaluate ageing in HIV-infected patients are required. Numerous systemic or cellular inflammatory, immune activation, oxidative stress, or senescence markers can be tested in serum or peripheral blood mononuclear cells. The novel European Study to Establish Biomarkers of Human Ageing MARK-AGE algorithm, evaluating the biological age, is currently assessed in HIV-infected patients and reveals an advanced biological age. Some enhanced inflammatory or innate immune activation markers are interesting but still not validated for the patient's follow-up. To be able to assess patients' biological age is an important objective to improve their healthspan.
Collapse
|
29
|
Accelerated disease progression and robust innate host response in aged SIVmac239-infected Chinese rhesus macaques is associated with enhanced immunosenescence. Sci Rep 2017; 7:37. [PMID: 28232735 PMCID: PMC5428349 DOI: 10.1038/s41598-017-00084-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 01/31/2017] [Indexed: 02/06/2023] Open
Abstract
The elderly population infected with HIV-1 is often characterized by the rapid AIDS progression and poor treatment outcome, possibly because of immunosenescence resulting from both HIV infection and aging. However, this hypothesis remains to be fully tested. Here, we studied 6 young and 12 old Chinese rhesus macaques (ChRM) over the course of three months after simian immunodeficiency virus (SIV) SIVmac239 infection. Old ChRM showed a higher risk of accelerated AIDS development than did young macaques, owing to rapidly elevated plasma viral loads and decreased levels of CD4+ T cells. The low frequency of naïve CD4+ T cells before infection was strongly predictive of an increased disease progression, whereas the severe depletion of CD4+ T cells and the rapid proliferation of naïve lymphocytes accelerated the exhaustion of naïve lymphocytes in old ChRM. Moreover, in old ChRM, a robust innate host response with defective regulation was associated with a compensation for naïve T cell depletion and a high level of immune activation. Therefore, we suggest that immunosenescence plays an important role in the accelerated AIDS progression in elderly individuals and that SIV-infected old ChRM may be a favorable model for studying AIDS pathogenesis and researching therapies for elderly AIDS patients.
Collapse
|
30
|
Ripa M, Chiappetta S, Tambussi G. Immunosenescence and hurdles in the clinical management of older HIV-patients. Virulence 2017; 8:508-528. [PMID: 28276994 DOI: 10.1080/21505594.2017.1292197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
People living with HIV (PLWH) who are treated with effective highly active antiretroviral therapy (HAART) have a similar life expectancy to the general population. Moreover, an increasing proportion of new HIV diagnoses are made in people older than 50 y. The number of older HIV-infected patients is thus constantly growing and it is expected that by 2030 around 70% of PLWH will be more than 50 y old. On the other hand, HIV infection itself is responsible for accelerated immunosenescence, a progressive decline of immune system function in both the adaptive and the innate arm, which impairs the ability of an individual to respond to infections and to give rise to long-term immunity; furthermore, older patients tend to have a worse immunological response to HAART. In this review we focus on the pathogenesis of HIV-induced immunosenescence and on the clinical management of older HIV-infected patients.
Collapse
Affiliation(s)
- Marco Ripa
- a Department of Infectious and Tropical Diseases , Ospedale San Raffaele , Milan , Italy
| | - Stefania Chiappetta
- a Department of Infectious and Tropical Diseases , Ospedale San Raffaele , Milan , Italy
| | - Giuseppe Tambussi
- a Department of Infectious and Tropical Diseases , Ospedale San Raffaele , Milan , Italy
| |
Collapse
|
31
|
Effros RB. The silent war of CMV in aging and HIV infection. Mech Ageing Dev 2016; 158:46-52. [PMID: 26404009 PMCID: PMC4808485 DOI: 10.1016/j.mad.2015.09.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 12/19/2022]
Abstract
Human cytomegalovirus (CMV), the prototypical β-herpervirus, is a widespread pathogen that establishes a lifelong latent infection in myeloid progenitor, and possibly other cells as well. Although immunocompetent individuals show mild or no symptoms despite periodic reactivation during myeloid cell differentiation, CMV is responsible for considerable morbidity and mortality in older adults and in persons chronically infected with HIV. Indeed, in these individuals, reactivation of CMV can cause serious complications. This review will focus of the effects of CMV during aging and HIV/AIDS, with particular attention to the cellular immunity and age-related pathology outcomes from this persistent infection. The impact of the long-term chronic exposure to CMV antigens on the expansion of CD8 T cells with features of replicative senescence will be highlighted.
