1
|
Rathor R, Srivastava S, Suryakumar G. A Comparative Biochemical Study Between L-Carnosine and β-Alanine in Amelioration of Hypobaric Hypoxia-Induced Skeletal Muscle Protein Loss. High Alt Med Biol 2023; 24:302-311. [PMID: 37643283 DOI: 10.1089/ham.2023.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023] Open
Abstract
Rathor, Richa, Sukanya Srivastava, and Geetha Suryakumar. A comparative biochemical study between L-carnosine and β-alanine in amelioration of hypobaric hypoxia-induced skeletal muscle protein loss. High Alt Med Biol. 24:302-311, 2023. Background: Carnosine (CAR; β-alanyl-L-histidine), a biologically active dipeptide is known for its unique pH-buffering capacity, metal chelating activity, and antioxidant and antiglycation property. β-Alanine (ALA) is a nonessential amino acid and used to enhance performance and cognitive functions. Hypobaric hypoxia (HH)-induced muscle protein loss is regulated by multifaceted signaling pathways. The present study investigated the beneficial effects of CAR and ALA against HH-associated muscle loss. Methodology: Simulated HH exposure was performed in an animal decompression chamber. Gastric oral administration of CAR (50 mg·kg-1) and ALA (450 mg·kg-1) were given daily for 3 days and at the end of the treatment, hindlimb skeletal muscle tissue was excised for western blot and biochemical assays. Results: Cosupplementation of CAR and ALA alone was able to ameliorate the hypoxia-induced inflammation, oxidative stress (FOXO), ER stress (GRP-78), and atrophic signaling (MuRF-1) in the skeletal muscles. Creatinine phospho kinase activity and apoptosis were also decreased in CAR- and ALA-supplemented rats. However, CAR showed enhanced protection in HH-induced muscle loss as CAR supplementation was able to enhance protein concentration, body weight, and decreased the protein oxidation and ALA administration was not able to restore the same. Conclusions: Hence, the present comprehensive study supports the fact that CAR (50 mg·kg-1) is more beneficial as compared with ALA (450 mg·kg-1) in ameliorating the hypoxia-induced skeletal muscle loss.
Collapse
Affiliation(s)
- Richa Rathor
- Pathophysiology and Disruptive Technologies, Defense Institute of Physiology and Allied Sciences (DIPAS), New Delhi, India
| | - Sukanya Srivastava
- Pathophysiology and Disruptive Technologies, Defense Institute of Physiology and Allied Sciences (DIPAS), New Delhi, India
| | - Geetha Suryakumar
- Pathophysiology and Disruptive Technologies, Defense Institute of Physiology and Allied Sciences (DIPAS), New Delhi, India
| |
Collapse
|
2
|
Hou L, Yang X, Liu C, Guo J, Shi Y, Sun T, Feng X, Zhou J, Liu J. Heme Oxygenase-1 and Its Metabolites Carbon Monoxide and Biliverdin, but Not Iron, Exert Antiviral Activity against Porcine Circovirus Type 3. Microbiol Spectr 2023; 11:e0506022. [PMID: 37140466 PMCID: PMC10269822 DOI: 10.1128/spectrum.05060-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/11/2023] [Indexed: 05/05/2023] Open
Abstract
Porcine circovirus type 3 (PCV3) is a newly discovered pathogen that causes porcine dermatitis and nephropathy syndrome (PDNS)-like clinical signs, multisystemic inflammation, and reproductive failure. Heme oxygenase-1 (HO-1), a stress-inducible enzyme, exerts protective functions by converting heme into carbon monoxide (CO), biliverdin (BV), and iron. However, the effects of HO-1 and its metabolites on PCV3 replication remain unknown. In this study, experiments involving specific inhibitors, lentivirus transduction, and small interfering RNA (siRNA) transfection revealed that active PCV3 infection reduced HO-1 expression and that the expression of HO-1 negatively regulated virus replication in cultured cells, depending on its enzymatic activity. Subsequently, the effects of the HO-1 metabolites (CO, BV, and iron) on PCV3 infection were investigated. The CO inducers (cobalt protoporphyrin IX [CoPP] or tricarbonyl dichloro ruthenium [II] dimer [CORM-2]) mediate PCV3 inhibition by generating CO, and this inhibition is reversed by hemoglobin (Hb; a CO scavenger). The inhibition of PCV3 replication by BV depended on BV-mediated reactive oxygen species (ROS) reduction, as N-acetyl-l-cysteine affected PCV3 replication while reducing ROS production. The reduction product of BV, bilirubin (BR), specifically promoted nitric oxide (NO) generation and further activated the cyclic GMP/protein kinase G (cGMP/PKG) pathway to attenuate PCV3 infection. Both the iron provided by FeCl3 and the iron chelated by deferoxamine (DFO) with CoPP treatment failed to affect PCV3 replication. Our data demonstrate that the HO-1-CO-cGMP/PKG, HO-1-BV-ROS, and HO-1-BV-BR-NO-cGMP/PKG pathways contribute crucially to the inhibition of PCV3 replication. These results provide important insights regarding preventing and controlling PCV3 infection. IMPORTANCE The regulation of host protein expression by virus infection