1
|
A multi-pulse ultrasound technique for imaging of thick-shelled microbubbles demonstrated in vitro and in vivo. PLoS One 2022; 17:e0276292. [PMID: 36327225 PMCID: PMC9632906 DOI: 10.1371/journal.pone.0276292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Contrast enhanced ultrasound is a powerful diagnostic tool and ultrasound contrast media are based on microbubbles (MBs). The use of MBs in drug delivery applications and molecular imaging is a relatively new field of research which has gained significant interest during the last decade. MBs available for clinical use are fragile with short circulation half-lives due to the use of a thin encapsulating shell for stabilization of the gas core. Thick-shelled MBs can have improved circulation half-lives, incorporate larger amounts of drugs for enhanced drug delivery or facilitate targeting for use in molecular ultrasound imaging. However, methods for robust imaging of thick-shelled MBs are currently not available. We propose a simple multi-pulse imaging technique which is able to visualize thick-shelled polymeric MBs with a superior contrast-to-tissue ratio (CTR) compared to commercially available harmonic techniques. The method is implemented on a high-end ultrasound scanner and in-vitro imaging in a tissue mimicking flow phantom results in a CTR of up to 23 dB. A proof-of-concept study of molecular ultrasound imaging in a soft tissue inflammation model in rabbit is then presented where the new imaging technique showed an enhanced accumulation of targeted MBs in the inflamed tissue region compared to non-targeted MBs and a mean CTR of 13.3 dB for stationary MBs. The presence of fluorescently labelled MBs was verified by confocal microscopy imaging of tissue sections post-mortem.
Collapse
|
2
|
Li F, Xu W, Feng Y, Wang W, Tian H, He S, Li L, Xiang B, Wang Y. Preparation of ultrasound contrast agents: The exploration of the structure-echogenicity relationship of contrast agents based on neural network model. Front Oncol 2022; 12:964314. [PMID: 36276089 PMCID: PMC9581267 DOI: 10.3389/fonc.2022.964314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022] Open
Abstract
There is a need to standardize the process of micro/nanobubble preparation to bring it closer to clinical translation. We explored a neural network-based model to predict the structure-echogenicity relationship for the preparation and fabrication of ultrasound-enhanced contrast agents. Seven formulations were screened, and 109 measurements were obtained. An artificial neural network-multilayer perceptron (ANN-MLP) model was used. The original data were divided into the training and testing groups, which included 73 and 36 groups of data, respectively. The hidden layer was selected from three hidden layers and included bias. The classification graph showed that the predicted values of the training and testing groups were 76.7% and 66.7%, respectively. According to the receiver operating characteristic curve, the accuracy of different imaging effects could achieve a prediction rate of 88.1–96.5%. The percentage graph showed that the data were gradually converging. The predictive analysis curves of different ultrasound effects gradually approached stable value of Gain. Normalized importance predicted contributions for the Pk1, poly-dispersity index (PDI), and intensity account were 100%, 98.5%, and 89.7%, respectively. The application of the ANN-MLP model is feasible and effective for the exploration of the synthesis process of ultrasound contrast agents. 1,2-Distearoyl-sn-glycero-3 phosphoethanolamine-N (methoxy[polyethylene glycol]-2000) (DSPE PEG-2000) correlated highly with the success rate of contrast agent synthesis.
Collapse
Affiliation(s)
- Feng Li
- Department of Ultrasound, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wensheng Xu
- Department of Ultrasound, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yujin Feng
- Department of Ultrasound, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wengang Wang
- Department of Ultrasound, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hui Tian
- Department of Ultrasound, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Suhuan He
- The First Outpatient Department of Hebei Province, Shijiazhuang, Hebei, China
| | - Liang Li
- Department of Integrated Traditional Chinese and Western Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Bai Xiang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang, Hebei, China
- *Correspondence: Yueheng Wang, ; Bai Xiang,
| | - Yueheng Wang
- Department of Ultrasound, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- *Correspondence: Yueheng Wang, ; Bai Xiang,
| |
Collapse
|
3
|
Goncin U, Bernhard W, Curiel L, Geyer CR, Machtaler S. Rapid Copper-free Click Conjugation to Lipid-Shelled Microbubbles for Ultrasound Molecular Imaging of Murine Bowel Inflammation. Bioconjug Chem 2022; 33:848-857. [DOI: 10.1021/acs.bioconjchem.2c00104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Una Goncin
- Department of Medical Imaging, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Wendy Bernhard
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Laura Curiel
- Department of Electrical and Software Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta T2N 4V8, Canada
| | - C. Ronald Geyer
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Steven Machtaler
- Department of Medical Imaging, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| |
Collapse
|
4
|
Wang H, Vilches-Moure JG, Bettinger T, Cherkaoui S, Lutz A, Paulmurugan R. Contrast Enhanced Ultrasound Molecular Imaging of Spontaneous Chronic Inflammatory Bowel Disease in an Interleukin-2 Receptor α−/− Transgenic Mouse Model Using Targeted Microbubbles. NANOMATERIALS 2022; 12:nano12020280. [PMID: 35055297 PMCID: PMC8779209 DOI: 10.3390/nano12020280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/09/2022] [Accepted: 01/14/2022] [Indexed: 12/15/2022]
Abstract
Inflammatory bowel disease (IBD) is a lifelong inflammatory disorder with relapsing–remission cycles, which is currently diagnosed by clinical symptoms and signs, along with laboratory and imaging findings. However, such clinical findings are not parallel to the disease activity of IBD and are difficult to use in treatment monitoring. Therefore, non-invasive quantitative imaging tools are required for the multiple follow-up exams of IBD patients in order to monitor the disease activity and determine treatment regimens. In this study, we evaluated a dual P- and E-selectin-targeted microbubble (MBSelectin) in an interleukin-2 receptor α deficient (IL-2Rα−/−) spontaneous chronic IBD mouse model for assessing long-term anti-inflammatory effects with ultrasound molecular imaging (USMI). We used IL-2Rα−/− (male and female on a C57BL/6 genetic background; n = 39) and C57BL/6 wild-type (negative control; n = 6) mice for the study. USMI of the proximal, middle, and distal colon was performed with MBSelectin using a small animal scanner (Vevo 2100) up to six times in each IL-2Rα−/− mouse between 6–30 weeks of age. USMI signals were compared between IL-2Rα−/− vs. wild-type mice, and sexes in three colonic locations. Imaged colon segments were analyzed ex vivo for inflammatory changes on H&E-stained sections and for selectin expression by immunofluorescence staining. We successfully detected spontaneous chronic colitis in IL-2Rα−/− mice between 6–30 weeks (onset at 6–14 weeks) compared to wild-type mice. Both male and female IL-2Rα−/− mice were equally (p = 0.996) affected with the disease, and there was no significant (p > 0.05) difference in USMI signals of colitis between the proximal, middle, and distal colon. We observed the fluctuating USMI signals in IL-2Rα−/− mice between 6–30 weeks, which might suggest a resemblance of the remission-flare pattern of human IBD. The ex vivo H&E and immunostaining further confirmed the inflammatory changes, and the high expression of P- and E-selectin in the colon. The results of this study highlight the IL-2Rα−/− mice as a chronic colitis model and are suitable for the long-term assessment of treatment response using a dual P- and E-selectin-targeted USMI.
Collapse
Affiliation(s)
- Huaijun Wang
- Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; (H.W.); (A.L.)
| | | | | | | | - Amelie Lutz
- Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; (H.W.); (A.L.)
| | - Ramasamy Paulmurugan
- Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; (H.W.); (A.L.)
- Correspondence: ; Tel.: +1-650-725-6097; Fax: +1-650-721-6921
| |
Collapse
|
5
|
Vancomycin-decorated microbubbles as a theranostic agent for Staphylococcus aureus biofilms. Int J Pharm 2021; 609:121154. [PMID: 34624449 DOI: 10.1016/j.ijpharm.2021.121154] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 12/20/2022]
Abstract
Bacterial biofilms are a huge burden on our healthcare systems worldwide. The lack of specificity in diagnostic and treatment possibilities result in difficult-to-treat and persistent infections. The aim of this in vitro study was to investigate if microbubbles targeted specifically to bacteria in biofilms could be used both for diagnosis as well for sonobactericide treatment and demonstrate their theranostic potential for biofilm infection management. The antibiotic vancomycin was chemically coupled to the lipid shell of microbubbles and validated using mass spectrometry and high-axial resolution 4Pi confocal microscopy. Theranostic proof-of-principle was investigated by demonstrating the specific binding of vancomycin-decorated microbubbles (vMB) to statically and flow grown Staphylococcus aureus (S. aureus) biofilms under increasing shear stress flow conditions (0-12 dyn/cm2), as well as confirmation of microbubble oscillation and biofilm disruption upon ultrasound exposure (2 MHz, 250 kPa, and 5,000 or 10,000 cycles) during flow shear stress of 5 dyn/cm2 using time-lapse confocal microscopy combined with the Brandaris 128 ultra-high-speed camera. Vancomycin was successfully incorporated into the microbubble lipid shell. vMB bound significantly more often than control microbubbles to biofilms, also in the presence of free vancomycin (up to 1000 µg/mL) and remained bound under increasing shear stress flow conditions (up to 12 dyn/cm2). Upon ultrasound insonification biofilm area was reduced of up to 28%, as confirmed by confocal microscopy. Our results confirm the successful production of vMB and support their potential as a new theranostic tool for S. aureus biofilm infections by allowing for specific bacterial detection and biofilm disruption.
Collapse
|
6
|
Molecular Ultrasound Imaging. NANOMATERIALS 2020; 10:nano10101935. [PMID: 32998422 PMCID: PMC7601169 DOI: 10.3390/nano10101935] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
In the last decade, molecular ultrasound imaging has been rapidly progressing. It has proven promising to diagnose angiogenesis, inflammation, and thrombosis, and many intravascular targets, such as VEGFR2, integrins, and selectins, have been successfully visualized in vivo. Furthermore, pre-clinical studies demonstrated that molecular ultrasound increased sensitivity and specificity in disease detection, classification, and therapy response monitoring compared to current clinically applied ultrasound technologies. Several techniques were developed to detect target-bound microbubbles comprising sensitive particle acoustic quantification (SPAQ), destruction-replenishment analysis, and dwelling time assessment. Moreover, some groups tried to assess microbubble binding by a change in their echogenicity after target binding. These techniques can be complemented by radiation force ultrasound improving target binding by pushing microbubbles to vessel walls. Two targeted microbubble formulations are already in clinical trials for tumor detection and liver lesion characterization, and further clinical scale targeted microbubbles are prepared for clinical translation. The recent enormous progress in the field of molecular ultrasound imaging is summarized in this review article by introducing the most relevant detection technologies, concepts for targeted nano- and micro-bubbles, as well as their applications to characterize various diseases. Finally, progress in clinical translation is highlighted, and roadblocks are discussed that currently slow the clinical translation.
Collapse
|
7
|
Brzoska E, Kalkowski L, Kowalski K, Michalski P, Kowalczyk P, Mierzejewski B, Walczak P, Ciemerych MA, Janowski M. Muscular Contribution to Adolescent Idiopathic Scoliosis from the Perspective of Stem Cell-Based Regenerative Medicine. Stem Cells Dev 2020; 28:1059-1077. [PMID: 31170887 DOI: 10.1089/scd.2019.0073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adolescent idiopathic scoliosis (AIS) is a relatively frequent disease within a range 0.5%-5.0% of population, with higher frequency in females. While a resultant spinal deformity is usually medically benign condition, it produces far going psychosocial consequences, which warrant attention. The etiology of AIS is unknown and current therapeutic approaches are symptomatic only, and frequently inconvenient or invasive. Muscular contribution to AIS is widely recognized, although it did not translate to clinical routine as yet. Muscle asymmetry has been documented by pathological examinations as well as systemic muscle disorders frequently leading to scoliosis. It has been also reported numerous genetic, metabolic and radiological alterations in patients with AIS, which are linked to muscular and neuromuscular aspects. Therefore, muscles might be considered an attractive and still insufficiently exploited therapeutic target for AIS. Stem cell-based regenerative medicine is rapidly gaining momentum based on the tremendous progress in understanding of developmental biology. It comes also with a toolbox of various stem cells such as satellite cells or mesenchymal stem cells, which could be transplanted; also, the knowledge acquired in research on regenerative medicine can be applied to manipulation of endogenous stem cells to obtain desired therapeutic goals. Importantly, paravertebral muscles are located relatively superficially; therefore, they can be an easy target for minimally invasive approaches to treatment of AIS. It comes in pair with a fast progress in image guidance, which allows for precise delivery of therapeutic agents, including stem cells to various organs such as brain, muscles, and others. Summing up, it seems that there is a link between AIS, muscles, and stem cells, which might be worth of further investigations with a long-term goal of setting foundations for eventual bench-to-bedside translation.
