1
|
Nühn MM, Bosman K, Huisman T, Staring WH, Gharu L, De Jong D, De Kort TM, Buchholtz NV, Tesselaar K, Pandit A, Arends J, Otto SA, Lucio De Esesarte E, Hoepelman AI, De Boer RJ, Symons J, Borghans JA, Wensing AM, Nijhuis M. Selective decline of intact HIV reservoirs during the first decade of ART followed by stabilization in memory T cell subsets. AIDS 2025; 39:798-811. [PMID: 39964317 PMCID: PMC12077340 DOI: 10.1097/qad.0000000000004160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/21/2025]
Abstract
OBJECTIVES To investigate the short- and long-term dynamics of intact and defective proviral HIV DNA during ART. DESIGN We evaluated viral reservoir dynamics in a cohort of nine individuals with chronic HIV-1 subtype B who initiated first-line ART and were followed for 20 years while continuing ART. METHODS PBMCs were obtained before ART ( n = 5), during the first year, and after 8.5 and 20 years of treatment. T cell subsets (naive, central-memory, transitional-memory and effector-memory) were sorted at 8.5 and 20 years. DNA was isolated and analyzed using the intact proviral DNA assay (IPDA). Deep-sequencing of the viral env region enabled analysis of viral evolution and cellular mechanisms underlying HIV persistence. RESULTS Initially, defective and intact proviral DNA in PBMCs declined with half-lives of 3.6 and 5.4 weeks, respectively. Over the following 8.5 years, the intact reservoir continued to decrease, with a half-life of 18.8 months in PBMCs, while defective proviral DNA levels stabilized. After 8.5 and 20 years of ART, the intact reservoir showed no further decline, with most intact proviral DNA residing in memory T cell subsets. Phylogenetic analysis revealed no signs of viral evolution over time, both within and between T cell subsets. CONCLUSIONS PBMCs containing intact proviral DNA are selectively lost during the first decade of suppressive ART, followed by a decade of stabilization of this reservoir in the memory T cell subsets. In the absence of clear signs of viral evolution and massive clonal expansion, homeostatic proliferation might be an important driver of HIV persistence during long-term ART.
Collapse
Affiliation(s)
- Marieke M. Nühn
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht
| | - Kobus Bosman
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht
| | - Terry Huisman
- Theoretical Biology, Utrecht University
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht
| | - Wouter H.A. Staring
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen
| | - Lavina Gharu
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht
| | - Dorien De Jong
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht
| | - Theun M. De Kort
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht
| | - Ninée V.E.J. Buchholtz
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht
| | - Kiki Tesselaar
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht
| | - Aridaman Pandit
- Theoretical Biology, Utrecht University
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht
| | - Joop Arends
- Faculty of Health, Medicine and Life Sciences, Maastricht UMC (MUMC), Maastricht
- Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht
| | - Sigrid A. Otto
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht
| | | | - Andy I.M. Hoepelman
- Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht
| | | | - Jori Symons
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht
| | - José A.M. Borghans
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht
| | - Annemarie M.J. Wensing
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht
- Translational Virology, Department of Global Public Health & Bioethics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Monique Nijhuis
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht
| |
Collapse
|
2
|
Vicenti I, Lai A, Giannini A, Boccuto A, Dragoni F, Saladini F, Zazzi M. Performance of Geno2Pheno[coreceptor] to infer coreceptor use in human immunodeficiency virus type 1 (HIV-1) subtype A. J Clin Virol 2018; 111:12-18. [PMID: 30594700 DOI: 10.1016/j.jcv.2018.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/03/2018] [Accepted: 12/19/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND Assessment of human immunodeficiency virus type 1 (HIV-1) coreceptor usage is required prior to treatment with the CCR5 antagonist maraviroc to exclude the presence of CXCR4-using (X4) strains. Genotype-based interpretation systems are mostly designed on subtype B and have been reported to be less accurate for subtype A/CRF02_AG. OBJECTIVES To evaluate the performance of the widely used Geno2Pheno[coreceptor] (G2P[c]) algorithm for prediction of coreceptor usage with subtype A/CRF02_AG vs. subtype B. STUDY DESIGN Co-receptor tropism of 24 subtype A/CRF02_AG and 24 subtype B viruses was measured phenotypically by a homebrew single-cycle assay and genotypically by using G2P[c]. Samples with discrepant genotype-phenotype results were analyzed by next generation sequencing (NGS) and interpreted by the NGS Geno2Pheno algorithm (G2P[454]). RESULTS At 10% false positive rate (FPR), the G2P[c]/phenotype discordance rate was 12.5% (n = 3) for subtype A/CRF02_AG and 8.3% (n = 2) for subtype B. Minority X4 species escaping detection by bulk sequencing but documented by NGS explained the two subtype B and possibly one subtype A/CRF02_AG discordant case. The other two subtype A/CRF02_AG miscalled by G2P[c] could be explained by X4 overcalling at borderline FPR and/or by algorithm failure. DISCUSSION Our study did not demonstrate relevantly higher G2P[c] inaccuracy with subtype A/CRF02_AG with respect to subtype B. Genotype/phenotype discordances can be due to different reasons, including but not limited to, algorithm inaccuracy. Very large genotype/phenotype correlation panels are required to detect and explain the reason for any consistent difference in genotypic tropism prediction for subtype A/CRF02_AG vs. subtype B.
Collapse
Affiliation(s)
- Ilaria Vicenti
- Department of Medical Biotechnologies, University of Siena, Siena, Italy.
| | - Alessia Lai
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| | - Alessia Giannini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Adele Boccuto
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Filippo Dragoni
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Francesco Saladini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Maurizio Zazzi
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
3
|
Brumme CJ, Poon AFY. Promises and pitfalls of Illumina sequencing for HIV resistance genotyping. Virus Res 2016; 239:97-105. [PMID: 27993623 DOI: 10.1016/j.virusres.2016.12.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/15/2016] [Accepted: 12/15/2016] [Indexed: 12/13/2022]
Abstract
Genetic sequencing ("genotyping") plays a critical role in the modern clinical management of HIV infection. This virus evolves rapidly within patients because of its error-prone reverse transcriptase and short generation time. Consequently, HIV variants with mutations that confer resistance to one or more antiretroviral drugs can emerge during sub-optimal treatment. There are now multiple HIV drug resistance interpretation algorithms that take the region of the HIV genome encoding the major drug targets as inputs; expert use of these algorithms can significantly improve to clinical outcomes in HIV treatment. Next-generation sequencing has the potential to revolutionize HIV resistance genotyping by lowering the threshold that rare but clinically significant HIV variants can be detected reproducibly, and by conferring improved cost-effectiveness in high-throughput scenarios. In this review, we discuss the relative merits and challenges of deploying the Illumina MiSeq instrument for clinical HIV genotyping.
Collapse
Affiliation(s)
- Chanson J Brumme
- BC Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Art F Y Poon
- Department of Pathology & Laboratory Medicine, Western University, London, Ontario, Canada.
| |
Collapse
|
4
|
Bader J, Däumer M, Schöni-Affolter F, Böni J, Gorgievski-Hrisoho M, Martinetti G, Thielen A, Klimkait T. Therapeutic Immune Recovery and Reduction of CXCR4-Tropic HIV-1. Clin Infect Dis 2016; 64:295-300. [PMID: 27838645 DOI: 10.1093/cid/ciw737] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/09/2016] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND In the absence of therapy, CXCR4 (X4)-tropic human immunodeficiency virus type 1 (HIV-1) increases over time, associated with accelerated disease progression. In contrast, the majority of patients receiving long-term combination antiretroviral therapy (cART) present with CCR5 (R5)-tropic HIV-1 variants. It is unclear whether cART itself mediates the reduction of X4-tropic HIV-1. The current study aimed at assessing the tropism of viral integrates in patients' blood during fully suppressive cART. METHODS The relative frequencies of X4-tropic proviral HIV-1 variants were determined by means of next-generation sequencing (False Positive Rate (FPR), 3.5%; R5- or X4 tropic variants occurring at less than 2% of the total virus population) for 35 treated patients in the Swiss HIV Cohort Study and followed longitudinally over time. Full viral suppression and a continuous CD4 T-cell recovery during cART were documented for all patients. Viral phylogenetic changes and sequence evolution were analyzed. RESULTS The majority of patients (80%) experienced no frequency increase in X4-tropic proviruses during therapy. Although some proviral sequence evolution was demonstrable in >50% of these patients during therapy, this growing viral diversity was in no case paralleled by the emergence or expansion of X4-tropic provirus variants. In the remaining 20% of patients, the documented expansion of X4-tropic provirus was based on the outgrowth of single viral variants from minority populations already present before therapy initiation. CONCLUSION Our study demonstrates that X4-tropic HIV sharply declines in most patients during successful therapy, which indicates a preferential tropism-dependent provirus elimination in the immunocompetent host. The recently implemented World Health Organization strategies of immediate therapy initiation are fully in line with this gradual loss of X4 tropism during therapy. Moreover, the early use of coreceptor antagonists against the remaining CCR5-tropic viruses may be indicated.
Collapse
Affiliation(s)
- Joëlle Bader
- Molecular Virology, Department of Biomedicine-Petersplatz, University of Basel
| | | | | | - Jürg Böni
- Institute of Medical Virology, National Center for Retroviruses, University of Zürich
| | | | - Gladys Martinetti
- Department of Microbiology, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | | | - Thomas Klimkait
- Molecular Virology, Department of Biomedicine-Petersplatz, University of Basel,
| | | |
Collapse
|
5
|
Kotani H, Sudo K, Hasegawa N, Fujiwara H, Hayakawa T, Iketani O, Yamaguchi M, Mochizuki M, Iwata S, Kato S. Possible involvement of distinct phylogenetic clusters of HIV-1 variants in the discrepancies between coreceptor tropism predictions based on viral RNA and proviral DNA. J Pharm Health Care Sci 2016; 2:31. [PMID: 27833760 PMCID: PMC5103409 DOI: 10.1186/s40780-016-0065-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 11/02/2016] [Indexed: 12/02/2022] Open
Abstract
Background The coreceptor tropism testing should be conducted prior to commencing a regimen containing a CCR5 antagonist for treatment of HIV-1 infection. For aviremic patients on long antiretroviral therapy, proviral DNA is often used instead of viral RNA in genotypic tropism testing. However, the tropism predictions from RNA and DNA are sometimes different. We examined the cause of the discrepancies between HIV-1 tropism predictions based on viral RNA and proviral DNA. Methods The nucleotide sequence of the env C2V3C3 region was determined using pair samples of plasma RNA and peripheral blood mononuclear cell DNA from 50 HIV-1 subtype B-infected individuals using population-based sequencing. The samples with discrepant tropism assessments between RNA and DNA were further analyzed using deep sequencing, followed by phylogenetic analysis. The tropism was assessed using the algorithm geno2pheno with a false-positive rate cutoff of 10 %. Results In population-based sequencing, five of 50 subjects showed discrepant tropism predictions between their RNA and DNA samples: four exhibited R5 tropism in RNA and X4 tropism in DNA, while one exhibited the opposite pattern. In the deep sequencing and phylogenetic analysis, three subjects had single clusters comprising of RNA- and DNA-derived sequences that were a mixture of R5 and X4 sequences. The other two subjects had two and three distinct phylogenetic clusters of sequences, respectively, each of which was dominated by R5 or X4 sequences; sequences of the R5-dominated cluster were mostly found in RNA, while sequences of the X4-dominated cluster were mostly in DNA. Conclusions Some of HIV-1 tropism discrepancies between viral RNA and proviral DNA seem to be caused by phylogenetically distinct clusters which resides in plasma and cells in different frequencies. Our findings suggest that the tropism testing using PBMC DNA or deep sequencing may be required when the viral load is not suppressed or rebounds in the course of a CCR5 antagonist-containing regimen.