is the key to facilitating self-replication. As an important emerging pathogen of swine, clarification of the interaction between PCV3 infection and the host enables us to understand the viral life cycle and pathogenesis better. Heme oxygenase-1 (HO-1) and its metabolites carbon monoxide (CO), biliverdin (BV), and iron have been demonstrated to involve a wealth of viral replications. Here, we, for the first time, demonstrated that HO-1 expression decreases in PCV3-infected cells and negatively regulates PCV3 replication and that the HO-1 metabolic products CO and BV inhibit PCV3 replication by the CO- or BV/BR/NO-dependent cGMP/PKG pathway or BV-mediated ROS reduction, but the iron (the third metabolic product) does not. Specifically, PCV3 infection maintains normal proliferation by downregulating HO-1 expression. These findings clarify the mechanism by which HO-1 modulates PCV3 replication in cells and provide important targets for preventing and controlling PCV3 infection.
Collapse
Affiliation(s)
- Lei Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiaoyu Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Changzhe Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jinshuo Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yongyan Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Tong Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xufei Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jianwei Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jue Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Costa Silva RCM, Correa LHT. Heme Oxygenase 1 in Vertebrates: Friend and Foe. Cell Biochem Biophys 2021; 80:97-113. [PMID: 34800278 DOI: 10.1007/s12013-021-01047-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/07/2021] [Indexed: 10/19/2022]
Abstract
HO-1 is the inducible form of the enzyme heme-oxygenase. HO-1 catalyzes heme breakdown, reducing the levels of this important oxidant molecule and generating antioxidant, anti-inflammatory, and anti-apoptotic byproducts. Thus, HO-1 has been described as an important stress response mechanism during both physiologic and pathological processes. Interestingly, some findings are demonstrating that uncontrolled levels of HO-1 byproducts can be associated with cell death and tissue destruction as well. Furthermore, HO-1 can be located in the nucleus, influencing gene transcription, cellular proliferation, and DNA repair. Here, we will discuss several studies that approach HO-1 effects as a protective or detrimental mechanism in different pathological conditions. In this sense, as the major organs of vertebrates will deal specifically with distinct types of stresses, we discuss the HO-1 role in each of them, exposing the contradictions associated with HO-1 expression after different insults and circumstances.
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratory of Immunoreceptors and Signaling, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Leonardo Holanda Travassos Correa
- Laboratory of Immunoreceptors and Signaling, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Zhang A, Wan B, Jiang D, Wu Y, Ji P, Du Y, Zhang G. The Cytoprotective Enzyme Heme Oxygenase-1 Suppresses Pseudorabies Virus Replication in vitro. Front Microbiol 2020; 11:412. [PMID: 32231654 PMCID: PMC7082841 DOI: 10.3389/fmicb.2020.00412] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/27/2020] [Indexed: 12/12/2022] Open
Abstract
Pseudorabies virus (PRV) infection brings about great economic losses to the swine industry worldwide, as there are currently no effective therapeutic agents or vaccines against this disease, and mutations in endemic wild virulent PRV strains result in immune failure of traditional vaccines. Heme oxygenase-1 (HO-1) catalyzes the conversion of heme into biliverdin (BV), iron and carbon monoxide (CO), all of which have been demonstrated to protect cells from various stressors. However, the role of HO-1 in PRV replication remains unknown. Thus, the present study aimed to investigate the effect of HO-1 on PRV replication and determine its underlying molecular mechanisms. The results demonstrated that induction of HO-1 via cobalt-protoporphyrin (CoPP) markedly suppressed PRV replication, while HO-1 specific small interfering RNA or inhibitor zinc-protoporphyrin partially reversed the inhibitory effect of CoPP on PRV replication. Furthermore, overexpression of HO-1 notably inhibited PRV replication, while knockdown of endogenous HO-1 expression promoted PRV replication. Mechanism analyses indicated that the HO-1 downstream metabolites, CO and BV/BR partially mediated the virus suppressive effect of HO-1. Taken together, the results of the present study suggest that HO-1 may be developed as a novel endogenous antiviral factor against PRV, and the HO-1/BV/CO system may constitute a unique antiviral protection network during PRV infection and interaction with host cells.