Collapse
Affiliation(s)
- Edyta Brzoska
- 1Department of Cytology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Lukasz Kalkowski
- 2Department of Neurology and Neurosurgery, Faculty of Medical Sciences, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Kamil Kowalski
- 1Department of Cytology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Pawel Michalski
- 3Spine Surgery Department, Institute of Mother and Child, Warsaw, Poland
| | - Pawel Kowalczyk
- 4Department of Neurosurgery, Children's Memorial Health Institute, Warsaw, Poland
| | - Bartosz Mierzejewski
- 1Department of Cytology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Piotr Walczak
- 5Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,6Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Maria A Ciemerych
- 1Department of Cytology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Miroslaw Janowski
- 5Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,6Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
8
|
Shen D, Zhu L, Liu Y, Peng Y, Lan M, Fang K, Guo Y. Efficacy evaluation and mechanism study on inhibition of breast cancer cell growth by multimodal targeted nanobubbles carrying AMD070 and ICG. NANOTECHNOLOGY 2020; 31:245102. [PMID: 32155591 DOI: 10.1088/1361-6528/ab7e73] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
To construct targeted nanobubbles carrying both small-molecule CXCR4 antagonist AMD070 and light-absorbing material indocyanine green (ICG), and to study their in vitro multimodal imaging, as well as their mechanism and efficacy of inhibition of breast cancer cell growth. Nanobubbles carrying AMD070 and ICG (ICG-TNBs) were constructed by carbodiimide reaction and mechanical oscillation. The physical characteristics and in vitro multimodal imaging were determined. The binding potential of ICG-TNBs to human breast cancer cells were observed by laser confocal microscopy. CCK-8 and flow cytometry were used to analyze the role of ICG-TNBs + US in inhibiting proliferation and inducing apoptosis of tumor cells. Flow cytometry and Western blotting are used to analyse the ROS generation and molecular mechanisms. ICG-TNBs had a particle size of 497.0 ± 29.2 nm and a Zeta potential of -8.05 ± 0.73 mV. In vitro multimodal imaging showed that the image signal intensity of ICG-TNBs increased with concentration. Targeted binding assay confirmed that ICG-TNBs could specifically bind to MCF-7 cells (CXCR4 positive), but not to MDA-MB-468 cells (CXCR4 negative). CCK-8 assay and flow cytometry analysis showed that ICG-TNBs + US could significantly inhibit the growth of MCF-7 breast cancer cells and promote their apoptosis. Flow cytometry and Western blotting showed that ICG-TNBs + US could significantly raise generation of ROS, reduce the expression of CXCR4, inhibit phosphorylation of Akt, and increase the expression of Caspase3 and Cleaved-caspase3. This indicated that ICG-TNBs could effectively inhibit and block the SDF-1/CXCR4 pathway, thus leading to the apoptosis of MCF-7 cells. ICG-TNBs can specifically bind to CXCR4 positive breast cancer cells, furthermore inhibit growth and promote apoptosis of breast cancer cells combined with ultrasonic irradiation by blocking the SDF-1/CXCR4 pathway. This study introduces a novel concept, method and mechanism for integration of targeted diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- Daijia Shen
- Department of Ultrasound, Southwest Hospital, Third Military Medical University (Army Medical University), 30 Gaotanyan Street, Shapingba District, Chongqing 400038, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
9
|
Luong A, Smith D, Tai CH, Cotter B, Luo C, Strachan M, DeMaria A, Rychak JJ. Development of a Translatable Ultrasound Molecular Imaging Agent for Inflammation. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:690-702. [PMID: 31899038 DOI: 10.1016/j.ultrasmedbio.2019.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 11/06/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
This study details the development, characterization and non-clinical efficacy of an ultrasound molecular imaging agent intended for molecular imaging of P-selectin in humans. A targeting ligand based on a recently discovered human selectin ligand was manufactured as fusion protein, and activity for human and mouse P- and E-selectin was evaluated by functional immunoassay. The targeting ligand was covalently conjugated to a lipophilic anchor inserted into a phospholipid microbubble shell. Three lots of the targeted microbubble drug product, TS-07-009, were produced, and assays for size distribution, zeta potential and morphology were established. The suitability of TS-07-009 as a molecular imaging agent was evaluated in vitro in a flow-based adhesion assay and in vivo using a canine model of transient myocardial ischemia. Selectivity for P-selectin over E-selectin was observed in both the human and murine systems. Contrast agent adhesion increased with P-selectin concentration in a dynamic adhesion assay. Significant contrast enhancement was observed on ultrasound imaging with TS-07-009 in post-ischemic canine myocardium at 30 or 90 min of re-perfusion. Negligible enhancement was observed in resting (no prior ischemia) hearts or with a control microbubble 90 min after ischemia. The microbubble contrast agent described here exhibits physiochemical properties and in vivo behavior suitable for development as a clinical imaging agent.
Collapse
Affiliation(s)
| | - Dan Smith
- Targeson, Inc., San Diego, California, USA
| | | | - Bruno Cotter
- Division of Cardiovascular Medicine, University of California, San Diego, La Jolla, California, USA
| | - Colin Luo
- Division of Cardiovascular Medicine, University of California, San Diego, La Jolla, California, USA
| | - Monet Strachan
- Division of Cardiovascular Medicine, University of California, San Diego, La Jolla, California, USA
| | - Anthony DeMaria
- Division of Cardiovascular Medicine, University of California, San Diego, La Jolla, California, USA
| | - Joshua J Rychak
- Targeson, Inc., San Diego, California, USA; Department of Bioengineering, University of California, San Diego, La Jolla, California, USA.
| |
Collapse
|
10
|
Wang H, Vilches-Moure JG, Cherkaoui S, Tardy I, Alleaume C, Bettinger T, Lutz A, Paulmurugan R. Chronic Model of Inflammatory Bowel Disease in IL-10 -/- Transgenic Mice: Evaluation with Ultrasound Molecular Imaging. Am J Cancer Res 2019; 9:6031-6046. [PMID: 31534535 PMCID: PMC6735517 DOI: 10.7150/thno.37397] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/22/2019] [Indexed: 12/13/2022] Open
Abstract
Objective: Acute mouse models of inflammatory bowel disease (IBD) fail to mirror the chronic nature of IBD in patients. We sought to develop a chronic mouse IBD model for assessing long-term anti-inflammatory effects with ultrasound molecular imaging (USMI) by using dual P- and E-selectin targeted microbubbles (MBSelectin). Materials and Methods: Interleukin 10 deficient (IL-10-/- on a C57BL/6 genetic background; n=55) and FVB (n=16) mice were used. In IL-10-/-mice, various experimental regimens including piroxicam, 2,4,6-trinitrobenzenesulfonic acid (TNBS) or dextran sulfate sodium (DSS), respectively were used for promoting colitis; colitis was induced with DSS in FVB mice. Using clinical and small animal ultrasound scanners, evolution of inflammation in proximal, middle and distal colon, was monitored with USMI by using MBSelectin at multiple time points. Imaged colon segments were analyzed ex vivo for inflammatory changes on H&E staining and for P-selectin expression on immunofluorescence staining. Results: Sustained colitis was not detected with USMI in IL-10-/- or FVB mice with various experimental regimens. USMI signals either gradually decreased after the colitis enhancing/inducing drug/agents were discontinued, or the mortality rate of mice was high. Inflammation was observed on H&E staining in IL-10-/- mice with piroxicam promotion, while stable overexpression of P-selectin was not found on immunofluorescence staining in the same mice. Conclusion: Sustained colitis in IL-10-/- mice induced with piroxicam, TNBS or DSS, and in FVB mice induced with DSS, was not detected with USMI using MBSelectin, and this was verified by immunofluorescence staining for inflammation marker P-selectin. Thus, these models may not be appropriate for long-term monitoring of chronic colitis and subsequent treatment response with dual-selectin targeted USMI.
Collapse
|
11
|
Jing Y, Xiu-Juan Z, Hong-Jiao C, Zhi-Kui C, Qing-Fu Q, En-Sheng X, Li-Wu L. Ultrasound-targeted microbubble destruction improved the antiangiogenic effect of Endostar in triple-negative breast carcinoma xenografts. J Cancer Res Clin Oncol 2019; 145:1191-1200. [PMID: 30805775 DOI: 10.1007/s00432-019-02866-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 02/16/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE Ultrasound-targeted microbubble destruction (UTMD) has been reported to be a meritorious technique for drug targeting delivery. In this study, we aimed to evaluate the synergistic antiangiogenic effect of UTMD combined with Endostar on triple-negative breast carcinoma tumors. MATERIALS AND METHODS The lipid-shelled microbubbles (MBs) conjugated with Endostar were constructed using a biotin-avidin bridging chemistry method, and the morphological characteristics and drug-conjugating content were determined. MBs were administered intravenously to nude mice bearing MDA-MB-231 breast carcinoma xenografts and ultrasound exposure followed. The tumor microcirculation was observed by contrast-enhanced ultrasonography (CEUS) and the Endostar biodistribution was detected by enzyme-linked immunosorbent assay. Twenty-four breast carcinoma-bearing nude mice were divided into four groups. After treatment, every 3 days for 15 days the in vivo antitumor effects were assessed by calculating the tumor growth inhibition rate (TGIR). The tumor microcirculation was observed by CEUS, the tumor microvessel density (MVD) was calculated by immunohistochemistry under a microscope, and the vascular endothelial growth factor (VEGF) gene expression was detected by real-time quantitative polymerase chain reaction. RESULTS The prepared Endostar-conjugated MBs were round and well-dispersed with a mean size of 2.8 ± 0.7 µm and a drug conjugating content of 800.72 ± 70.53 µg/108 MBs. UTMD blocked the tumor microcirculation, and improved Endostar release in the targeted tumor tissue with a drug content of 1.12 ± 0.43 µg/gram protein, which was about three times higher than that in Endostar group or Endostar conjugated MBs group. Endostar-conjugated MBs combined with UTMD treatment achieved the optimal antitumor effects in vivo with a TGIR of 46.29%, and apparent antiangiogenic effects with minimal tumor blood perfusion, MVD and VEGF gene expression level. CONCLUSION UTMD can improve Endostar delivery in the targeting tumor tissue and mediate synergistic antiangiogenetic and antitumor effects, which may be a potential therapeutic strategy for refractory breast cancer.
Collapse
Affiliation(s)
- Yang Jing
- Department of Pharmacy, Affiliated Union Hospital of Fujian Medical University, Fuzhou, China
| | - Zhang Xiu-Juan
- Department of Ultrasound, Affiliated Union Hospital of Fujian Medical University, Fuzhou, China
| | - Cai Hong-Jiao
- Fisheries College of Jimei University, Xiamen, China
| | - Chen Zhi-Kui
- Department of Ultrasound, Affiliated Union Hospital of Fujian Medical University, Fuzhou, China.
| | - Qian Qing-Fu
- Department of Ultrasound, Affiliated Union Hospital of Fujian Medical University, Fuzhou, China
| | - Xue En-Sheng
- Department of Ultrasound, Affiliated Union Hospital of Fujian Medical University, Fuzhou, China
| | - Lin Li-Wu
- Department of Ultrasound, Affiliated Union Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
12
|
Nam K, Stanczak M, Forsberg F, Liu JB, Eisenbrey JR, Solomides CC, Lyshchik A. Sentinel Lymph Node Characterization with a Dual-Targeted Molecular Ultrasound Contrast Agent. Mol Imaging Biol 2019; 20:221-229. [PMID: 28762204 DOI: 10.1007/s11307-017-1109-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE The purpose of this study was to assess the performance of molecular ultrasound with dual-targeted microbubbles to detect metastatic disease in the sentinel lymph nodes (SLNs) in swine model of naturally occurring melanoma. The SLN is the first lymph node in the lymphatic chain draining primary tumor, and early detection of metastatic SLN involvement is critical in the appropriate management of melanoma. PROCEDURE Nine Sinclair swine (weight 3-7 kg; Sinclair BioResources, Columbia, MO, USA) with naturally occurring melanoma were examined. Siemens S3000 scanner with a 9L4 probe was used for imaging (Siemens Healthineers, Mountain View, CA). Dual-targeted contrast agent was created using Targestar SA microbubbles (Targeson, San Diego, CA, USA) labeled with ανβ3-integrin and P-selectin antibodies. Targestar SA microbubbles labeled with IgG-labeled were used as control. First, peritumoral injection of Sonazoid contrast agent (GE Healthcare, Oslo, Norway) was performed to detect SLNs. After that, dual-targeted and IGG control Targestar SA microbubbles were injected intravenously with a 30-min interval between injections. Labeled Targestar SA microbubbles were allowed to circulate for 4 min to enable binding. After that, two sets of image clips were acquired several seconds before and after a high-power destruction sequence. The mean intensity difference pre- to post-bubble destruction within the region of interest placed over SLN was calculated as a relative measure of targeted microbubble contrast agent retention. This process was repeated for non-SLNs as controls. All lymph nodes evaluated on imaging were surgically removed and histologically examined for presence of metastatic involvement. RESULTS A total of 43 lymph nodes (25 SLNs and 18 non-SLNs) were included in the analysis with 18 SLNs demonstrating metastatic involvement greater than 5 % on histology. All non-SLNs were benign. The mean intensity (± SD) of the dual-targeted microbubbles for metastatic SLNs was significantly higher than that of benign LNs (18.05 ± 19.11 vs. 3.30 ± 6.65 AU; p = 0.0008), while IgG-labeled control microbubbles demonstrated no difference in retained contrast intensity between metastatic and benign lymph nodes (0.39 ± 1.14 vs. 0.03 ± 0.24 AU; p = 0.14). CONCLUSIONS The results indicate that dual-targeted microbubbles labeled with P-selectin and ανβ3-integrin antibodies may aid in detecting metastatic involvement in SLNs of melanoma.