Collapse
Affiliation(s)
- Rita B Effros
- Department of Pathology & Laboratory Medicine and UCLA AIDS Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
32
|
Elevation and persistence of CD8 T-cells in HIV infection: the Achilles heel in the ART era. J Int AIDS Soc 2016; 19:20697. [PMID: 26945343 PMCID: PMC4779330 DOI: 10.7448/ias.19.1.20697] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 01/15/2016] [Accepted: 01/28/2016] [Indexed: 12/18/2022] Open
Abstract
Introduction HIV infection leads to a disturbed T-cell homeostasis, featured by a depletion of CD4 T-cells and a persistent elevation of CD8 T-cells over disease progression. Most effort of managing HIV infection has been focused on CD4 T-cell recovery, while changes in the CD8 compartment were relatively underappreciated in the past. Methods A comprehensive literature review of publications in English language was conducted using major electronic databases. Our search was focused on factors contributing to CD8 T-cell dynamics in HIV infection and following antiretroviral therapy (ART). Discussion Normalization of CD8 counts is seldom observed even with optimal CD4 recovery following long-term treatment. Initiation of ART in primary HIV infection leads to enhanced normalization of CD8 count compared with long-term ART initiated in chronic infection. Importantly, such CD8 elevation in treated HIV infection is associated with an increased risk of inflammatory non-AIDS-related clinical events independent of CD4 T-cell recovery. The mechanisms underlying CD8 persistence remain largely unknown, which may include bystander activation, exhaustion and immunosenescence of CD8 T-cells. The information provided herein will lead to a better understanding of factors associated with CD8 persistence and contribute to the development of strategies aiming at CD8 normalization. Conclusions Persistence of CD8 T-cell elevation in treated HIV-infected patients is associated with an increased risk of non-AIDS-related events. Now that advances in ART have led to decreased AIDS-related opportunistic diseases, more attention has been focused on reducing non-AIDS events and normalizing persistent CD8 T-cell elevation.
Collapse
|
33
|
Carroll JE, Esquivel S, Goldberg A, Seeman TE, Effros RB, Dock J, Olmstead R, Breen EC, Irwin MR. Insomnia and Telomere Length in Older Adults. Sleep 2016; 39:559-64. [PMID: 26715231 DOI: 10.5665/sleep.5526] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/14/2015] [Indexed: 12/20/2022] Open
Abstract
STUDY OBJECTIVES Insomnia, particularly in later life, may raise the risk for chronic diseases of aging and mortality through its effect on cellular aging. The current study examines the effects of insomnia on telomere length, a measure of cellular aging, and tests whether insomnia interacts with chronological age to increase cellular aging. METHODS A total of 126 males and females (60-88 y) were assessed for insomnia using the Diagnostic and Statistical Manual IV criterion for primary insomnia and the International Classification of Sleep Disorders, Second Edition for general insomnia (45 insomnia cases; 81 controls). Telomere length in peripheral blood mononuclear cells (PBMC) was determined using real-time quantitative polymerase chain reaction (qPCR) methodology. RESULTS In the analysis of covariance model adjusting for body mass index and sex, age (60-69 y versus 70-88 y) and insomnia diagnosis interacted to predict shorter PBMC telomere length (P = 0.04). In the oldest age group (70-88 y), PBMC telomere length was significantly shorter in those with insomnia, mean (standard deviation) M(SD) = 0.59(0.2) compared to controls with no insomnia M(SD) = 0.78(0.4), P = 0.04. In the adults aged 60-69 y, PBMC telomere length was not different between insomnia cases and controls, P = 0.44. CONCLUSIONS Insomnia is associated with shorter PBMC telomere length in adults aged 70-88 y, but not in those younger than 70 y, suggesting that clinically severe sleep disturbances may increase cellular aging, especially in the later years of life. These findings highlight insomnia as a vulnerability factor in later life, with implications for risk for diseases of aging.
Collapse
Affiliation(s)
- Judith E Carroll
- University of California, Los Angeles, Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA
| | - Stephanie Esquivel
- University of California, Los Angeles, Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA
| | - Alyssa Goldberg
- University of California, Los Angeles, Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA.,Children's National Medical Center, Department of Pediatrics, Washington, DC
| | - Teresa E Seeman
- University of California, Los Angeles, Department of Medicine, Division of Geriatrics, David Geffen School of Medicine, Los Angeles, CA
| | - Rita B Effros
- University of California, Los Angeles, Department of Pathology and Laboratory Medicine, Los Angeles, CA
| | - Jeffrey Dock
- University of California, Los Angeles, Department of Pathology and Laboratory Medicine, Los Angeles, CA
| | - Richard Olmstead
- University of California, Los Angeles, Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA
| | - Elizabeth C Breen
- University of California, Los Angeles, Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA
| | - Michael R Irwin
- University of California, Los Angeles, Cousins Center for Psychoneuroimmunology, Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA
| |
Collapse
|
34
|
Lovelace ES, Polyak SJ. Natural Products as Tools for Defining How Cellular Metabolism Influences Cellular Immune and Inflammatory Function during Chronic Infection. Viruses 2015; 7:6218-32. [PMID: 26633463 PMCID: PMC4690857 DOI: 10.3390/v7122933] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 11/13/2015] [Accepted: 11/19/2015] [Indexed: 12/21/2022] Open
Abstract
Chronic viral infections like those caused by hepatitis C virus (HCV) and human immunodeficiency virus (HIV) cause disease that establishes an ongoing state of chronic inflammation. While there have been tremendous improvements towards curing HCV with directly acting antiviral agents (DAA) and keeping HIV viral loads below detection with antiretroviral therapy (ART), there is still a need to control inflammation in these diseases. Recent studies indicate that many natural products like curcumin, resveratrol and silymarin alter cellular metabolism and signal transduction pathways via enzymes such as adenosine monophosphate kinase (AMPK) and mechanistic target of rapamycin (mTOR), and these pathways directly influence cellular inflammatory status (such as NF-κB) and immune function. Natural products represent a vast toolkit to dissect and define how cellular metabolism controls cellular immune and inflammatory function.