Collapse
Affiliation(s)
- Angke Zhang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Bo Wan
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Dawei Jiang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yanan Wu
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Pengchao Ji
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yongkun Du
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Gaiping Zhang
- College of Animal Sciences and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
5
|
Heme Oxygenase-2 Localizes to Mitochondria and Regulates Hypoxic Responses in Hepatocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2021645. [PMID: 29849867 PMCID: PMC5925001 DOI: 10.1155/2018/2021645] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/15/2018] [Accepted: 03/06/2018] [Indexed: 11/17/2022]
Abstract
Hypoxia occurs as a part of multiple disease states, including hemorrhagic shock. Adaptive responses occur within the cell to limit the consequences of hypoxia. This includes changes in mitochondrial respiration, stress-induced cell signaling, and gene expression that is regulated by hypoxia inducible factor-1α (HIF-1α). Heme oxygenase-2 (HO-2) has been shown to be involved in oxygen sensing in several cell types. The purpose of these experiments was to test the hypothesis that HO-2 is a critical regulator of mitochondrial oxygen consumption and reactive oxygen species (ROS) production to influence hypoxia-adaptive responses such as HIF-1α protein levels and JNK signaling. Methods and Results. In vitro studies were performed in primary mouse hepatocytes. HO-2, but not HO-1, was expressed in mitochondria at baseline. Decreased oxygen consumption and increased mitochondrial ROS production in response to hypoxia were dependent upon HO-2 expression. HO-2 expression regulated HIF-1α and JNK signaling in a mitochondrial ROS-dependent manner. Furthermore, knockdown of HO-2 led to increased organ damage, systemic inflammation, tissue hypoxia, and shock in a murine model of hemorrhage and resuscitation. Conclusion. HO-2 signaling plays a role in hypoxic signaling and hemorrhagic shock. This pathway may be able to be harnessed for therapeutic effects.
Collapse
|
6
|
Wegiel B, Hauser CJ, Otterbein LE. Heme as a danger molecule in pathogen recognition. Free Radic Biol Med 2015; 89:651-61. [PMID: 26456060 DOI: 10.1016/j.freeradbiomed.2015.08.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 08/08/2015] [Indexed: 01/13/2023]
Abstract
Appropriate control of redox mechanisms are critical for and effective innate immune response, which employs multiple cell types, receptors and molecules that recognize danger signals when they reach the host. Recognition of pathogen-associated pattern molecules (PAMPs) is a fundamental host survival mechanism for efficient elimination of invading pathogens and resolution of the infection and inflammation. In addition to PAMPs, eukaryotic cells contain a plethora of intracellular molecules that are normally secured within the confines of the plasma membrane, but if liberated and encountered in the extracellular milieu can provoke rapid cell activation. These are known as Alarmins or Danger-Associated Molecular Patterns (DAMPs) and can be released actively by cells or passively as a result of sterile cellular injury after trauma, ischemia, or toxin-induced cell rupture. Both PAMPs and DAMPs are recognized by a series of cognate receptors that increase the generation of free radicals and activate specific signaling pathways that result in regulation of a variety of stress response, redox sensitive genes. Multiple mediators released, as cells die include, but are not limited to ATP, hydrogen peroxide, heme, formyl peptides, DNA or mitochondria provide the second signal to amplify immune responses. In this review, we will focus on how sterile and infective stimuli activate the stress response gene heme oxygenase-1 (Hmox1, HO-1), a master gene critical to an appropriate host response that is now recognized as one with enormous therapeutic potential. HO-1 gene expression is regulated in large part by redox-sensitive proteins including but not limited to nrf2. Both PAMPs and DAMPs increase the activation of nrf2 and HO-1. Heme is a powerful pro-oxidant and as such should be qualified as a DAMP. With its degradation by HO-1a molecule of carbon monoxide (CO) is generated that in turn serves as a bioactive signaling molecule. PAMPs such as bacterial endotoxin activate HO-1, and the CO that is generated diffuses into the extracellular milieu where it interacts with bacteria, altering their behavior to increase production of ATP, which then functions as a second signal danger molecule. This two-hit cycle scenario results in efficient and effective activation of host leukocytes to attack and clear bacteria in part via enhanced reactive oxygen species generation. We discuss this intimate communication that occurs between host and bacteria and how these molecules serve as critical regulators of the acute inflammatory response, the overall redox status of the cell, and survival of the host.