Collapse
Affiliation(s)
- Hiroshi Kotani
- Department of Pharmacy, Keio University Hospital, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan ; Center for Infectious Diseases and Infection Control, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Koji Sudo
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Naoki Hasegawa
- Center for Infectious Diseases and Infection Control, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Hiroshi Fujiwara
- Center for Infectious Diseases and Infection Control, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Tomohisa Hayakawa
- Department of Pharmacy, Keio University Hospital, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan ; Center for Infectious Diseases and Infection Control, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Osamu Iketani
- Department of Pharmacy, Keio University Hospital, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan ; Center for Infectious Diseases and Infection Control, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Masaya Yamaguchi
- Department of Pharmacy, Keio University Hospital, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Mayumi Mochizuki
- Department of Pharmacy, Keio University Hospital, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan ; Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512 Japan
| | - Satoshi Iwata
- Center for Infectious Diseases and Infection Control, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Shingo Kato
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| |
Collapse
|
6
|
HIV-1 drug resistance and resistance testing. INFECTION GENETICS AND EVOLUTION 2016; 46:292-307. [PMID: 27587334 DOI: 10.1016/j.meegid.2016.08.031] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/24/2016] [Accepted: 08/27/2016] [Indexed: 12/23/2022]
Abstract
The global scale-up of antiretroviral (ARV) therapy (ART) has led to dramatic reductions in HIV-1 mortality and incidence. However, HIV drug resistance (HIVDR) poses a potential threat to the long-term success of ART and is emerging as a threat to the elimination of AIDS as a public health problem by 2030. In this review we describe the genetic mechanisms, epidemiology, and management of HIVDR at both individual and population levels across diverse economic and geographic settings. To describe the genetic mechanisms of HIVDR, we review the genetic barriers to resistance for the most commonly used ARVs and describe the extent of cross-resistance between them. To describe the epidemiology of HIVDR, we summarize the prevalence and patterns of transmitted drug resistance (TDR) and acquired drug resistance (ADR) in both high-income and low- and middle-income countries (LMICs). We also review to two categories of HIVDR with important public health relevance: (i) pre-treatment drug resistance (PDR), a World Health Organization-recommended HIVDR surveillance metric and (ii) and pre-exposure prophylaxis (PrEP)-related drug resistance, a type of ADR that can impact clinical outcomes if present at the time of treatment initiation. To summarize the implications of HIVDR for patient management, we review the role of genotypic resistance testing and treatment practices in both high-income and LMIC settings. In high-income countries where drug resistance testing is part of routine care, such an understanding can help clinicians prevent virological failure and accumulation of further HIVDR on an individual level by selecting the most efficacious regimens for their patients. Although there is reduced access to diagnostic testing and to many ARVs in LMIC, understanding the scientific basis and clinical implications of HIVDR is useful in all regions in order to shape appropriate surveillance, inform treatment algorithms, and manage difficult cases.
Collapse
|
7
|
Pett SL, Amin J, Horban A, Andrade-Villanueva J, Losso M, Porteiro N, Sierra Madero J, Belloso W, Tu E, Silk D, Kelleher A, Harrigan R, Clark A, Sugiura W, Wolff M, Gill J, Gatell J, Fisher M, Clarke A, Ruxrungtham K, Prazuck T, Kaiser R, Woolley I, Arnaiz JA, Cooper D, Rockstroh JK, Mallon P, Emery S. Maraviroc, as a Switch Option, in HIV-1-infected Individuals With Stable, Well-controlled HIV Replication and R5-tropic Virus on Their First Nucleoside/Nucleotide Reverse Transcriptase Inhibitor Plus Ritonavir-boosted Protease Inhibitor Regimen: Week 48 Results of the Randomized, Multicenter MARCH Study. Clin Infect Dis 2016; 63:122-32. [PMID: 27048747 DOI: 10.1093/cid/ciw207] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 03/23/2016] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Alternative combination antiretroviral therapies in virologically suppressed human immunodeficiency virus (HIV)-infected patients experiencing side effects and/or at ongoing risk of important comorbidities from current therapy are needed. Maraviroc (MVC), a chemokine receptor 5 antagonist, is a potential alternative component of therapy in those with R5-tropic virus. METHODS The Maraviroc Switch Study is a randomized, multicenter, 96-week, open-label switch study in HIV type 1-infected adults with R5-tropic virus, virologically suppressed on a ritonavir-boosted protease inhibitor (PI/r) plus double nucleoside/nucleotide reverse transcriptase inhibitor (2 N(t)RTI) backbone. Participants were randomized 1:2:2 to current combination antiretroviral therapy (control), or replacing the protease inhibitor (MVC + 2 N(t)RTI arm) or the nucleoside reverse transcriptase inhibitor backbone (MVC + PI/r arm) with twice-daily MVC. The primary endpoint was the difference (switch minus control) in proportion with plasma viral load (VL) <200 copies/mL at 48 weeks. The switch arms were judged noninferior if the lower limit of the 95% confidence interval (CI) for the difference in the primary endpoint was < -12% in the intention-to-treat (ITT) population. RESULTS The ITT population comprised 395 participants (control, n = 82; MVC + 2 N(t)RTI, n = 156; MVC + PI/r, n = 157). Baseline characteristics were well matched. At week 48, noninferior rates of virological suppression were observed in those switching away from a PI/r (93.6% [95% CI, -9.0% to 2.2%] and 91.7% [95% CI, -9.6% to 3.8%] with VL <200 and <50 copies/mL, respectively) compared to the control arm (97.6% and 95.1% with VL <200 and <50 copies/mL, respectively). In contrast, MVC + PI/r did not meet noninferiority bounds and was significantly inferior (84.1% [95% CI, -19.8% to -5.8%] and 77.7% [95% CI, -24.9% to -8.4%] with VL <200 and <50 copies/mL, respectively) to the control arm in the ITT analysis. CONCLUSIONS These data support MVC as a switch option for ritonavir-boosted PIs when partnered with a 2-N(t)RTI backbone, but not as part of N(t)RTI-sparing regimens comprising MVC with PI/r. CLINICAL TRIALS REGISTRATION NCT01384682.
Collapse
Affiliation(s)
- Sarah Lilian Pett
- The Kirby Institute, University of New South Wales, Sydney, Australia Medical Research Council Clinical Trials Unit, Institute of Clinical Trials and Methodology Clinical Research Group, Infection and Population Health, University College London, United Kingdom
| | - Janaki Amin
- The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Andrejz Horban
- Wojewodzki Szpital Zakazny Centrum Diagnostyki i Terapii AIDS, Warsaw, Poland
| | | | - Marcelo Losso
- Hospital General de Agudos J M Ramos Mejia Fundación IBIS Coordinacion de Investigacion Clinica Academica en Latinoamerica
| | - Norma Porteiro
- Fundación Infectologia de Atencion Ambulatoria, Buenos Aires, Argentina
| | - Juan Sierra Madero
- Instituto Nacional de Ciencias Medicas y Nutriciòn Salvador Zubiran, Tlalpan, Mexico
| | - Waldo Belloso
- Fundación IBIS Coordinacion de Investigacion Clinica Academica en Latinoamerica Hospital Italiano de Buenos Aires, Argentina
| | - Elise Tu
- The Kirby Institute, University of New South Wales, Sydney, Australia
| | - David Silk
- The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Anthony Kelleher
- The Kirby Institute, University of New South Wales, Sydney, Australia St Vincent's Hospital, Sydney, Australia
| | - Richard Harrigan
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
| | | | | | | | - John Gill
- Southern Alberta Clinic, Calgary, Canada
| | | | - Martin Fisher
- Brighton and Sussex University Hospitals National Health Service Trust, Brighton, United Kingdom
| | - Amanda Clarke
- Brighton and Sussex University Hospitals National Health Service Trust, Brighton, United Kingdom
| | - Kiat Ruxrungtham
- HIV Netherlands, Australia, Thailand Research Collaboration, Bangkok
| | - Thierry Prazuck
- Orleans Hospital (Centre Hospitalier Regional D'Orleans Orleans La Source), France
| | | | | | | | - David Cooper
- The Kirby Institute, University of New South Wales, Sydney, Australia St Vincent's Hospital, Sydney, Australia
| | | | - Patrick Mallon
- Mater Misericordiae University Hospital, Dublin, Ireland
| | - Sean Emery
- The Kirby Institute, University of New South Wales, Sydney, Australia
| | | |
Collapse
|
8
|
Pessôa R, Sanabani SS. Frequent detection of CXCR4-using viruses among Brazilian blood donors with HIV-1 long-standing infection and unknown clinical stage: Analysis of massive parallel sequencing data. Data Brief 2016; 6:267-74. [PMID: 26862570 PMCID: PMC4706613 DOI: 10.1016/j.dib.2015.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 11/28/2015] [Accepted: 12/02/2015] [Indexed: 11/19/2022] Open
Abstract
The determination of viral tropism is critically important and highly recommended to guide therapy with the CCR5 antagonist, which does not inhibit the effect of X4-tropic viruses. Here, we report the prevalence of HIV-1×4 HIV strains in 84 proviral DNA massively parallel sequencing “MPS” data from well-defined non-recently infected first-time Brazilian blood donors. The MPS data covering the entire V3 region of the env gene was extracted from our recently generated HIV-1 genomes sequenced by a paired-end protocol (Illumina). Of the 84 MPS data samples, 63 (75%) were derived from donors with long-standing infection and 21 (25%) were lacking stage information. HIV‐1 tropism was inferred using Geno2pheno (g2p) [454] algorithm (FPR=1%, 2.5%, and 3.75%). Among the 84 data samples for which tropism was defined by g2p2.5%, 13 (15.5%) participants had detectable CXCR4-using viruses in their MPS reads. Mixed infections with R5 and X4 were observed in 11.9% of the study subjects and minority X4 viruses were detected in 7 (8.3%) of participants. Nine of the 63 (14.3%) subjects with LS infection were predicted by g2p 2.5% to harbor proviral CXCR4-using viruses. Our findings of a high proportion of blood donors (15.5%) harboring CXCR4-using viruses in PBMCs may indicate that this phenomenon is common. These findings may have implications for clinical and therapeutic aspects and may benefit individuals who plan to receive CCR5 antagonists.
Collapse
Affiliation(s)
| | - Sabri S. Sanabani
- Correspondence to: Universidade de São Paulo, Faculdade de Medicina Instituto de Medicina, Tropical de São Paulo, LIM 52-Av. Dr. Enéas Carvalho de Aguiar, 470-2° andar-Cerqueira Cesar, 05403-000 Sao Paulo, SP-Brasil. Tel.: +55 11 3061 8699; fax: +55 11 3061 7020.Universidade de São Paulo, Faculdade de Medicina Instituto de Medicina, Tropical de São PauloLIM 52-Av. Dr. Enéas Carvalho de Aguiar, 470-2° andar-Cerqueira CesarSao Paulo05403-000SP-Brasil http://www.imt.usp.br
| |
Collapse
|
9
|
Position-specific automated processing of V3 env ultra-deep pyrosequencing data for predicting HIV-1 tropism. Sci Rep 2015; 5:16944. [PMID: 26585833 PMCID: PMC4653658 DOI: 10.1038/srep16944] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 10/22/2015] [Indexed: 11/11/2022] Open
Abstract
HIV-1 coreceptor usage must be accurately determined before starting CCR5 antagonist-based treatment as the presence of undetected minor CXCR4-using variants can cause subsequent virological failure. Ultra-deep pyrosequencing of HIV-1 V3 env allows to detect low levels of CXCR4-using variants that current genotypic approaches miss. However, the computation of the mass of sequence data and the need to identify true minor variants while excluding artifactual sequences generated during amplification and ultra-deep pyrosequencing is rate-limiting. Arbitrary fixed cut-offs below which minor variants are discarded are currently used but the errors generated during ultra-deep pyrosequencing are sequence-dependant rather than random. We have developed an automated processing of HIV-1 V3 env ultra-deep pyrosequencing data that uses biological filters to discard artifactual or non-functional V3 sequences followed by statistical filters to determine position-specific sensitivity thresholds, rather than arbitrary fixed cut-offs. It allows to retain authentic sequences with point mutations at V3 positions of interest and discard artifactual ones with accurate sensitivity thresholds.
Collapse
|
10
|
Pessôa R, Sabino EC, Sanabani SS. Frequency of coreceptor tropism in PBMC samples from HIV-1 recently infected blood donors by massively parallel sequencing: the REDS II study. Virol J 2015; 12:74. [PMID: 25966986 PMCID: PMC4438479 DOI: 10.1186/s12985-015-0307-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/05/2015] [Indexed: 11/10/2022] Open
Abstract
Background The interaction of HIV-1 and target cells involves sequential binding of the viral gp120 Env protein to the CD4 receptor and a chemokine co-receptor (either CCR5 or CXCR4). CCR5 antagonists have proved to be an effective salvage therapy in patients with CCR5 using variants (R5) but not with variants capable of using CXCR4 (×4) phenotype. Thus, it is critically important to determine cellular tropism of a country’s circulating HIV strains to guide a management decision to improve treatment outcome. In this study, we report the prevalence of R5 and ×4 HIV strains in 45 proviral DNA massively parallel sequencing “MPS” data from recently infected Brazilian blood donors. Methods The MPS data encompassing the tropism-related V3 loop region of the HIV‐1 env gene was extracted from our recently published HIV-1 genomes sequenced by a paired-end protocol (Illumina). HIV‐1 tropism was inferred using Geno2pheno[coreceptor] algorithm (3.5 % false-positive rate). V3 net charge and 11/25 rules were also used for coreceptor prediction. Results Among the 45 samples for which tropism were determined, 39 were exclusively R5 variants, 5 ×4 variants, and one dual-tropic or mixed (D/M) populations of R5 and ×4 viruses, corresponding to 86.7, 11.1 and 2.2 %, respectively. Thus, the proportion of all blood donors that harbor CXCR4-using virus was 13.3 % including individuals with D/M-tropic viruses. Conclusions The presence of CCR5-tropic variants in more than 85 % of our cohort of antiretroviral-naïve blood donors with recent HIV-1 infection indicates a potential benefit of CCR5 antagonists as a therapeutic option in Brazil. Therefore, determination of viral co-receptor tropism is an important diagnostic prerequisite.