Collapse
Affiliation(s)
- Kibo Nam
- Department of Radiology, Thomas Jefferson University, 132 South 10th Street, Philadelphia, PA, 19107, USA
| | - Maria Stanczak
- Department of Radiology, Thomas Jefferson University, 132 South 10th Street, Philadelphia, PA, 19107, USA
| | - Flemming Forsberg
- Department of Radiology, Thomas Jefferson University, 132 South 10th Street, Philadelphia, PA, 19107, USA
| | - Ji-Bin Liu
- Department of Radiology, Thomas Jefferson University, 132 South 10th Street, Philadelphia, PA, 19107, USA
| | - John R Eisenbrey
- Department of Radiology, Thomas Jefferson University, 132 South 10th Street, Philadelphia, PA, 19107, USA
| | | | - Andrej Lyshchik
- Department of Radiology, Thomas Jefferson University, 132 South 10th Street, Philadelphia, PA, 19107, USA.
| |
Collapse
|
13
|
Molecular Imaging of a New Multimodal Microbubble for Adhesion Molecule Targeting. Cell Mol Bioeng 2018; 12:15-32. [PMID: 31719897 PMCID: PMC6816780 DOI: 10.1007/s12195-018-00562-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 11/09/2018] [Indexed: 12/29/2022] Open
Abstract
Introduction Inflammation is an important risk-associated component of many diseases and can be diagnosed by molecular imaging of specific molecules. The aim of this study was to evaluate the possibility of targeting adhesion molecules on inflammation-activated endothelial cells and macrophages using an innovative multimodal polyvinyl alcohol-based microbubble (MB) contrast agent developed for diagnostic use in ultrasound, magnetic resonance, and nuclear imaging. Methods We assessed the binding efficiency of antibody-conjugated multimodal contrast to inflamed murine or human endothelial cells (ECs), and to peritoneal macrophages isolated from rats with peritonitis, utilizing the fluorescence characteristics of the MBs. Single-photon emission tomography (SPECT) was used to illustrate 99mTc-labeled MB targeting and distribution in an experimental in vivo model of inflammation. Results Flow cytometry and confocal microscopy showed that binding of antibody-targeted MBs to the adhesion molecules ICAM-1, VCAM-1, or E-selectin, expressed on cytokine-stimulated ECs, was up to sixfold higher for human and 12-fold higher for mouse ECs, compared with that of non-targeted MBs. Under flow conditions, both VCAM-1- and E-selectin-targeted MBs adhered more firmly to stimulated human ECs than to untreated cells, while VCAM-1-targeted MBs adhered best to stimulated murine ECs. SPECT imaging showed an approximate doubling of signal intensity from the abdomen of rats with peritonitis, compared with healthy controls, after injection of anti-ICAM-1-MBs. Conclusions This novel multilayer contrast agent can specifically target adhesion molecules expressed as a result of inflammatory stimuli in vitro, and has potential for use in disease-specific multimodal diagnostics in vivo using antibodies against targets of interest.
Collapse
|
14
|
Wischhusen J, Wilson KE, Delcros JG, Molina-Peña R, Gibert B, Jiang S, Ngo J, Goldschneider D, Mehlen P, Willmann JK, Padilla F. Ultrasound molecular imaging as a non-invasive companion diagnostic for netrin-1 interference therapy in breast cancer. Theranostics 2018; 8:5126-5142. [PMID: 30429890 PMCID: PMC6217066 DOI: 10.7150/thno.27221] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 07/24/2018] [Indexed: 02/07/2023] Open
Abstract
In ultrasound molecular imaging (USMI), ligand-functionalized microbubbles (MBs) are used to visualize vascular endothelial targets. Netrin-1 is upregulated in 60% of metastatic breast cancers and promotes tumor progression. A novel netrin-1 interference therapy requires the assessment of netrin-1 expression prior to treatment. In this study, we studied netrin-1 as a target for USMI and its potential as a companion diagnostic in breast cancer models. Methods: To verify netrin-1 expression and localization, an in vivo immuno-localization approach was applied, in which anti-netrin-1 antibody was injected into living mice 24 h before tumor collection, and revealed with secondary fluorescent antibody for immunofluorescence analysis. Netrin-1 interactions with the cell surface were studied by flow cytometry. Netrin-1-targeted MBs were prepared using MicroMarker Target-Ready (VisualSonics), and validated in in vitro binding assays in static conditions or in a flow chamber using purified netrin-1 protein or netrin-1-expressing cancer cells. In vivo USMI of netrin-1 was validated in nude mice bearing human netrin-1-positive SKBR7 tumors or weakly netrin-1-expressing MDA-MB-231 tumors using the Vevo 2100 small animal imaging device (VisualSonics). USMI feasibility was further tested in transgenic murine FVB/N Tg(MMTV/PyMT634Mul) (MMTV-PyMT) mammary tumors. Results: Netrin-1 co-localized with endothelial CD31 in netrin-1-positive breast tumors. Netrin-1 binding to the surface of endothelial HUVEC and cancer cells was partially mediated by heparan sulfate proteoglycans. MBs targeted with humanized monoclonal anti-netrin-1 antibody bound to netrin-1-expressing cancer cells in static and dynamic conditions. USMI signal was significantly increased with anti-netrin-1 MBs in human SKBR7 breast tumors and transgenic murine MMTV-PyMT mammary tumors compared to signals recorded with either isotype control MBs or after blocking of netrin-1 with humanized monoclonal anti-netrin-1 antibody. In weakly netrin-1-expressing human tumors and normal mammary glands, no difference in imaging signal was observed with anti-netrin-1- and isotype control MBs. Ex vivo analysis confirmed netrin-1 expression in MMTV-PyMT tumors. Conclusions: These results show that USMI allowed reliable detection of netrin-1 on the endothelium of netrin-1-positive human and murine tumors. Significant differences in USMI signal for netrin-1 reflected the significant differences in netrin-1 mRNA & protein expression observed between different breast tumor models. The imaging approach was non-invasive and safe, and provided the netrin-1 expression status in near real-time. Thus, USMI of netrin-1 has the potential to become a companion diagnostic for the stratification of patients for netrin-1 interference therapy in future clinical trials.
Collapse
|
15
|
Wang H, Hyvelin JM, Felt SA, Guracar I, Vilches-Moure JG, Cherkaoui S, Bettinger T, Tian L, Lutz AM, Willmann JK. US Molecular Imaging of Acute Ileitis: Anti-Inflammatory Treatment Response Monitored with Targeted Microbubbles in a Preclinical Model. Radiology 2018; 289:90-100. [PMID: 30040040 PMCID: PMC6190483 DOI: 10.1148/radiol.2018172600] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/24/2018] [Accepted: 05/09/2018] [Indexed: 12/30/2022]
Abstract
Purpose To evaluate whether dual-selectin-targeted US molecular imaging allows longitudinal monitoring of anti-inflammatory treatment effects in an acute terminal ileitis model in swine. Materials and Methods The Institutional Animal Care and Use Committee approved all animal studies. Fourteen swine with chemically induced acute terminal ileitis (day 0) were randomized into the following groups: (a) an anti-inflammatory treatment group (n = 8; meloxicam, 0.25 mg per kilogram of body weight; prednisone, 0.5 mg/kg) and (b) a control group (n = 6; saline). US molecular imaging was performed with a clinical US machine after intravenous injection of clinically translatable dual P- and E-selectin-targeted microbubbles (5 × 108/kg). Three inflamed bowel segments per swine were imaged at baseline, as well as on days 1, 3, and 6 after treatment initiation. At day 6, bowel segments were analyzed ex vivo for selectin expression levels by using quantitative immunofluorescence. Results After induction of inflammation, US molecular imaging signal increased at day 1 in both animal groups (P < .001). At day 3, signal in the treatment group decreased (P < .001 vs day 1), while signal in control animals did not significantly change (P = .18 vs day 1) and was higher (P = .001) compared with that in the treatment group. At day 6, signal in the treatment group further decreased and remained lower (P = .02) compared with that in the control group. Immunofluorescence confirmed significant (P ≤ .04) downregulation of both P- and E-selectin expression levels in treated versus control bowel segments. Conclusion Dual-selectin-targeted US molecular imaging allows longitudinal monitoring of anti-inflammatory treatment effects in a large-animal model of acute ileitis. This supports further clinical development of this quantitative and radiation-free technique for monitoring inflammatory bowel disease. © RSNA, 2018 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Huaijun Wang
- From the Department of Radiology, Stanford University School of
Medicine, 300 Pasteur Dr, Grant SO62B, Stanford, CA 94305-5105 (H.W., A.M.L.,
J.K.W.); Bracco Suisse SA, Geneva, Switzerland (J.M.H., S.C., T.B.); Departments
of Comparative Medicine (S.A.F., J.G.V.) and Health, Research & Policy
(L.T.), Stanford University, Stanford, Calif; and Ultrasound Business Unit,
Siemens Healthcare, Mountain View, Calif (I.G.)
| | - Jean-Marc Hyvelin
- From the Department of Radiology, Stanford University School of
Medicine, 300 Pasteur Dr, Grant SO62B, Stanford, CA 94305-5105 (H.W., A.M.L.,
J.K.W.); Bracco Suisse SA, Geneva, Switzerland (J.M.H., S.C., T.B.); Departments
of Comparative Medicine (S.A.F., J.G.V.) and Health, Research & Policy
(L.T.), Stanford University, Stanford, Calif; and Ultrasound Business Unit,
Siemens Healthcare, Mountain View, Calif (I.G.)
| | - Stephen A. Felt
- From the Department of Radiology, Stanford University School of
Medicine, 300 Pasteur Dr, Grant SO62B, Stanford, CA 94305-5105 (H.W., A.M.L.,
J.K.W.); Bracco Suisse SA, Geneva, Switzerland (J.M.H., S.C., T.B.); Departments
of Comparative Medicine (S.A.F., J.G.V.) and Health, Research & Policy
(L.T.), Stanford University, Stanford, Calif; and Ultrasound Business Unit,
Siemens Healthcare, Mountain View, Calif (I.G.)
| | - Ismayil Guracar
- From the Department of Radiology, Stanford University School of
Medicine, 300 Pasteur Dr, Grant SO62B, Stanford, CA 94305-5105 (H.W., A.M.L.,
J.K.W.); Bracco Suisse SA, Geneva, Switzerland (J.M.H., S.C., T.B.); Departments
of Comparative Medicine (S.A.F., J.G.V.) and Health, Research & Policy
(L.T.), Stanford University, Stanford, Calif; and Ultrasound Business Unit,
Siemens Healthcare, Mountain View, Calif (I.G.)
| | - Jose G. Vilches-Moure
- From the Department of Radiology, Stanford University School of
Medicine, 300 Pasteur Dr, Grant SO62B, Stanford, CA 94305-5105 (H.W., A.M.L.,
J.K.W.); Bracco Suisse SA, Geneva, Switzerland (J.M.H., S.C., T.B.); Departments
of Comparative Medicine (S.A.F., J.G.V.) and Health, Research & Policy
(L.T.), Stanford University, Stanford, Calif; and Ultrasound Business Unit,
Siemens Healthcare, Mountain View, Calif (I.G.)
| | - Samir Cherkaoui
- From the Department of Radiology, Stanford University School of
Medicine, 300 Pasteur Dr, Grant SO62B, Stanford, CA 94305-5105 (H.W., A.M.L.,
J.K.W.); Bracco Suisse SA, Geneva, Switzerland (J.M.H., S.C., T.B.); Departments
of Comparative Medicine (S.A.F., J.G.V.) and Health, Research & Policy
(L.T.), Stanford University, Stanford, Calif; and Ultrasound Business Unit,
Siemens Healthcare, Mountain View, Calif (I.G.)
| | - Thierry Bettinger
- From the Department of Radiology, Stanford University School of
Medicine, 300 Pasteur Dr, Grant SO62B, Stanford, CA 94305-5105 (H.W., A.M.L.,
J.K.W.); Bracco Suisse SA, Geneva, Switzerland (J.M.H., S.C., T.B.); Departments
of Comparative Medicine (S.A.F., J.G.V.) and Health, Research & Policy
(L.T.), Stanford University, Stanford, Calif; and Ultrasound Business Unit,
Siemens Healthcare, Mountain View, Calif (I.G.)
| | - Lu Tian
- From the Department of Radiology, Stanford University School of
Medicine, 300 Pasteur Dr, Grant SO62B, Stanford, CA 94305-5105 (H.W., A.M.L.,
J.K.W.); Bracco Suisse SA, Geneva, Switzerland (J.M.H., S.C., T.B.); Departments
of Comparative Medicine (S.A.F., J.G.V.) and Health, Research & Policy
(L.T.), Stanford University, Stanford, Calif; and Ultrasound Business Unit,
Siemens Healthcare, Mountain View, Calif (I.G.)
| | - Amelie M. Lutz
- From the Department of Radiology, Stanford University School of
Medicine, 300 Pasteur Dr, Grant SO62B, Stanford, CA 94305-5105 (H.W., A.M.L.,
J.K.W.); Bracco Suisse SA, Geneva, Switzerland (J.M.H., S.C., T.B.); Departments
of Comparative Medicine (S.A.F., J.G.V.) and Health, Research & Policy
(L.T.), Stanford University, Stanford, Calif; and Ultrasound Business Unit,
Siemens Healthcare, Mountain View, Calif (I.G.)
| | | |
Collapse
|
16
|
Li Y, Chen Y, Du M, Chen ZY. Ultrasound Technology for Molecular Imaging: From Contrast Agents to Multimodal Imaging. ACS Biomater Sci Eng 2018; 4:2716-2728. [PMID: 33434997 DOI: 10.1021/acsbiomaterials.8b00421] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ultrasound (US) takes advantage of ultrasound contrast agents (UCAs) to further increase the sensitivity and specificity of monitoring at the cellular level, which has had a considerable effect on the modern molecular imaging field. Gas-filled microbubbles (MBs) as UCAs in the bloodstream generate resonant volumetric oscillations in response to rapid variations in acoustic pressure, which are related to both the acoustic parameters of applied ultrasound and the physicochemical properties of the contrast agents. Nanoscale UCAs have been developed and have attracted much attention due to their utility in detecting extravascular lesions. Ultrasound molecular assessment is achieved by binding disease-specific ligands to the surface of UCAs, which have been designed to target tissue biomarkers in the area of interest, such as blood vessels, inflammation, or thrombosis. Additionally, the development of multimodal imaging technology is conducive for integration of the advantages of various imaging techniques to acquire additional diagnostic information. In this review paper, the present status and the critical issues for developing ultrasound contrast agents and multimodal imaging applications are described. Conventional MB UCAs are first introduced, including their research material, diagnostic applications, and intrinsic limitations. Then, recent progress in developing targeted UCAs and phase-inversion contrast agents for diagnostic purposes is discussed. Finally, we review the present status and the critical issues for developing ultrasound-based multimodal imaging applications and summarize the existing challenges and future prospects.