Collapse
Affiliation(s)
- Barbara Wegiel
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Carl J Hauser
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Leo E Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215.
| |
Collapse
|
7
|
Carbon monoxide protects against hemorrhagic shock and resuscitation-induced microcirculatory injury and tissue injury. Shock 2015; 43:166-71. [PMID: 25243427 DOI: 10.1097/shk.0000000000000264] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
UNLABELLED Traumatic injury is a significant cause of morbidity and mortality worldwide. Microcirculatory activation and injury from hemorrhage contribute to organ injury. Many adaptive responses occur within the microcirculatory beds to limit injury including upregulation of heme oxygenase (HO) enzymes, the rate-limiting enzymes in the breakdown of heme to carbon monoxide (CO), iron, and biliverdin. Here we tested the hypothesis that CO abrogates trauma-induced injury and inflammation protecting the microcirculatory beds. METHODS C57Bl/6 mice underwent sham operation or hemorrhagic shock to a mean arterial pressure of 25 mmHg for 120 minutes. Mice were resuscitated with lactated Ringer's at 2× the volume of maximal shed blood. Mice were randomized to receive CO-releasing molecule or inactive CO-releasing molecule at resuscitation. A cohort of mice was pretreated with tin protoporphyrin-IX to inhibit endogenous CO generation by HOs. Primary mouse liver sinusoidal endothelial cells were cultured for in vitro experiments. RESULTS Carbon monoxide-releasing molecule protected against hemorrhagic shock/resuscitation organ injury and systemic inflammation and reduced hepatic sinusoidal endothelial injury. Inhibition of HO activity with tin protoporphyrin-IX exacerbated liver hepatic sinusoidal injury. Hemorrhagic shock/resuscitation in vivo or cytokine stimulation in vitro resulted in increased endothelial expression of adhesion molecules that was associated with decreased leukocyte adhesion in vivo and in vitro. CONCLUSIONS Hemorrhagic shock/resuscitation is associated with endothelial injury. Heme oxygenase enzymes and CO are involved in part in diminishing this injury and may prove useful as a therapeutic adjunct that can be harnessed to protect against endothelial activation and damage.
Collapse
|
8
|
Gomez H, Kautza B, Escobar D, Nassour I, Luciano J, Botero AM, Gordon L, Martinez S, Holder A, Ogundele O, Loughran P, Rosengart MR, Pinsky M, Shiva S, Zuckerbraun BS. Inhaled Carbon Monoxide Protects against the Development of Shock and Mitochondrial Injury following Hemorrhage and Resuscitation. PLoS One 2015; 10:e0135032. [PMID: 26366865 PMCID: PMC4569171 DOI: 10.1371/journal.pone.0135032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 07/16/2015] [Indexed: 01/08/2023] Open
Abstract
Aims Currently, there is no effective resuscitative adjunct to fluid and blood products to limit tissue injury for traumatic hemorrhagic shock. The objective of this study was to investigate the role of inhaled carbon monoxide (CO) to limit inflammation and tissue injury, and specifically mitochondrial damage, in experimental models of hemorrhage and resuscitation. Results Inhaled CO (250 ppm for 30 minutes) protected against mortality in severe murine hemorrhagic shock and resuscitation (HS/R) (20% vs. 80%; P<0.01). Additionally, CO limited the development of shock as determined by arterial blood pH (7.25±0.06 vs. 7.05±0.05; P<0.05), lactate levels (7.2±5.1 vs 13.3±6.0; P<0.05), and base deficit (13±3.0 vs 24±3.1; P<0.05). A dose response of CO (25–500 ppm) demonstrated protection against HS/R lung and liver injury as determined by MPO activity and serum ALT, respectively. CO limited HS/R-induced increases in serum tumor necrosis factor-α and interleukin-6 levels as determined by ELISA (P<0.05 for doses of 100–500ppm). Furthermore, inhaled CO limited HS/R induced oxidative stress as determined by hepatic oxidized glutathione:reduced glutathione levels and lipid peroxidation. In porcine HS/R, CO did not influence hemodynamics. However, CO limited HS/R-induced skeletal muscle and platelet mitochondrial injury as determined by respiratory control ratio (muscle) and ATP-linked respiration and mitochondrial reserve capacity (platelets). Conclusion These preclinical studies suggest that inhaled CO can be a protective therapy in HS/R; however, further clinical studies are warranted.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Administration, Inhalation