Collapse
Affiliation(s)
- Erica S Lovelace
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA.
| | - Stephen J Polyak
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA.
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA.
- Department of Global Health, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
35
|
Echeverría A, Moro-García MA, Asensi V, Cartón JA, López-Larrea C, Alonso-Arias R. CD4⁺CD28null T lymphocytes resemble CD8⁺CD28null T lymphocytes in their responses to IL-15 and IL-21 in HIV-infected patients. J Leukoc Biol 2015; 98:373-84. [PMID: 26034206 DOI: 10.1189/jlb.1a0514-276rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 05/01/2015] [Indexed: 01/09/2023] Open
Abstract
HIV-infected individuals suffer from accelerated immunologic aging. One of the most prominent changes during T lymphocyte aging is the accumulation of CD28(null) T lymphocytes, mainly CD8(+) but also CD4(+) T lymphocytes. Enhancing the functional properties of these cells may be important because they provide antigen-specific defense against chronic infections. The objective of this study was to compare the responses of CD4(+)CD28(null) and CD8(+)CD28(null) T lymphocytes from HIV-infected patients to the immunomodulatory effects of cytokines IL-15 and IL-21. We quantified the frequencies of CD4(+)CD28(null) and CD8(+)CD28(null) T lymphocytes in peripheral blood from 110 consecutive, HIV-infected patients and 25 healthy controls. Patients showed increased frequencies of CD4(+)CD28(null) and CD8(+)CD28(null). Both subsets were positively correlated to each other and showed an inverse correlation with the absolute counts of CD4(+) T lymphocytes. Higher frequencies of HIV-specific and CMV-specific cells were found in CD28(null) than in CD28(+) T lymphocytes. Activation of STAT5 by IL-15 and STAT3 by IL-21 was higher in CD28(null) compared with CD28(+) T lymphocytes. Proliferation, expression of CD69, and IFN-γ production in CD28(null) T lymphocytes were increased after treatment with IL-15, and IL-21 potentiated most of those effects. Nevertheless, IL-21 alone reduced IFN-γ production in response to anti-CD3 stimulation but increased CD28 expression, even counteracting the inhibitory effect of IL-15. Intracytoplasmic stores of granzyme B and perforin were increased by IL-15, whereas IL-21 and simultaneous treatment with the 2 cytokines also significantly enhanced degranulation in CD4(+)CD28(null) and CD8(+)CD28(null) T lymphocytes. IL-15 and IL-21 could have a role in enhancing the effector response of CD28(null) T lymphocytes against their specific chronic antigens in HIV-infected patients.
Collapse
Affiliation(s)
- Ainara Echeverría
- *Immunology Department and Infectious Diseases Unit, Hospital Universitario Central de Asturias, Oviedo, Spain; and Fundación Renal "Iñigo Alvarez de Toledo," Madrid, Spain
| | - Marco A Moro-García
- *Immunology Department and Infectious Diseases Unit, Hospital Universitario Central de Asturias, Oviedo, Spain; and Fundación Renal "Iñigo Alvarez de Toledo," Madrid, Spain
| | - Víctor Asensi
- *Immunology Department and Infectious Diseases Unit, Hospital Universitario Central de Asturias, Oviedo, Spain; and Fundación Renal "Iñigo Alvarez de Toledo," Madrid, Spain
| | - José A Cartón
- *Immunology Department and Infectious Diseases Unit, Hospital Universitario Central de Asturias, Oviedo, Spain; and Fundación Renal "Iñigo Alvarez de Toledo," Madrid, Spain
| | - Carlos López-Larrea
- *Immunology Department and Infectious Diseases Unit, Hospital Universitario Central de Asturias, Oviedo, Spain; and Fundación Renal "Iñigo Alvarez de Toledo," Madrid, Spain
| | - Rebeca Alonso-Arias
- *Immunology Department and Infectious Diseases Unit, Hospital Universitario Central de Asturias, Oviedo, Spain; and Fundación Renal "Iñigo Alvarez de Toledo," Madrid, Spain
| |
Collapse
|
36
|
Rickabaugh TM, Baxter RM, Sehl M, Sinsheimer JS, Hultin PM, Hultin LE, Quach A, Martínez-Maza O, Horvath S, Vilain E, Jamieson BD. Acceleration of age-associated methylation patterns in HIV-1-infected adults. PLoS One 2015; 10:e0119201. [PMID: 25807146 PMCID: PMC4373843 DOI: 10.1371/journal.pone.0119201] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 01/23/2015] [Indexed: 01/31/2023] Open
Abstract
Patients with treated HIV-1-infection experience earlier occurrence of aging-associated diseases, raising speculation that HIV-1-infection, or antiretroviral treatment, may accelerate aging. We recently described an age-related co-methylation module comprised of hundreds of CpGs; however, it is unknown whether aging and HIV-1-infection exert negative health effects through similar, or disparate, mechanisms. We investigated whether HIV-1-infection would induce age-associated methylation changes. We evaluated DNA methylation levels at >450,000 CpG sites in peripheral blood mononuclear cells (PBMC) of young (20-35) and older (36-56) adults in two separate groups of participants. Each age group for each data set consisted of 12 HIV-1-infected and 12 age-matched HIV-1-uninfected samples for a total of 96 samples. The effects of age and HIV-1 infection on methylation at each CpG revealed a strong correlation of 0.49, p<1 x 10(-200) and 0.47, p<1 x 10(-200). Weighted gene correlation network analysis (WGCNA) identified 17 co-methylation modules; module 3 (ME3) was significantly correlated with age (cor=0.70) and HIV-1 status (cor=0.31). Older HIV-1+ individuals had a greater number of hypermethylated CpGs across ME3 (p=0.015). In a multivariate model, ME3 was significantly associated with age and HIV status (Data set 1: βage=0.007088, p=2.08 x 10(-9); βHIV=0.099574, p=0.0011; Data set 2: βage=0.008762, p=1.27 x 10(-5); βHIV=0.128649, p=0.0001). Using this model, we estimate that HIV-1 infection accelerates age-related methylation by approximately 13.7 years in data set 1 and 14.7 years in data set 2. The genes related to CpGs in ME3 are enriched for polycomb group target genes known to be involved in cell renewal and aging. The overlap between ME3 and an aging methylation module found in solid tissues is also highly significant (Fisher-exact p=5.6 x 10(-6), odds ratio=1.91). These data demonstrate that HIV-1 infection is associated with methylation patterns that are similar to age-associated patterns and suggest that general aging and HIV-1 related aging work through some common cellular and molecular mechanisms. These results are an important first step for finding potential therapeutic targets and novel clinical approaches to mitigate the detrimental effects of both HIV-1-infection and aging.
