1
|
Naranjo‐Covo MM, Rincón‐Tabares DS, Flórez‐Álvarez L, Hernandez JC, Zapata‐Builes W. Natural Resistance to HIV Infection: Role of Immune Activation. Immun Inflamm Dis 2025; 13:e70138. [PMID: 39998960 PMCID: PMC11854356 DOI: 10.1002/iid3.70138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/09/2024] [Accepted: 01/16/2025] [Indexed: 02/27/2025] Open
Abstract
INTRODUCTION Although repeated exposure to HIV-1 can result in infection, some individuals remain seronegative without clinical or serologic evidence of infection; these individuals are known as HIV-1-exposed seronegative individuals. This population has been extensively studied to understand the mechanisms associated with natural resistance to HIV infection. Two main hypotheses have been proposed to explain this resistance: some researchers associated resistance with a low activation phenotype characterized by a decrease in the activation and proliferation of immune system cells linked with infection control and decreased production of cytokines and pro-inflammatory molecules, whereas others suggest that resistance is related to immune system activation and the expression of high levels of chemokines, pro-inflammatory cytokines and antiviral molecules. AIMS Our study aims to review and analyze the most relevant evidence supporting the role of the activation level of the immune system during natural resistance to HIV-1 infection. METHODS A search was conducted via the PubMed, SciELO and ScienceDirect databases. The literature search was performed in a nonsystematic manner. Articles published in the last five decades addressing immune activation mechanisms in natural resistance to HIV were reviewed. RESULTS A low-activation phenotype, characterized by a high frequency of Treg cells; reduced expression of CD25, CD38, and HLA-DR; and lower production of pro-inflammatory cytokines in peripheral and mucosal tissues, plays a key role in reducing the number of activated cells susceptible to infection, but it minimizes chronic inflammation, facilitating viral entry and spread. In contrast, the activation phenotype is associated with high expression of markers such as CD25, CD38, and HLA-DR, along with elevated high levels of interferon-stimulated genes and pro-inflammatory cytokines. This profile could promote infection control while increasing the number of virus-susceptible cells. CONCLUSION The complexity of the immune response during HIV exposure, reflected in the conflicting evidence concerning whether low or high immune activation offers protection against infection, suggests that there may be multiple pathways to HIV-1 resistance, influenced by factors such as the type of viral exposure, the immune environment, and individual genetics. Further research is needed to determine which immune states are protective and how these responses can be modulated to prevent infection.
Collapse
Affiliation(s)
- María M. Naranjo‐Covo
- Grupo Inmunovirología, Facultad de MedicinaUniversidad de AntioquiaMedellínColombia
- Grupo Infettare, Facultad de MedicinaUniversidad Cooperativa de ColombiaMedellínColombia
| | | | - Lizdany Flórez‐Álvarez
- Departamento de Parasitología, Instituto de Ciencias BiomédicasUniversidad de Sao PauloSao PauloBrazil
| | - Juan C. Hernandez
- Grupo Inmunovirología, Facultad de MedicinaUniversidad de AntioquiaMedellínColombia
- Grupo Infettare, Facultad de MedicinaUniversidad Cooperativa de ColombiaMedellínColombia
| | - Wildeman Zapata‐Builes
- Grupo Inmunovirología, Facultad de MedicinaUniversidad de AntioquiaMedellínColombia
- Grupo Infettare, Facultad de MedicinaUniversidad Cooperativa de ColombiaMedellínColombia
| |
Collapse
|
2
|
Kießling M, Cole JJ, Kübel S, Klein P, Korn K, Henry AR, Laboune F, Fourati S, Harrer E, Harrer T, Douek DC, Überla K, Nganou-Makamdop K. Chronic inflammation degrades CD4 T cell immunity to prior vaccines in treated HIV infection. Nat Commun 2024; 15:10200. [PMID: 39587133 PMCID: PMC11589758 DOI: 10.1038/s41467-024-54605-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024] Open
Abstract
To date, our understanding of how HIV infection impacts vaccine-induced cellular immunity is limited. Here, we investigate inflammation, immune activation and antigen-specific T cell responses in HIV-uninfected and antiretroviral-treated HIV-infected people. Our findings highlight lower recall responses of antigen-specific CD4 T cells that correlate with high plasma cytokines levels, T cell hyperactivation and an altered composition of the T subsets enriched with more differentiated cells in the HIV-infected group. Transcriptomic analysis reveals that antigen-specific CD4 T cells of the HIV-infected group have a reduced expression of gene sets previously reported to correlate with vaccine-induced pathogen-specific protective immunity and further identifies a consistent impairment of the IFNα and IFNγ response pathways as mechanism for the functional loss of recall CD4 T cell responses in antiretroviral-treated people. Lastly, in vitro treatment with drugs that reduce inflammation results in higher memory CD4 T cell IFNγ responses. Together, our findings suggest that vaccine-induced cellular immunity may benefit from strategies to counteract inflammation in HIV infection.
Collapse
Affiliation(s)
- Melissa Kießling
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - John J Cole
- School of Infection & Immunity, University of Glasgow, Glasgow, UK
| | - Sabrina Kübel
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Paulina Klein
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Klaus Korn
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Amy R Henry
- Human Immunology Section, Vaccine Research Center, National Institutes of Health, Bethesda, USA
| | - Farida Laboune
- Human Immunology Section, Vaccine Research Center, National Institutes of Health, Bethesda, USA
| | - Slim Fourati
- Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, USA
| | - Ellen Harrer
- Infectious Disease and Immunodeficiency Section, Department of Internal Medicine 3, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Harrer
- Infectious Disease and Immunodeficiency Section, Department of Internal Medicine 3, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institutes of Health, Bethesda, USA
| | - Klaus Überla
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Krystelle Nganou-Makamdop
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
- Department of Internal Medicine 3, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
3
|
Shi Y, Su J, Chen R, Wei W, Yuan Z, Chen X, Wang X, Liang H, Ye L, Jiang J. The Role of Innate Immunity in Natural Elite Controllers of HIV-1 Infection. Front Immunol 2022; 13:780922. [PMID: 35211115 PMCID: PMC8861487 DOI: 10.3389/fimmu.2022.780922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/19/2022] [Indexed: 12/26/2022] Open
Abstract
The natural process of human immunodeficiency virus type 1(HIV-1) infection is characterized by high viral load, immune cell exhaustion, and immunodeficiency, which eventually leads to the stage of acquired immunodeficiency syndrome (AIDS) and opportunistic infections. Rapidly progressing HIV-1 individuals often die of AIDS several years after infection without treatment. The promotion of ART greatly prolongs the survival time of HIV-infected persons. However, some patients have incomplete immune function reconstruction after ART due to latent storage of HIV-infected cells. Therefore, how to achieve a functional cure has always been the focus and hot spot of global AIDS research. Fortunately, the emergence of ECs/LTNPs who can control virus replication naturally has ignited new hope for realizing a functional cure for AIDS. Recently, a special category of infected individuals has attracted attention that can delay the progression of the disease more rigorously than the natural progression of HIV-1 infection described above. These patients are characterized by years of HIV-1 infection, long-term asymptomatic status, and normal CD4+T cell count without ART, classified as HIV-infected long-term nonprogressors (LTNPs) and elite controllers (ECs). Numerous studies have shown that the host and virus jointly determine the progression of HIV-1 infection, in which the level of innate immunity activation plays an important role. As the first line of defense against pathogen invasion, innate immunity is also a bridge to induce adaptive immunity. Compared with natural progressors, innate immunity plays an antiviral role in HIV-1 infection by inducing or activating many innate immune-related factors in the natural ECs. Learning the regulation of ECs immunity, especially the innate immunity in different characteristics, and thus studying the mechanism of the control of disease progression naturally, will contribute to the realization of the functional cure of AIDS. Therefore, this review will explore the relationship between innate immunity and disease progression in ECs of HIV-1 infection from the aspects of innate immune cells, signaling pathways, cytokines, which is helpful to provide new targets and theoretical references for the functional cure, prevention and control of AIDS, and development of a vaccine.