Collapse
Affiliation(s)
- Rodrigo Pessôa
- Department of Pathology, Hospital das Clínicas, School of Medicine, University of São Paulo, São Paulo, Brazil.
| | - Ester C Sabino
- Department of Infectious Disease/Institute of Tropical Medicine, University of São Paulo, Sao Paulo, Brazil.
| | - Sabri S Sanabani
- Department of Pathology, Hospital das Clínicas, School of Medicine, University of São Paulo, São Paulo, Brazil. .,Medicina Instituto de Medicina Tropical de São Paulo, LIM 52 - Av. Dr. Enéas Carvalho de Aguiar, 470 - 2° andar - Cerqueira Cesar, 05403-000, Sao Paulo, SP, Brazil.
| |
Collapse
|
11
|
Abstract
OBJECTIVE Evaluate the risk of female breast cancer associated with HIV-CXCR4 (X4) tropism as determined by various genotypic measures. METHODS A breast cancer case-control study, with pairwise comparisons of tropism determination methods, was conducted. From the Women's Interagency HIV Study repository, one stored plasma specimen was selected from 25 HIV-infected cases near the breast cancer diagnosis date and 75 HIV-infected control women matched for age and calendar date. HIV-gp120 V3 sequences were derived by Sanger population sequencing (PS) and 454-pyro deep sequencing (DS). Sequencing-based HIV-X4 tropism was defined using the geno2pheno algorithm, with both high-stringency DS [false-positive rate (3.5) and 2% X4 cutoff], and lower stringency DS (false-positive rate, 5.75 and 15% X4 cutoff). Concordance of tropism results by PS, DS, and previously performed phenotyping was assessed with kappa (κ) statistics. Case-control comparisons used exact P values and conditional logistic regression. RESULTS In 74 women (19 cases, 55 controls) with complete results, prevalence of HIV-X4 by PS was 5% in cases vs 29% in controls (P = 0.06; odds ratio, 0.14; confidence interval: 0.003 to 1.03). Smaller case-control prevalence differences were found with high-stringency DS (21% vs 36%, P = 0.32), lower stringency DS (16% vs 35%, P = 0.18), and phenotyping (11% vs 31%, P = 0.10). HIV-X4 tropism concordance was best between PS and lower stringency DS (93%, κ = 0.83). Other pairwise concordances were 82%-92% (κ = 0.56-0.81). Concordance was similar among cases and controls. CONCLUSIONS HIV-X4 defined by population sequencing (PS) had good agreement with lower stringency DS and was significantly associated with lower odds of breast cancer.
Collapse
|
12
|
Edwards S, Stucki H, Bader J, Vidal V, Kaiser R, Battegay M, Klimkait T. A diagnostic HIV-1 tropism system based on sequence relatedness. J Clin Microbiol 2015; 53:597-610. [PMID: 25502529 PMCID: PMC4298515 DOI: 10.1128/jcm.02762-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/05/2014] [Indexed: 12/23/2022] Open
Abstract
Key clinical studies for HIV coreceptor antagonists have used the phenotyping-based Trofile test. Meanwhile various simpler-to-do genotypic tests have become available that are compatible with standard laboratory equipment and Web-based interpretation tools. However, these systems typically analyze only the most prominent virus sequence in a specimen. We present a new diagnostic HIV tropism test not needing DNA sequencing. The system, XTrack, uses physical properties of DNA duplexes after hybridization of single-stranded HIV-1 env V3 loop probes to the clinical specimen. Resulting "heteroduplexes" possess unique properties driven by sequence relatedness to the reference and resulting in a discrete electrophoretic mobility. A detailed optimization process identified diagnostic probe candidates relating best to a large number of HIV-1 sequences with known tropism. From over 500 V3 sequences representing all main HIV-1 subtypes (Los Alamos database), we obtained a small set of probes to determine the tropism in clinical samples. We found a high concordance with the commercial TrofileES test (84.9%) and the Web-based tool Geno2Pheno (83.0%). Moreover, the new system reveals mixed virus populations, and it was successful on specimens with low virus loads or on provirus from leukocytes. A replicative phenotyping system was used for validation. Our data show that the XTrack test is favorably suitable for routine diagnostics. It detects and dissects mixed virus populations and viral minorities; samples with viral loads (VL) of <200 copies/ml are successfully analyzed. We further expect that the principles of the platform can be adapted also to other sequence-divergent pathogens, such as hepatitis B and C viruses.
Collapse
Affiliation(s)
- Suzanne Edwards
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Heinz Stucki
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Joëlle Bader
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Rolf Kaiser
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Manuel Battegay
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Thomas Klimkait
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
13
|
Detection of HIV-1 matrix protein p17 quasispecies variants in plasma of chronic HIV-1-infected patients by ultra-deep pyrosequencing. J Acquir Immune Defic Syndr 2014; 66:332-9. [PMID: 24732873 DOI: 10.1097/qai.0000000000000164] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The HIV-1 matrix protein p17 (p17MA) is a pleiotropic protein that plays a key role in the HIV-1 life cycle. It has been long believed to have a highly conserved primary amino acid sequence and a well-preserved structural integrity to avoid severe fitness consequences. However, recent data revealed that the carboxy (COOH)-terminus of p17MA possesses high levels of predicted intrinsic disorder, which would subtend to at least partially unfolded status of this region. This finding pointed to the need of investigating p17MA heterogeneity. METHODS The degree of intrapatient variations in the p17MA primary sequence was assessed on plasma viral RNA by using ultra-deep pyrosequencing. RESULTS Data obtained support a complex nature of p17MA quasispecies, with variants present at variable frequency virtually in all patients. Clusters of mutations were scattered along the entire sequence of the viral protein, but they were more frequently detected within the COOH-terminal region of p17MA. Moreover, deletions and insertions also occurred in a restricted area of the COOH-terminal region. CONCLUSIONS On the whole, our data show that the intrapatient level of sequence diversity in the p17MA is much higher than predicted before. Our results pave the way for further studies aimed at unraveling possible correlations between the presence of distinct p17MA variants and peculiar clinical evolutions of HIV-1 disease. The presence of p17MA quasispecies diversity may offer new tools to improve our understanding of the viral adaptation during the natural history of HIV-1 infection.
Collapse
|
14
|
Bon I, Turriziani O, Musumeci G, Clò A, Montagna C, Morini S, Calza L, Gibellini D, Antonelli G, Re MC. HIV-1 coreceptor usage in paired plasma RNA and proviral DNA from patients with acute and chronic infection never treated with antiretroviral therapy. J Med Virol 2014; 87:315-22. [PMID: 25138591 DOI: 10.1002/jmv.24036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2014] [Indexed: 01/28/2023]
Abstract
Although an independent evolution of viral quasispecies in different body sites might determine a differential compartmentalization of viral variants, the aim of this paper was to establish whether sequences from peripheral blood mononuclear cells (PBMCs) and plasma provide different or complementary information on HIV tropism in patients with acute or chronic infection. Tropism was predicted using genotypic testing combined with geno2pheno (coreceptor) analysis at a 10% false positive rate in paired RNA and DNA samples from 75 antiretroviral-naïve patients (divided on the basis of avidity index into patients with a recent or long-lasting infection). A high prevalence of R5 HIV strains (97%) was observed in both compartments (plasma and PBMCs) in patients infected recently. By contrast, patients with a long-lasting infection showed a quite different situation in the two compartments, revealing more (46%) X4/DM in PBMCs than patients infected recently (3%) (P = 0.008). As- a knowledge of viral strains in different biological compartments might be crucial to establish a therapeutic protocol, it could be extremely useful to detect not only viral strains in plasma, but also viruses hidden or archived in different cell compartments to better understand disease evolution and treatment efficacy in patients infected with HIV.
Collapse
Affiliation(s)
- I Bon
- Microbiology Section of the Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, University of Bologna, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Rozera G, Abbate I, Giombini E, Castagna A, De Luca A, Ceccherini-Silberstein F, Cozzi Lepri A, Cassola G, Torti C, d'Arminio Monforte A, Ippolito G, Capobianchi MR. Evolution of HIV-1 tropism at quasispecies level after 5 years of combination antiretroviral therapy in patients always suppressed or experiencing episodes of virological failure. J Antimicrob Chemother 2014; 69:3085-94. [PMID: 25015667 DOI: 10.1093/jac/dku255] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Tropism evolution of HIV-1 quasispecies was analysed by ultra-deep pyrosequencing (UDPS) in patients on first-line combination antiretroviral therapy (cART) always suppressed or experiencing virological failure episodes. METHODS Among ICONA patients, two groups of 20 patients on cART for ≥5 years, matched for baseline viraemia and therapy duration, were analysed [Group I, patients always suppressed; and Group II, patients experiencing episode(s) of virological failure]. Viral tropism was assessed by V3 UDPS on plasma RNA before therapy (T0) and on peripheral blood mononuclear cell proviral DNA before-after therapy (T0-T1), using geno2pheno false positive rate (FPR) (threshold for X4: 5.75). For each sample, quasispecies tropism was assigned according to X4 variant frequency: R5, <0.3% X4; minority X4, 0.3%-19.9% X4; and X4, ≥20% X4. An R5-X4 switch was defined as a change from R5/minority X4 in plasma/proviral genomes at T0 to X4 in provirus at T1. RESULTS At baseline, mean FPR and %X4 of viral RNA were positively correlated with those of proviral DNA. After therapy, proviral DNA load significantly decreased in Group I; mean FPR of proviral quasispecies significantly decreased and %X4 increased in Group II. An R5-X4 switch was observed in five patients (two in Group I and three in Group II), all harbouring minority X4 variants at T0. CONCLUSIONS UDPS analysis reveals that the tropism switch is not an 'on-off' phenomenon, but may result from a profound re-shaping of viral quasispecies, even under suppressive cART. However, episodes of virological failure seem to prevent reduction of proviral DNA and to accelerate viral evolution, as suggested by decreased FPR and increased %X4 at T1 in Group II patients.
Collapse
Affiliation(s)
- Gabriella Rozera
- National Institute for Infectious Diseases L. Spallanzani, Rome, Italy
| | - Isabella Abbate
- National Institute for Infectious Diseases L. Spallanzani, Rome, Italy
| | - Emanuela Giombini
- National Institute for Infectious Diseases L. Spallanzani, Rome, Italy
| | | | | | | | | | | | - Carlo Torti
- University Department of Infectious Diseases, University of Brescia, Brescia, Italy Unit of Infectious Diseases, University 'Magna Græcia', Catanzaro, Italy
| | | | - Giuseppe Ippolito
- National Institute for Infectious Diseases L. Spallanzani, Rome, Italy
| | | | | |
Collapse
|
16
|
Knapp DJHF, McGovern RA, Poon AFY, Zhong X, Chan D, Swenson LC, Dong W, Harrigan PR. "Deep" sequencing accuracy and reproducibility using Roche/454 technology for inferring co-receptor usage in HIV-1. PLoS One 2014; 9:e99508. [PMID: 24959876 PMCID: PMC4069016 DOI: 10.1371/journal.pone.0099508] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 05/15/2014] [Indexed: 11/19/2022] Open
Abstract
Next generation, "deep", sequencing has increasing applications both clinically and in disparate fields of research. This study investigates the accuracy and reproducibility of "deep" sequencing as applied to co-receptor prediction using the V3 loop of Human Immunodeficiency Virus-1. Despite increasing use in HIV co-receptor prediction, the accuracy and reproducibility of deep sequencing technology, and the factors which can affect it, have received only a limited level of investigation. To accomplish this, repeated deep sequencing results were generated using the Roche GS-FLX (454) from a number of sources including a non-homogeneous clinical sample (N = 47 replicates over 18 deep sequencing runs), and a large clinical cohort from the MOTIVATE and A400129 studies (N = 1521). For repeated measurements of a non-homogeneous clinical sample, increasing input copy number both decreased variance in the measured proportion of non-R5 using virus (p<<0.001 and 0.02 for single replicates and triplicates respectively) and increased measured viral diversity (p<0.001; multiple measures). Detection of sequences with a mean abundance less than 1% abundance showed a 2 fold increase in median coefficient of variation (CV) in repeated measurements of a non-homogeneous clinical sample, and a 2.7 fold increase in CV in the MOTIVATE/A400129 dataset compared to sequences with ≥1% abundance. An unexpected source of error included read position, with low accuracy reads occurring more frequently towards the edge of sequencing regions (p<<0.001). Overall, the primary source of variability was sampling error caused by low input copy number/minority species prevalence, though other sources of error including sequence intrinsic, temporal, and read-position related errors were detected.