Collapse
Affiliation(s)
- Tammy M Rickabaugh
- Department of Medicine, Division of Hematology/Oncology, AIDS Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Ruth M Baxter
- Department of Human Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Mary Sehl
- Department of Medicine, Division of Hematology/Oncology, AIDS Institute, University of California Los Angeles, Los Angeles, California, United States of America; Biomathematics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Janet S Sinsheimer
- Department of Human Genetics, University of California Los Angeles, Los Angeles, California, United States of America; Biomathematics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America; Department of Biostatistics, School of Public Health, University of California Los Angeles, Los Angeles, California, United States of America
| | - Patricia M Hultin
- Department of Epidemiology, School of Public Health, University of California Los Angeles, Los Angeles, California, United States of America
| | - Lance E Hultin
- Department of Medicine, Division of Hematology/Oncology, AIDS Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Austin Quach
- Department of Human Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Otoniel Martínez-Maza
- Department of Epidemiology, School of Public Health, University of California Los Angeles, Los Angeles, California, United States of America; Departments of Obstetrics and Gynecology, and Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Steve Horvath
- Department of Human Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Eric Vilain
- Department of Human Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Beth D Jamieson
- Department of Medicine, Division of Hematology/Oncology, AIDS Institute, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
37
|
Falcon-Neyra L, Benmarzouk-Hidalgo OJ, Madrid L, Noguera-Julian A, Fortuny C, Neth O, López-Cortés L. No differences of immune activation and microbial translocation among HIV-infected children receiving combined antiretroviral therapy or protease inhibitor monotherapy. Medicine (Baltimore) 2015; 94:e521. [PMID: 25789946 PMCID: PMC4602495 DOI: 10.1097/md.0000000000000521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This is a cross-sectional study of 15 aviremic chronic HIV-infected children revealing no differences in immune activation (IA; HLA-DRCD38 CD4 and CD8 T cells, and sCD14) and microbial translocation (MT; lipopolysaccharides (LPS) and 16S rDNA) among HIV-infected patients under combined antiretroviral treatment (cART; n = 10) or ritonavir-boosted protease inhibitor monotherapy (mtPI/rtv; n = 5). In both cases, IA and MT were lower in healthy control children (n = 32). This observational study suggests that ritonavir boosted protease inhibitor monotherapy (mtPI/rtv) is not associated with an increased state of IA or MT as compared with children receiving cART.
Collapse
Affiliation(s)
- Lola Falcon-Neyra
- From the Unidad de Enfermedades Infecciosas e Inmunopatologias, Hospital Infantil Virgen del Rocio, Instituto de Biomedicina de Sevilla (LF-N, LM, ON); Unidad Clínica de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen del Rocío/Instituto de Biomedicina de Sevilla (IBiS), Sevilla (OJB-H, LL-C); ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; and Unitat d'Infectologia, Servei de Pediatria, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain (LM, AN-J, CF)
| | | | | | | | | | | | | |
Collapse
|
38
|
Margolick JB, Ferrucci L. Accelerating aging research: how can we measure the rate of biologic aging? Exp Gerontol 2015; 64:78-80. [PMID: 25683017 DOI: 10.1016/j.exger.2015.02.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 11/24/2022]
Abstract
Claims of accelerated or premature aging are frequently made. However, the lack of standard criteria for measuring speed of aging makes such claims highly questionable. Because of fundamental gaps in our current understanding of the biological mechanisms of aging, the development of specific phenotypes that are due to aging is difficult and such phenotypes can only be derived by observational data. However, a clinical phenotype of aging exists that is experienced by all living individuals and is pervasive across multiple physiologic systems. Characterizing this phenotype can serve as a basis for measuring the speed of aging, and can facilitate a better understanding of the aging process and its interaction with chronic diseases.