Collapse
Affiliation(s)
- Yuting Shi
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Jinming Su
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Rongfeng Chen
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Wudi Wei
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Zongxiang Yuan
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Xiu Chen
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Xinwei Wang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, China
| | - Junjun Jiang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, China.,Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, China
| |
Collapse
|
4
|
Picton ACP, Paximadis M, Koor GW, Bharuthram A, Shalekoff S, Lassauniere R, Ive P, Tiemessen CT. Reduced CCR5 Expression and Immune Quiescence in Black South African HIV-1 Controllers. Front Immunol 2021; 12:781263. [PMID: 34987508 PMCID: PMC8720782 DOI: 10.3389/fimmu.2021.781263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Unique Individuals who exhibit either suppressive HIV-1 control, or the ability to maintain low viral load set-points and preserve their CD4+ T cell counts for extended time periods in the absence of antiretroviral therapy, are broadly termed HIV-1 controllers. We assessed the extent to which black South African controllers (n=9), differ from uninfected healthy controls (HCs, n=22) in terms of lymphocyte and monocyte CCR5 expression (density and frequency of CCR5-expressing cells), immune activation as well as peripheral blood mononuclear cell (PBMC) mitogen-induced chemokine/cytokine production. In addition, relative CD4+ T cell CCR5 mRNA expression was assessed in a larger group of controllers (n=20) compared to HCs (n=10) and HIV-1 progressors (n=12). Despite controllers having significantly higher frequencies of activated CD4+ and CD8+ T cells (HLA-DR+) compared to HCs, CCR5 density was significantly lower in these T cell populations (P=0.039 and P=0.064, respectively). This lower CCR5 density was largely attributable to controllers with higher VLs (>400 RNA copies/ml). Significantly lower CD4+ T cell CCR5 density in controllers was maintained (P=0.036) when HCs (n=12) and controllers (n=9) were matched for age. CD4+ T cell CCR5 mRNA expression was significantly less in controllers compared to HCs (P=0.007) and progressors (P=0.002), whereas HCs and progressors were similar (P=0.223). The levels of soluble CD14 in plasma did not differ between controllers and HCs, suggesting no demonstrable monocyte activation. While controllers had lower monocyte CCR5 density compared to the HCs (P=0.02), significance was lost when groups were age-matched (P=0.804). However, when groups were matched for both CCR5 promoter haplotype and age (n=6 for both) reduced CCR5 density on monocytes in controllers relative to HCs was highly significant (P=0.009). Phytohemagglutinin-stimulated PBMCs from the controllers produced significantly less CCL3 (P=0.029), CCL4 (P=0.008) and IL-10 (P=0.028) compared to the HCs, which was largely attributable to the controllers with lower VLs (<400 RNA copies/ml). Our findings support a hypothesis of an inherent (genetic) predisposition to lower CCR5 expression in individuals who naturally control HIV-1, as has been suggested for Caucasian controllers, and thus, likely involves a mechanism shared between ethnically divergent population groups.
Collapse
Affiliation(s)
- Anabela C. P. Picton
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Maria Paximadis
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
- Department of Virology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- *Correspondence: Maria Paximadis,
| | - Gemma W. Koor
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
- Department of Virology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Avani Bharuthram
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
- Department of Virology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Sharon Shalekoff
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
- Department of Virology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ria Lassauniere
- Virus Research and Development Laboratory, Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Prudence Ive
- Department of Virology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Clinical HIV Research Unit, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Caroline T. Tiemessen
- Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
- Department of Virology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
5
|
Gustin A, Cromarty R, Schifanella L, Klatt NR. Microbial mismanagement: how inadequate treatments for vaginal dysbiosis drive the HIV epidemic in women. Semin Immunol 2021; 51:101482. [PMID: 34120819 DOI: 10.1016/j.smim.2021.101482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022]
Abstract
Women and girls represent a key population driving new HIV infections and persistence of the HIV pandemic. A key determinant of HIV susceptibility is the composition of the vaginal microbiome, which can influence the local immune cell population, inflammation status, and HIV prevention drug levels. While a low-diversity composition dominated by Lactobacillus crispatus is associated with a decreased risk of HIV acquisition, high diversity environments associated with bacterial vaginosis increase risk of HIV. Given the important role of the vaginal microbiome in determining HIV susceptibility, altering the microbiome towards a Lactobacillus-dominated state is an attractive complementary strategy to reduce HIV incidence rates. Here, we provide an overview of the mechanisms by which the vaginal microbiome may contribute to HIV acquisition risk. Furthermore, we address the advantages and limitations of historical treatments and emerging technologies under investigation to modify the vaginal microbiome, including: antibiotics, bacteriophages, probiotics, topicals, and engineered bacteria. By addressing the current state of vaginal microbiome knowledge and strategies for manipulation, we hope to amplify the growing calls for increased resources and research into vaginal microbial health, which will be essential to accelerating preventative efforts amongst the world's most vulnerable populations.
Collapse
Affiliation(s)
- Andrew Gustin
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Ross Cromarty
- Department of Surgery, Division of Surgical Outcomes and Precision Medicine Research, University of Minnesota, Minneapolis, MN, USA; Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Luca Schifanella
- Department of Surgery, Division of Surgical Outcomes and Precision Medicine Research, University of Minnesota, Minneapolis, MN, USA
| | - Nichole R Klatt
- Department of Surgery, Division of Surgical Outcomes and Precision Medicine Research, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
6
|
Inflammation, HIV, and Immune Quiescence: Leveraging on Immunomodulatory Products to Reduce HIV Susceptibility. AIDS Res Treat 2020; 2020:8672850. [PMID: 33178456 PMCID: PMC7609152 DOI: 10.1155/2020/8672850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/23/2020] [Accepted: 10/15/2020] [Indexed: 12/29/2022] Open
Abstract
The relationship between inflammation and HIV has been a focus of research over the last decade. In HIV-infected individuals, increased HIV-associated immune activation significantly correlated to disease progression. While genital inflammation (GI) has been shown to significantly increase the risk of HIV acquisition and transmission, immune correlates for reduced risk remain limited. In certain HIV-exposed seronegative individuals, an immune quiescent phenotype characterized reduced risk. Immune quiescence is defined by specific, targeted, highly regulated immune responses that hinder overt inflammation or immune activation. Targeted management of inflammation, therefore, is a plausible strategy to mitigate HIV risk and slow disease progression. Nonsteroidal anti-inflammatory drugs (NSAIDs) such as hydroxychloroquine and aspirin have shown encouraging preliminary results in low-risk women by reducing systemic and genital immune activation. A topical NSAID, containing ibuprofen, is effective in treating vulvovaginal inflammation. Additionally, the glucocorticoids (GCs), prednisolone, and dexamethasone are used to treat HIV-associated immune activation. Collectively, these data inform on immune-modulating drugs to reduce HIV risk. However, the prolonged use of these pharmaceutical drugs is associated with adverse effects, both systemically and to a lesser extent topically. Natural products with their reduced side effects coupled with anti-inflammatory properties render them viable options. Lactic acid (LA) has immunomodulatory properties. LA regulates the genital microbiome by facilitating the growth of Lactobacillus species, while simultaneously limiting bacterial species that cause microbial dysbiosis and GI. Glycerol monolaurate, besides being anti-inflammatory, also inhibited SIV infections in rhesus macaques. The proposed pharmaceutical and natural products could be used in combination with either antiretrovirals for treatment or preexposure prophylaxis for HIV prevention. This review provides a summary on the associations between inflammation, HIV risk, and disease progression. Furthermore, we use the knowledge from immune quiescence to exploit the use of pharmaceutical and natural products as strategic interventions to manage inflammation, toward mitigating HIV infections.
Collapse
|
7
|
Tamalet C, Devaux C, Dubourg G, Colson P. Resistance to human immunodeficiency virus infection: a rare but neglected state. Ann N Y Acad Sci 2020; 1485:22-42. [PMID: 33009659 DOI: 10.1111/nyas.14452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/25/2020] [Accepted: 07/07/2020] [Indexed: 11/29/2022]
Abstract
The natural history of human immunodeficiency virus (HIV) infection is well understood. In most individuals sexually exposed to HIV, the risk of becoming infected depends on the viral load and on sexual practices and gender. However, a low percentage of individuals who practice frequent unprotected sexual intercourse with HIV-infected partners remain uninfected. Although the systematic study of these individuals has made it possible to identify HIV resistance factors including protective genetic patterns, such epidemiological situations remain paradoxical and not fully understood. In vitro experiments have demonstrated that peripheral blood mononuclear cells (PBMCs) from HIV-free, unexposed blood donors are not equally susceptible to HIV infection; in addition, PBMCs from highly exposed seronegative individuals are generally resistant to infection by primary HIV clinical isolates. We review the literature on permissiveness of PBMCs from healthy blood donors and uninfected hyperexposed individuals to sustained infection and replication of HIV-1 in vitro. In addition, we focus on recent evidence indicating that the gut microbiota may either contribute to natural resistance to or delay replication of HIV infected individuals.