Collapse
Affiliation(s)
| | | | - Art F. Y. Poon
- BC Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Xiaoyin Zhong
- BC Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Dennison Chan
- BC Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | | | - Winnie Dong
- BC Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - P. Richard Harrigan
- BC Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- * E-mail:
| |
Collapse
|
17
|
Quiñones-Mateu ME, Avila S, Reyes-Teran G, Martinez MA. Deep sequencing: becoming a critical tool in clinical virology. J Clin Virol 2014; 61:9-19. [PMID: 24998424 DOI: 10.1016/j.jcv.2014.06.013] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/12/2014] [Accepted: 06/14/2014] [Indexed: 02/07/2023]
Abstract
Population (Sanger) sequencing has been the standard method in basic and clinical DNA sequencing for almost 40 years; however, next-generation (deep) sequencing methodologies are now revolutionizing the field of genomics, and clinical virology is no exception. Deep sequencing is highly efficient, producing an enormous amount of information at low cost in a relatively short period of time. High-throughput sequencing techniques have enabled significant contributions to multiples areas in virology, including virus discovery and metagenomics (viromes), molecular epidemiology, pathogenesis, and studies of how viruses to escape the host immune system and antiviral pressures. In addition, new and more affordable deep sequencing-based assays are now being implemented in clinical laboratories. Here, we review the use of the current deep sequencing platforms in virology, focusing on three of the most studied viruses: human immunodeficiency virus (HIV), hepatitis C virus (HCV), and influenza virus.
Collapse
Affiliation(s)
- Miguel E Quiñones-Mateu
- University Hospital Translational Laboratory, University Hospitals Case Medical Center, Cleveland, OH, USA; Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Santiago Avila
- Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico; Centro de Investigaciones en Enfermedades Infecciosas, Mexico City, Mexico
| | - Gustavo Reyes-Teran
- Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico; Centro de Investigaciones en Enfermedades Infecciosas, Mexico City, Mexico
| | - Miguel A Martinez
- Fundació irsicaixa, Universitat Autònoma de Barcelona, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| |
Collapse
|
18
|
Limited evolution of inferred HIV-1 tropism while viremia is undetectable during standard HAART therapy. PLoS One 2014; 9:e99000. [PMID: 24905411 PMCID: PMC4048224 DOI: 10.1371/journal.pone.0099000] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/09/2014] [Indexed: 12/31/2022] Open
Abstract
Background HIV patients on suppressive antiretroviral therapy have undetectable viremia making it impossible to screen plasma HIV tropism if regimen change is required during suppression. We investigated the prevalence and predictors of tropism switch from CCR5-using (“R5”) to non-CCR5-using (“non-R5”) before and after viral suppression in the initially therapy-naïve HOMER cohort from British Columbia, Canada. Methods We compared pre-therapy and post-suppression viral genotypic tropism in patients who initiated on PI/NNRTI-based antiretroviral regimens between 1996-1999 (n = 462). Virologic suppression was defined as having two consecutive viral loads of <500 copies/mL, which was the sensitivity limit of most viral load assays at the time. Viral tropism was inferred by V3-loop-population-sequencing and geno2pheno[coreceptor] with cutoff at 5.75% false positive rate (FPR). Results When virologic suppression was defined as two-consecutive viral loads <500 copies/mL, 34 (9%) of the 397 patients with pre-therapy R5-virus switched to non-R5 at viral load rebound after a median of 19 months (IQR 8–41 months) of undetectable viremia. Duration of viral load suppression was not a predictor of switch, but lower CD4 count during suppression (median 400 versus 250 cells/mL) and an increased prevalence of pre-therapy non-R5 HIV by “deep” sequencing (median 0.2% versus 3.2%) were independently associated with switch (p = 0.03 and p<0.0001, respectively). Conclusion R5-to-non-R5 tropism switches in plasma virus after undetectable viremia were relatively rare events especially among patients with higher CD4 counts during virologic suppression. Our study supports the use of pre-suppression tropism results if maraviroc is being considered during virologic suppression in this subgroup of patients.
Collapse
|
19
|
Liang RH, Mo T, Dong W, Lee GQ, Swenson LC, McCloskey RM, Woods CK, Brumme CJ, Ho CKY, Schinkel J, Joy JB, Harrigan PR, Poon AFY. Theoretical and experimental assessment of degenerate primer tagging in ultra-deep applications of next-generation sequencing. Nucleic Acids Res 2014; 42:e98. [PMID: 24810852 PMCID: PMC4081055 DOI: 10.1093/nar/gku355] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Primer IDs (pIDs) are random oligonucleotide tags used in next-generation sequencing to identify sequences that originate from the same template. These tags are produced by degenerate primers during the reverse transcription of RNA molecules into cDNA. The use of pIDs helps to track the number of RNA molecules carried through amplification and sequencing, and allows resolution of inconsistencies between reads sharing a pID. Three potential issues complicate the above applications. First, multiple cDNAs may share a pID by chance; we found that while preventing any cDNAs from sharing a pID may be unfeasible, it is still practical to limit the number of these collisions. Secondly, a pID must be observed in at least three sequences to allow error correction; as such, pIDs observed only one or two times must be rejected. If the sequencing product contains copies from a high number of RT templates but produces few reads, our findings indicate that rejecting such pIDs will discard a great deal of data. Thirdly, the use of pIDs could influence amplification and sequencing. We examined the effects of several intrinsic and extrinsic factors on sequencing reads at both the individual and ensemble level.
Collapse
Affiliation(s)
- Richard H Liang
- BC Centre for Excellence in HIV/AIDS, Vancouver, BC, V6Z 1Y6, Canada
| | - Theresa Mo
- BC Centre for Excellence in HIV/AIDS, Vancouver, BC, V6Z 1Y6, Canada
| | - Winnie Dong
- BC Centre for Excellence in HIV/AIDS, Vancouver, BC, V6Z 1Y6, Canada
| | - Guinevere Q Lee
- BC Centre for Excellence in HIV/AIDS, Vancouver, BC, V6Z 1Y6, Canada
| | - Luke C Swenson
- BC Centre for Excellence in HIV/AIDS, Vancouver, BC, V6Z 1Y6, Canada
| | | | - Conan K Woods
- BC Centre for Excellence in HIV/AIDS, Vancouver, BC, V6Z 1Y6, Canada
| | - Chanson J Brumme
- BC Centre for Excellence in HIV/AIDS, Vancouver, BC, V6Z 1Y6, Canada
| | - Cynthia K Y Ho
- Section of Clinical Virology, Department of Medical Microbiology, Academic Medical Center, 1105AZ Amsterdam, The Netherlands
| | - Janke Schinkel
- Section of Clinical Virology, Department of Medical Microbiology, Academic Medical Center, 1105AZ Amsterdam, The Netherlands
| | - Jeffrey B Joy
- BC Centre for Excellence in HIV/AIDS, Vancouver, BC, V6Z 1Y6, Canada
| | - P Richard Harrigan
- BC Centre for Excellence in HIV/AIDS, Vancouver, BC, V6Z 1Y6, Canada Department of Medicine, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Art F Y Poon
- BC Centre for Excellence in HIV/AIDS, Vancouver, BC, V6Z 1Y6, Canada Department of Medicine, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| |
Collapse
|
20
|
Kijak GH, Sanders-Buell E, Harbolick EA, Pham P, Chenine AL, Eller LA, Rono K, Robb ML, Michael NL, Kim JH, Tovanabutra S. Targeted deep sequencing of HIV-1 using the IonTorrentPGM platform. J Virol Methods 2014; 205:7-16. [PMID: 24797459 DOI: 10.1016/j.jviromet.2014.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/11/2014] [Accepted: 04/25/2014] [Indexed: 10/25/2022]
Abstract
The characterization of mixed HIV-1 populations is a key question in clinical and basic research settings. This can be achieved through targeted deep sequencing (TDS), where next-generation sequencing is used to examine in depth a sub-genomic region of interest. This study explores the suitability of IonTorrent PGM(LifeTechnologies) for the TDS-based analysis of HIV-1 evolution. Using laboratory reagents and primary specimens sampled at pre-peak viremia the error rates from misincorporation and in vitro recombination were <0.5%. The sequencing error rate was 2- to 3-fold higher in/around homopolymeric tracts, and could be discerned from true polymorphism using bidirectional sequencing. The limit of detection of complex variants was further lowered by using haplotyping. The application of this system was illustrated on primary samples from an individual infected with HIV-1 followed from pre-peak viremia through six months post-acquisition. TDS provided an augmented view of the extent of genetic diversity, the covariation among polymorphisms, the evolutionary pathways, and the boundaries of the mutational space explored by the viral swarm. Based on its performance, the system can be applied for the characterization of minor viral variants in support of studies of viral evolution, which can inform the rational design of the next generation of vaccines and therapeutics.
Collapse
Affiliation(s)
- Gustavo H Kijak
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.
| | - Eric Sanders-Buell
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Elizabeth A Harbolick
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Phuc Pham
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Agnes L Chenine
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Leigh Anne Eller
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Kathleen Rono
- Kenya Medical Research Institute/Walter Reed Project, Kericho, Kenya
| | - Merlin L Robb
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Nelson L Michael
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Jerome H Kim
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| |
Collapse
|
21
|
HIV-1 tropism testing and clinical management of CCR5 antagonists: Quebec review and recommendations. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2014; 24:202-8. [PMID: 24489562 DOI: 10.1155/2013/982759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
HIV-1 tropism assays play a crucial role in determining the response to CCR5 receptor antagonists. Initially, phenotypic tests were used, but limited access to these tests prompted the development of alternative strategies. Recently, genotyping tropism has been validated using a Canadian technology in clinical trials investigating the use of maraviroc in both experienced and treatment-naive patients. The present guidelines review the evidence supporting the use of genotypic assays and provide recommendations regarding tropism testing in daily clinical management.
Collapse
|
22
|
Next-Generation Sequencing to Help Monitor Patients Infected with HIV: Ready for Clinical Use? Curr Infect Dis Rep 2014; 16:401. [DOI: 10.1007/s11908-014-0401-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Kagan RM, Johnson EP, Siaw MF, Van Baelen B, Ogden R, Platt JL, Pesano RL, Lefebvre E. Comparison of genotypic and phenotypic HIV type 1 tropism assay: results from the screening samples of Cenicriviroc Study 202, a randomized phase II trial in treatment-naive subjects. AIDS Res Hum Retroviruses 2014; 30:151-9. [PMID: 23875707 DOI: 10.1089/aid.2013.0123] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cenicriviroc is a once-daily oral CCR5/CCR2 antagonist in development for treatment of HIV infection. CVC Study 202 (652-2-202; NCT01338883) excluded treatment-naive subjects demonstrated to harbor non-R5 (CXCR4-tropic or dual-mixed) tropic HIV-1 by either genotypic or phenotypic tropism testing. Here we compare the results of genotypic and phenotypic tropism testing in Study 202. A total of 304 subjects screened had paired genotypic and phenotypic results. Genotypic tropism testing (GTT) incorporated triplicate population sequencing using the geno2pheno algorithm and the PSSM algorithm, followed by ultradeep sequencing (UDS) for samples with R5 results. All samples were further evaluated with a phenotypic test, the enhanced-sensitivity Trofile assay (ESTA). Concordance between GTT and ESTA was 80% and increased to 84% when only geno2pheno was used for triplicate population sequencing. GTT (geno2pheno) classified 18% of the samples as non-R5 compared to 16% by ESTA. Only one-third of samples with non-R5 results by either test were classified as non-R5 by both tests. Median CD4((+)) cell counts were lower in patients with concordant non-R5 results by UDS and ESTA than in subjects with an R5 result by either assay (p=0.0004). UDS detected non-R5 virus in an additional 27/304 subjects (median 15% non-R5, interquartile range: 3.7-62%) with R5 results by ESTA. In conclusion, the geno2pheno algorithm improves concordance of GTT with a clinically validated phenotypic tropism assay as does the use of UDS. These findings provide support for recent guidelines indicating that genotypic tropism testing may be considered as an alternative to phenotypic testing.