- Animals
- Carbon Monoxide/administration & dosage
- Carbon Monoxide/pharmacology
- Carbon Monoxide/therapeutic use
- Cells, Cultured
- Interleukin-6/blood
- Lactic Acid/blood
- Male
- Mice
- Mice, Inbred C57BL
- Mitochondria, Liver/drug effects
- Mitochondria, Liver/metabolism
- Mitochondria, Muscle/drug effects
- Mitochondria, Muscle/metabolism
- Oxidative Stress
- Resuscitation
- Shock, Hemorrhagic/metabolism
- Shock, Hemorrhagic/prevention & control
- Shock, Hemorrhagic/therapy
- Swine
- Tumor Necrosis Factor-alpha/blood
Collapse
Affiliation(s)
- Hernando Gomez
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- The Center for Critical Care Nephrology University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Benjamin Kautza
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Daniel Escobar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Ibrahim Nassour
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Jason Luciano
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Ana Maria Botero
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Lisa Gordon
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Silvia Martinez
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Andre Holder
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Olufunmilayo Ogundele
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Patricia Loughran
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Matthew R. Rosengart
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- The Center for Critical Care Nephrology University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Michael Pinsky
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Sruti Shiva
- Department of Pharmacology, University of Pittsburgh, Pittsburgh, PA, United States of America
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Brian S. Zuckerbraun
- The Center for Critical Care Nephrology University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States of America
- VA Pittsburgh Healthcare System, Pittsburgh, PA, United States of America
- * E-mail:
| |
Collapse
|
9
|
Zhang F, Fei J, Zhao B, Chen E, Mao E. Protective effect of adenoviral transfer of heme oxygenase-1 gene on rats with severe acute pancreatitis. Am J Med Sci 2014; 348:224-231. [PMID: 24694788 DOI: 10.1097/maj.0000000000000225] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
It is widely accepted that the pathophysiological mechanism of severe acute pancreatitis (SAP) is characterized by the systemic inflammatory response, which eventually causes systemic inflammatory response syndrome (SIRS), multiple organ dysfunction syndrome (MODS), and even death. Heme oxygenase (HO)-1 has been proved to exert anti-inflammatory benefit in a variety of inflammatory diseases, and a variety of methods by which HO-1 overexpression can be induced have been reported. In this study, we hypothesized that transfer of HO-1 gene by adenoviral vector could inhibit the systemic inflammation and the development of MODS. Sprague-Dawley (SD) rats were used as subjects in this study. Each was made into SAP model by retrograded injection through pancreatic duct with 5% sodium taurocholate (0.1 mL/100 g). Normal saline (1 mL/animal) or adenoviral HO-1 gene (Adv-HO-1, 2.0 × 10 PFU/mL/animal) or adenoviral empty vectors (Adv-0, 2.0 × 10 PFU/mL/animal) were injected intraperitoneally. HO-1 expression in serum and tissues including pancreas, liver and kidney was measured and observed to be upregulated in the rats treated with Adv-HO-1. The administration of Adv-HO-1 also inhibited the expression of tumor necrosis factor (TNF)-α and boosted the expression of interleukin-10 (IL-10). The decreasing serum concentration of ALT, AST, BUN and CREA, the amelioration of histopathologic damage in pancreas, liver and kidney tissues, the improvement of survival rate were all observed in rats treated with Adv-HO-1 comparing to others. As a result, this study showed that Adv-HO-1 could exert protective effect including anti-inflammation and organ protection through enhancing the expression of HO-1 in SAP.