Collapse
Affiliation(s)
- Catherine Tamalet
- IHU Méditerranée Infection and Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
| | - Christian Devaux
- IHU Méditerranée Infection and Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
| | - Gregory Dubourg
- IHU Méditerranée Infection and Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
| | - Philippe Colson
- IHU Méditerranée Infection and Aix-Marseille University, Institut de Recherche pour le Développement (IRD), Assistance Publique-Hôpitaux de Marseille (AP-HM), Microbes Evolution Phylogeny and Infections (MEPHI), Marseille, France
| |
Collapse
|
8
|
Cromarty R, Sigal A, Liebenberg LJ, Mckinnon LR, Abdool Karim SS, Passmore JAS, Archary D. Betamethasone induces potent immunosuppression and reduces HIV infection in a PBMC in vitro model. J Investig Med 2020; 69:28-40. [PMID: 33004468 PMCID: PMC7803916 DOI: 10.1136/jim-2020-001424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2020] [Indexed: 01/15/2023]
Abstract
Genital inflammation is an established risk factor for increased HIV acquisition risk. Certain HIV-exposed seronegative populations, who are naturally resistant to HIV infection, have an immune quiescent phenotype defined by reduced immune activation and inflammatory cytokines at the genital tract. Therefore, the aim of this study was to create an immune quiescent environment using immunomodulatory drugs to mitigate HIV infection. Using an in vitro peripheral blood mononuclear cell (PBMC) model, we found that inflammation was induced using phytohemagglutinin and Toll-like receptor (TLR) agonists Pam3CSK4 (TLR1/2), lipopolysaccharide (LPS) (TLR4) and R848 (TLR7/8). After treatment with anti-inflammatory drugs, ibuprofen (IBF) and betamethasone (BMS), PBMCs were exposed to HIV NL4-3 AD8. Multiplexed ELISA was used to measure 28 cytokines to assess inflammation. Flow cytometry was used to measure immune activation (CD38, HLA-DR and CCR5) and HIV infection (p24 production) of CD4+ T cells. BMS potently suppressed inflammation (soluble cytokines, p<0.05) and immune activation (CD4+ T cells, p<0.05). BMS significantly reduced HIV infection of CD4+ T cells only in the LPS (0.98%) and unstimulated (1.7%) conditions (p<0.02). In contrast, IBF had minimal anti-inflammatory and immunosuppressive but no anti-HIV effects. BMS demonstrated potent anti-inflammatory effects, regardless of stimulation condition. Despite uniform immunosuppression, BMS differentially affected HIV infection according to the stimulation conditions, highlighting the complex nature of these interactions. Together, these data underscore the importance of interrogating inflammatory signaling pathways to identify novel drug targets to mitigate HIV infection.
Collapse
Affiliation(s)
- Ross Cromarty
- Mucosal Immunology Laboratory, CAPRISA, Durban, KwaZulu-Natal, South Africa
| | - Alexander Sigal
- Africa Health Research Institute (AHRI), Durban, KwaZulu-Natal, South Africa
- Max-Planck-Institute for Infection Biology, Berlin, Germany
| | - Lenine Julie Liebenberg
- Mucosal Immunology Laboratory, CAPRISA, Durban, KwaZulu-Natal, South Africa
- Department of Medical Microbiology, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| | - Lyle Robert Mckinnon
- Mucosal Immunology Laboratory, CAPRISA, Durban, KwaZulu-Natal, South Africa
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Salim Safurdeen Abdool Karim
- Mucosal Immunology Laboratory, CAPRISA, Durban, KwaZulu-Natal, South Africa
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Jo-Ann Shelly Passmore
- Mucosal Immunology Laboratory, CAPRISA, Durban, KwaZulu-Natal, South Africa
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town Faculty of Health Sciences, Cape Town, Western Cape, South Africa
| | - Derseree Archary
- Mucosal Immunology Laboratory, CAPRISA, Durban, KwaZulu-Natal, South Africa
- Department of Medical Microbiology, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| |
Collapse
|
9
|
Abstract
Abstract
Peripheral blood lymphocytes (PBL) are able to synthesize various cytokines that play key roles in the immune response and intercellular signaling. Since alterations in cytokine production and/or activity occur in many pathological processes, the study of cytokine synthetic capacity of PBL is a valuable tool for assessing the immune profile. In this paper, we aimed to investigate the variability of interleukin-2 (IL-2), tumor necrosis factor-alpha (TNF-α) and interferon gamma (IFN-γ) synthetic capacity of CD4+/CD8+ T-cells stimulated ex-vivo in healthy subjects, by means of a commercial intracellular cytokine staining (ICS) protocol. Peripheral blood mononuclear cells were isolated from 16 healthy subjects by Ficoll gradient centrifugation and activated ex-vivo with PMA/Ionomycin/Brefeldin-A for 4 hours. Activated PBL were surface-stained for CD3/CD4/CD8, fixed and permeabilized. ICS was performed using anti-human IL-2/TNF-α/IFN-γ and samples were analyzed on a BD-FACSAria-III flow cytometer. We recorded high post-isolation and post-activation mean viabilities: 82.1% and 82.4% respectively, p=0.84. Both CD4+/CD8+ subpopulations were found to partially produce each of the three cytokines, but in different proportions. On average, a significantly greater percentage of CD4+ cells was shown to produce IL-2 and TNF-α, compared with CD8+ cells (61.5%+/-5.8 vs. 25%+/-5.6 and 26.9%+/-11 vs. 7.5%+/-3.3 respectively, p---lt---0.0001 for both). Contrarily, IFN-γ was produced by a higher proportion of CD8+ cells (8.4%+/-3.9 vs. 6.8%+/-3.2, p=0.01). These results show that the employed ICS protocol elicits a satisfactory and consistent cytokine response from PBL of healthy subjects. The collected data may be used to outline a preliminary reference range for future studies on both healthy/pathological subjects.
Collapse
|
10
|
Caetano DG, de Paula HHS, Bello G, Hoagland B, Villela LM, Grinsztejn B, Veloso VG, Morgado MG, Guimarães ML, Côrtes FH. HIV-1 elite controllers present a high frequency of activated regulatory T and Th17 cells. PLoS One 2020; 15:e0228745. [PMID: 32023301 PMCID: PMC7001932 DOI: 10.1371/journal.pone.0228745] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/22/2020] [Indexed: 12/19/2022] Open
Abstract
HIV-1 infection is characterized by generalized deregulation of the immune system, resulting in increased chronic immune activation. However, some individuals called HIV controllers (HICs) present spontaneous control of viral replication and have a more preserved immune system. Among HICs, discordant results have been observed regarding immune activation and the frequency of different T cell subsets, including Treg and Th17 cells. We evaluated T cell immune activation, differentiation and regulatory profiles in two groups of HICs—elite controllers (ECs) and viremic controllers (VCs)—and compared them to those of cART-treated individuals (cART) and HIV-1-negative (HIV-neg) individuals. ECs demonstrated similar levels of activated CD4+ and CD8+ T cells in comparison to HIV-neg, while cART and VCs showed elevated T cell activation. CD4+ T cell subset analyses showed differences only for transitional memory T cell frequency between the EC and HIV-neg groups. However, VC individuals showed higher frequencies of terminally differentiated, naïve, and stem cell memory T cells and lower frequencies of transitional memory and central memory T cells compared to the HIV-neg group. Among CD8+ T cell subsets, ECs presented higher frequencies of stem cell memory T cells, while VCs presented higher frequencies of terminally differentiated T cells compared to the HIV-neg group. HICs showed lower frequencies of total Treg cells compared to the HIV-neg and cART groups. ECs also presented higher frequencies of activated and a lower frequency of resting Treg cells than the HIV-neg and cART groups. Furthermore, we observed a high frequency of Th17 cells in ECs and high Th17/Treg ratios in both HIC groups. Our data showed that ECs had low levels of activated T cells and a high frequency of activated Treg and Th17 cells, which could restrict chronic immune activation and be indicative of a preserved mucosal response in these individuals.