Collapse
Affiliation(s)
- Ron M. Kagan
- Quest Diagnostics Nichols Institute, San Juan Capistrano, California
| | - Erik P. Johnson
- Quest Diagnostics Nichols Institute, San Juan Capistrano, California
| | - Martin F. Siaw
- Quest Diagnostics Nichols Institute, San Juan Capistrano, California
| | | | - Richard Ogden
- Tobira Therapeutics Inc., South San Francisco, California
| | - Jamie L. Platt
- Quest Diagnostics Nichols Institute, San Juan Capistrano, California
| | - Rick L. Pesano
- Quest Diagnostics Nichols Institute, San Juan Capistrano, California
| | - Eric Lefebvre
- Tobira Therapeutics Inc., South San Francisco, California
| |
Collapse
|
24
|
Sensitive deep-sequencing-based HIV-1 genotyping assay to simultaneously determine susceptibility to protease, reverse transcriptase, integrase, and maturation inhibitors, as well as HIV-1 coreceptor tropism. Antimicrob Agents Chemother 2014; 58:2167-85. [PMID: 24468782 DOI: 10.1128/aac.02710-13] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
With 29 individual antiretroviral drugs available from six classes that are approved for the treatment of HIV-1 infection, a combination of different phenotypic and genotypic tests is currently needed to monitor HIV-infected individuals. In this study, we developed a novel HIV-1 genotypic assay based on deep sequencing (DeepGen HIV) to simultaneously assess HIV-1 susceptibilities to all drugs targeting the three viral enzymes and to predict HIV-1 coreceptor tropism. Patient-derived gag-p2/NCp7/p1/p6/pol-PR/RT/IN- and env-C2V3 PCR products were sequenced using the Ion Torrent Personal Genome Machine. Reads spanning the 3' end of the Gag, protease (PR), reverse transcriptase (RT), integrase (IN), and V3 regions were extracted, truncated, translated, and assembled for genotype and HIV-1 coreceptor tropism determination. DeepGen HIV consistently detected both minority drug-resistant viruses and non-R5 HIV-1 variants from clinical specimens with viral loads of ≥1,000 copies/ml and from B and non-B subtypes. Additional mutations associated with resistance to PR, RT, and IN inhibitors, previously undetected by standard (Sanger) population sequencing, were reliably identified at frequencies as low as 1%. DeepGen HIV results correlated with phenotypic (original Trofile, 92%; enhanced-sensitivity Trofile assay [ESTA], 80%; TROCAI, 81%; and VeriTrop, 80%) and genotypic (population sequencing/Geno2Pheno with a 10% false-positive rate [FPR], 84%) HIV-1 tropism test results. DeepGen HIV (83%) and Trofile (85%) showed similar concordances with the clinical response following an 8-day course of maraviroc monotherapy (MCT). In summary, this novel all-inclusive HIV-1 genotypic and coreceptor tropism assay, based on deep sequencing of the PR, RT, IN, and V3 regions, permits simultaneous multiplex detection of low-level drug-resistant and/or non-R5 viruses in up to 96 clinical samples. This comprehensive test, the first of its class, will be instrumental in the development of new antiretroviral drugs and, more importantly, will aid in the treatment and management of HIV-infected individuals.
Collapse
|
25
|
Pérez-Olmeda M, Alcami J. Determination of HIV tropism and its use in the clinical practice. Expert Rev Anti Infect Ther 2014; 11:1291-302. [DOI: 10.1586/14787210.2013.852469] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Gorry PR, Francella N, Lewin SR, Collman RG. HIV-1 envelope-receptor interactions required for macrophage infection and implications for current HIV-1 cure strategies. J Leukoc Biol 2014; 95:71-81. [PMID: 24158961 PMCID: PMC3868190 DOI: 10.1189/jlb.0713368] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 10/07/2013] [Accepted: 10/09/2013] [Indexed: 01/25/2023] Open
Abstract
Myeloid cells residing in the CNS and lymphoid tissues are targets for productive HIV-1 replication, and their infection contributes to the pathological manifestations of HIV-1 infection. The Envs can adopt altered configurations to overcome entry restrictions in macrophages via a more efficient and/or altered mechanism of engagement with cellular receptors. This review highlights evidence supporting an important role for macrophages in HIV-1 pathogenesis and persistence, which need to be considered for strategies aimed at achieving a functional or sterilizing cure. We also highlight that the molecular mechanisms underlying HIV-1 tropism for macrophages are complex, involving enhanced and/or altered interactions with CD4, CCR5, and/or CXCR4, and that the nature of these interactions may depend on the anatomical location of the virus.
Collapse
Affiliation(s)
- Paul R. Gorry
- Center for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia; and
| | - Nicholas Francella
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Sharon R. Lewin
- Center for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Ronald G. Collman
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
27
|
Slow immunological progression in HIV-1 CRF07_BC-infected injecting drug users. Emerg Microbes Infect 2013; 2:e83. [PMID: 26038447 PMCID: PMC3880871 DOI: 10.1038/emi.2013.83] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/21/2013] [Accepted: 11/14/2013] [Indexed: 01/03/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) circulating recombinant form (CRF) 07_BC has caused serious HIV-1 epidemics among injecting drug users (IDUs) in East Asia. Little is known about the characteristics of the virus and its impact on disease progression among the infected individuals. In this study, we compared immunological progression between 423 IDUs infected with CRF07_BC and 194 men who have sex with men (MSM) with primary subtype B infection, and a representative full-length CRF07_BC molecular clone, pCRF07_BC, was constructed to characterize the virus. We found that IDUs infected with CRF07_BC had significantly slower immunological progression in the Cox proportional hazards model (hazard ratio: 0.30; 95% confidence interval: 0.13–0.69; P=0.004). The constructed recombinant CRF07_BC viruses had a reduced processing of the Gag/Gag-Pol polyproteins, a decreased incorporation of Vpr in the virus particle, tethering of virus particles on the plasma membrane and decreased virus growth kinetics. These phenotypes are related to the unique 7-amino acid deletion in the p6 of CRF07_BC, since complementation of the 7-amino acid in pCRF07_BC could improve the defective phenotypes. In summary, compared with MSM infected with HIV-1 subtype B, IDUs infected with CRF07_BC had slower immunological progression, which is likely correlated with interference of virus particle maturation by the 7-amino acid deletion in p6.
Collapse
|
28
|
Ferrer P, Montecinos L, Tello M, Tordecilla R, Rodríguez C, Ferrés M, Pérez CM, Beltrán C, Guzmán MA, Afani A. HIV-1 tropism: a comparison between RNA and proviral DNA in routine clinical samples from Chilean patients. Virol J 2013; 10:318. [PMID: 24165156 PMCID: PMC4231446 DOI: 10.1186/1743-422x-10-318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/14/2013] [Indexed: 11/10/2022] Open
Abstract
Background HIV in Chile has a notification rate of 0.01%. Coreceptor antagonists are a family of antiretroviral drugs that are used with the prior knowledge of patients HIV-1 tropism. Viral RNA-based tropism detection requires a plasma viral load ≥1000 copies/mL, while proviral DNA-based detection can be performed regardless of plasma viral load. This test is useful in patients with low or undetectable viral loads and would benefit with a proper therapy. The aim of this study was to determine the correlation between HIV RNA and proviral genotypic DNA tropism tests. Findings Forty three Chilean patients were examined using population-based V3 sequencing, and a geno2pheno false-positive rate (FPR) cutoff values of 5, 5.75, 10 and 20%. With cutoff 5.75% a concordance of 88.4% in tropism prediction was found after a simultaneous comparison between HIV tropism assessment by RNA and DNA. In total, five discrepancies (11.6%) were found, 3 patients were RNA-R5/DNA-X4 and two were RNA-X4/DNA-R5. Proviral DNA enabled the prediction of tropism in patients with a low or undetectable viral load. For cutoff 5 and 5.75% genotypic testing using proviral DNA showed a similar sensitivity for X4 as RNA. We found that the highest sensitivity for detecting the X4 strain occurred with proviral DNA and cutoff of 10 and 20%. Viral loads were higher among X4 strain carriers than among R5 strain carriers (p < 0.05). Conclusions A high degree of concordance was found between tropism testing with RNA and testing with proviral DNA. Our results suggest that proviral DNA-based genotypic tropism testing is a useful option for patients with low or undetectable viral load who require a different therapy.
Collapse
Affiliation(s)
- Pablo Ferrer
- Laboratorio de Medicina Molecular, Hospital Clínico Universidad de Chile, Santiago, Chile.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
McGovern RA, Symons J, Poon AFY, Harrigan PR, van Lelyveld SFL, Hoepelman AIM, van Ham PM, Dong W, Wensing AMJ, Nijhuis M. Maraviroc treatment in non-R5-HIV-1-infected patients results in the selection of extreme CXCR4-using variants with limited effect on the total viral setpoint. J Antimicrob Chemother 2013; 68:2007-14. [PMID: 23677920 DOI: 10.1093/jac/dkt153] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Using deep sequencing methods, we intensively investigated the selective pressure of maraviroc on the viral population in four patients with dual/mixed HIV-1 experiencing treatment failure. METHODS Patients received maraviroc add-on therapy (n = 4). Tropism was determined by Monogram's Trofile assay and/or 'deep' sequencing. Longitudinal 'deep' sequence analysis used triplicate HIV V3 RT-PCR on plasma samples. Sequences were interpreted using the geno2phenocoreceptor algorithm with a 3.5% false-positive rate (FPR) cut-off. RESULTS Patients had a median viral load of 4.7 log10 HIV RNA copies/mL with a median of 24% chemokine (C-X-C motif) receptor 4 (CXCR4)-using virus at baseline. Following maraviroc exposure, the chemokine (C-C motif) receptor 5 (CCR5)-using virus (R5) plasma viral load decreased by at least 1 log10, and only non-R5 variants with extremely low FPR values predominated after 21 days. Virus with an FPR ≤1.8% accounted for more than 90% of the circulating virus, having expanded to occupy the 'space' left by the suppression of R5 variants. Population genetic estimates of viral fitness in the presence of maraviroc showed a steep rise around an FPR value of 2%. CONCLUSIONS Longitudinal analysis of independent R5 and non-R5 HIV populations shows that maraviroc selects viruses with an extremely low FPR, implying that the antiviral activity of maraviroc may extend to a broader range of HIV variants than previously suspected.
Collapse
Affiliation(s)
- Rachel A McGovern
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada V6Z 1Y6
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Mulinge M, Lemaire M, Servais JY, Rybicki A, Struck D, da Silva ES, Verhofstede C, Lie Y, Seguin-Devaux C, Schmit JC, Bercoff DP. HIV-1 tropism determination using a phenotypic Env recombinant viral assay highlights overestimation of CXCR4-usage by genotypic prediction algorithms for CRF01_AE and CRF02_AG [corrected]. PLoS One 2013; 8:e60566. [PMID: 23667426 PMCID: PMC3648519 DOI: 10.1371/journal.pone.0060566] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 02/28/2013] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Human Immunodeficiency virus type-1 (HIV) entry into target cells involves binding of the viral envelope (Env) to CD4 and a coreceptor, mainly CCR5 or CXCR4. The only currently licensed HIV entry inhibitor, maraviroc, targets CCR5, and the presence of CXCX4-using strains must be excluded prior to treatment. Co-receptor usage can be assessed by phenotypic assays or through genotypic prediction. Here we compared the performance of a phenotypic Env-Recombinant Viral Assay (RVA) to the two most widely used genotypic prediction algorithms, Geno2Pheno[coreceptor] and webPSSM. METHODS Co-receptor tropism of samples from 73 subtype B and 219 non-B infections was measured phenotypically using a luciferase-tagged, NL4-3-based, RVA targeting Env. In parallel, tropism was inferred genotypically from the corresponding V3-loop sequences using Geno2Pheno[coreceptor] (5-20% FPR) and webPSSM-R5X4. For discordant samples, phenotypic outcome was retested using co-receptor antagonists or the validated Trofile® Enhanced-Sensitivity-Tropism-Assay. RESULTS The lower detection limit of the RVA was 2.5% and 5% for X4 and R5 minority variants respectively. A phenotype/genotype result was obtained for 210 samples. Overall, concordance of phenotypic results with Geno2Pheno[coreceptor] was 85.2% and concordance with webPSSM was 79.5%. For subtype B, concordance with Geno2pheno[coreceptor] was 94.4% and concordance with webPSSM was 79.6%. High concordance of genotypic tools with phenotypic outcome was seen for subtype C (90% for both tools). Main discordances involved CRF01_AE and CRF02_AG for both algorithms (CRF01_AE: 35.9% discordances with Geno2Pheno[coreceptor] and 28.2% with webPSSM; CRF02_AG: 20.7% for both algorithms). Genotypic prediction overestimated CXCR4-usage for both CRFs. For webPSSM, 40% discordance was observed for subtype A. CONCLUSIONS Phenotypic assays remain the most accurate for most non-B subtypes and new subtype-specific rules should be developed for non-B subtypes, as research studies more and more draw conclusions from genotypically-inferred tropism, and to avoid unnecessarily precluding patients with limited treatment options from receiving maraviroc or other entry inhibitors.