Collapse
Affiliation(s)
- Yue Li
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, People's Republic of China
| | - Yuhao Chen
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, People's Republic of China
| | - Meng Du
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, People's Republic of China
| | - Zhi-Yi Chen
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, People's Republic of China
| |
Collapse
|
17
|
Corthésy B, Bioley G. Lipid-Based Particles: Versatile Delivery Systems for Mucosal Vaccination against Infection. Front Immunol 2018; 9:431. [PMID: 29563912 PMCID: PMC5845866 DOI: 10.3389/fimmu.2018.00431] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/19/2018] [Indexed: 12/19/2022] Open
Abstract
Vaccination is the process of administering immunogenic formulations in order to induce or harness antigen (Ag)-specific antibody and T cell responses in order to protect against infections. Important successes have been obtained in protecting individuals against many deleterious pathological situations after parenteral vaccination. However, one of the major limitations of the current vaccination strategies is the administration route that may not be optimal for the induction of immunity at the site of pathogen entry, i.e., mucosal surfaces. It is now well documented that immune responses along the genital, respiratory, or gastrointestinal tracts have to be elicited locally to ensure efficient trafficking of effector and memory B and T cells to mucosal tissues. Moreover, needle-free mucosal delivery of vaccines is advantageous in terms of safety, compliance, and ease of administration. However, the quest for mucosal vaccines is challenging due to (1) the fact that Ag sampling has to be performed across the epithelium through a relatively limited number of portals of entry; (2) the deleterious acidic and proteolytic environment of the mucosae that affect the stability, integrity, and retention time of the applied Ags; and (3) the tolerogenic environment of mucosae, which requires the addition of adjuvants to elicit efficient effector immune responses. Until now, only few mucosally applicable vaccine formulations have been developed and successfully tested. In animal models and clinical trials, the use of lipidic structures such as liposomes, virosomes, immune stimulating complexes, gas-filled microbubbles and emulsions has proven efficient for the mucosal delivery of associated Ags and the induction of local and systemic immune reponses. Such particles are suitable for mucosal delivery because they protect the associated payload from degradation and deliver concentrated amounts of Ags via specialized sampling cells (microfold cells) within the mucosal epithelium to underlying antigen-presenting cells. The review aims at summarizing recent development in the field of mucosal vaccination using lipid-based particles. The modularity ensured by tailoring the lipidic design and content of particles, and their known safety as already established in humans, make the continuing appraisal of these vaccine candidates a promising development in the field of targeted mucosal vaccination.
Collapse
Affiliation(s)
- Blaise Corthésy
- R&D Laboratory, Division of Immunology and Allergy, Centre des Laboratoires d'Epalinges, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Gilles Bioley
- R&D Laboratory, Division of Immunology and Allergy, Centre des Laboratoires d'Epalinges, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| |
Collapse
|
18
|
Volz KR, Evans KD, Kanner CD, Buford JA, Freimer M, Sommerich CM, Basso DM. Molecular Ultrasound Imaging for the Detection of Neural Inflammation: A Longitudinal Dosing Pilot Study. JOURNAL OF DIAGNOSTIC MEDICAL SONOGRAPHY 2017. [DOI: 10.1177/8756479317736250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Molecular ultrasound imaging provides the ability to detect physiologic processes noninvasively by targeting a variety of biomarkers in vivo. The current study was performed by exploiting an inflammatory biomarker, P-selectin, known to be present following spinal cord injury. Using a murine model (n = 6), molecular ultrasound imaging was performed using contrast microbubbles modified to target and adhere to P-selectin, prior to spinal cord injury (0D), acute stage postinjury (7D), and chronic stage (42D). Additionally, two imaging sessions were performed on each subject at specific time points, using doses of 30 μL and 100 μL. Upon analysis, targeted contrast analysis parameters were appreciably increased during the 7D scan compared with the 42D scan, without statistical significance. When examining the dose levels, the 30-μL dose demonstrated greater values than the 100-μL dose but lacked statistical significance. These findings provide additional preclinical evidence for the use of molecular ultrasound imaging for the possible detection of inflammation.
Collapse
Affiliation(s)
- Kevin R. Volz
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Kevin D. Evans
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | | | - John A. Buford
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Miriam Freimer
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | | | - D. Michele Basso
- College of Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
19
|
Zhu L, Guo Y, Wang L, Fan X, Xiong X, Fang K, Xu D. Construction of ultrasonic nanobubbles carrying CAIX polypeptides to target carcinoma cells derived from various organs. J Nanobiotechnology 2017; 15:63. [PMID: 28962657 PMCID: PMC5622542 DOI: 10.1186/s12951-017-0307-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/23/2017] [Indexed: 01/01/2023] Open
Abstract
Background Ultrasound molecular imaging is a novel diagnostic approach for tumors, whose key link is the construction of targeted ultrasound contrast agents. However, available targeted ultrasound contrast agents for molecular imaging of tumors are only achieving imaging in blood pool or one type tumor. No targeted ultrasound contrast agents have realized targeted ultrasound molecular imaging of tumor parenchymal cells in a variety of solid tumors so far. Carbonic anhydrase IX (CAIX) is highly expressed on cell membranes of various malignant solid tumors, so it’s a good target for ultrasound molecular imaging. Here, targeted nanobubbles carrying CAIX polypeptides for targeted binding to a variety of malignant tumors were constructed, and targeted binding ability and ultrasound imaging effect in different types of tumors were evaluated. Results The mean diameter of lipid targeted nanobubbles was (503.7 ± 78.47) nm, and the polypeptides evenly distributed on the surfaces of targeted nanobubbles, which possessed the advantages of homogenous particle size, high stability, and good safety. Targeted nanobubbles could gather around CAIX-positive cells (786-O and Hela cells), while they cannot gather around CAIX-negative cells (BxPC-3 cells) in vitro, and the affinity of targeted nanobubbles to CAIX-positive cells were significantly higher than that to CAIX-negative cells (P < 0.05). Peak intensity and duration time of targeted nanobubbles and blank nanobubbles were different in CAIX-positive transplanted tumor tissues in vivo (P < 0.05). Moreover, targeted nanobubbles in CAIX-positive transplanted tumor tissues produced higher peak intensity and longer duration time than those in CAIX-negative transplanted tumor tissues (P < 0.05). Finally, immunofluorescence not only confirmed targeted nanobubbles could pass through blood vessels to enter in tumor tissue spaces, but also clarified imaging differences of targeted nanobubbles in different types of transplanted tumor tissues. Conclusions Targeted nanobubbles carrying CAIX polypeptides can specifically enhance ultrasound imaging in CAIX-positive transplanted tumor tissues and could potentially be used in early diagnosis of a variety of solid tumors derived from various organs. Electronic supplementary material The online version of this article (doi:10.1186/s12951-017-0307-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lianhua Zhu
- Department of Ultrasound, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Yanli Guo
- Department of Ultrasound, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
| | - Luofu Wang
- Department of Urology, Daping Hospital, Third Military Medical University, 10 Changjiang Zhi Road, Yuzhong District, Chongqing, 400038, China
| | - Xiaozhou Fan
- Department of Ultrasound, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Xingyu Xiong
- Department of Ultrasound, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Kejing Fang
- Department of Ultrasound, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Dan Xu
- Department of Ultrasound, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| |
Collapse
|
20
|
Corthésy B, Bioley G. Gas-filled microbubbles: Novel mucosal antigen-delivery system for induction of anti-pathogen's immune responses in the gut. Gut Microbes 2017; 8:511-519. [PMID: 28541767 PMCID: PMC5628650 DOI: 10.1080/19490976.2017.1334032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Despite important success in protecting individuals against many pathogenic infections, parenteral vaccination is not optimal to induce immunity at the site of pathogen entry, i.e. mucosal surfaces. Moreover, designing adequate delivery systems and safe adjuvants to overcome the inherent tolerogenic environment of the mucosal tissue is challenging, in particular in the gastrointestinal tract prone to antigen degradation. We recently demonstrated that intranasal administration of a Salmonella-derived antigen associated with gas-filled microbubbles induced specific Ab and T cell responses in the gut and was associated with a reduction in local and systemic bacterial load after oral Salmonella infection. Building on these promising data, the adequate choice of antigen(s) to be administered and how to make it suitable for possible human application are discussed. We additionally present novel data dealing with oral administration of microbubbles and describe research strategies to direct them to mucosal sampling/inductive sites.
Collapse
Affiliation(s)
- Blaise Corthésy
- R&D Laboratory, Division of Immunology and Allergy, University State Hospital (CHUV), Epalinges, Switzerland
| | - Gilles Bioley
- R&D Laboratory, Division of Immunology and Allergy, University State Hospital (CHUV), Epalinges, Switzerland,CONTACT Dr. Gilles Bioley R&D Laboratory, Division of Immunology and Allergy, University State Hospital (CHUV), CLE-D2–205, Chemin des Boveresses 155, 1066 Epalinges, Switzerland
| |
Collapse
|
21
|
Güvener N, Appold L, de Lorenzi F, Golombek SK, Rizzo LY, Lammers T, Kiessling F. Recent advances in ultrasound-based diagnosis and therapy with micro- and nanometer-sized formulations. Methods 2017; 130:4-13. [PMID: 28552267 DOI: 10.1016/j.ymeth.2017.05.018] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/11/2017] [Accepted: 05/21/2017] [Indexed: 01/15/2023] Open
Abstract
Ultrasound (US) is one of the most frequently used imaging methods in the clinic. The broad spectrum of its applications can be increased by the use of gas-filled microbubbles (MB) as ultrasound contrast agents (UCA). In recent years, also nanoscale UCA like nanobubbles (NB), echogenic liposomes (ELIP) and nanodroplets have been developed, which in contrast to MB, are able to extravasate from the vessels into the tissue. New disease-specific UCA have been designed for the assessment of tissue biomarkers and advanced US to a molecular imaging modality. For this purpose, specific binding moieties were coupled to the UCA surface. The vascular endothelial growth factor receptor-2 (VEGFR-2) and P-/E-selectin are prominent examples of molecular US targets to visualize tumor blood vessels and inflammatory diseases, respectively. Besides their application in contrast-enhanced imaging, MB can also be employed for drug delivery to tumors and across the blood-brain barrier (BBB). This review summarizes the development of micro- and nanoscaled UCA and highlights recent advances in diagnostic and therapeutic applications, which are ready for translation into the clinic.
Collapse
Affiliation(s)
- Nihan Güvener
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen, Germany
| | - Lia Appold
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen, Germany
| | - Federica de Lorenzi
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen, Germany
| | - Susanne K Golombek
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen, Germany
| | - Larissa Y Rizzo
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen, Germany.
| |
Collapse
|
22
|
Volz KR, Evans KD, Kanner CD, Buford JA, Freimer M, Sommerich CM. Targeted Contrast-Enhanced Ultrasound for Inflammation Detection. JOURNAL OF DIAGNOSTIC MEDICAL SONOGRAPHY 2016. [DOI: 10.1177/8756479316678616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Molecular imaging is a form of nanotechnology that enables the noninvasive examination of biological processes in vivo. Radiopharmaceutical agents are used to target biochemical markers, permitting their detection and evaluation. Early visualization of molecular variations indicative of pathophysiological processes can aid in patient diagnoses and management decisions. Molecular imaging is performed by introducing into the body molecular probes, which are often contrast agents that have been nanoengineered to target and tether to molecules, thus enabling their radiologic identification. Through a nanoengineering process, ultrasound contrast agents can be targeted to specific molecules, extending ultrasound’s capabilities from the tissue to molecular level. Molecular ultrasound, or targeted contrast-enhanced ultrasound (TCEUS), has recently emerged as a popular molecular imaging technique due to its ability to provide real-time anatomic and functional information without ionizing radiation. However, molecular ultrasound represents a novel form of molecular imaging and consequently remains largely preclinical. This review explores the commonalities of TCEUS across several molecular targets and points to the need for standardization of kinetic behavior analysis. The literature underscores evidence gaps and the need for additional research. The application of TCEUS is unlimited but needs further standardization to ensure that future research studies are comparable.