Collapse
Affiliation(s)
- Joseph B Margolick
- Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe Street, Baltimore, MD 21205, USA.
| | - Luigi Ferrucci
- National Institute on Aging, 251 Bayview Boulevard, Baltimore, MD 21224, USA.
| |
Collapse
|
39
|
Helleberg M, Kronborg G, Ullum H, Ryder LP, Obel N, Gerstoft J. Course and Clinical Significance of CD8+ T-Cell Counts in a Large Cohort of HIV-Infected Individuals. J Infect Dis 2014; 211:1726-34. [PMID: 25489001 DOI: 10.1093/infdis/jiu669] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/28/2014] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To examine trajectories of CD8(+) T-cell counts before and after combination antiretroviral therapy (cART) in human immunodeficiency virus (HIV)-infected individuals and associations with mortality. METHODS CD8(+) T-cell counts were measured in 3882 HIV-infected individuals who received care in Copenhagen during 1995-2012. Reference values were obtained from 1230 persons from the background population. Mortality rate ratios were estimated by Poisson regression. RESULTS CD8(+) T-cell counts were elevated during untreated HIV infection and remained elevated through 10 years of cART. A slight drop of 130 cells/µL (interquartile range, -160 to 410 cells/μL) in the median CD8(+) T-cell count was observed after cART initiation. CD8(+) T-cell counts stabilized at approximately 900 cells/µL (95th percentile of the background population, 835 cells/µL). Markedly elevated CD8(+) T-cell counts at cART initiation were associated with a poor increase in the CD4(+) T-cell count (relative risk, 2.22; 95% confidence interval [CI], 1.42-3.48). Individuals with a CD8(+) T-cell count of <500 cells/µL 1 year after cART initiation had an increased mortality rate (mortality rate ratio, 1.73; 95% CI, 1.29-2.32) and a higher proportion of deaths attributable to AIDS-related conditions, compared with individuals with CD8(+) T-cell counts of ≥500 cells/µL. After receiving cART for 10 years, a CD8(+) T-cell count of >1500 cells/µL was associated with increased non-AIDS-related mortality (mortality rate ratio, 1.82; 95% CI, 1.09-3.22), compared with a CD4(+) T-cell count of 500-1500 cells/µL. CONCLUSIONS CD8(+) T-cell counts are elevated during HIV infection and do not normalize despite long-term cART. Low CD8(+) T-cell counts are associated with increased AIDS-related mortality. Marked elevations in CD8(+) T-cell counts after long-term cART are associated with increased non-AIDS-related mortality.
Collapse
Affiliation(s)
| | - Gitte Kronborg
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre Hospital, Denmark
| | | | - Lars P Ryder
- The Tissue Type Laboratory, Copenhagen University Hospital, Rigshospitalet, Copenhagen
| | | | | |
Collapse
|
40
|
Relationships of pulmonary function, inflammation, and T-cell activation and senescence in an HIV-infected cohort. AIDS 2014; 28:2505-15. [PMID: 25574956 DOI: 10.1097/qad.0000000000000471] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To determine associations between circulating markers of immune activation, immune cell senescence, and inflammation with HIV-associated abnormalities of pulmonary function. DESIGN HIV infection is an independent risk factor for abnormal pulmonary function. Immune activation, immune senescence, and chronic inflammation are characteristics of chronic HIV infection that have been associated with other HIV-associated comorbidities and may be related to pulmonary disease in this population. METHODS Participants from an HIV-infected cohort (n = 147) completed pulmonary function testing (PFT). Markers of T-cell activation and senescence were determined by flow cytometry, and plasma levels of interleukin-6, interleukin-8, and C-reactive protein (CRP) were measured, as was telomere length of peripheral blood mononuclear cells (PBMC). Regression models adjusting for clinical risk factors were constructed to examine relationships between biomarkers and PFT outcomes. RESULTS Activated CD25(+) T cells and activated/senescent CD69(+)/CD57(+)/CD28(null) CD4(+) T cells, interleukin-6, and CRP were associated with PFT abnormalities. Shortening of PBMC telomere length correlated with airflow obstruction and diffusing impairment. Paradoxically, circulating senescent CD57(+)/CD28(null) CD8(+) T cells were associated with better PFT outcomes. CONCLUSION Circulating T cells expressing markers of activation and inflammatory cytokine levels are independently correlated with PFT abnormalities in HIV-infected persons. Overall telomere shortening was also associated with pulmonary dysfunction. The paradoxical association of senescent CD8(+) T cells and better PFT outcomes could suggest an unrecognized beneficial compensatory function of such cells or a redistribution of these cells from the circulation to local compartments. Further studies are needed to differentiate and characterize functional subsets of local pulmonary and circulating T-cell populations in HIV-associated pulmonary dysfunction.