Collapse
Affiliation(s)
- Martin Mulinge
- Laboratory of Retrovirology, Centre Recherche Public de la Santé, Luxembourg, Luxembourg
| | - Morgane Lemaire
- Laboratory of Retrovirology, Centre Recherche Public de la Santé, Luxembourg, Luxembourg
| | - Jean-Yves Servais
- Laboratory of Retrovirology, Centre Recherche Public de la Santé, Luxembourg, Luxembourg
| | - Arkadiusz Rybicki
- Laboratory of Retrovirology, Centre Recherche Public de la Santé, Luxembourg, Luxembourg
| | - Daniel Struck
- Laboratory of Retrovirology, Centre Recherche Public de la Santé, Luxembourg, Luxembourg
| | | | | | - Yolanda Lie
- Monogram Biosciences Inc., South San Francisco, California, United States of America
| | - Carole Seguin-Devaux
- Laboratory of Retrovirology, Centre Recherche Public de la Santé, Luxembourg, Luxembourg
| | - Jean-Claude Schmit
- Laboratory of Retrovirology, Centre Recherche Public de la Santé, Luxembourg, Luxembourg
- Service National des Maladies Infectieuses, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - Danielle Perez Bercoff
- Laboratory of Retrovirology, Centre Recherche Public de la Santé, Luxembourg, Luxembourg
| |
Collapse
|
31
|
McLaughlin S, Swenson LC, Hu S, Hughes P, Harrigan PR, Coombs RW, Frenkel LM. Development of a novel codon-specific polymerase chain reaction for the detection of CXCR4-utilizing HIV type 1 subtype B. AIDS Res Hum Retroviruses 2013; 29:814-25. [PMID: 23343425 PMCID: PMC3636599 DOI: 10.1089/aid.2012.0024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Insight concerning the switch in HIV-1 coreceptor use will lead to a better understanding of HIV-1 pathogenesis and host-virus dynamics. Predicting CXCR4 utilization by analyzing HIV-1 envelope consensus sequences is highly specific, but minority variants in the viral population are often missed resulting in low sensitivity. Commercial phenotypic assays are costly, and the development of sensitive in-house phenotypic assays to detect CXCR4-using HIV may not be feasible for some laboratories. A sensitive, inexpensive genotyping assay was developed to detect viral sequences associated with CXCR4-utilizing virus (X4). Codon-specific primer pairs were used to detect X4-associated codons at five positions in the HIV-1 envelope V3 loop (11, 13, 24, 25, and 32). Sixty plasma samples from HIV-1-infected individuals were analyzed by consensus sequencing and codon-specific PCR (CS-PCR). Forty-six of these were also phenotyped by Trofile or Enhanced Sensitivity Trofile (ESTA). CS-PCR detected X4 variants 17% more often than 11/24/25 consensus sequencing alone (n=60), 30% more often than Trofile (n=27), and in a limited data set, 16% more often than ESTA (n=19). CS-PCR combined with consensus sequencing had approximately 80% concordance with ESTA.
Collapse
|
32
|
Gupta S, Neogi U, Srinivasa H, Shet A. High concordance of genotypic coreceptor prediction in plasma-viral RNA and proviral DNA of HIV-1 subtype C: implications for use of whole blood DNA in resource-limited settings. J Antimicrob Chemother 2013; 68:2003-6. [PMID: 23633683 DOI: 10.1093/jac/dkt138] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVES Genotypic tropism testing (GTT) of HIV is increasingly used prior to the initiation of CCR5 antagonist therapy in HIV-infected individuals. Normally performed on plasma-derived virus, the test is challenging when performed in patients with suppressed viraemia. We aimed to evaluate the performance of cell-associated proviral DNA against plasma-derived viral RNA as the genetic material for GTT in an Indian clinical setting. METHODS From 52 HIV-1-infected individuals, the env V3 region was successfully amplified and sequenced from both proviral DNA and plasma RNA paired samples having a viral load >2500 copies/mL (n = 42) and from proviral DNA only in 10 antiretroviral therapy (ART)-experienced patients with a viral load <500 copies/mL. GTT was performed using the Geno2Pheno algorithm with the interpretative false positive rate (FPR) cut-off of 10%. RESULTS Among paired samples, 40 of 42 patients harboured subtype C strains. Plasma RNA tropism prediction revealed X4 tropism in 4 of 42 (9.5%). A high concordance of 97.6% in tropism prediction was noted in simultaneous RNA/DNA samples (38 R5 and 3 X4). Discordance was observed in one sample showing R5 tropism in proviral DNA and X4 tropism in plasma RNA. Comparison of Geno2Pheno FPRs in both the plasma and proviral compartments showed good correlation (overall, r = 0.87; ART-naive patients, r = 0.79; ART-failing patients, r = 0.97). GTT was successfully performed in all 10 whole blood DNA samples having a viral load <500 copies/mL, all showing R5 tropism. CONCLUSIONS High concordance in tropism prediction from proviral DNA and plasma-viral RNA suggests that prediction of viral tropism using proviral DNA is accurate and feasible in resource-limited clinical settings, particularly in patients with low or suppressed viraemia.
Collapse
Affiliation(s)
- Soham Gupta
- Department of Microbiology, St John's Medical College and Hospital, Bangalore, India.
| | | | | | | |
Collapse
|
33
|
Wagner GA, Pacold ME, Vigil E, Caballero G, Morris SR, Kosakovsky Pond SL, Little SJ, Richman DD, Gianella S, Smith DM. Using ultradeep pyrosequencing to study HIV-1 coreceptor usage in primary and dual infection. J Infect Dis 2013; 208:271-4. [PMID: 23599311 DOI: 10.1093/infdis/jit168] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
HIV-1 dual infection (DI) and CXCR4 (X4) coreceptor usage are associated with accelerated disease progression but frequency and dynamics of coreceptor usage during DI is unknown. Ultradeep sequencing was used to interrogate for DI and infer coreceptor usage in longitudinal blood samples of 102 subjects. At baseline, X4 usage was high (23 subjects harbored X4 variants) and was not associated with infection duration or DI. Coreceptor usage changed over time in 12 of 47 participants, and X4 usage emerged in 4 of 41 monoinfections vs 2 of 5 superinfections (P = .12), suggesting a weak statistical trend toward occurrence of superinfection and acquiring X4 usage.
Collapse
|
34
|
Results of external quality assessment for proviral DNA testing of HIV tropism in the Maraviroc Switch collaborative study. J Clin Microbiol 2013; 51:2063-71. [PMID: 23596247 DOI: 10.1128/jcm.00510-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Maraviroc Switch collaborative study (MARCH) is a study in aviremic patients on stable antiretroviral therapy and utilizes population-based sequencing of proviral DNA to determine HIV tropism and susceptibility to maraviroc. An external quality assessment (EQA) program was implemented to ensure competency in assessing the tropism of clinical samples conducted by MARCH laboratories (n = 14). The MARCH EQA has three prestudy phases assessing V3 loop sequencing and tropism determination using the bioinformatic algorithm geno2pheno, which generates a false-positive rate (FPR). DNA sequences with low FPRs are more likely to be from CXCR4-using (X4) viruses. Phase 1 of the EQA involved chromatogram interpretation. Phases 2, 2/3, and 3 involved patient and clonal samples. Clinical samples used in these phases were from treatment-experienced HIV-infected volunteers; 18/20 had viral loads of <50 copies/ml, and 10/15 were CXCR4-tropic on prior phenotyping. All samples were tested in triplicate, and any replicate with a geno2pheno FPR of <10% was designated X4. Performance was deemed adequate if ≤2 R5 and ≤1 X4 specimens were miscalled. For several clinical samples in the EQA, triplicate testing revealed marked DNA variability (FPR range, 0 to 96.7%). Therefore, a consensus-based approach was employed for each sample, i.e., a median FPR across laboratories was used to define sample tropism. Further sequencing analysis showed mixed viral populations in the clinical samples, explaining the differences in tropism predictions. All laboratories passed the EQA after achieving predefined competence thresholds in either of the phase 2 rounds. The use of clinical samples from patients resembling those who were likely to be screened in the MARCH, coupled with triplicate testing, revealed inherent DNA variability that might have been missed if single or duplicate testing and/or clonal samples alone were used. These data highlight the importance of intensive EQA of tropism laboratories before embarking on clinical studies. (This study has been registered at ClinicalTrials.gov under registration no. NCT01384682 [http://www.clinicaltrials.gov/ct2/show/study/NCT01384682?term=NCT01384682&rank=1].).
Collapse
|
35
|
Sensitive cell-based assay for determination of human immunodeficiency virus type 1 coreceptor tropism. J Clin Microbiol 2013; 51:1517-27. [PMID: 23486708 DOI: 10.1128/jcm.00092-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CCR5 antagonists are a powerful new class of antiretroviral drugs that require a companion assay to evaluate the presence of CXCR4-tropic (non-R5) viruses prior to use in human immunodeficiency virus (HIV)-infected individuals. In this study, we have developed, characterized, verified, and prevalidated a novel phenotypic test to determine HIV-1 coreceptor tropism (VERITROP) based on a sensitive cell-to-cell fusion assay. A proprietary vector was constructed containing a near-full-length HIV-1 genome with the yeast uracil biosynthesis (URA3) gene replacing the HIV-1 env coding sequence. Patient-derived HIV-1 PCR products were introduced by homologous recombination using an innovative yeast-based cloning strategy. The env-expressing vectors were then used in a cell-to-cell fusion assay to determine the presence of R5 and/or non-R5 HIV-1 variants within the viral population. Results were compared with (i) the original version of Trofile (Monogram Biosciences, San Francisco, CA), (ii) population sequencing, and (iii) 454 pyrosequencing, with the genotypic data analyzed using several bioinformatics tools, i.e., the 11/24/25 rule, Geno2Pheno (2% to 5.75%, 3.5%, or 10% false-positive rate [FPR]), and webPSSM. VERITROP consistently detected minority non-R5 variants from clinical specimens, with an analytical sensitivity of 0.3%, with viral loads of ≥1,000 copies/ml, and from B and non-B subtypes. In a pilot study, a 73.7% (56/76) concordance was observed with the original Trofile assay, with 19 of the 20 discordant results corresponding to non-R5 variants detected using VERITROP and not by the original Trofile assay. The degree of concordance of VERITROP and Trofile with population and deep sequencing results depended on the algorithm used to determine HIV-1 coreceptor tropism. Overall, VERITROP showed better concordance with deep sequencing/Geno2Pheno at a 0.3% detection threshold (67%), whereas Trofile matched better with population sequencing (79%). However, 454 sequencing using Geno2Pheno at a 10% FPR and 0.3% threshold and VERITROP more accurately predicted the success of a maraviroc-based regimen. In conclusion, VERITROP may promote the development of new HIV coreceptor antagonists and aid in the treatment and management of HIV-infected individuals prior to and/or during treatment with this class of drugs.
Collapse
|
36
|
Swenson LC, Dong WWY, Mo T, Demarest J, Chapman D, Ellery S, Heera J, Valdez H, Poon AFY, Harrigan PR. Use of cellular HIV DNA to predict virologic response to maraviroc: performance of population-based and deep sequencing. Clin Infect Dis 2013; 56:1659-66. [PMID: 23429552 DOI: 10.1093/cid/cit105] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND A tropism test is required before administration of the antiretroviral drug maraviroc. However, plasma RNA testing is not possible in patients with undetectable plasma viral loads. Here we assess genotypic testing of cellular human immunodeficiency virus (HIV) DNA from peripheral blood mononuclear cells (PBMCs) to predict virologic responses in treatment-experienced patients beginning maraviroc-containing regimens. METHODS PBMC samples from 181 maraviroc recipients at study entry in MOTIVATE or A4001029 (51% R5 by original Trofile). The V3 loop was amplified in triplicate from cellular HIV DNA, and matching plasma RNA (n = 156). Sequencing was performed using standard population-based methods and next-generation deep sequencing, with tropism assessment as previously defined. RESULTS Genotypic DNA-based tropism testing from the cellular compartment had 78%-81% sensitivity relative to RNA-based Trofile at the same time point. Cell-based genotypic tropism methods and plasma-based phenotypic and genotypic methods were predictive of virologic response. However, when classifications were discordant, the outcomes favored the plasma predictions over the DNA ones. CONCLUSIONS Genotypic determination of HIV tropism can be performed using cell-derived viral DNA, and is a predictor of virologic success on maraviroc in therapy-experienced patients. However, the PBMC compartment appears to be a suboptimal predictor compared to plasma.