Collapse
Affiliation(s)
- Kevin R. Volz
- College of Medicine, School of Health and Rehabilitation Science, The Ohio State University, Columbus, OH, USA
| | - Kevin D. Evans
- College of Medicine, School of Health and Rehabilitation Science, The Ohio State University, Columbus, OH, USA
| | - Christopher D. Kanner
- College of Medicine, School of Health and Rehabilitation Science, The Ohio State University, Columbus, OH, USA
| | - John A. Buford
- College of Medicine, School of Health and Rehabilitation Science, The Ohio State University, Columbus, OH, USA
| | - Miriam Freimer
- College of Medicine, School of Health and Rehabilitation Science, The Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
23
|
Spivak I, Rix A, Schmitz G, Fokong S, Iranzo O, Lederle W, Kiessling F. Low-Dose Molecular Ultrasound Imaging with E-Selectin-Targeted PBCA Microbubbles. Mol Imaging Biol 2016; 18:180-90. [PMID: 26391990 DOI: 10.1007/s11307-015-0894-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE Our objective was to determine the lowest diagnostically effective dose for E-selectin-targeted poly n-butyl cyanoacrylate (PBCA)-shelled microbubbles and to apply it to monitor antiangiogenic therapy effects. PROCEDURES PBCA-shelled microbubbles (MBs) coupled to an E-selectin-specific peptide were applied in mice carrying MLS or A431 carcinoma xenografts scaling down the MB dosage to the lowest level where binding could be examined with a 18-MHz small animal ultrasound transducer. Differences in E-selectin expression in the two carcinoma xenografts were confirmed by enzyme-linked immunosorbent assay (ELISA). In addition, MLS tumor-bearing mice under antiangiogenic therapy were monitored using E-selectin-targeted MBs at the lowest applicable dose. Therapy effects on tumor vascularization were verified by immunohistological analyses. RESULTS The minimally required dosage was 7 × 10(7) MBs/kg body weight. This dosage was sufficient to enable E-selectin detection in high E-selectin-expressing MLS tumors, while low E-selectin-expressing A431 tumors required almost 2.5-fold higher doses. At the dose of 7 × 10(7) MBs/kg body weight, a decrease in E-selectin MB binding under antiangiogenic therapy could be assessed (being significant after 3 days of treatment; p < 0.0001), which was in line with the significant drop in E-selectin-positive area fractions that was found histologically (p < 0.05). CONCLUSIONS Molecular ultrasound imaging with our E-selectin-targeted MB and therapy monitoring was possible down to a dose of 7 × 10(7) MBs/kg body weight (equates to 66 μg PBCA/kg and 4.6 mg PBCA/70 kg). Improvements in choice of targets, MB composition, and other MB detection methods may improve sensitivity and lead to reliable detection results of clinically transferrable MBs at even lower dosage levels.
Collapse
Affiliation(s)
- Igor Spivak
- Department of Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Anne Rix
- Department of Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Georg Schmitz
- Institute of Medical Engineering, Ruhr-University Bochum, Bochum, Germany
| | - Stanley Fokong
- Department of Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Olga Iranzo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.,Aix Marseille Université, Centrale Marseille, CNRS, iSm2 UMR 7313, 13397, Marseille, France
| | - Wiltrud Lederle
- Department of Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Fabian Kiessling
- Department of Experimental Molecular Imaging, Medical Faculty, RWTH Aachen University, Aachen, Germany. .,Institute for Experimental Molecular Imaging, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
| |
Collapse
|
24
|
Molecular Ultrasound Imaging of Tissue Inflammation Using an Animal Model of Acute Kidney Injury. Mol Imaging Biol 2016; 17:786-92. [PMID: 25905474 DOI: 10.1007/s11307-015-0860-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE The objective of this study was to evaluate the use of molecular ultrasound (US) imaging for monitoring the early inflammatory effects following acute kidney injury. PROCEDURES A population of rats underwent 30 min of renal ischemia (acute kidney injury, N = 6) or sham injury (N = 4) using established surgical methods. Animals were divided and molecular US imaging was performed during the bolus injection of a targeted microbubble (MB) contrast agent to either P-selectin or vascular cell adhesion molecule 1 (VCAM-1). Imaging was performed before surgery and 4 and 24 h thereafter. After manual segmentation of renal tissue space, the molecular US signal was calculated as the difference between time-intensity curve data before MB injection and after reaching steady-state US image enhancement. All animals were terminated after the 24 h imaging time point and kidneys excised for immunohistochemical (IHC) analysis. RESULTS Renal inflammation was analyzed using molecular US imaging. While results using the P-selectin and VCAM-1 targeted MBs were comparable, it appears that the former was more sensitive to biomarker expression. All molecular US imaging measures had a positive correlation with IHC findings. CONCLUSIONS Acute kidney injury is a serious disease in need of improved noninvasive methods to help diagnose the extent of injury and monitor the tissue throughout disease progression. Molecular US imaging appears well suited to address this challenge and more research is warranted.
Collapse
|
25
|
Daeichin V, Kooiman K, Skachkov I, Bosch JG, Theelen TL, Steiger K, Needles A, Janssen BJ, Daemen MJAP, van der Steen AFW, de Jong N, Sluimer JC. Quantification of Endothelial αvβ3 Expression with High-Frequency Ultrasound and Targeted Microbubbles: In Vitro and In Vivo Studies. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:2283-2293. [PMID: 27302657 DOI: 10.1016/j.ultrasmedbio.2016.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 06/06/2023]
Abstract
Angiogenesis is a critical feature of plaque development in atherosclerosis and might play a key role in both the initiation and later rupture of plaques. The precursory molecular or cellular pro-angiogenic events that initiate plaque growth and that ultimately contribute to plaque instability, however, cannot be detected directly with any current diagnostic modality. This study was designed to investigate the feasibility of ultrasound molecular imaging of endothelial αvβ3 expression in vitro and in vivo using αvβ3-targeted ultrasound contrast agents (UCAs). In the in vitro study, αvβ3 expression was confirmed by immunofluorescence in a murine endothelial cell line and detected using the targeted UCA and ultrasound imaging at 18-MHz transmit frequency. In the in vivo study, expression of endothelial αvβ3 integrin in murine carotid artery vessels and microvessels of the salivary gland was quantified using targeted UCA and high-frequency ultrasound in seven animals. Our results indicated that endothelial αvβ3 expression was significantly higher in the carotid arterial wall containing atherosclerotic lesions than in arterial segments without any lesions. We also found that the salivary gland can be used as an internal positive control for successful binding of targeted UCA to αvβ3 integrin. In conclusion, αvβ3-targeted UCA allows non-invasive assessment of the expression levels of αvβ3 on the vascular endothelium and may provide potential insights into early atherosclerotic plaque detection and treatment monitoring.
Collapse
Affiliation(s)
- Verya Daeichin
- Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, The Netherlands.
| | - Klazina Kooiman
- Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, The Netherlands
| | - Ilya Skachkov
- Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, The Netherlands
| | - Johan G Bosch
- Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, The Netherlands
| | - Thomas L Theelen
- Department of Pathology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Katja Steiger
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | | | - Ben J Janssen
- Department of Pharmacology, MUMC, Maastricht, The Netherlands
| | - Mat J A P Daemen
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - Antonius F W van der Steen
- Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, The Netherlands; Laboratory of Acoustical Wavefield Imaging, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands; Shenzhen Institute of Advanced Technologies, Shenzhen, China
| | - Nico de Jong
- Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, The Netherlands; Laboratory of Acoustical Wavefield Imaging, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands; Netherlands Heart Institute, Utrecht, The Netherlands
| | - Judith C Sluimer
- Department of Pathology, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
26
|
Grabner A, Kentrup D, Pawelski H, Mühlmeister M, Biermann C, Edemir B, Heitplatz B, Van Marck V, Bettinger T, Pavenstädt H, Schlatter E, Stypmann J, Tiemann K, Reuter S. Renal Contrast-Enhanced Sonography Findings in a Model of Acute Cellular Allograft Rejection. Am J Transplant 2016; 16:1612-9. [PMID: 26613381 DOI: 10.1111/ajt.13648] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 11/22/2015] [Indexed: 01/25/2023]
Abstract
Noninvasive methods to diagnose and differentiate acute cellular rejection from acute tubular necrosis or acute calcineurin inhibitor toxicity are still missing. Because T lymphocytes play a decisive role in early states of rejection, we investigated the suitability and feasibility of antibody-mediated contrast-enhanced ultrasound by using microbubbles targeted to CD3(+) , CD4(+) , or CD8(+) T cells in different models of renal disease. In an established rat renal transplantation model, CD3-mediated ultrasound allows the detection of acute rejection as early as on postoperative day 2. Ultrasound signal intensities increased with the severity of inflammation. Further, an early response to therapy could be monitored by using contrast-enhanced sonography. Notably, acute tubular necrosis occurring after ischemia-reperfusion injury as well as acute calcineurin inhibitor toxicity could easily be differentiated. Finally, the quantified ultrasound signal correlated significantly with the number of infiltrating T cells obtained by histology and with CD3 mRNA levels, as well as with chemokine CXCL9, CXCL11, and CCL19 mRNA but not with KIM-1 mRNA expression, thereby representing the severity of graft inflammation but not the degree of kidney injury. In summary, we demonstrate that antibody-mediated contrast-enhanced ultrasound targeting T lymphocytes could be a promising tool for an easy and reproducible assessment of acute rejection after renal transplantation.
Collapse
Affiliation(s)
- A Grabner
- Department of Medicine D, Experimental Nephrology, University of Münster, Münster, Germany
| | - D Kentrup
- Department of Medicine D, Experimental Nephrology, University of Münster, Münster, Germany
| | - H Pawelski
- Department of Medicine D, Experimental Nephrology, University of Münster, Münster, Germany
| | - M Mühlmeister
- Department of Medicine D, Experimental Nephrology, University of Münster, Münster, Germany
| | - C Biermann
- Department of Medicine D, Experimental Nephrology, University of Münster, Münster, Germany
| | - B Edemir
- Department of Medicine, Hematology and Oncology, University of Halle, Halle, Germany
| | - B Heitplatz
- Department of Pathology, University of Münster, Münster, Germany
| | - V Van Marck
- Department of Pathology, University of Münster, Münster, Germany
| | | | - H Pavenstädt
- Department of Medicine D, Experimental Nephrology, University of Münster, Münster, Germany
| | - E Schlatter
- Department of Medicine D, Experimental Nephrology, University of Münster, Münster, Germany
| | - J Stypmann
- Department of Cardiovascular Medicine, University of Münster, Münster, Germany
| | - K Tiemann
- Department of Cardiology, Otypka Heart Center and Department of Nuclear Medicine, Technical University Munich, Munich, Germany
| | - S Reuter
- Department of Medicine D, Experimental Nephrology, University of Münster, Münster, Germany
| |
Collapse
|
27
|
Affiliation(s)
- Masayuki Kitano
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kinki University, Osaka-Sayama, Japan
| | - Ken Kamata
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Kinki University, Osaka-Sayama, Japan
| |
Collapse
|
28
|
Design of Microbubbles for Gene/Drug Delivery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 880:191-204. [PMID: 26486339 DOI: 10.1007/978-3-319-22536-4_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The role of ultrasound contrast agents (UCA) initially designed for diagnosis has evolved towards a therapeutic use. Ultrasound (US) for triggered drug delivery has many advantages. In particular, it enables a high spatial control of drug release, thus potentially allowing activation of drug delivery only in the targeted region, and not in surrounding healthy tissue. Moreover, UCA imaging can also be used firstly to precisely locate the target region to, and then used to monitor the drug delivery process by tracking the location of release occurrence. All these features make UCA and ultrasound attractive means to mediate drug delivery. The three main potential clinical indications for drug/gene US delivery are (i) the cardiovascular system, (ii) the central nervous system for small molecule delivery, and (iii) tumor therapy using cytotoxic drugs. Although promising results have been achieved in preclinical studies in various animal models, still very few examples of clinical use have been reported. In this chapter will be addressed the aspects pertaining to UCA formulation (chemical composition, mode of preparation, analytical methods…) and the requirement for a potential translation into the clinic following approval by regulatory authorities.
Collapse
|
29
|
Kiessling F. Science to Practice: Molecularly Targeted US of Inflammation—Important Steps toward Clinical Translation. Radiology 2015; 276:621-3. [DOI: 10.1148/radiol.2015150589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
30
|
Zeisbrich M, Kihm LP, Drüschler F, Zeier M, Schwenger V. When is contrast-enhanced sonography preferable over conventional ultrasound combined with Doppler imaging in renal transplantation? Clin Kidney J 2015; 8:606-14. [PMID: 26413289 PMCID: PMC4581388 DOI: 10.1093/ckj/sfv070] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 07/10/2015] [Indexed: 12/18/2022] Open
Abstract
Conventional ultrasound in combination with colour Doppler imaging is still the standard diagnostic procedure for patients after renal transplantation. However, while conventional ultrasound in combination with Doppler imaging can diagnose renal artery stenosis and vein thrombosis, it is not possible to display subtle microvascular tissue perfusion, which is crucial for the evaluation of acute and chronic allograft dysfunctions. In contrast, real-time contrast-enhanced sonography (CES) uses gas-filled microbubbles not only to visualize but also to quantify renal blood flow and perfusion even in the small renal arterioles and capillaries. It is an easy to perform and non-invasive imaging technique that augments diagnostic capabilities in patients after renal transplantation. Specifically in the postoperative setting, CES has been shown to be superior to conventional ultrasound in combination with Doppler imaging in uncovering even subtle microvascular disturbances in the allograft perfusion. In addition, quantitative perfusion parameters derived from CES show predictive capability regarding long-term kidney function.