Collapse
|
41
|
Abstract
OBJECTIVE Low CD4/CD8 T-cell ratios occur in conditions associated with reduced immune resilience, including older age and HIV infection. Effective antiretroviral therapy increases CD4/CD8 T-cell ratios, but often not to preinfection levels. The reasons for this deficit remain unclear. As cytomegalovirus (CMV) infection exacerbates falling CD4/CD8 T-cell ratios and immune senescence in the old elderly population, we investigated whether CMV infection is associated with refractory inversion of CD4/CD8 T-cell ratios and increased phenotypic evidence of immune senescence in HIV infection. DESIGN An observational cohort study of HIV-infected individuals attending the Newfoundland and Labrador Provincial HIV Clinic in St. John's. METHODS CMV infection status was determined by ELISA with infected cell lysate. Expression of CD28 and CD57 on CD8 T cells and cellular immune responses against CMV were measured by flow cytometry. We compared CD4/CD8 T-cell ratios, percentage of CD8 T cells expressing CD28 and percentage of CD8 T cells expressing CD57 between groups of HIV-infected persons discordant for CMV infection. RESULTS The CMV-seronegative group had significantly higher CD4/CD8 T-cell ratios, more frequent normalization of the ratio to at least 1, and lesser phenotypic evidence of immune senescence. CONCLUSION CMV infection is associated with reduced immune reconstitution in HIV infection, even with suppression of HIV replication below detectable levels. This suggests that CMV infection, or some related factor, influences immune resilience in the setting of HIV infection.
Collapse
|
42
|
Microbial translocation and T cell activation are not associated in chronic HIV-infected children. AIDS 2014; 28:1989-92. [PMID: 25259707 DOI: 10.1097/qad.0000000000000375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A cross-sectional study of 77 chronic HIV-infected children revealed higher levels of biomarkers of inflammation (ultrasensitive C-reactive protein, D-dimer and β-2-microglobulin), immune activation (HLA-DR+ CD38+ CD4+ and CD8+ T cells) and microbial translocation [lipopolysaccaride (LPS), microbial 16S rDNA and sCD14] than 32 healthy controls. Immune activation was higher in viremic children, but microbial translocation occurred independently of viraemia and T cell activation. Our results do not support a relevant role of microbial translocation in T cell activation in chronic HIV-infected children, proposing a need to develop strategies to minimize microbial translocation in the future.
Collapse
|
43
|
Early skewed distribution of total and HIV-specific CD8+ T-cell memory phenotypes during primary HIV infection is related to reduced antiviral activity and faster disease progression. PLoS One 2014; 9:e104235. [PMID: 25093660 PMCID: PMC4122399 DOI: 10.1371/journal.pone.0104235] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/08/2014] [Indexed: 11/19/2022] Open
Abstract
The important role of the CD8+ T-cells on HIV control is well established. However, correlates of immune protection remain elusive. Although the importance of CD8+ T-cell specificity and functionality in virus control has been underscored, further unraveling the link between CD8+ T-cell differentiation and viral control is needed. Here, an immunophenotypic analysis (in terms of memory markers and Programmed cell death 1 (PD-1) expression) of the CD8+ T-cell subset found in primary HIV infection (PHI) was performed. The aim was to seek for associations with functional properties of the CD8+ T-cell subsets, viral control and subsequent disease progression. Also, results were compared with samples from Chronics and Elite Controllers. It was found that normal maturation of total and HIV-specific CD8+ T-cells into memory subsets is skewed in PHI, but not at the dramatic level observed in Chronics. Within the HIV-specific compartment, this alteration was evidenced by an accumulation of effector memory CD8+ T (TEM) cells over fully differentiated terminal effector CD8+ T (TTE) cells. Furthermore, higher proportions of total and HIV-specific CD8+ TEM cells and higher HIV-specific TEM/(TEM+TTE) ratio correlated with markers of faster progression. Analysis of PD-1 expression on total and HIV-specific CD8+ T-cells from PHI subjects revealed not only an association with disease progression but also with skewed memory CD8+ T-cell differentiation. Most notably, significant direct correlations were obtained between the functional capacity of CD8+ T-cells to inhibit viral replication in vitro with higher proportions of fully-differentiated HIV-specific CD8+ TTE cells, both at baseline and at 12 months post-infection. Thus, a relationship between preservation of CD8+ T-cell differentiation pathway and cell functionality was established. This report presents evidence concerning the link among CD8+ T-cell function, phenotype and virus control, hence supporting the instauration of early interventions to prevent irreversible immune damage.
Collapse
|
44
|
Payne BAI, Gardner K, Chinnery PF. Mitochondrial DNA mutations in ageing and disease: implications for HIV? Antivir Ther 2014; 20:109-20. [PMID: 25032944 DOI: 10.3851/imp2824] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2014] [Indexed: 10/25/2022]
Abstract
Mitochondrial DNA (mtDNA) mutations cause neurological and multisystem disease. Somatic (acquired) mtDNA mutations are also associated with degenerative diseases and with normal human ageing. It is well established that certain nucleoside reverse transcriptase inhibitor (NRTI) antiretroviral drugs cause inhibition of the mtDNA polymerase, pol γ, leading to a reduction in mtDNA content (depletion). Given this effect of NRTI therapy on mtDNA replication, it is plausible that NRTI treatment may also lead to increased mtDNA mutations. Here we review recent evidence for an effect of HIV infection or NRTI therapy on mtDNA mutations, as well as discussing the methodological challenges in addressing this question. Finally, we discuss the possible implications for HIV-infected persons, with particular reference to ageing.