Collapse
Affiliation(s)
- Feihu Zhang
- Departments of Emergency Intensive Care Unit (FZ, BZ, EC, EM), and Surgery (JF), Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | | | | | | |
Collapse
|
10
|
Wegiel B, Nemeth Z, Correa-Costa M, Bulmer AC, Otterbein LE. Heme oxygenase-1: a metabolic nike. Antioxid Redox Signal 2014; 20:1709-22. [PMID: 24180257 PMCID: PMC3961788 DOI: 10.1089/ars.2013.5667] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 11/01/2013] [Indexed: 10/26/2022]
Abstract
SIGNIFICANCE Heme degradation, which was described more than 30 years ago, is still very actively explored with many novel discoveries on its role in various disease models every year. RECENT ADVANCES The heme oxygenases (HO) are metabolic enzymes that utilize NADPH and oxygen to break apart the heme moiety liberating biliverdin (BV), carbon monoxide (CO), and iron. Heme that is derived from hemoproteins can be toxic to the cells and if not removed immediately, it causes cell apoptosis and local inflammation. Elimination of heme from the milieu enables generation of three products that influences numerous metabolic changes in the cell. CRITICAL ISSUES CO has profound effects on mitochondria and cellular respiration and other hemoproteins to which it can bind and affect their function, while BV and bilirubin (BR), the substrate and product of BV, reductase, respectively, are potent antioxidants. Sequestration of iron into ferritin and its recycling in the tissues is a part of the homeodynamic processes that control oxidation-reduction in cellular metabolism. Further, heme is an important component of a number of metabolic enzymes, and, therefore, HO-1 plays an important role in the modulation of cellular bioenergetics. FUTURE DIRECTIONS In this review, we describe the cross-talk between heme oxygenase-1 (HO-1) and its products with other metabolic pathways. HO-1, which we have labeled Nike, the goddess who personified victory, dictates triumph over pathophysiologic conditions, including diabetes, ischemia, and cancer.
Collapse
Affiliation(s)
- Barbara Wegiel
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Zsuzsanna Nemeth
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Department of Tumor Biology, National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Matheus Correa-Costa
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Andrew C. Bulmer
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Queensland, Australia
| | - Leo E. Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
11
|
De Chiara L, Fagoonee S, Ranghino A, Bruno S, Camussi G, Tolosano E, Silengo L, Altruda F. Renal cells from spermatogonial germline stem cells protect against kidney injury. J Am Soc Nephrol 2014; 25:316-328. [PMID: 24136918 PMCID: PMC3904562 DOI: 10.1681/asn.2013040367] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 08/19/2013] [Indexed: 12/11/2022] Open
Abstract
Spermatogonial stem cells reside in specific niches within seminiferous tubules and continuously generate differentiating daughter cells for production of spermatozoa. Although spermatogonial stem cells are unipotent, these cells are able to spontaneously convert to germline cell-derived pluripotent stem cells (GPSCs) in vitro. GPSCs have many properties of embryonic stem cells and are highly plastic, but their therapeutic potential in tissue regeneration has not been fully explored. Using a novel renal epithelial differentiation protocol, we obtained GPSC-derived tubular-like cells (GTCs) that were functional in vitro, as demonstrated through transepithelial electrical resistance analysis. In mice, GTCs injected after ischemic renal injury homed to the renal parenchyma, and GTC-treated mice showed reduced renal oxidative stress, tubular apoptosis, and cortical damage and upregulated tubular expression of the antioxidant enzyme hemeoxygenase-1. Six weeks after ischemic injury, kidneys of GTC-treated mice had less fibrosis and inflammatory infiltrate than kidneys of vehicle-treated mice. In conclusion, we show that GPSCs can be differentiated into functionally active renal tubular-like cells that therapeutically prevent chronic ischemic damage in vivo, introducing the potential utility of GPSCs in regenerative cell therapy.
Collapse
Affiliation(s)
- Letizia De Chiara
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, and
| | - Sharmila Fagoonee
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, and
| | - Andrea Ranghino
- Division of Nephrology Dialysis and Transplantation, Department of Medical Sciences, San Giovanni Battista Hospital and University of Torino, Torino, Italy
| | - Stefania Bruno
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, and
| | - Giovanni Camussi
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, and
- Department of Medical Sciences, University of Torino, Torino, Italy; and
| | - Emanuela Tolosano
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, and
| | - Lorenzo Silengo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, and
| | - Fiorella Altruda
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, and
| |
Collapse
|
12
|
Abstract
Ebola virus (EBOV) is the causative agent of a severe hemorrhagic fever in humans with reported case fatality rates as high as 90%. There are currently no licensed vaccines or antiviral therapeutics to combat EBOV infections. Heme oxygenase-1 (HO-1), an enzyme that catalyzes the rate-limiting step in heme degradation, has antioxidative properties and protects cells from various stresses. Activated HO-1 was recently shown to have antiviral activity, potently inhibiting the replication of viruses such as hepatitis C virus and human immunodeficiency virus. However, the effect of HO-1 activation on EBOV replication remains unknown. To determine whether the upregulation of HO-1 attenuates EBOV replication, we treated cells with cobalt protoporphyrin (CoPP), a selective HO-1 inducer, and assessed its effects on EBOV replication. We found that CoPP treatment, pre- and postinfection, significantly suppressed EBOV replication in a manner dependent upon HO-1 upregulation and activity. In addition, stable overexpression of HO-1 significantly attenuated EBOV growth. Although the exact mechanism behind the antiviral properties of HO-1 remains to be elucidated, our data show that HO-1 upregulation does not attenuate EBOV entry or budding but specifically targets EBOV transcription/replication. Therefore, modulation of the cellular enzyme HO-1 may represent a novel therapeutic strategy against EBOV infection.