Collapse
Affiliation(s)
- Diogo G. Caetano
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz–IOC, FIOCRUZ, Rio de Janeiro, Brazil
| | - Hury H. S. de Paula
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz–IOC, FIOCRUZ, Rio de Janeiro, Brazil
| | - Gonzalo Bello
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz–IOC, FIOCRUZ, Rio de Janeiro, Brazil
| | - Brenda Hoagland
- Instituto Nacional de Infectologia Evandro Chagas—INI, FIOCRUZ, Rio de Janeiro, Brazil
| | - Larissa M. Villela
- Instituto Nacional de Infectologia Evandro Chagas—INI, FIOCRUZ, Rio de Janeiro, Brazil
| | - Beatriz Grinsztejn
- Instituto Nacional de Infectologia Evandro Chagas—INI, FIOCRUZ, Rio de Janeiro, Brazil
| | - Valdilea G. Veloso
- Instituto Nacional de Infectologia Evandro Chagas—INI, FIOCRUZ, Rio de Janeiro, Brazil
| | - Mariza G. Morgado
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz–IOC, FIOCRUZ, Rio de Janeiro, Brazil
| | - Monick L. Guimarães
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz–IOC, FIOCRUZ, Rio de Janeiro, Brazil
| | - Fernanda H. Côrtes
- Laboratório de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz–IOC, FIOCRUZ, Rio de Janeiro, Brazil
- * E-mail: ,
| |
Collapse
|
11
|
Veazey RS. Intestinal CD4 Depletion in HIV / SIV Infection. CURRENT IMMUNOLOGY REVIEWS 2019; 15:76-91. [PMID: 31431807 PMCID: PMC6701936 DOI: 10.2174/1573395514666180605083448] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/12/2018] [Accepted: 05/18/2018] [Indexed: 12/28/2022]
Abstract
Among the most significant findings in the pathogenesis of HIV infection was the discovery that almost total depletion of intestinal CD4+ T cells occurs rapidly after SIV or HIV infection, regardless of the route of exposure, and long before CD4+ T cell losses occur in blood or lymph nodes. Since these seminal discoveries, we have learned much about mucosal and systemic CD4+ T cells, and found several key differences between the circulating and intestinal CD4+ T cell subsets, both in phenotype, relative proportions, and functional capabilities. Further, specific subsets of CD4+ T cells are selectively targeted and eliminated first, especially cells critically important for initiating primary immune responses, and for maintenance of mucosal integrity (Th1, Th17, and Th22 cells). This simultaneously results in loss of innate immune responses, and loss of mucosal integrity, resulting in mucosal, and systemic immune activation that drives proliferation and activation of new target cells throughout the course of infection. The propensity for the SIV/HIV to infect and efficiently replicate in specific cells also permits viral persistence, as the mucosal and systemic activation that ensues continues to damage mucosal barriers, resulting in continued influx of target cells to maintain viral replication. Finally, infection and elimination of recently activated and proliferating CD4+ T cells, and infection and dysregulation of Tfh and other key CD4+ T cell results in hyperactive, yet non-protective immune responses that support active viral replication and evolution, and thus persistence in host tissue reservoirs, all of which continue to challenge our efforts to design effective vaccine or cure strategies.
Collapse
Affiliation(s)
- Ronald S. Veazey
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
12
|
Loucif H, Gouard S, Dagenais-Lussier X, Murira A, Stäger S, Tremblay C, Van Grevenynghe J. Deciphering natural control of HIV-1: A valuable strategy to achieve antiretroviral therapy termination. Cytokine Growth Factor Rev 2018; 40:90-98. [PMID: 29778137 DOI: 10.1016/j.cytogfr.2018.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 02/06/2023]
Abstract
Antiretroviral therapy (ART) has dramatically reduced HIV-1-associated morbidity and mortality, and has transformed HIV-1 infection into a manageable chronic condition by suppressing viral replication. However, despite recent patient care improvements, ART still fails to cure HIV-1 infection due to the inability to counteract immune defects and metabolic disturbances that are associated with residual inflammation alongside viral persistence. Life-long drug administration also results in multiple side-effects in patients including lipodystrophy and insulin resistance. Thus, it is critical to find new ways to reduce the length of treatment and facilitate the termination of ART, for example by boosting protective immunity. The rare ability of some individuals to naturally control HIV-1 infection despite residual inflammation could be exploited to identify molecular mechanisms involved in host protection that may function as potential therapeutic targets. In this review, we highlight evidence illustrating the molecular and metabolic advantages of HIV-1 controllers over ART treated patients that contribute to the maintenance of effective antiviral immunity.
Collapse
Affiliation(s)
- Hamza Loucif
- Institut National de la Recherche Scientifique (INRS)-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, H7V 1B7, QC, Canada
| | - Steven Gouard
- Institut National de la Recherche Scientifique (INRS)-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, H7V 1B7, QC, Canada
| | - Xavier Dagenais-Lussier
- Institut National de la Recherche Scientifique (INRS)-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, H7V 1B7, QC, Canada
| | - Armstrong Murira
- Institut National de la Recherche Scientifique (INRS)-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, H7V 1B7, QC, Canada
| | - Simona Stäger
- Institut National de la Recherche Scientifique (INRS)-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, H7V 1B7, QC, Canada
| | - Cécile Tremblay
- Centre de Recherche de l'Université de Montréal, Montréal, QC, Canada
| | - Julien Van Grevenynghe
- Institut National de la Recherche Scientifique (INRS)-Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, H7V 1B7, QC, Canada.
| |
Collapse
|
13
|
Valverde-Villegas JM, de Medeiros RM, Ellwanger JH, Santos BR, Melo MGD, Almeida SEDM, Chies JAB. High CXCL10/IP-10 levels are a hallmark in the clinical evolution of the HIV infection. INFECTION GENETICS AND EVOLUTION 2017; 57:51-58. [PMID: 29122683 DOI: 10.1016/j.meegid.2017.11.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/30/2017] [Accepted: 11/04/2017] [Indexed: 12/17/2022]
Abstract
The aim of this study was to investigate the modulation of plasma CXCL10, CCL20, CCL22, CCL2, CCL17 and CCL24 levels in HIV-positive patients grouped according to extreme phenotypes of progression to AIDS, and at different stages of HIV infection. HIV-positive individuals with extreme phenotypes of AIDS progression (n=58) at different clinical stages (chronic individuals, both pre-HAART and under-HAART) and HIV-negative controls (n=20) were evaluated. Additionally, HIV-positive individuals that initiated HAART with >350CD4+T-cells/mm3 were compared with those who initiated treatment with <350CD4+T-cells/mm3. Plasma levels of six chemokines were quantified by a Luminex assay. Higher CXCL10 levels were observed in individuals immediately before their CD4+T-cell levels were indicative for HAART (pre-HAART), independently of their progressor status, i.e. slow (SPs) or rapid progressors (RPs). SPs pre-HAART showed higher CXCL10 levels compared to elite controllers and RPs under HAART (pc=0.009 and pc=0.007, respectively). CXCL10 levels were higher in SPs HAART CD4<350 (initiated HAART with <350 CD4+T-cells) when compared with SPs HAART CD4>350 (initiated HAART with >350 CD4+T-cells) (1096 vs. 360.33pg/mL, p=0.0101). Normalisation of CXCL10 levels seems to depend on the CD4+T-cell nadir at HAART initiation. CCL20 levels were higher in chronic SPs, SPs pre-HAART, SPs HAART and RPs HAART compared with the HIV-negative controls, indicating persistent CCL20 expression. In conclusion, our results indicate that CXCL10 levels are a hallmark in the clinical evolution of HIV infection. However, our results must be verified in a study evaluating a larger number of AIDS progressors.
Collapse
Affiliation(s)
- Jacqueline María Valverde-Villegas
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Brazil; Fundação Estadual de Produção e Pesquisa em Saúde - FEPPS, Brazil
| | - Rúbia Marília de Medeiros
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Brazil; Fundação Estadual de Produção e Pesquisa em Saúde - FEPPS, Brazil
| | - Joel Henrique Ellwanger
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Brazil
| | - Breno Riegel Santos
- Serviço de Infectologia, Grupo Hospitalar Nossa Senhora da Conceição, Brazil
| | | | - Sabrina Esteves de Matos Almeida
- Fundação Estadual de Produção e Pesquisa em Saúde - FEPPS, Brazil; Instituto de Ciências da Saúde, Universidade Feevale - FEEVALE, Brazil; Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Brazil
| | - José Artur Bogo Chies
- Laboratório de Imunobiologia e Imunogenética, Departamento de Genética, Universidade Federal do Rio Grande do Sul - UFRGS, Brazil.
| |
Collapse
|
14
|
Regulatory T-Cell Activity But Not Conventional HIV-Specific T-Cell Responses Are Associated With Protection From HIV-1 Infection. J Acquir Immune Defic Syndr 2017; 72:119-28. [PMID: 26656786 DOI: 10.1097/qai.0000000000000919] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Two distinct hypotheses have been proposed for T-cell involvement in protection from HIV-1 acquisition. First, HIV-1-specific memory T-cell responses generated on HIV-1 exposure could mount an efficient response to HIV-1 and inhibit the establishment of an infection. Second, a lower level of immune activation could reduce the numbers of activated, HIV-1-susceptible CD4 T cells, thereby diminishing the likelihood of infection. METHODS To test these hypotheses, we conducted a prospective study among high-risk heterosexual men and women, and tested peripheral blood samples from individuals who subsequently acquired HIV-1 during follow-up (cases) and from a subset of those who remained HIV-1 uninfected (controls). RESULTS We found no difference in HIV-1-specific immune responses between cases and controls, but Treg frequency was higher in controls as compared with cases and was negatively associated with frequency of effector memory CD4 T cells. CONCLUSIONS Our findings support the hypothesis that low immune activation assists in protection from HIV-1 infection.