Collapse
|
37
|
Gall A, Kaye S, Hué S, Bonsall D, Rance R, Baillie GJ, Fidler SJ, Weber JN, McClure MO, Kellam P. Restriction of V3 region sequence divergence in the HIV-1 envelope gene during antiretroviral treatment in a cohort of recent seroconverters. Retrovirology 2013; 10:8. [PMID: 23331949 PMCID: PMC3605130 DOI: 10.1186/1742-4690-10-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 04/27/2012] [Indexed: 12/21/2022] Open
Abstract
Background Dynamic changes in Human Immunodeficiency Virus 1 (HIV-1) sequence diversity and divergence are associated with immune control during primary infection and progression to AIDS. Consensus sequencing or single genome amplification sequencing of the HIV-1 envelope (env) gene, in particular the variable (V) regions, is used as a marker for HIV-1 genome diversity, but population diversity is only minimally, or semi-quantitatively sampled using these methods. Results Here we use second generation deep sequencing to determine inter-and intra-patient sequence heterogeneity and to quantify minor variants in a cohort of individuals either receiving or not receiving antiretroviral treatment following seroconversion; the SPARTAC trial. We show, through a cross-sectional study of sequence diversity of the env V3 in 30 antiretroviral-naive patients during primary infection that considerable population structure diversity exists, with some individuals exhibiting highly constrained plasma virus diversity. Diversity was independent of clinical markers (viral load, time from seroconversion, CD4 cell count) of infection. Serial sampling over 60 weeks of non-treated individuals that define three initially different diversity profiles showed that complex patterns of continuing HIV-1 sequence diversification and divergence could be readily detected. Evidence for minor sequence turnover, emergence of new variants and re-emergence of archived variants could be inferred from this analysis. Analysis of viral divergence over the same time period in patients who received short (12 weeks, ART12) or long course antiretroviral therapy (48 weeks, ART48) and a non-treated control group revealed that ART48 successfully suppressed viral divergence while ART12 did not have a significant effect. Conclusions Deep sequencing is a sensitive and reliable method for investigating the diversity of the env V3 as an important component of HIV-1 genome diversity. Detailed insights into the complex early intra-patient dynamics of env V3 diversity and divergence were explored in antiretroviral-naïve recent seroconverters. Long course antiretroviral therapy, initiated soon after seroconversion and administered for 48 weeks, restricts HIV-1 divergence significantly. The effect of ART12 and ART48 on clinical markers of HIV infection and progression is currently investigated in the SPARTAC trial.
Collapse
Affiliation(s)
- Astrid Gall
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Deep sequencing of the V3 region of the HIV envelope gene can detect minority non-R5 variants in patients with high sensitivity and specificity. As next-generation sequencing approaches have matured, the clinical utility of deep sequencing for HIV tropism has entered the clinic. Accurate and sensitive tropism testing is essential for successful treatment with the CCR5 antagonist class of antiretrovirals. RECENT FINDINGS This review will focus on five aspects of next-generation sequencing for assessing HIV tropism: some background on the necessity of deep sequencing versus other tropism methods; the methodological process of 454 sequencing and analysis; other next-generation sequencing technologies; the diagnostic performance of deep sequencing relative to other tropism assays; and the use of deep sequencing in clinical practice. SUMMARY This method has emerged quickly as both a research and clinical tool because of its high concordance with commonly used phenotypic tropism assays and its ability to predict virological response to CCR5 antagonist-containing regimens.
Collapse
|
39
|
Factors influencing the sensitivity and specificity of conventional sequencing in human immunodeficiency virus type 1 tropism testing. J Clin Microbiol 2012; 51:444-51. [PMID: 23175258 DOI: 10.1128/jcm.00739-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) V3 loop sequence can be used to infer viral coreceptor use. The effect of input copy number on population-based sequencing of the V3 loop of HIV-1 was examined through replicate deep and population-based sequencing of samples with known tropism, a heterogeneous clinical sample (624 population-based sequences and 47 deep-sequencing replicates), and a large cohort of clinical samples from phase III clinical trials of maraviroc including the MOTIVATE/A4001029 studies (n = 1,521). Proviral DNA from two independent samples from each of 101 patients from the MOTIVATE/A4001029 studies was also analyzed. Cumulative technical error occurred at a rate of 3 × 10(-4) mismatches/bp, without observed effect on inferred tropism. Increasing PCR replication increased minority species detection with an ~10% minority population detected in 18% of cases using a single replicate at a viral load of 1,072 copies/ml and in 44% of cases using three replicates. The nucleotide prevalence detected by population-based and deep sequencing were highly correlated (Spearman's ρ, 0.73), and the accuracy increased with increasing input copy number (P < 0.001). Triplicate sequencing was able to predict tropism changes in the MOTIVATE/A4001029 studies for both low (P = 0.05) and high (P = 0.02) viral loads. Sequences derived from independently extracted and processed samples of proviral DNA for the same patient were equivalent to replicates from the same extraction (P = 0.45) and had correlated position-specific scoring matrix scores (Spearman's ρ, 0.75; P << 0.001); however, concordance in tropism inference was only 83%. Input copy number and PCR replication are important factors in minority species detection in samples with significant heterogeneity.
Collapse
|
40
|
Portsmouth S, Valluri SR, Däumer M, Thiele B, Valdez H, Lewis M, Craig C, Thielen A, James I, Demarest J, Heera J. Correlation between genotypic (V3 population sequencing) and phenotypic (Trofile ES) methods of characterizing co-receptor usage of HIV-1 from 200 treatment-naïve HIV patients screened for Study A4001078. Antiviral Res 2012; 97:60-5. [PMID: 23165088 DOI: 10.1016/j.antiviral.2012.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 10/11/2012] [Accepted: 11/07/2012] [Indexed: 11/28/2022]
Abstract
Assessment of HIV-1 co-receptor usage is essential to identify patients who are likely to respond to maraviroc (MVC)-containing regimens. Co-receptor usage of plasma virus from all treatment-naïve patients screened for a MVC clinical trial was assessed using phenotypic and genotypic methodologies to evaluate concordance between testing methods and to assess the quantity of CXCR4-using (non-R5) virus in samples giving discordant results. Co-receptor usage was prospectively measured using the enhanced sensitivity Trofile assay (Trofile ES) to screen patients for enrollment in Study A4001078. Population and deep sequencing methodologies were utilized retrospectively to analyze all screening samples, with co-receptor usage determined using the geno2pheno algorithm. Concordance between methods was explored using descriptive statistics. The quantity of non-R5 virus in all samples was measured using deep sequencing. Trofile ES and matched genotype results were obtained for 199screening samples. Concordance of Trofile ES with population genotyping (5.75% false-positive rate [FPR]) and deep sequencing (3.5% FPR; 2% non-R5 threshold) was 91.7% and 89.6%, respectively. Population genotype data were available for all samples with non-reportable Trofile ES results; the distribution of co-receptor usage in this set was consistent with that in the overall population: 75% (12/16) R5 and 25% (4/16) non-R5. The majority of samples contained non-R5 plasma HIV-1 RNA estimated at either <1 log(10) (62.0%) or ⩾4 log(10) (30.5%) copies/mL; the absolute amount of detectable non-R5 virus remained stable between screening and baseline visits. Samples originally classified as non-R5 by Trofile ES but R5 by population sequencing had a relatively low absolute amount of non-R5 virus (mean 2.1%, median 0.1%). The determination of co-receptor usage using either Trofile ES or genotyping methodologies showed similar frequencies of R5 and non-R5 virus in this treatment-naïve study population. For both concordant and discordant samples, population sequencing appropriately identified R5 samples with low levels of non-R5-using virus.
Collapse
|
41
|
Use of four next-generation sequencing platforms to determine HIV-1 coreceptor tropism. PLoS One 2012; 7:e49602. [PMID: 23166726 PMCID: PMC3498215 DOI: 10.1371/journal.pone.0049602] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 09/27/2012] [Indexed: 12/17/2022] Open
Abstract
HIV-1 coreceptor tropism assays are required to rule out the presence of CXCR4-tropic (non-R5) viruses prior treatment with CCR5 antagonists. Phenotypic (e.g., Trofile™, Monogram Biosciences) and genotypic (e.g., population sequencing linked to bioinformatic algorithms) assays are the most widely used. Although several next-generation sequencing (NGS) platforms are available, to date all published deep sequencing HIV-1 tropism studies have used the 454™ Life Sciences/Roche platform. In this study, HIV-1 co-receptor usage was predicted for twelve patients scheduled to start a maraviroc-based antiretroviral regimen. The V3 region of the HIV-1 env gene was sequenced using four NGS platforms: 454™, PacBio® RS (Pacific Biosciences), Illumina®, and Ion Torrent™ (Life Technologies). Cross-platform variation was evaluated, including number of reads, read length and error rates. HIV-1 tropism was inferred using Geno2Pheno, Web PSSM, and the 11/24/25 rule and compared with Trofile™ and virologic response to antiretroviral therapy. Error rates related to insertions/deletions (indels) and nucleotide substitutions introduced by the four NGS platforms were low compared to the actual HIV-1 sequence variation. Each platform detected all major virus variants within the HIV-1 population with similar frequencies. Identification of non-R5 viruses was comparable among the four platforms, with minor differences attributable to the algorithms used to infer HIV-1 tropism. All NGS platforms showed similar concordance with virologic response to the maraviroc-based regimen (75% to 80% range depending on the algorithm used), compared to Trofile (80%) and population sequencing (70%). In conclusion, all four NGS platforms were able to detect minority non-R5 variants at comparable levels suggesting that any NGS-based method can be used to predict HIV-1 coreceptor usage.
Collapse
|
42
|
Poon AFY, Swenson LC, Bunnik EM, Edo-Matas D, Schuitemaker H, van 't Wout AB, Harrigan PR. Reconstructing the dynamics of HIV evolution within hosts from serial deep sequence data. PLoS Comput Biol 2012; 8:e1002753. [PMID: 23133358 PMCID: PMC3486858 DOI: 10.1371/journal.pcbi.1002753] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 08/08/2012] [Indexed: 11/22/2022] Open
Abstract
At the early stage of infection, human immunodeficiency virus (HIV)-1 predominantly uses the CCR5 coreceptor for host cell entry. The subsequent emergence of HIV variants that use the CXCR4 coreceptor in roughly half of all infections is associated with an accelerated decline of CD4+ T-cells and rate of progression to AIDS. The presence of a ‘fitness valley’ separating CCR5- and CXCR4-using genotypes is postulated to be a biological determinant of whether the HIV coreceptor switch occurs. Using phylogenetic methods to reconstruct the evolutionary dynamics of HIV within hosts enables us to discriminate between competing models of this process. We have developed a phylogenetic pipeline for the molecular clock analysis, ancestral reconstruction, and visualization of deep sequence data. These data were generated by next-generation sequencing of HIV RNA extracted from longitudinal serum samples (median 7 time points) from 8 untreated subjects with chronic HIV infections (Amsterdam Cohort Studies on HIV-1 infection and AIDS). We used the known dates of sampling to directly estimate rates of evolution and to map ancestral mutations to a reconstructed timeline in units of days. HIV coreceptor usage was predicted from reconstructed ancestral sequences using the geno2pheno algorithm. We determined that the first mutations contributing to CXCR4 use emerged about 16 (per subject range 4 to 30) months before the earliest predicted CXCR4-using ancestor, which preceded the first positive cell-based assay of CXCR4 usage by 10 (range 5 to 25) months. CXCR4 usage arose in multiple lineages within 5 of 8 subjects, and ancestral lineages following alternate mutational pathways before going extinct were common. We observed highly patient-specific distributions and time-scales of mutation accumulation, implying that the role of a fitness valley is contingent on the genotype of the transmitted variant. At the start of infection, human immunodeficiency virus (HIV) generally requires a specific protein receptor (CCR5) on the cell surface to bind and enter the cell. In roughly half of all HIV infections, the virus population eventually switches to using a different receptor (CXCR4). This ‘HIV coreceptor switch’ is associated with an accelerated rate of progression to AIDS. Although it is not known why this switch occurs in some infections and not others, it is thought to be shaped by constraints on how HIV can evolve from one mode to another. In this study, we test this hypothesis by reconstructing the evolutionary histories of HIV within 8 patients known to have undergone an HIV coreceptor switch. Each history is recreated from samples of HIV genetic sequences that were derived from repeated blood samples by next-generation sequencing, an emerging technology that is rapidly becoming an essential tool in the study of rapidly-evolving populations such as viruses or cancerous cells. Because we have samples from different points in time, we can use models of evolution to extrapolate back in time to the ancestors of each infection. Our analysis reveals patient-specific dynamics in HIV evolution that sheds new light on the determinants of the coreceptor switch.
Collapse
Affiliation(s)
- Art F Y Poon
- BC Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada.
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
The efficacy of an antiretroviral (ARV) treatment regimen depends on the activity of the regimen's individual ARV drugs and the number of HIV-1 mutations required for the development of resistance to each ARV - the genetic barrier to resistance. ARV resistance impairs the response to therapy in patients with transmitted resistance, unsuccessful initial ARV therapy and multiple virological failures. Genotypic resistance testing is used to identify transmitted drug resistance, provide insight into the reasons for virological failure in treated patients, and help guide second-line and salvage therapies. In patients with transmitted drug resistance, the virological response to a regimen selected on the basis of standard genotypic testing approaches the responses observed in patients with wild-type viruses. However, because such patients are at a higher risk of harbouring minority drug-resistant variants, initial ARV therapy in this population should contain a boosted protease inhibitor (PI) - the drug class with the highest genetic barrier to resistance. In patients receiving an initial ARV regimen with a high genetic barrier to resistance, the most common reasons for virological failure are nonadherence and, potentially, pharmacokinetic factors or minority transmitted drug-resistant variants. Among patients in whom first-line ARVs have failed, the patterns of drug-resistance mutations and cross-resistance are often predictable. However, the extent of drug resistance correlates with the duration of uncontrolled virological replication. Second-line therapy should include the continued use of a dual nucleoside/nucleotide reverse transcriptase inhibitor (NRTI)-containing backbone, together with a change in the non-NRTI component, most often to an ARV belonging to a new drug class. The number of available fully active ARVs is often diminished with each successive treatment failure. Therefore, a salvage regimen is likely to be more complicated in that it may require multiple ARVs with partial residual activity and compromised genetic barriers of resistance to attain complete virological suppression. A thorough examination of the patient's ARV history and prior resistance tests should be performed because genotypic and/or phenotypic susceptibility testing is often not sufficient to identify drug-resistant variants that emerged during past therapies and may still pose a threat to a new regimen. Phenotypic testing is also often helpful in this subset of patients. ARVs used for salvage therapy can be placed into the following hierarchy: (i) ARVs belonging to a previously unused drug class; (ii) ARVs belonging to a previously used drug class that maintain significant residual antiviral activity; (iii) NRTI combinations, as these often appear to retain in vivo virological activity, even in the presence of reduced in vitro NRTI susceptibility; and rarely (iv) ARVs associated with previous virological failure and drug resistance that appear to have possibly regained their activity as a result of viral reversion to wild type. Understanding the basic principles of HIV drug resistance is helpful in guiding individual clinical decisions and the development of ARV treatment guidelines.