Collapse
Affiliation(s)
- Brendan A I Payne
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK.
| | | | | |
Collapse
|
45
|
Effect of age on the CD4⁺ T-cell impairment in HIV-infected persons without and with cART. J Acquir Immune Defic Syndr 2014; 66:7-15. [PMID: 24378723 DOI: 10.1097/qai.0000000000000097] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Knowledge about HIV infection in older persons is becoming increasingly important. CD4⁺ T cells are essential for protective immunity, but little is known about the effect of age on the CD4⁺ T-cell impairment in HIV infection. METHODS Treatment-naive patients aged older than 50 or younger than 40 years were studied for absolute and relative frequencies of CD31⁺ naive and CD31⁻ naive CD4⁺ T cells, central memory, effector memory, and terminally differentiated CD4⁺ T cells, and compared with age-matched controls. In addition, cellular proliferation and cytokine secretion properties were determined. CD4⁺ T-cell reconstitution was analyzed in older and younger patients with <350 or ≥ 350 CD4⁺ T cells per microliter at initiation of combination antiretroviral therapy (cART). RESULTS CD4⁺ T cells of older but not younger HIV-infected patients showed age-inappropriate low levels of CD31⁻ naive cells, increased levels of effector memory cells, and enhanced interferonγ and interleukin-17 secretion. Impaired CD4⁺ T-cell composition persisted in patients who initiated cART at <350 CD4⁺ T cells per microliter. In patients with CD4⁺ T cells ≥ 350 per microliter, alterations were less pronounced and were reversible with cART. Compared with age-matched controls, total CD4⁺ T-cell counts did not differ between treated younger and older HIV-infected patients. CONCLUSIONS These data demonstrate that aging enhances the CD4⁺ T-cell impairment in HIV-infected persons mainly by a loss of CD31⁻ naive cells, accumulation of effector memory cells, and increased pro-inflammatory effector functions. Age-related changes in CD4⁺ T-cell composition can be prevented by an early initiation of cART.
Collapse
|
46
|
BenMarzouk-Hidalgo OJ, Torres-Cornejo A, Gutiérrez-Valencia A, Ruiz-Valderas R, Viciana P, López-Cortés LF. Immune activation throughout a boosted darunavir monotherapy simplification strategy. Clin Microbiol Infect 2014; 20:1297-303. [PMID: 24372830 DOI: 10.1111/1469-0691.12521] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 10/29/2013] [Accepted: 11/04/2014] [Indexed: 11/27/2022]
Abstract
Our aim was to assess the evolution and the impact that blips, intermittent low-level viraemia and virological failure (VF) episodes have on patients' immune activation (IA) profiles during ritonavir-boosted darunavir monotherapy (mtDRV/rtv). A prospective cohort of human immunodeficiency virus-1-infected patients who switched to mtDRV/rtv was followed for 2 years. Cellular IA was assessed according to HLA-DR and CD38 expression in CD4(+) and CD8(+) T-cells and their naïve, effector memory and central memory subpopulations, and systemic IA was evaluated according to sCD14 and D-dimer levels. Seventy-five patients from the MonDAR cohort were selected for this substudy, and classified according to viral outcome as having continuous undetectable viraemia (n = 19), blips (n = 19), intermittent viraemia (n = 21), and VF (n = 16). The IA profile was closely linked to viral behaviour. Patients on viral suppression for 24 months showed a significant decrease in CD4(+) and CD8(+) T-cell activation and sCD14 and D-dimer levels. Patients with transient low-level viraemia episodes (blips and intermittent viraemia) showed cellular and systemic IA similar to baseline values. In contrast, significant increases in T-cell activation and sCD14 and D-dimer levels were observed in patients with VF. Baseline levels of HLA-DR(+)CD38(+)CD8(+) T-cells of >6.4% were independently associated with the emergence of VF. Therefore, mtDRV/rtv might be considered as a safe simplification strategy, on the basis of the IA results, whenever viral replication is under medium-term and long-term control. Transient low-level viraemia episodes do not affect patients' IA status. Moreover, HLA-DR(+)CD38(+)CD8(+) T-cell baseline levels should be considered when patients are switched to mtDRV/rtv.
Collapse
Affiliation(s)
- O J BenMarzouk-Hidalgo
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | | | | | | | | | | |
Collapse
|
47
|
Pathai S, Bajillan H, Landay AL, High KP. Is HIV a model of accelerated or accentuated aging? J Gerontol A Biol Sci Med Sci 2013; 69:833-42. [PMID: 24158766 DOI: 10.1093/gerona/glt168] [Citation(s) in RCA: 304] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Antiretroviral therapy has reduced the incidence of adverse events and early mortality in HIV-infected persons. Despite these benefits, important comorbidities that increase with age (eg, diabetes, cardiovascular disease, cancer, liver disease, and neurocognitive impairment) are more prevalent in HIV-infected persons than in HIV-uninfected persons at every age, and geriatric syndromes such as falls and frailty occur earlier in HIV-infected persons. This raises a critical research question: Does HIV accelerate aging through pathways and mechanisms common to the aging process or is HIV simply an additional risk factor for a wide number of chronic conditions, thus accentuating aging? METHODS Extensive literature review. RESULTS The purpose of this review is to briefly outline the evidence that age-related clinical syndromes are exacerbated by HIV, examine the ways in which HIV is similar, and dissimilar from natural aging, and assess the validity of HIV as a model of premature aging. Specific biomarkers of aging are limited in HIV-infected hosts and impacted by antiretroviral therapy, and a high rate of modifiable life style confounders (eg, smoking, substance abuse, alcohol) and coinfections (eg, hepatitis) in HIV-infected participants. CONCLUSIONS There is a need for validated biomarkers of aging in the context of HIV. Despite these differences, welldesigned studies of HIV-infected participants are likely to provide new opportunities to better understand the mechanisms that lead to aging and age-related diseases.