Collapse
|
15
|
Roberts ER, Carnathan DG, Li H, Shaw GM, Silvestri G, Betts MR. Collapse of Cytolytic Potential in SIV-Specific CD8+ T Cells Following Acute SIV Infection in Rhesus Macaques. PLoS Pathog 2016; 12:e1006135. [PMID: 28036372 PMCID: PMC5231392 DOI: 10.1371/journal.ppat.1006135] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/12/2017] [Accepted: 12/16/2016] [Indexed: 12/23/2022] Open
Abstract
Poor maintenance of cytotoxic factor expression among HIV-specific CD8+ T cells, in part caused by dysregulated expression of the transcription factor T-bet, is associated with HIV disease progression. However, the precise evolution and context in which CD8+ T cell cytotoxic functions become dysregulated in HIV infection remain unclear. Using the rhesus macaque (RM) SIV infection model, we evaluated the kinetics of SIV-specific CD8+ T cell cytolytic factor expression in peripheral blood, lymph node, spleen, and gut mucosa from early acute infection through chronic infection. We identified rapid acquisition of perforin and granzyme B expression in SIV-specific CD8+ T cells in blood, secondary lymphoid tissues and gut mucosa that collapsed rapidly during the transition to chronic infection. The evolution of this expression profile was linked to low expression of T-bet and occurred independent of epitope specificity, viral escape patterns and tissue origin. Importantly, during acute infection SIV-specific CD8+ T cells that maintained T-bet expression retained the ability to express granzyme B after stimulation, but this relationship was lost in chronic infection. Together, these data demonstrate the loss of cytolytic machinery in SIV-specific CD8+ T cells in blood and at tissue sites of viral reservoir and active replication during the transition from acute to chronic infection. This phenomenon occurs despite persistent high levels of viremia suggesting that an inability to maintain properly regulated cytotoxic T cell responses in all tissue sites enables HIV/SIV to avoid immune clearance, establish persistent viral reservoirs in lymphoid tissues and gut mucosa, and lead ultimately to immunopathogenesis and death.
Collapse
Affiliation(s)
- Emily R. Roberts
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Biomedical Graduate Studies in Immunology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Diane G. Carnathan
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Hui Li
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - George M. Shaw
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Guido Silvestri
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Michael R. Betts
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
16
|
Czubala MA, Finsterbusch K, Ivory MO, Mitchell JP, Ahmed Z, Shimauchi T, Karoo ROS, Coulman SA, Gateley C, Birchall JC, Blanchet FP, Piguet V. TGFβ Induces a SAMHD1-Independent Post-Entry Restriction to HIV-1 Infection of Human Epithelial Langerhans Cells. J Invest Dermatol 2016; 136:1981-1989. [PMID: 27375111 DOI: 10.1016/j.jid.2016.05.123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/13/2016] [Accepted: 05/31/2016] [Indexed: 11/24/2022]
Abstract
Sterile alpha motif (SAM) and histidine-aspartic (HD) domains protein 1 (SAMHD1) was previously identified as a critical post-entry restriction factor to HIV-1 infection in myeloid dendritic cells. Here we show that SAMHD1 is also expressed in epidermis-isolated Langerhans cells (LC), but degradation of SAMHD1 does not rescue HIV-1 or vesicular stomatitis virus G-pseudotyped lentivectors infection in LC. Strikingly, using Langerhans cells model systems (mutz-3-derived LC, monocyte-derived LC [MDLC], and freshly isolated epidermal LC), we characterize previously unreported post-entry restriction activity to HIV-1 in these cells, which acts at HIV-1 reverse transcription, but remains independent of restriction factors SAMHD1 and myxovirus resistance 2 (MX2). We demonstrate that transforming growth factor-β signaling confers this potent HIV-1 restriction in MDLC during their differentiation and blocking of mothers against decapentaplegic homolog 2 (SMAD2) signaling in MDLC restores cells' infectivity. Interestingly, maturation of MDLC with a toll-like receptor 2 agonist or transforming growth factor-α significantly increases cells' susceptibility to HIV-1 infection, which may explain why HIV-1 acquisition is increased during coinfection with sexually transmitted infections. In conclusion, we report a SAMHD1-independent post-entry restriction in MDLC and LC isolated from epidermis, which inhibits HIV-1 replication. A better understanding of HIV-1 restriction and propagation from LC to CD4(+) T cells may help in the development of new microbicides or vaccines to curb HIV-1 infection at its earliest stages during mucosal transmission.
Collapse
Affiliation(s)
- Magdalena A Czubala
- Department of Dermatology and Academic Wound Healing, Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Katja Finsterbusch
- Department of Dermatology and Academic Wound Healing, Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Matthew O Ivory
- Department of Dermatology and Academic Wound Healing, Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK; Cardiff University School of Pharmacy and Pharmaceutical Sciences, Cardiff CF10 3NB, UK
| | - J Paul Mitchell
- Department of Dermatology and Academic Wound Healing, Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Zahra Ahmed
- Department of Dermatology and Academic Wound Healing, Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Takatoshi Shimauchi
- Department of Dermatology and Academic Wound Healing, Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | | | - Sion A Coulman
- Cardiff University School of Pharmacy and Pharmaceutical Sciences, Cardiff CF10 3NB, UK
| | - Christopher Gateley
- Aneurin Bevan University Health Board Royal Gwent Hospital, Newport NP20 2UB, UK
| | - James C Birchall
- Cardiff University School of Pharmacy and Pharmaceutical Sciences, Cardiff CF10 3NB, UK
| | - Fabien P Blanchet
- Department of Dermatology and Academic Wound Healing, Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Vincent Piguet
- Department of Dermatology and Academic Wound Healing, Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|
17
|
Platten M, Jung N, Trapp S, Flossdorf P, Meyer-Olson D, Schulze zur Wiesch J, Stephan C, Mauss S, Weiss V, von Bergwelt-Baildon M, Rockstroh J, Fätkenheuer G, Lehmann C. Cytokine and Chemokine Signature in Elite Versus Viremic Controllers Infected with HIV. AIDS Res Hum Retroviruses 2016; 32:579-87. [PMID: 26751176 DOI: 10.1089/aid.2015.0226] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
HIV long-term nonprogressors (LTNPs) maintaining high CD4(+) T-cell counts without antiretroviral therapy (ART) are divided into elite controllers (ECs) with undetectable and viremic controllers (VCs) with low viral loads. Little is known about the long-term changes of T-cell subsets and inflammation patterns in ECs versus VCs. The aim of the study was to explore the long-term evolution of CD4(+) T-cell levels in LTNPs and to analyze cytokine profiles in ECs versus VCs. Nineteen ECs and 15 VCs were enrolled from the natural virus controller cohort (NaViC). T-cell counts were monitored over years, the mean annual change was calculated, and plasma concentrations of 25 cytokines were evaluated using a multiplex bead array. While absolute numbers of T cells did not differ between ECs and VCs over time, we observed a significant decrease of CD4(+) T-cell percentages in VCs, but not in ECs (median [interquartile range]: ECs: 37% [28-41] vs. VCs: 29% [25-34]; p = .02). ECs had lower levels of macrophage inflammatory protein-1β (MIP-1β, p = .003), interferon γ-induced protein-10 (IP-10, p = .03), and monokine induced by interferon-γ (MIG, p = .02). CD4(+) T-cell percentages inversely correlated with MIP 1-β (r = -0.42, p = .017) and IP-10 (r = -0.77, p < .0001). A subtle decline of CD4(+) T-cell percentages could be observed in VCs, but not in ECs, which was associated with higher plasma levels of proinflammatory cytokines. Hence, even low levels of HIV replication might go along with a progressive decline in CD4(+) T-cell counts in LTNPs.
Collapse
Affiliation(s)
- Martin Platten
- Department of Internal Medicine I, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Norma Jung
- Department of Internal Medicine I, University of Cologne, Cologne, Germany
| | - Susanna Trapp
- Institute of Virology, University of Cologne, Cologne, Germany
| | - Pia Flossdorf
- Department of Neurology, University of Cologne, Cologne, Germany
| | - Dirk Meyer-Olson
- Department of Internal Medicine and Rheumatology, m&i Specialty Hospital Bad Pyrmont, Bad Pyrmont, Germany
| | - Julian Schulze zur Wiesch
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
- Infectious Disease Unit, Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Stefan Mauss
- Center for HIV and Hepatogastroenterology, Dusseldorf, Germany
| | - Verena Weiss
- Institute of Medical Statistics, Informatics and Epidemiology, University of Cologne, Cologne, Germany
| | | | - Jürgen Rockstroh
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
- Department of Medicine, University Medical Center, Bonn, Germany
| | - Gerd Fätkenheuer
- Department of Internal Medicine I, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | - Clara Lehmann
- Department of Internal Medicine I, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Cologne, Germany
| | | |
Collapse
|
18
|
López-Abente J, Correa-Rocha R, Pion M. Functional Mechanisms of Treg in the Context of HIV Infection and the Janus Face of Immune Suppression. Front Immunol 2016; 7:192. [PMID: 27242797 PMCID: PMC4871867 DOI: 10.3389/fimmu.2016.00192] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/02/2016] [Indexed: 12/20/2022] Open
Abstract
Regulatory T cells (Tregs) play an important role in infections, by modulating host immune responses and avoiding the overreactive immunity that in the case of human immunodeficiency virus (HIV) infection leads to a marked erosion and deregulation of the entire immune system. Therefore, the suppressive function of Treg in HIV-infected patients is critical because of their implication on preventing the immune hyperactivation, even though it could also have a detrimental effect by suppressing HIV-specific immune responses. In recent years, several studies have shown that HIV-1 can directly infect Treg, disturbing their phenotype and suppressive capacity via different mechanisms. These effects include Foxp3 and CD25 downregulation, and the impairment of suppressive capacity. This review describes the functional mechanisms of Treg to modulate immune activation during HIV infection, and how such control is no longer fine-tune orchestrated once Treg itself get infected. We will review the current knowledge about the HIV effects on the Treg cytokine expression, on pathways implying the participation of different ectoenzymes (i.e., CD39/CD73 axis), transcription factors (ICER), and lastly on cyclic adenosine monophosphate (cAMP), one of the keystones in Treg-suppressive function. To define which are the HIV effects upon these regulatory mechanisms is crucial not only for the comprehension of immune deregulation in HIV-infected patients but also for the correct understanding of the role of Tregs in HIV infection.