Collapse
Affiliation(s)
- Michele W Tang
- Stanford University, Division of Infectious Diseases, Stanford, CA 94305-5107, USA.
| | | |
Collapse
|
44
|
A genotypic test for HIV-1 tropism combining Sanger sequencing with ultradeep sequencing predicts virologic response in treatment-experienced patients. PLoS One 2012; 7:e46334. [PMID: 23029482 PMCID: PMC3459909 DOI: 10.1371/journal.pone.0046334] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 08/31/2012] [Indexed: 12/27/2022] Open
Abstract
A tropism test is required prior to initiation of CCR5 antagonist therapy in HIV-1 infected individuals, as these agents are not effective in patients harboring CXCR4 (X4) coreceptor-using viral variants. We developed a clinical laboratory-based genotypic tropism test for detection of CCR5-using (R5) or X4 variants that utilizes triplicate population sequencing (TPS) followed by ultradeep sequencing (UDS) for samples classified as R5. Tropism was inferred using the bioinformatic algorithms geno2pheno[coreceptor] and PSSMx4r5. Virologic response as a function of tropism readout was retrospectively assessed using blinded samples from treatment-experienced subjects who received maraviroc (N = 327) in the MOTIVATE and A4001029 clinical trials. MOTIVATE patients were classified as R5 and A4001029 patients were classified as non-R5 by the original Trofile test. Virologic response was compared between the R5 and non-R5 groups determined by TPS, UDS alone, the reflex strategy and the Trofile Enhanced Sensitivity (TF-ES) test. UDS had greater sensitivity than TPS to detect minority non-R5 variants. The median log10 viral load change at week 8 was −2.4 for R5 subjects, regardless of the method used for classification; for subjects with non-R5 virus, median changes were −1.2 for TF-ES or the Reflex Test and −1.0 for UDS. The differences between R5 and non-R5 groups were highly significant in all 3 cases (p<0.0001). At week 8, the positive predictive value was 66% for TF-ES and 65% for both the Reflex test and UDS. Negative predictive values were 59% for TF-ES, 58% for the Reflex Test and 61% for UDS. In conclusion, genotypic tropism testing using UDS alone or a reflex strategy separated maraviroc responders and non-responders as well as a sensitive phenotypic test, and both assays showed improved performance compared to TPS alone. Genotypic tropism tests may provide an alternative to phenotypic testing with similar discriminating ability.
Collapse
|
45
|
Prolonged and substantial discordance in prevalence of raltegravir-resistant HIV-1 in plasma versus PBMC samples revealed by 454 "deep" sequencing. PLoS One 2012; 7:e46181. [PMID: 23049972 PMCID: PMC3458959 DOI: 10.1371/journal.pone.0046181] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 08/29/2012] [Indexed: 11/19/2022] Open
Abstract
The evolution of drug resistance mutations in plasma samples is relatively well-characterized. However, the viral population and diversity in other body compartments such as peripheral blood mononuclear cells (PBMC) remains poorly understood. Previous studies have mostly focused on protease and reverse transcriptase drug resistance mutations (DRMs). In this study, we used 454 "deep" sequencing technology to observe and quantify longitudinally the prevalence of resistance mutations associated with the integrase inhibitor, raltegravir, in plasma versus PBMC samples from a San Francisco-based cohort. Four heavily treatment-experienced subjects were monitored in this study over a median of 1.2 years since the initiation of raltegravir-containing regimens. We observed a consistent discordance in the prevalence of DRMs, but not resistance pathway(s), in the plasma versus PBMC viral populations. In the final paired samples that were tested while the subjects were on a raltegravir-containing regimen, DRM prevalence reached 100% in plasma but remained 1% in PBMC on day 177 post-therapy in Subject 3180 (Q148H/G140S), 100% in plasma and 36% in PBMC on day 224 in Subject 3242 (N155H), 78% in plasma and 11-12% in PBMC on day 338 in Subject 3501 (Q148H/G140S), and 100% in plasma and 0% in PBMC on day 197 in Subject 3508 (Y143R). Furthermore, absolute sequence homology comparison between the two compartments revealed that 21% - 99% of PBMC sequences had no match in plasma, whereas 14% - 100% of plasma sequences had no match in PBMC. Overall, our observations suggested that plasma and PBMC hosted drastically different HIV-1 populations even after a prolonged exposure to raltegravir selection pressure.
Collapse
|
46
|
Beerenwinkel N, Günthard HF, Roth V, Metzner KJ. Challenges and opportunities in estimating viral genetic diversity from next-generation sequencing data. Front Microbiol 2012; 3:329. [PMID: 22973268 PMCID: PMC3438994 DOI: 10.3389/fmicb.2012.00329] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 08/24/2012] [Indexed: 12/17/2022] Open
Abstract
Many viruses, including the clinically relevant RNA viruses HIV (human immunodeficiency virus) and HCV (hepatitis C virus), exist in large populations and display high genetic heterogeneity within and between infected hosts. Assessing intra-patient viral genetic diversity is essential for understanding the evolutionary dynamics of viruses, for designing effective vaccines, and for the success of antiviral therapy. Next-generation sequencing (NGS) technologies allow the rapid and cost-effective acquisition of thousands to millions of short DNA sequences from a single sample. However, this approach entails several challenges in experimental design and computational data analysis. Here, we review the entire process of inferring viral diversity from sample collection to computing measures of genetic diversity. We discuss sample preparation, including reverse transcription and amplification, and the effect of experimental conditions on diversity estimates due to in vitro base substitutions, insertions, deletions, and recombination. The use of different NGS platforms and their sequencing error profiles are compared in the context of various applications of diversity estimation, ranging from the detection of single nucleotide variants (SNVs) to the reconstruction of whole-genome haplotypes. We describe the statistical and computational challenges arising from these technical artifacts, and we review existing approaches, including available software, for their solution. Finally, we discuss open problems, and highlight successful biomedical applications and potential future clinical use of NGS to estimate viral diversity.
Collapse
Affiliation(s)
- Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH ZurichBasel, Switzerland
- Swiss Institute of BioinformaticsBasel, Switzerland
| | - Huldrych F. Günthard
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of ZurichZurich, Switzerland
| | - Volker Roth
- Department of Mathematics and Computer Science, University of BaselBasel, Switzerland
| | - Karin J. Metzner
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of ZurichZurich, Switzerland
| |
Collapse
|
47
|
|
48
|
Trabaud MA, Icard V, Scholtes C, Perpoint T, Koffi J, Cotte L, Makhloufi D, Tardy JC, André P. Discordance in HIV-1 co-receptor use prediction by different genotypic algorithms and phenotype assay: intermediate profile in relation to concordant predictions. J Med Virol 2012; 84:402-13. [PMID: 22246825 DOI: 10.1002/jmv.23209] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Concordant and discordant genotypic predictions of HIV-1 co-receptor tropism were analyzed. V3 region was sequenced from plasma samples of patients screened for R5 tropism by the Trofile® assay, before CCR5 antagonist prescription. Ten tools including geno2pheno, PSSM, an "11/25" and "net charge" rule, and other published algorithms were used. Patients were grouped according to concordance or discordance between tools and Trofile® result. Trofile® tropism reports from 50 patient samples were R5 in 38 and Dual/Mixed (DM) in 12. Prediction with the genotypic tools were concordant for 23 R5 samples, and discordant for the 15 other ones. From Trofile® DM strains were concordant in 6 and discordant in 6. V3 sequences were not clearly distinct between R5 and DM strains, except a greater diversity in the later. Discordances were found with any tool or combination of them, so that no one can be proposed as better than the others. Predictive values of each algorithm were similar and rather good (efficacy ranged from 74% to 84%), but the rate of non-confirmed prediction is greater when compelling the results of all tools with each individual sample. The mean of quantitative values obtained with one tool when another tool give the opposite prediction were different from those obtained when all tools agree with that prediction. The two discordant groups were often not distinguishable from each other. These results suggest that viruses giving discordant prediction with bioinformatic tools could be functionally distinct and/or in a different evolutionary state compared to those with concordant prediction.
Collapse
Affiliation(s)
- Mary-Anne Trabaud
- Laboratory of Virology, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Pavlos R, Phillips EJ. Individualization of antiretroviral therapy. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2011; 5:1-17. [PMID: 23226059 PMCID: PMC3513193 DOI: 10.2147/pgpm.s15303] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Indexed: 12/22/2022]
Abstract
Antiretroviral therapy (ART) has evolved considerably over the last three decades. From the early days of monotherapy with high toxicities and pill burdens, through to larger pill burdens and more potent combination therapies, and finally, from 2005 and beyond where we now have the choice of low pill burdens and once-daily therapies. More convenient and less toxic regimens are also becoming available, even in resource-poor settings. An understanding of the individual variation in response to ART, both efficacy and toxicity, has evolved over this time. The strong association of the major histocompatibility class I allele HLA-B*5701 and abacavir hypersensitivity, and its translation and use in routine HIV clinical practice as a predictive marker with 100% negative predictive value, has been a success story and a notable example of the challenges and triumphs in bringing pharmacogenetics to the clinic. In real clinical practice, however, it is going to be the exception rather than the rule that individual biomarkers will definitively guide patient therapy. The need for individualized approaches to ART has been further increased by the importance of non-AIDS comorbidities in HIV clinical practice. In the future, the ideal utilization of the individualized approach to ART will likely consist of a combined approach using a combination of knowledge of drug, virus, and host (pharmacogenetic and pharmacoecologic [factors in the individual’s environment that may be dynamic over time]) information to guide the truly personalized prescription. This review will focus on our knowledge of the pharmacogenetics of the efficacy and toxicity of currently available antiretroviral agents and the current and potential utility of such information and approaches in present and future HIV clinical care.
Collapse
Affiliation(s)
- Rebecca Pavlos
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | | |
Collapse
|
50
|
Swenson LC, Mo T, Dong WWY, Zhong X, Woods CK, Thielen A, Jensen MA, Knapp DJHF, Chapman D, Portsmouth S, Lewis M, James I, Heera J, Valdez H, Harrigan PR. Deep V3 sequencing for HIV type 1 tropism in treatment-naive patients: a reanalysis of the MERIT trial of maraviroc. Clin Infect Dis 2011; 53:732-42. [PMID: 21890778 DOI: 10.1093/cid/cir493] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Deep sequencing is a highly sensitive technique that can detect and quantify the proportion of non-R5 human immunodeficiency virus (HIV) variants, including small minorities, that may emerge and cause virologic failure in patients who receive maraviroc-containing regimens. We retrospectively tested the ability of deep sequencing to predict response to a maraviroc-containing regimen in the Maraviroc versus Efavirenz in Treatment-Naive Patients (MERIT) trial. Results were compared with those obtained using the Enhanced Sensitivity Trofile Assay (ESTA), which is widely used in clinical practice. METHODS Screening plasma samples from treatment-naive patients who received maraviroc and efavirenz in the MERIT trial were assessed. Samples were extracted, and the V3 region of HIV type 1 glycoprotein 120 was amplified in triplicate and combined in equal quantities before sequencing on a Roche/454 Genome Sequencer-FLX (n = 859). Tropism was inferred from third variable (V3) sequences, with samples classified as non-R5 if ≥2% of the viral population scored ≤3.5 using geno2pheno. RESULTS Deep sequencing distinguished between responders and nonresponders to maraviroc. Among patients identified as having R5-HIV by deep sequencing, 67% of maraviroc recipients and 69% of efavirenz recipients had a plasma viral load <50 copies/mL at week 48, similar to the ESTA results: 68% and 68%, respectively. CONCLUSIONS Reanalysis of the MERIT trial using deep V3 loop sequencing indicates that, had patients originally been screened using this method, the maraviroc arm would have likely been found to be noninferior to the efavirenz arm.
Collapse
Affiliation(s)
- Luke C Swenson
- BC Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|