Collapse
Affiliation(s)
- Markus Zeisbrich
- Department of Nephrology , University Hospital , Heidelberg , Germany
| | - Lars P Kihm
- Department of Nephrology , University Hospital , Heidelberg , Germany
| | - Felix Drüschler
- Department of Nephrology , University Hospital , Heidelberg , Germany
| | - Martin Zeier
- Department of Nephrology , University Hospital , Heidelberg , Germany
| | - Vedat Schwenger
- Department of Nephrology , University Hospital , Heidelberg , Germany
| |
Collapse
|
31
|
Machtaler S, Knieling F, Luong R, Tian L, Willmann JK. Assessment of Inflammation in an Acute on Chronic Model of Inflammatory Bowel Disease with Ultrasound Molecular Imaging. Am J Cancer Res 2015; 5:1175-86. [PMID: 26379784 PMCID: PMC4568446 DOI: 10.7150/thno.13048] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 07/16/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Ultrasound (US) molecular imaging has shown promise in assessing inflammation in preclinical, murine models of inflammatory bowel disease. These models, however, initiated acute inflammation on previously normal colons, in contrast to patients where acute exacerbations are often in chronically inflamed regions. In this study, we explored the potential of dual P- and E-selectin targeted US imaging for assessing acute inflammation on a murine quiescent chronic inflammatory background. METHODS Chronic colitis was induced using three cycles of 4% DSS in male FVB mice. Acute inflammation was initiated 2 weeks after the final DSS cycle through rectal administration of 1% TNBS. Mice at different stages of inflammation were imaged using a small animal ultrasound system following i.v. injection of microbubbles targeted to P- and E-selectin. In vivo imaging results were correlated with ex vivo immunofluorescence and histology. RESULTS Induction of acute inflammation resulted in an increase in the targeted US signal from 5.5 ± 5.1 arbitrary units (a.u.) at day 0 to 61.0 ± 45.2 a.u. (P < 0.0001) at day 1, 36.3 ± 33.1 a.u. at day 3, returning to levels similar to control at day 5. Immunofluorescence showed significant increase in the percentage of P- and E-selectin positive vessels at day 1 (P-selectin: 21.0 ± 7.1% of vessels; P < 0.05; E-selectin: 16.4 ±3.7%; P < 0.05) compared to day 0 (P-selectin: 10.3 ± 5.7%; E-selectin: 7.3 ± 7.0%). CONCLUSIONS Acute inflammation can be accurately measured in a clinically relevant murine model of chronic IBD using ultrasound molecular imaging with a dual P- and E- selectin-targeted contrast agent.
Collapse
|
32
|
Yeh JSM, Sennoga CA, McConnell E, Eckersley R, Tang MX, Nourshargh S, Seddon JM, Haskard DO, Nihoyannopoulos P. A Targeting Microbubble for Ultrasound Molecular Imaging. PLoS One 2015; 10:e0129681. [PMID: 26161541 PMCID: PMC4498921 DOI: 10.1371/journal.pone.0129681] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 05/12/2015] [Indexed: 11/30/2022] Open
Abstract
Rationale Microbubbles conjugated with targeting ligands are used as contrast agents for ultrasound molecular imaging. However, they often contain immunogenic (strept)avidin, which impedes application in humans. Although targeting bubbles not employing the biotin-(strept)avidin conjugation chemistry have been explored, only a few reached the stage of ultrasound imaging in vivo, none were reported/evaluated to show all three of the following properties desired for clinical applications: (i) low degree of non-specific bubble retention in more than one non-reticuloendothelial tissue; (ii) effective for real-time imaging; and (iii) effective for acoustic quantification of molecular targets to a high degree of quantification. Furthermore, disclosures of the compositions and methodologies enabling reproduction of the bubbles are often withheld. Objective To develop and evaluate a targeting microbubble based on maleimide-thiol conjugation chemistry for ultrasound molecular imaging. Methods and Results Microbubbles with a previously unreported generic (non-targeting components) composition were grafted with anti-E-selectin F(ab’)2 using maleimide-thiol conjugation, to produce E-selectin targeting microbubbles. The resulting targeting bubbles showed high specificity to E-selectin in vitro and in vivo. Non-specific bubble retention was minimal in at least three non-reticuloendothelial tissues with inflammation (mouse heart, kidneys, cremaster). The bubbles were effective for real-time ultrasound imaging of E-selectin expression in the inflamed mouse heart and kidneys, using a clinical ultrasound scanner. The acoustic signal intensity of the targeted bubbles retained in the heart correlated strongly with the level of E-selectin expression (|r|≥0.8), demonstrating a high degree of non-invasive molecular quantification. Conclusions Targeting microbubbles for ultrasound molecular imaging, based on maleimide-thiol conjugation chemistry and the generic composition described, may possess properties (i)–(iii) desired for clinical applications.
Collapse
Affiliation(s)
- James Shue-Min Yeh
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Cardiology, Hammersmith Hospital, London, United Kingdom
- Imaging Sciences Department, Medical Research Council, Imperial College London, London, United Kingdom
| | - Charles A. Sennoga
- Imaging Sciences Department, Medical Research Council, Imperial College London, London, United Kingdom
- Department of Chemistry, Imperial College London, London, United Kingdom
| | - Ellen McConnell
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Robert Eckersley
- Imaging Sciences Department, Medical Research Council, Imperial College London, London, United Kingdom
| | - Meng-Xing Tang
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Sussan Nourshargh
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- William Harvey Research Institute, Queen Mary, University of London, London, United Kingdom
| | - John M. Seddon
- Department of Chemistry, Imperial College London, London, United Kingdom
| | - Dorian O. Haskard
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Petros Nihoyannopoulos
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Cardiology, Hammersmith Hospital, London, United Kingdom
- * E-mail:
| |
Collapse
|
33
|
Wang H, Felt SA, Machtaler S, Guracar I, Luong R, Bettinger T, Tian L, Lutz AM, Willmann JK. Quantitative Assessment of Inflammation in a Porcine Acute Terminal Ileitis Model: US with a Molecularly Targeted Contrast Agent. Radiology 2015; 276:809-17. [PMID: 25965901 DOI: 10.1148/radiol.2015142478] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE To evaluate the feasibility and reproducibility of ultrasonography (US) performed with dual-selectin-targeted contrast agent microbubbles (MBs) for assessment of inflammation in a porcine acute terminal ileitis model, with histologic findings as a reference standard. MATERIALS AND METHODS The study had institutional Animal Care and Use Committee approval. Acute terminal ileitis was established in 19 pigs; four pigs served as control pigs. The ileum was imaged with clinical-grade dual P- and E-selectin-targeted MBs (MBSelectin) at increasing doses (0.5, 1.0, 2.5, 5.0, 10, and 20 × 10(8) MB per kilogram of body weight) and with control nontargeted MBs (MBControl). For reproducibility testing, examinations were repeated twice after the MBSelectin and MBControl injections. After imaging, scanned ileal segments were analyzed ex vivo both for inflammation grade (by using hematoxylin-eosin staining) and for expression of selectins (by using quantitative immunofluorescence analysis). Statistical analysis was performed by using the t test, intraclass correlation coefficients (ICCs), and Spearman correlation analysis. RESULTS Imaging signal increased linearly (P < .001) between a dose of 0.5 and a dose of 5.0 × 10(8) MB/kg and plateaued between a dose of 10 and a dose of 20 × 10(8) MB/kg. Imaging signals were reproducible (ICC = 0.70), and administration of MBSelectin in acute ileitis resulted in a significantly higher (P < .001) imaging signal compared with that in control ileum and MBControl. Ex vivo histologic grades of inflammation correlated well with in vivo US signal (ρ = 0.79), and expression levels of both P-selectin (37.4% ± 14.7 [standard deviation] of vessels positive; P < .001) and E-selectin (31.2% ± 25.7) in vessels in the bowel wall of segments with ileitis were higher than in control ileum (5.1% ± 3.7 for P-selectin and 4.8% ± 2.3 for E-selectin). CONCLUSION Quantitative measurements of inflammation obtained by using dual-selectin-targeted US are reproducible and correlate well with the extent of inflammation at histologic examination in a porcine acute ileitis model as a next step toward clinical translation.
Collapse
Affiliation(s)
- Huaijun Wang
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, 300 Pasteur Dr, Room H1307; Stanford, CA 94305-5621 (H.W., S.M., A.M.L., J.K.W.); Department of Comparative Medicine (S.A.F., R.L.) and Department of Health, Research and Policy (L.T.), Stanford University, Stanford, Calif; Ultrasound Business Unit, Siemens Healthcare, Mountain View, Calif (I.G.); and Bracco Suisse, Geneva, Switzerland (T.B.)
| | - Stephen A Felt
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, 300 Pasteur Dr, Room H1307; Stanford, CA 94305-5621 (H.W., S.M., A.M.L., J.K.W.); Department of Comparative Medicine (S.A.F., R.L.) and Department of Health, Research and Policy (L.T.), Stanford University, Stanford, Calif; Ultrasound Business Unit, Siemens Healthcare, Mountain View, Calif (I.G.); and Bracco Suisse, Geneva, Switzerland (T.B.)
| | - Steven Machtaler
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, 300 Pasteur Dr, Room H1307; Stanford, CA 94305-5621 (H.W., S.M., A.M.L., J.K.W.); Department of Comparative Medicine (S.A.F., R.L.) and Department of Health, Research and Policy (L.T.), Stanford University, Stanford, Calif; Ultrasound Business Unit, Siemens Healthcare, Mountain View, Calif (I.G.); and Bracco Suisse, Geneva, Switzerland (T.B.)
| | - Ismayil Guracar
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, 300 Pasteur Dr, Room H1307; Stanford, CA 94305-5621 (H.W., S.M., A.M.L., J.K.W.); Department of Comparative Medicine (S.A.F., R.L.) and Department of Health, Research and Policy (L.T.), Stanford University, Stanford, Calif; Ultrasound Business Unit, Siemens Healthcare, Mountain View, Calif (I.G.); and Bracco Suisse, Geneva, Switzerland (T.B.)
| | - Richard Luong
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, 300 Pasteur Dr, Room H1307; Stanford, CA 94305-5621 (H.W., S.M., A.M.L., J.K.W.); Department of Comparative Medicine (S.A.F., R.L.) and Department of Health, Research and Policy (L.T.), Stanford University, Stanford, Calif; Ultrasound Business Unit, Siemens Healthcare, Mountain View, Calif (I.G.); and Bracco Suisse, Geneva, Switzerland (T.B.)
| | - Thierry Bettinger
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, 300 Pasteur Dr, Room H1307; Stanford, CA 94305-5621 (H.W., S.M., A.M.L., J.K.W.); Department of Comparative Medicine (S.A.F., R.L.) and Department of Health, Research and Policy (L.T.), Stanford University, Stanford, Calif; Ultrasound Business Unit, Siemens Healthcare, Mountain View, Calif (I.G.); and Bracco Suisse, Geneva, Switzerland (T.B.)
| | - Lu Tian
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, 300 Pasteur Dr, Room H1307; Stanford, CA 94305-5621 (H.W., S.M., A.M.L., J.K.W.); Department of Comparative Medicine (S.A.F., R.L.) and Department of Health, Research and Policy (L.T.), Stanford University, Stanford, Calif; Ultrasound Business Unit, Siemens Healthcare, Mountain View, Calif (I.G.); and Bracco Suisse, Geneva, Switzerland (T.B.)
| | - Amelie M Lutz
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, 300 Pasteur Dr, Room H1307; Stanford, CA 94305-5621 (H.W., S.M., A.M.L., J.K.W.); Department of Comparative Medicine (S.A.F., R.L.) and Department of Health, Research and Policy (L.T.), Stanford University, Stanford, Calif; Ultrasound Business Unit, Siemens Healthcare, Mountain View, Calif (I.G.); and Bracco Suisse, Geneva, Switzerland (T.B.)
| | - Jürgen K Willmann
- From the Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, 300 Pasteur Dr, Room H1307; Stanford, CA 94305-5621 (H.W., S.M., A.M.L., J.K.W.); Department of Comparative Medicine (S.A.F., R.L.) and Department of Health, Research and Policy (L.T.), Stanford University, Stanford, Calif; Ultrasound Business Unit, Siemens Healthcare, Mountain View, Calif (I.G.); and Bracco Suisse, Geneva, Switzerland (T.B.)
| |
Collapse
|
34
|
Curaj A, Wu Z, Fokong S, Liehn EA, Weber C, Burlacu A, Lammers T, van Zandvoort M, Kiessling F. Noninvasive molecular ultrasound monitoring of vessel healing after intravascular surgical procedures in a preclinical setup. Arterioscler Thromb Vasc Biol 2015; 35:1366-73. [PMID: 25838431 DOI: 10.1161/atvbaha.114.304857] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 03/22/2015] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Cardiovascular interventions induce damage to the vessel wall making antithrombotic therapy inevitable until complete endothelial recovery. Without a method to accurately determine the endothelial status, many patients undergo prolonged anticoagulation therapy, denying them any invasive medical procedures, such as surgical operations and dental interventions. Therefore, we aim to introduce molecular ultrasound imaging of the vascular cell adhesion molecule (VCAM)-1 using targeted poly-n-butylcyanoacrylate microbubbles (MB(VCAM-1)) as an easy accessible method to monitor accurately the reendothelialization of vessels. APPROACH AND RESULTS ApoE(-/-) mice were fed with an atherogenic diet for 1 and 12 weeks and subsequently, endothelial denudation was performed in the carotid arteries using a guidewire. Molecular ultrasound imaging was performed at different time points after denudation (1, 3, 7, and 14 days). An increased MB(VCAM-1) binding after 1 day, a peak after 3 days, and a decrease after 7 days was found. After 12 weeks of diet, MB(VCAM-1) binding also peaked after 3 days but remained high until 7 days, indicating a delay in endothelial recovery. Two-photon laser scanning microscopy imaging of double fluorescence staining confirmed the exposure of VCAM-1 on the superficial layer after arterial injury only during the healing phase. After complete reendothelialization, VCAM-1 expression persisted in the subendothelial layer but was not reachable for the MBV(CAM-1) anymore. CONCLUSION Molecular ultrasound imaging with MB(VCAM-1) is promising to assess vascular damage and to monitor endothelial recovery after arterial interventions. Thus, it may become an important diagnostic tool supporting the development of adequate therapeutic strategies to personalize anticoagulant and anti-inflammatory therapy after cardiovascular intervention.