Collapse
Affiliation(s)
- Jacobo López-Abente
- Laboratory of Immunoregulation, "Gregorio Marañón" Health Research Institute (IISGM) , Madrid , Spain
| | - Rafael Correa-Rocha
- Laboratory of Immunoregulation, "Gregorio Marañón" Health Research Institute (IISGM) , Madrid , Spain
| | - Marjorie Pion
- Laboratory of Immunoregulation, "Gregorio Marañón" Health Research Institute (IISGM) , Madrid , Spain
| |
Collapse
|
19
|
Omollo K, Boily-Larouche G, Lajoie J, Kimani M, Cheruiyot J, Kimani J, Oyugi J, Fowke KR. The Impact of Sex Work Interruption on Blood-Derived T Cells in Sex Workers from Nairobi, Kenya. AIDS Res Hum Retroviruses 2016; 32:1072-1078. [PMID: 26879184 PMCID: PMC5067831 DOI: 10.1089/aid.2015.0332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Unprotected sexual intercourse exposes the female genital tract (FGT) to semen-derived antigens, which leads to a proinflammatory response. Studies have shown that this postcoital inflammatory response can lead to recruitment of activated T cells to the FGT, thereby increasing risk of HIV infection. OBJECTIVE The purpose of this study was to evaluate the impact of sex work on activation and memory phenotypes of peripheral T cells among female sex workers (FSW) from Nairobi, Kenya. SUBJECTS Thirty FSW were recruited from the Pumwani Sex Workers Cohort, 10 in each of the following groups: HIV-exposed seronegative (at least 7 years in active sex work), HIV positive, and New Negative (HIV negative, less than 3 years in active sex work). Blood was obtained at three different phases (active sex work, abstinence from sex work-sex break, and following resumption of sex work). Peripheral blood mononuclear cells were isolated and stained for phenotypic markers (CD3, CD4, CD8, and CD161), memory phenotype markers (CD45RA and CCR7), activation markers (CD69, HLA-DR, and CD95), and the HIV coreceptor (CCR5). T-cell populations were compared between groups. RESULTS In HIV-positive women, CD8+CCR5+ T cells declined at the sex break period, while CD4+CD161+ T cells increased when returning to sex work. All groups showed no significant changes in systemic T-cell activation markers following the interruption of sex work, however, significant reductions in naive CD8+ T cells were noted. For each of the study points, HIV positives had higher effector memory and CD8+CD95+ T cells and lower naive CD8+ T cells than the HIV-uninfected groups. CONCLUSIONS Interruption of sex work had subtle effects on systemic T-cell memory phenotypes.
Collapse
Affiliation(s)
- Kenneth Omollo
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | | | - Julie Lajoie
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Makobu Kimani
- Kenyan AIDS Control Program, University of Nairobi, Nairobi, Kenya
| | | | - Joshua Kimani
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
- Kenyan AIDS Control Program, University of Nairobi, Nairobi, Kenya
| | - Julius Oyugi
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
- Kenyan AIDS Control Program, University of Nairobi, Nairobi, Kenya
| | - Keith Raymond Fowke
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Community Health Science, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
20
|
Nanotechnology as a New Therapeutic Approach to Prevent the HIV-Infection of Treg Cells. PLoS One 2016; 11:e0145760. [PMID: 26785250 PMCID: PMC4718685 DOI: 10.1371/journal.pone.0145760] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 12/08/2015] [Indexed: 01/21/2023] Open
Abstract
Background HIV-1 has proved to infect regulatory T cells (Treg) modifying their phenotype and impairing their suppressive capacity. As Treg cells are a crucial component in the preservation of the immune homeostasis, we researched that the antiviral capacity of carboxilan dendrimers prevents the HIV-1 infection of Treg and their effects. The phenotype and suppressive capacity of Treg treated or non-treated with carbosilane dendrimers were studied by flow cytometry. Treated and non-treated Treg from healthy donors were infected with HIV-1NL4.3. The infection of Treg cells by HIV-1, and protective effect of two dendrimers were determined by measuring antigen p24gag in the supernatant of the culture and intracellular. Results The Treg cells were treated with cationic and anionic carbosilane dendrimers. The results showed that both dendrimers did not modify the phenotype and functionality of Treg cells compared with non- treated Treg cells. Anionic dendrimers showed high biocompatibility with normal activity of the Treg cells and in antiviral assays. These dendrimers were highly active against HIV-1 preventing the infection of Treg, and were able to protect the Treg from the Foxp3 downregulation induced by the HIV-1 infection. Conclusions This is the first work showing that the in vitro use of anionic dendrimers prevent the HIV-1 replication and the infection of expanded Treg cells in culture, which raises the possibility to use Treg cells therapeutically in HIV-1-infected subjects.
Collapse
|
21
|
Thornhill J, Frater J, Fidler S. Post-treatment control: a functional cure for HIV. Future Virol 2015. [DOI: 10.2217/fvl.15.92] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Controlled plasma viral load to levels below limits of detection off antiretroviral therapy (ART), referred to as a functional cure, or remission, is an aspiration for people living with HIV avoiding the need for daily ART while preserving immunological function. For the majority of people, stopping suppressive ART is associated with virological rebound. Spontaneous viral control is reported among rare individuals in the absence of ART. More recently, strategic use of transient ART, initiated close to the time of HIV acquisition, has been associated with a phenotype of viral control after stopping therapy termed post-treatment control. We explore the phenotype of post-treatment viral control, potential underlying mechanisms, and how this area of research can inform HIV cure research.
Collapse
Affiliation(s)
- John Thornhill
- Winston Churchill Wing, St Marys Hospital Imperial College London, Praed St, London, W2 1NY, UK
| | - John Frater
- Winston Churchill Wing, St Marys Hospital Imperial College London, Praed St, London, W2 1NY, UK
- Peter Medwar Building, University of Oxford, S Parks Rd, Oxford OX1 3SY, UK
| | - Sarah Fidler
- Winston Churchill Wing, St Marys Hospital Imperial College London, Praed St, London, W2 1NY, UK
| |
Collapse
|
22
|
Spontaneous control of HIV replication, but not HAART-induced viral suppression, is associated with lower activation of immune cells. J Acquir Immune Defic Syndr 2014; 66:365-9. [PMID: 24732877 DOI: 10.1097/qai.0000000000000162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
HIV replication control is important to reduce AIDS progression. We determined frequency and activation status of immune cells in spontaneous HIV controllers vs. individuals with highly active antiretroviral therapy (HAART)-controlled viral load. HIV controllers exhibited significantly higher frequency of CD4 T cells and myeloid dendritic cells compared with HAART-controlled viral load. Additionally, HIV controllers have a significantly lower percentage of cells expressing activation markers on CD4 and CD8 T cells, myeloid dendritic cells, and natural killer cells. These findings suggest that during HIV infection, conservation of a normal frequency and physiological range of immune activation is associated with spontaneous, but not HAART-induced, control of viral replication.