Collapse
Affiliation(s)
- Sophia Pathai
- Faculty of Science, School of Optometry and Vision Science, The University of New South Wales, Sydney, Australia
| | - Hendren Bajillan
- Department of Medicine/Infectious Diseases, W.G. (Bill) Hefner VAMC, Salisbury, North Carolina
| | - Alan L Landay
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois. FC Donders Chair, Division of Pharmacology, Utrecht Institute of Pharmaceutical Sciences, Faculty of Science, Utrecht University, The Netherlands
| | - Kevin P High
- Section on Infectious Diseases, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
48
|
Immunosenescence, aging, and systemic lupus erythematous. Autoimmune Dis 2013; 2013:267078. [PMID: 24260712 PMCID: PMC3821895 DOI: 10.1155/2013/267078] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 08/18/2013] [Indexed: 12/29/2022] Open
Abstract
Senescence is a normal biological process that occurs in all organisms and involves a decline in cell functions. This process is caused by molecular regulatory machinery alterations, and it is closely related to telomere erosion in chromosomes. In the context of the immune system, this phenomenon is known as immunosenescence and refers to the immune function deregulation. Therefore, functions of several cells involved in the innate and adaptive immune responses are severely compromised with age progression (e.g., changes in lymphocyte subsets, decreased proliferative responses, chronic inflammatory states, etc.). These alterations make elderly individuals prone to not only infectious diseases but also to malignancy and autoimmunity.
This review will explore the molecular aspects of processes related to cell aging, their importance in the context of the immune system, and their participation in elderly SLE patients.
Collapse
|
49
|
Immune activation in HIV-infected aging women on antiretrovirals--implications for age-associated comorbidities: a cross-sectional pilot study. PLoS One 2013; 8:e63804. [PMID: 23724003 PMCID: PMC3665816 DOI: 10.1371/journal.pone.0063804] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 04/05/2013] [Indexed: 11/19/2022] Open
Abstract
Background Persistent immune activation and microbial translocation associated with HIV infection likely place HIV-infected aging women at high risk of developing chronic age-related diseases. We investigated immune activation and microbial translocation in HIV-infected aging women in the post-menopausal ages. Methods Twenty-seven post-menopausal women with HIV infection receiving antiretroviral treatment with documented viral suppression and 15 HIV-negative age-matched controls were enrolled. Levels of immune activation markers (T cell immune phenotype, sCD25, sCD14, sCD163), microbial translocation (LPS) and biomarkers of cardiovascular disease and impaired cognitive function (sVCAM-1, sICAM-1 and CXCL10) were evaluated. Results T cell activation and exhaustion, monocyte/macrophage activation, and microbial translocation were significantly higher in HIV-infected women when compared to uninfected controls. Microbial translocation correlated with T cell and monocyte/macrophage activation. Biomarkers of cardiovascular disease and impaired cognition were elevated in women with HIV infection and correlated with immune activation. Conclusions HIV-infected antiretroviral-treated aging women who achieved viral suppression are in a generalized status of immune activation and therefore are at an increased risk of age-associated end-organ diseases compared to uninfected age-matched controls.
Collapse
|
50
|
Accelerated aging in HIV/AIDS: novel biomarkers of senescent human CD8+ T cells. PLoS One 2013; 8:e64702. [PMID: 23717651 PMCID: PMC3661524 DOI: 10.1371/journal.pone.0064702] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/17/2013] [Indexed: 11/24/2022] Open
Abstract
Clinical evaluation of immune reconstitution and health status during HIV-1 infection and anti-retroviral therapy (ART) is largely based on CD4+ T cell counts and viral load, measures that fail to take into account the CD8+ T cell subset, known to show features of accelerated aging in HIV disease. Here, we compare adenosine deaminase (ADA), glucose uptake receptor 1 (GLUT1), and leucine-rich repeat neuronal 3 (LRRN3) to CD38 expression and telomerase activity, two strong predictors of HIV disease progression. Our analysis revealed that reduced ADA, telomerase activity and LRRN3 gene expression were significantly associated with high CD38 and HLA-DR in CD8+ T cells, with % ADA+ cells being the most robust predictor of CD8+ T cell activation. Our results suggest that ADA, LRRN3 and telomerase activity in CD8+ T cells may serve as novel, clinically relevant biomarkers of immune status in HIV-1 infection, specifically by demonstrating the degree to which CD8+ T cells have progressed to the end stage of replicative senescence. Since chronological aging itself leads to the accumulation of senescent CD8+ T cells, the prolonged survival and resultant increased age of the HIV+ population may synergize with the chronic immune activation to exacerbate both immune decline and age-associated pathologies. The identification and future validation of these new biomarkers may lead to fresh immune-based HIV treatments.
Collapse
|