Collapse
Affiliation(s)
- Adelina Curaj
- From the Institute for Experimental Molecular Imaging (A.C., Z.W., S.F., T.L., F.K.), Institute for Molecular Cardiovascular Research (A.C., Z.W., E.A.L., M.v.Z.), University Clinic, RWTH Aachen University, Aachen, Germany; Institute of Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany (C.W.); DZHK (German Centre for Cardiovascular Research, partner site Munich Heart Alliance), Munich, Germany (C.W.); Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania (A.B.); Department of Controlled Drug Delivery, University of Twente, AE Enschede, The Netherlands (T.L.); and Department of Genetics and Molecular Cell Biology, School for Cardiovascular Diseases CARIM, Maastricht University, Maastricht, The Netherlands (M.v.Z.)
| | - Zhuojun Wu
- From the Institute for Experimental Molecular Imaging (A.C., Z.W., S.F., T.L., F.K.), Institute for Molecular Cardiovascular Research (A.C., Z.W., E.A.L., M.v.Z.), University Clinic, RWTH Aachen University, Aachen, Germany; Institute of Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany (C.W.); DZHK (German Centre for Cardiovascular Research, partner site Munich Heart Alliance), Munich, Germany (C.W.); Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania (A.B.); Department of Controlled Drug Delivery, University of Twente, AE Enschede, The Netherlands (T.L.); and Department of Genetics and Molecular Cell Biology, School for Cardiovascular Diseases CARIM, Maastricht University, Maastricht, The Netherlands (M.v.Z.)
| | - Stanley Fokong
- From the Institute for Experimental Molecular Imaging (A.C., Z.W., S.F., T.L., F.K.), Institute for Molecular Cardiovascular Research (A.C., Z.W., E.A.L., M.v.Z.), University Clinic, RWTH Aachen University, Aachen, Germany; Institute of Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany (C.W.); DZHK (German Centre for Cardiovascular Research, partner site Munich Heart Alliance), Munich, Germany (C.W.); Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania (A.B.); Department of Controlled Drug Delivery, University of Twente, AE Enschede, The Netherlands (T.L.); and Department of Genetics and Molecular Cell Biology, School for Cardiovascular Diseases CARIM, Maastricht University, Maastricht, The Netherlands (M.v.Z.)
| | - Elisa A Liehn
- From the Institute for Experimental Molecular Imaging (A.C., Z.W., S.F., T.L., F.K.), Institute for Molecular Cardiovascular Research (A.C., Z.W., E.A.L., M.v.Z.), University Clinic, RWTH Aachen University, Aachen, Germany; Institute of Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany (C.W.); DZHK (German Centre for Cardiovascular Research, partner site Munich Heart Alliance), Munich, Germany (C.W.); Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania (A.B.); Department of Controlled Drug Delivery, University of Twente, AE Enschede, The Netherlands (T.L.); and Department of Genetics and Molecular Cell Biology, School for Cardiovascular Diseases CARIM, Maastricht University, Maastricht, The Netherlands (M.v.Z.)
| | - Christian Weber
- From the Institute for Experimental Molecular Imaging (A.C., Z.W., S.F., T.L., F.K.), Institute for Molecular Cardiovascular Research (A.C., Z.W., E.A.L., M.v.Z.), University Clinic, RWTH Aachen University, Aachen, Germany; Institute of Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany (C.W.); DZHK (German Centre for Cardiovascular Research, partner site Munich Heart Alliance), Munich, Germany (C.W.); Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania (A.B.); Department of Controlled Drug Delivery, University of Twente, AE Enschede, The Netherlands (T.L.); and Department of Genetics and Molecular Cell Biology, School for Cardiovascular Diseases CARIM, Maastricht University, Maastricht, The Netherlands (M.v.Z.)
| | - Alexandrina Burlacu
- From the Institute for Experimental Molecular Imaging (A.C., Z.W., S.F., T.L., F.K.), Institute for Molecular Cardiovascular Research (A.C., Z.W., E.A.L., M.v.Z.), University Clinic, RWTH Aachen University, Aachen, Germany; Institute of Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany (C.W.); DZHK (German Centre for Cardiovascular Research, partner site Munich Heart Alliance), Munich, Germany (C.W.); Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania (A.B.); Department of Controlled Drug Delivery, University of Twente, AE Enschede, The Netherlands (T.L.); and Department of Genetics and Molecular Cell Biology, School for Cardiovascular Diseases CARIM, Maastricht University, Maastricht, The Netherlands (M.v.Z.)
| | - Twan Lammers
- From the Institute for Experimental Molecular Imaging (A.C., Z.W., S.F., T.L., F.K.), Institute for Molecular Cardiovascular Research (A.C., Z.W., E.A.L., M.v.Z.), University Clinic, RWTH Aachen University, Aachen, Germany; Institute of Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany (C.W.); DZHK (German Centre for Cardiovascular Research, partner site Munich Heart Alliance), Munich, Germany (C.W.); Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania (A.B.); Department of Controlled Drug Delivery, University of Twente, AE Enschede, The Netherlands (T.L.); and Department of Genetics and Molecular Cell Biology, School for Cardiovascular Diseases CARIM, Maastricht University, Maastricht, The Netherlands (M.v.Z.)
| | - Marc van Zandvoort
- From the Institute for Experimental Molecular Imaging (A.C., Z.W., S.F., T.L., F.K.), Institute for Molecular Cardiovascular Research (A.C., Z.W., E.A.L., M.v.Z.), University Clinic, RWTH Aachen University, Aachen, Germany; Institute of Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany (C.W.); DZHK (German Centre for Cardiovascular Research, partner site Munich Heart Alliance), Munich, Germany (C.W.); Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania (A.B.); Department of Controlled Drug Delivery, University of Twente, AE Enschede, The Netherlands (T.L.); and Department of Genetics and Molecular Cell Biology, School for Cardiovascular Diseases CARIM, Maastricht University, Maastricht, The Netherlands (M.v.Z.).
| | - Fabian Kiessling
- From the Institute for Experimental Molecular Imaging (A.C., Z.W., S.F., T.L., F.K.), Institute for Molecular Cardiovascular Research (A.C., Z.W., E.A.L., M.v.Z.), University Clinic, RWTH Aachen University, Aachen, Germany; Institute of Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany (C.W.); DZHK (German Centre for Cardiovascular Research, partner site Munich Heart Alliance), Munich, Germany (C.W.); Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania (A.B.); Department of Controlled Drug Delivery, University of Twente, AE Enschede, The Netherlands (T.L.); and Department of Genetics and Molecular Cell Biology, School for Cardiovascular Diseases CARIM, Maastricht University, Maastricht, The Netherlands (M.v.Z.).
| |
Collapse
|
35
|
Abou-Elkacem L, Bachawal SV, Willmann JK. Ultrasound molecular imaging: Moving toward clinical translation. Eur J Radiol 2015; 84:1685-93. [PMID: 25851932 DOI: 10.1016/j.ejrad.2015.03.016] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/13/2015] [Indexed: 12/11/2022]
Abstract
Ultrasound is a widely available, cost-effective, real-time, non-invasive and safe imaging modality widely used in the clinic for anatomical and functional imaging. With the introduction of novel molecularly-targeted ultrasound contrast agents, another dimension of ultrasound has become a reality: diagnosing and monitoring pathological processes at the molecular level. Most commonly used ultrasound molecular imaging contrast agents are micron sized, gas-containing microbubbles functionalized to recognize and attach to molecules expressed on inflamed or angiogenic vascular endothelial cells. There are several potential clinical applications currently being explored including earlier detection, molecular profiling, and monitoring of cancer, as well as visualization of ischemic memory in transient myocardial ischemia, monitoring of disease activity in inflammatory bowel disease, and assessment of arteriosclerosis. Recently, a first clinical grade ultrasound contrast agent (BR55), targeted at a molecule expressed in neoangiogenesis (vascular endothelial growth factor receptor type 2; VEGFR2) has been introduced and safety and feasibility of VEGFR2-targeted ultrasound imaging is being explored in first inhuman clinical trials in various cancer types. This review describes the design of ultrasound molecular imaging contrast agents, imaging techniques, and potential future clinical applications of ultrasound molecular imaging.
Collapse
Affiliation(s)
- Lotfi Abou-Elkacem
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, School of Medicine, Stanford, CA, USA
| | - Sunitha V Bachawal
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, School of Medicine, Stanford, CA, USA
| | - Jürgen K Willmann
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, School of Medicine, Stanford, CA, USA.
| |
Collapse
|
36
|
Leguerney I, Scoazec JY, Gadot N, Robin N, Pénault-Llorca F, Victorin S, Lassau N. Molecular ultrasound imaging using contrast agents targeting endoglin, vascular endothelial growth factor receptor 2 and integrin. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:197-207. [PMID: 25308938 DOI: 10.1016/j.ultrasmedbio.2014.06.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 06/18/2014] [Accepted: 06/24/2014] [Indexed: 05/21/2023]
Abstract
Expression levels of endoglin, αv integrin and vascular endothelial growth factor receptor 2 (VEGFR2) were investigated using targeted, contrast-enhanced ultrasonography in murine melanoma tumor models. Microvasculature and expression levels of biomarkers were investigated using specific contrast agents conjugated with biotinylated monoclonal antibodies. Ultrasound signal intensity from bound contrast agents was evaluated in two groups of mice: control mice and mice treated with sorafenib. Expression levels were analyzed by immunohistochemistry. Endoglin biomarkers were more highly expressed than αv integrin and VEGFR2. Endoglin decreased in the sorafenib group, whereas it tended to increase with time in the control group. Targeted ultrasound contrast agents may be used for non-invasive longitudinal evaluation of tumor angiogenesis during tumor growth or therapeutic treatment in preclinical studies. Endoglin protein, which plays an important role in angiogenesis, seems to be a target of interest for detection of cancer and for prediction of therapeutic efficacy.
Collapse
Affiliation(s)
| | | | - Nicolas Gadot
- Anipath, Faculté Laennec, Université Lyon 1, Lyon, France
| | - Nina Robin
- Département d'anatomie et de cytologie pathologiques, Centre Jean Perrin, Clermont-Ferrand, France
| | | | | | | |
Collapse
|
37
|
Ultrasound molecular imaging of transient acute myocardial ischemia with a clinically translatable P- and E-selectin targeted contrast agent: correlation with the expression of selectins. Invest Radiol 2014; 49:224-35. [PMID: 24442162 DOI: 10.1097/rli.0000000000000018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The diagnosis of acute coronary syndrome remains challenging especially in patients without clear symptoms or electrocardiographic and/or biomarker features. A hallmark of ischemia/reperfusion is activation of endothelial cells leading to altered expression of molecular markers, including selectins. In this context, we aimed to validate the value of ultrasound molecular imaging for detecting transient myocardial ischemia by using a clinically translatable dual P- and E-selectin-targeted ultrasound contrast agent (UCA) and microbubble (MB(selectin)). MATERIAL AND METHODS Transient (20 minutes) myocardial ischemia of rat heart was produced by ligation of the left anterior descending coronary artery ligation followed by 2-, 5-, or 24-hour reperfusion. Imaging of the transient ischemic event was achieved by the use of MB(selectin). Performance of this clinically translatable targeted UCA was compared with that of antibody-targeted streptavidin MBs. Finally, immunohistochemistry staining of rat myocardial ischemic tissue was performed to assess expression of selectins accessible to targeted UCA. RESULTS In rats subjected to myocardial ischemia (20 minutes) followed by reperfusion (2 hours), injection of MB(selectin) produced high late phase (ie, 10-minute postinjection) ultrasound molecular imaging enhancement in the myocardium, which colocalized with the ischemic area. Late phase enhancement persisted 5 and 24 hours after reperfusion. Similarly, the use of MBP and MBE, comprising antibodies specific for P- and E-selectin, respectively, showed high late-phase enhancement within the ischemic area compared with remote myocardial tissue. Two and 5 hours after ischemia has resolved, a persistent expression of these 2 selectins was detected. After 24 hours of reperfusion, only MBE produced late phase enhancement within the ischemic myocardium. Immunohistochemical findings revealed that both P- and E-selectin were expressed and accessible on the surface of the activated endothelium 2 and 5 hours after the acute ischemic event, whereas only E-selectin remained accessible after 24 hours. CONCLUSIONS Ultrasound molecular imaging of transient myocardial ischemia using dual selectin-targeted UCA is able to monitor the time course of expression of selectins after resolution of the ischemic event, paving the way for a large clinical diagnostic window.
Collapse
|
38
|
Ultrasound molecular imaging of E-selectin in tumor vessels using poly n-butyl cyanoacrylate microbubbles covalently coupled to a short targeting peptide. Invest Radiol 2014; 48:843-50. [PMID: 23857137 DOI: 10.1097/rli.0b013e31829d03ec] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVES The purposes of this study were the development and preclinical evaluation of clinically translatable E-selectin-specific ultrasound contrast agents based on a peptide ligand with the recognition sequence IELLQAR. MATERIALS AND METHODS The E-selectin-specific peptide was synthesized through solid phase peptide synthesis and covalently attached to poly n-butylcyanoacrylate-stabilized microbubbles with an air core. Quantification of the microbubble surface coverage with peptides was performed through flow cytometry. Targeted adhesion of peptide-coated microbubbles was investigated in vitro using parallel plate flow chamber assays on tumor necrosis factor-α-stimulated human umbilical vein endothelial cells. In vivo imaging was performed in nude mice bearing human ovarian carcinoma xenografts (MLS), followed by ex vivo immunohistochemistry validation of E-selectin expression. RESULTS Success of peptide synthesis was validated through preparative reverse phase high-pressure liquid chromatography and electronspray ionization-mass spectrometry. Results of the flow cytometry revealed approximately 4000 E-selectin-specific peptides/microbubble surface. Results of the in vitro experiments demonstrated the specificity of peptide-coated microbubbles to E-selectin (1.10 ± 0.48 vs 0.19 ± 0.09 bound microbubbles per cell, before and after competition respectively; P < 0.01). The in vivo imaging enabled specific assessment of E-selectin expression in MLS carcinoma xenografts (5.21 ± 3.41 vs 1.37 ± 0.67 contrast intensity before and after competition, respectively; P < 0.05). CONCLUSIONS Clinically translatable microbubbles that were covalently coupled to the short E-selectin-specific peptide (IELLQAR) enabled specific imaging of the E-selectin expression in tumor vessels in vivo.