Collapse
|
23
|
High eomesodermin expression among CD57+ CD8+ T cells identifies a CD8+ T cell subset associated with viral control during chronic human immunodeficiency virus infection. J Virol 2014; 88:11861-71. [PMID: 25100841 DOI: 10.1128/jvi.02013-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
During HIV infection, increased CD57 expression among CD8(+) T cells has been associated with immune senescence and defective immune responses. Interestingly, CD57-expressing CD8(+) T cells exhibit a dual profile, being simultaneously highly cytotoxic (terminally differentiated effectors) and poorly proliferative (replicative senescent). Recent publications point toward a positive role of CD57-expressing CD8(+) T cell subsets, presumably due to their high cytolytic activity. We further investigated the phenotype of CD57-expressing CD8(+) T cells in healthy donors and during HIV infection combining CD57 expression to Eomesodermin (EOMES), a T box transcription factor which determines, coordinately with T-bet, effector and memory CD8(+) T cell differentiation. We defined in healthy donors two functionally distinct CD57-expressing CD8(+) T cell subsets exhibiting different levels of EOMES expression: EOMES(hi) CD57(+) and EOMES(int) CD57(+) CD8(+) T cells. EOMES(hi) CD57(+) cells exhibited low cytotoxic activity but preserved proliferative capacity and interleukin 7 (IL-7) receptor expression, whereas EOMES(int) CD57(+) cells exhibited obvious cytotoxic functions and a more terminally differentiated phenotype. We next performed a similar analysis in different contexts of HIV infection: primary infected patients, long-term viremic patients, aviremic patients treated with antiretroviral therapy, and HIV controllers; we demonstrated a higher percentage of CD57-expressing cells in all HIV-infected patients regardless of virological status. When heterogeneity in EOMES expression among CD57 cells was taken into account, we detected significantly higher proportions of EOMES(hi) CD57(+) cells among HIV-specific and nonspecific CD8(+) T cells from HIV controllers than in aviremic antiretroviral-treated patients and viremic patients. Importantly, such a peculiar non-terminally differentiated EOMES(hi) CD57(+) phenotypic profile was associated with viral control. Importance: This study demonstrates that functional heterogeneity exists among CD57-expressing CD8 T cells, which include both terminally differentiated, highly cytotoxic EOMES(int) CD57(+) CD8(+) T cells and less differentiated EOMES(hi) CD57(+) CD8 T cells, which do not exhibit immediate cytotoxic functions but present high proliferative capacity. Interestingly, HIV controllers present a high proportion of EOMES(hi) CD57 cells among CD57-expressing HIV-specific CD8 T cells compared to both long-term viremic and aviremic antiretroviral therapy (ART)-treated patients, suggesting a beneficial role for this cell subset in viral control.
Collapse
|
24
|
Elevated IP10 levels are associated with immune activation and low CD4⁺ T-cell counts in HIV controller patients. AIDS 2014; 28:467-76. [PMID: 24378753 DOI: 10.1097/qad.0000000000000174] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Although HIV controllers (HICs) achieve long-term control of viremia in the absence of antiretroviral therapy (ART), they display marked immune activation. The levels of inflammatory biomarkers in HICs and the biomarkers' relationships with immunologic and virologic status have yet to be fully characterized. DESIGN A cohort study. METHODS Plasma levels of seven biomarkers [tumor necrosis factor (TNF)α, interleukin (IL)6, IL10, interferon gamma-induced protein 10 (IP10), monocyte chemoattractant protein-1 (MCP1), soluble CD14 (sCD14), soluble CD163 (sCD163)] were compared in 70 HICs, 33 HIV-1-infected, treatment-naive noncontrollers (viremic patients), 30 ART-treated patients and 40 healthy donors. In HICs, we investigated the interplay between biomarkers, cell activation and the CD4⁺ T-cell count. RESULTS HICs had higher levels of IP10, TNFα and sCD14 than healthy donors did (P < 0.01 for each). Also, TNFα and sCD14 levels of the HICs were similar to those measured in viremic and ART-treated patients. However, the levels of IL6 and IL10 were significantly lower in HICs than in viremic or ART-treated patients. In HICs, only IP10 levels differed significantly from those in both healthy donors and viremic patients, and were positively correlated with the expression of CD8⁺ and CD4⁺ T-cell activation markers. The IP10 levels of HICs were still elevated 12 and 24 months after the initial assay. Lastly, IP10 levels at enrollment were negatively correlated with the CD4⁺ T-cell count at enrollment and 12 months later. CONCLUSION HICs display a number of inflammatory features associated with persistent T-cell immune activation.
Collapse
|
25
|
Cytomegalovirus-specific responses of CD38⁺ memory T cells are skewed towards IFN-γ and dissociated from CD154 in HIV-1 infection. AIDS 2014; 28:311-6. [PMID: 24594993 DOI: 10.1097/qad.0000000000000162] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Despite the strong correlation of T-cell CD38 expression with HIV disease progression, evidence linking CD38 expression and dysfunction at the single cell level is scant. Since CD38⁺ memory CD4⁺ T cells, especially those from HIV-infected persons, fail to induce CD154 (CD40L) while responding to a superantigen with interferon (IFN)-γ or interleukin (IL)-2, we aimed to determine if recall responses to cytomegalovirus (CMV) were similarly affected in the CD38⁺ memory CD4⁺ T-cell subpopulation. DESIGN AND METHODS Peripheral blood mononuclear cells from HIV+ patients and healthy controls were incubated 14 h with CMV antigens, the superantigen Staphylococcus aureus enterotoxin B or medium, and labeled for identification of central memory (T(CM)) and effector memory (T(EM)) CD4⁺ T cells, and for the intracellular detection of induced CD154, IFN-γ and/or IL-2 by flow cytometry. RESULTS Compared with CD38⁻ cells, CD38⁺ T(CM) cells from patients had less CD40L induction after CMV stimulation, and increased IFN-γ response. Patients' CD38⁺ T(EM) cells showed a lower IL-2 response, and tended to have a greater IFN-γ response, in which CD154 induction frequently failed. CMV-specific responses of patients' CD38⁺ T(CM) and T(EM) cells were dominated by IFN-γ, and almost all IL-2⁺ cells co-expressed IFN-γ. IL-2 responses to the polyclonal activator S. aureus enterotoxin B were also significantly less frequent among CD38⁺ T(CM) and T(EM) cells than in CD38⁻ cells. CONCLUSION Patients' CD38⁺ memory CD4⁺T-cell responses to CMV favor the effector cytokine IFN-γ over IL-2, in the context of deficient CD154 induction, which may limit co-stimulation, proliferation and survival.
Collapse
|
26
|
Crawford TQ, Hecht FM, Pilcher CD, Ndhlovu LC, Barbour JD. Activation associated ERK1/2 signaling impairments in CD8+ T cells co-localize with blunted polyclonal and HIV-1 specific effector functions in early untreated HIV-1 infection. PLoS One 2013; 8:e77412. [PMID: 24143233 PMCID: PMC3797111 DOI: 10.1371/journal.pone.0077412] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 09/03/2013] [Indexed: 01/05/2023] Open
Abstract
We recently observed that a large proportion of activated (CD38(+)HLA-DR(+)) CD8(+) T cells from recently HIV-1-infected adults are refractory to phosphorylation of ERK1/2 kinases (p-ERK1/2-refractory). Given that the ERK1/2 pathway mediates intracellular signaling critical for multiple T cell functions, including key effector functions, the loss of ERK1/2 responsiveness may have broad consequences for CD8(+) T cell function. In the current study, we hypothesized that the p-ERK1/2-refractory population, localized largely within the activated CD38(+)HLA-DR(+) CD8(+) T cell population, would display impairments in CD8(+) T cell effector functions, such as cytokine production and degranulation, compared to CD8(+) p-ERK1/2-responsive cells. We further hypothesized that the p-ERK1/2-refractory phenotype is persistent over time during untreated infection, and would correlate with poorer virologic control, in a manner independent of CD8(+) T cell activation level. We performed single-cell resolution, flow cytometric assays of phospho-kinase responses paired to intracellular cytokine staining in one assay to examine IFN-γ, perforin and CD107α responses in CD8(+) T cells by ERK1/2 signaling profile. On a per cell basis, p-ERK1/2-refractory cells, which fall predominantly within the activated CD8(+) T cell compartment, produced less IFN-γ in response to polyclonal or HIV-1 antigen-specific stimulation, and expressed lower levels of perforin and CD107α. The p-ERK1/2 refractory cell population displayed minimal overlap with the PD-1 and Tim-3 inhibitory exhaustion markers and predicted high viral load independent of activation, suggesting that ERK1/2 may be a unique marker and point of intervention for improving CD8(+) T cell function. Blunted effector functions, secondary to ERK1/2 signaling deficits concentrated within activated CD8(+) T cells, may contribute to immunodeficiency and underlie the predictive capacity of CD8(+) T cell activation on HIV-1 disease progression. (270/300).
Collapse
Affiliation(s)
- Timothy Q. Crawford
- Hawaii Center for HIV/AIDS, John A. Burns School of Medicine, Department of Tropical Medicine, Medical Microbiology and Pharmacology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Fredrick M. Hecht
- HIV/AIDS Division, Department of Medicine, San Francisco General Hospital, University of California San Francisco, San Francisco, California, United States of America
| | - Christopher D. Pilcher
- HIV/AIDS Division, Department of Medicine, San Francisco General Hospital, University of California San Francisco, San Francisco, California, United States of America
| | - Lishomwa C. Ndhlovu
- Hawaii Center for HIV/AIDS, John A. Burns School of Medicine, Department of Tropical Medicine, Medical Microbiology and Pharmacology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Jason D. Barbour
- Hawaii Center for HIV/AIDS, John A. Burns School of Medicine, Department of Tropical Medicine, Medical Microbiology and Pharmacology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| |
Collapse
|
27
|
Ansari AW, Kamarulzaman A, Schmidt RE. Multifaceted Impact of Host C-C Chemokine CCL2 in the Immuno-Pathogenesis of HIV-1/M. tuberculosis Co-Infection. Front Immunol 2013; 4:312. [PMID: 24109479 PMCID: PMC3790230 DOI: 10.3389/fimmu.2013.00312] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 09/17/2013] [Indexed: 12/22/2022] Open
Abstract
Active tuberculosis remains the leading cause of death among the HIV-1 seropositive individuals. Although significant success has been achieved in bringing down the number of HIV/AIDS-related mortality and morbidity following implementation of highly active anti-retroviral therapy (HAART). Yet, co-infection of Mycobacterium tuberculosis (Mtb) has posed severe clinical and preventive challenges in our efforts to eradicate the virus from the body. Both HIV-1 and Mtb commonly infect macrophages and trigger production of host inflammatory mediators that subsequently regulate the immune response and disease pathogenesis. These inflammatory mediators can impose beneficial or detrimental effects on each pathogen and eventually on host. Among these, inflammatory C–C chemokines play a central role in HIV-1 and Mtb pathogenesis. However, their role in lung-specific mechanisms of HIV-1 and Mtb interaction are poorly understood. In this review we highlight current view on the role of C–C chemokines, more precisely CCL2, on HIV-1: Mtb interaction, potential mechanisms of action and adverse clinical consequences in a setting HIV-1/Mtb co-infection. Targeting common chemokine regulators of HIV-1/Mtb pathogenesis can be an attractive and potential anti-inflammatory intervention in HIV/AIDS-related comorbidities.
Collapse
Affiliation(s)
- A Wahid Ansari
- Faculty of Medicine, Centre of Excellence for Research in AIDS (CERiA), University of Malaya , Kuala Lumpur , Malaysia
| | | | | |
Collapse
|
28
|
Pion M, Jaramillo-Ruiz D, Martínez A, Muñoz-Fernández MA, Correa-Rocha R. HIV infection of human regulatory T cells downregulates Foxp3 expression by increasing DNMT3b levels and DNA methylation in the FOXP3 gene. AIDS 2013; 27:2019-29. [PMID: 24201117 DOI: 10.1097/qad.0b013e32836253fd] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Regulatory T cells (Tregs) play an important role in infections modulating host immune responses and avoiding overreactive immunity. The mechanisms underlying their action in HIV-infected patients have not been well established. HIV can infect Treg, but little is known about the effects of the infection on Treg phenotype and function. The objective of this study was to investigate whether in-vitro HIV infection modifies the phenotype and suppressive capacity of Treg cells. DESIGN Because Treg cells are a subset of CD4 T cells, HIV infection could produce alterations in the phenotype and methylation pattern of Treg disturbing the functionality of these cells. METHODS Isolated Treg cells from healthy volunteers were cultured in the presence of HIV-1, and phenotype, methylation pattern of FOXP3 locus, cytokine secretion profile and suppressive function of infected Treg were analysed in comparison with noninfected Treg. RESULTS We demonstrate that HIV-1 directly infects Treg and deregulates the function and the phenotype that define these cells. HIV infection downregulates the Foxp3 expression in Treg, which is followed by the loss of suppressive capacity and alterations in cytokine secretion pattern, with decreased production of transforming growth factor-beta (TGF-β) and an increased production of interleukin (IL)-4. Foxp3 downregulation in HIV-infected Treg was related to an increase in the expression of DNA methyltransferase3b (DNMT3b) associated with higher methylation of CpG sites in the FOXP3 locus. CONCLUSION These findings are pivotal to our understanding of the role of Treg in HIV infection and indicate that regulatory function could be seriously impaired in HIV-infected patients contributing to the immune hyperactivation.
Collapse
Affiliation(s)
- Marjorie Pion
- Laboratorio de Inmunobiología Molecular, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | | | | | | | | |
Collapse
|
29
|
Cossarizza A, De Biasi S, Gibellini L, Bianchini E, Bartolomeo R, Nasi M, Mussini C, Pinti M. Cytometry, immunology, and HIV infection: three decades of strong interactions. Cytometry A 2013; 83:680-91. [PMID: 23788450 DOI: 10.1002/cyto.a.22318] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/10/2013] [Accepted: 05/17/2013] [Indexed: 12/13/2022]
Abstract
Flow cytometry (FCM) has been extensively used to investigate immunological changes that occur from infection with the human immunodeficiency virus (HIV). This review describes some of the most relevant cellular and molecular changes in the immune system that can be detected by FCM during HIV infection. Finally, it will be discussed how this technology has facilitated the understanding not only of the biology of the virus but also of the mechanisms that the immune system activates to fight HIV and is allowing to monitor the efficacy of antiretroviral therapy.
Collapse
Affiliation(s)
- Andrea Cossarizza
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Sachdeva R, Shilpi RY, Simm M. The interplay between the X-DING-CD4, IFN-α and IL-8 gene activity in quiescent and mitogen- or HIV-1-exposed PBMCs from HIV-1 elite controllers, AIDS progressors and HIV-negative controls. Innate Immun 2013; 20:173-83. [PMID: 23751822 DOI: 10.1177/1753425913486162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
X-DING-CD4 blocks HIV-1 long terminal repeat (LTR) and pathogen induced pro-inflammatory response. Increased activity of the X-DING-CD4 gene is associated with cellular resistance to virus; therefore, HIV-1 elite controllers (ECs) should have higher X-DING-CD4 and reduced pro-inflammatory mRNA activity than viremic or uninfected individuals. Also, depending on the cell stimulating factor, expression of X-DING-CD4 mRNA in ECs might be autonomous or contingent on IFN signaling. We compared expression of X-DING-CD4, IFN-α and IL-8 mRNAs in naive, phytohemagglutinin- or HIV-1 exposed PBMCs from ECs, HIV progressors and negative controls; tested correlation between X-DING-CD4 and IFN-α expression; sensitivity of the X-DING-CD4 gene to IFN-α regulation; and evaluated interactions between innate and pro-inflammatory genes. We found that expression of X-DING-CD4 and IFN-α was up-regulated in ECs and correlated in cells stimulated with mitogen, but not HIV-1. The X-DING-CD4 gene was more sensitive to HIV-1 than rIFN-α stimulation. ECs had significantly less IL-8 mRNA when PBMCs were exposed to exogenous HIV-1. Two-way ANOVA showed that control of HIV-1 and virus-induced pro-inflammatory response by ECs stemmed from interactions between expression of innate immunity and pro-inflammatory genes, the state of cell stimulation and the status of virus control. Consequently, interaction of multiple host innate immune responses rather than a single mechanism regulates restriction of HIV-1 in ECs.
Collapse
Affiliation(s)
- Rakhee Sachdeva
- Protein Chemistry Laboratory, St. Luke's-Roosevelt Institute for Health Sciences, Columbia University, NY, USA
| | | | | |
Collapse
|
31
|
Genovese L, Nebuloni M, Alfano M. Cell-Mediated Immunity in Elite Controllers Naturally Controlling HIV Viral Load. Front Immunol 2013; 4:86. [PMID: 23577012 PMCID: PMC3620550 DOI: 10.3389/fimmu.2013.00086] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 03/26/2013] [Indexed: 12/26/2022] Open
Abstract
The natural course of human immunodeficiency virus (HIV) infection is characterized by high viral load, depletion of immune cells, and immunodeficiency, ultimately leading to acquired immunodeficiency syndrome phase and the occurrence of opportunistic infections and diseases. Since the discovery of HIV in the early 1980s a naturally selected population of infected individuals has been emerged in the last years, characterized by being infected for many years, with viremia constantly below detectable level and poor depletion of immune cells. These individuals are classified as “elite controllers (EC) or suppressors” and do not develop disease in the absence of anti-retroviral therapy. Unveiling host factors and immune responses responsible for the elite status will likely provide clues for the design of therapeutic vaccines and functional cures. Scope of this review was to examine and discuss differences of the cell-mediated immune responses between HIV+ individuals with disease progression and EC.
Collapse
Affiliation(s)
- Luca Genovese
- AIDS Immunopathogenesis Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute Milan, Italy
| | | | | |
Collapse
|