Collapse
|
39
|
In vivo ultrasound molecular imaging of inflammatory thrombosis in arteries with cyclic Arg-Gly-Asp-modified microbubbles targeted to glycoprotein IIb/IIIa. Invest Radiol 2014; 48:803-12. [PMID: 23857134 DOI: 10.1097/rli.0b013e318298652d] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Ultrasound molecular imaging has the potential to detect activated platelets, thus identifying atherosclerotic plaque instability before onset of serious clinical events. However, it has not been well defined in inflammatory arterial thrombosis. We hypothesized that microbubbles (MBs) target glycoprotein IIb/IIIa (GP IIb/IIIa) could achieve a noninvasive in vivo detection of inflammatory thrombosis in large arteries through contrast-enhanced ultrasound (CEU) imaging. MATERIALS AND METHODS Lipid shell-based gas-filled MBs were modified covalently with a cyclic Arg-Gly-Asp (RGD) peptide (MB-cRGD) targeted to activated GP IIb/IIIa or a negative control peptide (MB-CON) via thiol-maleimide coupling. Adherence of MB-cRGD and MB-CON to GP IIb/IIIa was determined in vitro by using a parallel plate flow chamber at variable shear stress (0.5-8 dynes/cm2). Inflammatory platelet thrombosis was induced by periadvential application of arachidonic acid (AA) to one of the bilateral carotids of C57BL/6 mice (n = 20) and confirmed through intravital fluorescence microscopy. Attachment of MBs was determined in vivo with CEU imaging of bilateral carotids in the AA application mice with (n = 10) or without (n = 10) pretreatment of GP IIb/IIIa antagonist. The expression of integrin GP IIb/IIIa was assessed through immunohistochemistry. RESULTS Microbubble-cRGD but not MB-CON had excellent affinity to GP IIb/IIIa under all shear stress conditions. Successful inflammatory platelet activation and thrombosis in AA application carotids were noted through intravital fluorescence microscopy. Contrast video intensity from adhered MB-cRGD in the thrombi was significantly higher than that from MB-CON (P < 0.05). Video intensity of MB-cRGD in the thrombi was suppressed significantly by preblocking with GP IIb/IIIa antagonist (P < 0.05) but not for MB-CON. Immunohistochemical finding demonstrates that expression of integrin GP IIb/IIIa in the thrombi was abundant; it was inhibited significantly through pretreatment with GP IIb/IIIa antagonist (P < 0.05). CONCLUSIONS Cyclic RGD-modified MBs targeted to GP IIb/IIIa with CEU are capable of detecting inflammation-activated platelets and thrombosis in large arteries, thus providing a potential tool for identification of vulnerable atherosclerotic plaques.
Collapse
|
40
|
Abstract
Ultrasound-mediated gene delivery with microbubbles has emerged as an attractive nonviral vector system for site-specific and noninvasive gene therapy. Ultrasound promotes intracellular uptake of therapeutic agents, particularly in the presence of microbubbles, by increasing vascular and cell membrane permeability. Several preclinical studies have reported successful gene delivery into solid tumors with significant therapeutic effects using this novel approach. This review provides background information on gene therapy and ultrasound bioeffects and discusses the current progress and overall perspectives on the application of ultrasound and microbubble-mediated gene delivery in cancer.
Collapse
|
41
|
Kiessling F, Fokong S, Bzyl J, Lederle W, Palmowski M, Lammers T. Recent advances in molecular, multimodal and theranostic ultrasound imaging. Adv Drug Deliv Rev 2014; 72:15-27. [PMID: 24316070 DOI: 10.1016/j.addr.2013.11.013] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 11/14/2013] [Accepted: 11/25/2013] [Indexed: 12/12/2022]
Abstract
Ultrasound (US) imaging is an exquisite tool for the non-invasive and real-time diagnosis of many different diseases. In this context, US contrast agents can improve lesion delineation, characterization and therapy response evaluation. US contrast agents are usually micrometer-sized gas bubbles, stabilized with soft or hard shells. By conjugating antibodies to the microbubble (MB) surface, and by incorporating diagnostic agents, drugs or nucleic acids into or onto the MB shell, molecular, multimodal and theranostic MBs can be generated. We here summarize recent advances in molecular, multimodal and theranostic US imaging, and introduce concepts how such advanced MB can be generated, applied and imaged. Examples are given for their use to image and treat oncological, cardiovascular and neurological diseases. Furthermore, we discuss for which therapeutic entities incorporation into (or conjugation to) MB is meaningful, and how US-mediated MB destruction can increase their extravasation, penetration, internalization and efficacy.
Collapse
|
42
|
Sannino A, Brevetti L, Giugliano G, Scudiero F, Toscano E, Mainolfi C, Cuocolo A, Perrino C, Stabile E, Trimarco B, Esposito G. Non-invasive vulnerable plaque imaging: how do we know that treatment works? Eur Heart J Cardiovasc Imaging 2014; 15:1194-202. [PMID: 24876097 DOI: 10.1093/ehjci/jeu097] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Atherosclerosis is an inflammatory disorder that can evolve into an acute clinical event by plaque development, rupture, and thrombosis. Plaque vulnerability represents the susceptibility of a plaque to rupture and to result in an acute cardiovascular event. Nevertheless, plaque vulnerability is not an established medical diagnosis, but rather an evolving concept that has gained attention to improve risk prediction. The availability of high-resolution imaging modalities has significantly facilitated the possibility of performing in vivo regression studies and documenting serial changes in plaque stability. This review summarizes the currently available non-invasive methods to identify vulnerable plaques and to evaluate the effects of the current cardiovascular treatments on plaque evolution.
Collapse
Affiliation(s)
- Anna Sannino
- Cardiology, Department of Advanced Biomedical Sciences, University of Naples 'Federico II', Via Pansini, 5, 80131 Naples, Italy
| | - Linda Brevetti
- Cardiology, Department of Advanced Biomedical Sciences, University of Naples 'Federico II', Via Pansini, 5, 80131 Naples, Italy
| | - Giuseppe Giugliano
- Cardiology, Department of Advanced Biomedical Sciences, University of Naples 'Federico II', Via Pansini, 5, 80131 Naples, Italy
| | - Fernando Scudiero
- Cardiology, Department of Advanced Biomedical Sciences, University of Naples 'Federico II', Via Pansini, 5, 80131 Naples, Italy
| | - Evelina Toscano
- Cardiology, Department of Advanced Biomedical Sciences, University of Naples 'Federico II', Via Pansini, 5, 80131 Naples, Italy
| | - Ciro Mainolfi
- Nuclear Medicine, Department of Advanced Biomedical Sciences, University of Naples 'Federico II', Via Pansini, 5, 80131 Naples, Italy
| | - Alberto Cuocolo
- Nuclear Medicine, Department of Advanced Biomedical Sciences, University of Naples 'Federico II', Via Pansini, 5, 80131 Naples, Italy
| | - Cinzia Perrino
- Cardiology, Department of Advanced Biomedical Sciences, University of Naples 'Federico II', Via Pansini, 5, 80131 Naples, Italy
| | - Eugenio Stabile
- Cardiology, Department of Advanced Biomedical Sciences, University of Naples 'Federico II', Via Pansini, 5, 80131 Naples, Italy
| | - Bruno Trimarco
- Cardiology, Department of Advanced Biomedical Sciences, University of Naples 'Federico II', Via Pansini, 5, 80131 Naples, Italy
| | - Giovanni Esposito
- Cardiology, Department of Advanced Biomedical Sciences, University of Naples 'Federico II', Via Pansini, 5, 80131 Naples, Italy
| |
Collapse
|
43
|
|
44
|
A historical overview of magnetic resonance imaging, focusing on technological innovations. Invest Radiol 2013; 47:725-41. [PMID: 23070095 DOI: 10.1097/rli.0b013e318272d29f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Magnetic resonance imaging (MRI) has now been used clinically for more than 30 years. Today, MRI serves as the primary diagnostic modality for many clinical problems. In this article, historical developments in the field of MRI will be discussed with a focus on technological innovations. Topics include the initial discoveries in nuclear magnetic resonance that allowed for the advent of MRI as well as the development of whole-body, high field strength, and open MRI systems. Dedicated imaging coils, basic pulse sequences, contrast-enhanced, and functional imaging techniques will also be discussed in a historical context. This article describes important technological innovations in the field of MRI, together with their clinical applicability today, providing critical insights into future developments.
Collapse
|
45
|
Helfield BL, Cherin E, Foster FS, Goertz DE. The effect of binding on the subharmonic emissions from individual lipid-encapsulated microbubbles at transmit frequencies of 11 and 25 MHz. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:345-359. [PMID: 23219039 DOI: 10.1016/j.ultrasmedbio.2012.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 09/12/2012] [Accepted: 09/13/2012] [Indexed: 06/01/2023]
Abstract
Targeted microbubble imaging at ultrasound frequencies above 5 MHz has applications in both a preclinical context for a range of disease processes and clinically for the assessment of atherosclerosis and superficial tumors. Although the feasibility of ultrasound molecular imaging has been well demonstrated for a range of target molecules, little work has examined the effects of binding on microbubble oscillations, which is of potential relevance to improving the sensitivity, specificity, and quantification of bound-bubble detection. In this study we investigated the influence of binding on the subharmonic response of bubbles at transmit frequencies of 11 and 25 MHz. Individual bubbles were situated adjacent to a boundary in either a bound or an unbound state, optically sized and acoustically interrogated with pressures ranging from 0.02 to 1.2 MPa. At 11 MHz, unbound bubbles (n = 53) were found to have strong subharmonic activity for sizes between 2.4 and 2.6 μm, whereas bound bubbles (n = 50) were most active from 2.6 to 3.0 μm. Destruction thresholds were found to be lower for bound bubbles. At 25 MHz, bound-bubble (n = 57) activity was found to peak at 1.9 μm as compared to 2.1 μm in the unbound cases (n = 53), with a 20% increase in amplitude. Comparison with simulations indicates that both unbound and bound bubbles undergo compression-only behavior at 11 MHz, and expansion-dominated behavior at 25 MHz. Subharmonic emissions elicited from 0 radian transmit pulses were found to be π/2 radians out of phase with those elicited from a π radian transmit pulse, suggesting inefficient subharmonic preservation from pulse inversion schemes. With the appropriate postprocessed phase correction, an increase in the subharmonic amplitude of up to 60% was shown, depending on the bubble size and transmit frequency.
Collapse
Affiliation(s)
- Brandon L Helfield
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
46
|
Wang H, Machtaler S, Bettinger T, Lutz AM, Luong R, Bussat P, Gambhir SS, Tranquart F, Tian L, Willmann JK. Molecular imaging of inflammation in inflammatory bowel disease with a clinically translatable dual-selectin-targeted US contrast agent: comparison with FDG PET/CT in a mouse model. Radiology 2013; 267:818-29. [PMID: 23371306 DOI: 10.1148/radiol.13122509] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE To develop and test a molecular imaging approach that uses ultrasonography (US) and a clinically translatable dual-targeted (P- and E-selectin) contrast agent (MBSelectin) in the quantification of inflammation at the molecular level and to quantitatively correlate selectin-targeted US with fluorodeoxyglucose (FDG) combined positron emission tomography (PET) and computed tomography (CT) in terms of visualization and quantification of different levels of inflammation in a murine acute colitis model. MATERIALS AND METHODS Animal studies were approved by the Institutional Administrative Panel on Laboratory Animal Care at Stanford University. MBSelectin was developed by covalently binding an analog of the naturally occurring binding ligand P-selectin glycoprotein ligand 1 fused to a human fragment crystallizable(or Fc) domain onto the lipid shell of perfluorobutane and nitrogen-containing MBs. Binding specificity of MBSelectin was assessed in vitro with a flow chamber assay and in vivo with a chemically induced acute colitis murine model. US signal was quantitatively correlated with FDG uptake at PET/CT and histologic grade. Statistical analysis was performed with the Student t test, analysis of variance, and Pearson correlation analysis. RESULTS MBSelectin showed strong attachment to both human and mouse P- and E-selectin compared with MBControl in vitro (P ≤ .002). In vivo, US signal was significantly increased (P < .001) in mice with acute colitis (173.8 arbitrary units [au] ± 134.8 [standard deviation]) compared with control mice (5.0 au ± 4.5). US imaging signal strongly correlated with FDG uptake on PET/CT images (ρ = 0.89, P < .001). Ex vivo analysis enabled confirmation of inflammation in mice with acute colitis and high expression levels of P- and E-selectin in mucosal capillaries (P = .014). CONCLUSION US with MBSelectin specifically enables detection and quantification of inflammation in a murine acute colitis model, leveraging the natural pathway of leukocyte recruitment in inflammatory tissue. US imaging with MBSelectin correlates well with FDG uptake at PET/CT imaging.
Collapse
Affiliation(s)
- Huaijun Wang
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, 300 Pasteur Dr, Room H1307; Stanford, CA 94305-5621, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|