Collapse
|
13
|
He XH, Yan XT, Wang YL, Wang CY, Zhang ZZ, Zhan J. Transduced PEP-1-heme oxygenase-1 fusion protein protects against intestinal ischemia/reperfusion injury. J Surg Res 2013; 187:77-84. [PMID: 24189179 DOI: 10.1016/j.jss.2013.09.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/29/2013] [Accepted: 09/27/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Heme oxygenase-1 (HO-1) has been shown to have antioxidant and anti-apoptotic properties. The present study transduced HO-1 protein into intestinal tissues using PEP-1, a cell-penetrating peptide, and investigated its potentiality in prevention against intestinal ischemia/reperfusion (I/R) injury. MATERIALS AND METHODS PEP-1-HO-1 fusion protein was administered intravenously to explore the time and dose characteristics through measuring serum HO-1 levels. Twenty-four male Sprague-Dawley rats were randomly divided into three groups: sham, intestinal I/R (II/R), II/R + PEP-1-HO-1 fusion protein (HO). The model was established by occluding the superior mesenteric artery for 45 min followed by 120 min reperfusion. In HO group, PEP-1-HO-1 was administered intravenously 30 min before ischemia, whereas animals in sham and II/R groups received the equal volume of physiological saline. After the experiment, the intestines were harvested for determination of histologic injury, wet/dry ratio, enzyme activity, apoptosis, and His-probe protein (one part of PEP-1-HO-1). RESULTS Levels of serum HO-1 were dose- and time-dependent manner after intravenous injection of PEP-1-HO-1. I/R caused deterioration of histologic characteristics and increases in histologic injury scoring, wet/dry ratio, myeloperoxidase activity, malondialdehyde, and intestinal apoptosis. These changes were also accompanied by a decrease in superoxide dismutase activity (P < 0.05). PEP-1-HO-1 treatment significantly reversed these changes (P < 0.05). Furthermore, His-probe protein expression was only detected in PEP-1-HO-1-treated animals. CONCLUSION Treatment of PEP-1-HO-1 attenuates intestinal I/R injury, which might be attributable to its antioxidant and anti-apoptotic roles of HO-1.
Collapse
Affiliation(s)
- Xiang-Hu He
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Xue-Tao Yan
- Department of Anesthesiology, Shenzhen Boan Maternity and Child Health hospital, Shenzhen, China
| | - Yan-Lin Wang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Cheng-Yao Wang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zong-Ze Zhang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jia Zhan
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
14
|
An aqueous extract of Zingiber officinale Roscoe protects mouse primary hepatic cells against hydrogen peroxide-induced oxidative stress. BIOTECHNOL BIOPROC E 2012. [DOI: 10.1007/s12257-011-0433-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
15
|
McGhan LJ, Jaroszewski DE. The role of toll-like receptor-4 in the development of multi-organ failure following traumatic haemorrhagic shock and resuscitation. Injury 2012; 43:129-36. [PMID: 21689818 DOI: 10.1016/j.injury.2011.05.032] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 05/25/2011] [Indexed: 02/02/2023]
Abstract
Haemorrhagic shock and resuscitation (HS/R) following major trauma results in a global ischaemia and reperfusion injury that may lead to multiple organ dysfunction syndrome (MODS). Systemic activation of the immune system is fundamental to the development of MODS in this context, and shares many features in common with the systemic inflammatory response syndrome (SIRS) that complicates sepsis. An important advancement in the understanding of the innate response to infection involved the identification of mammalian toll-like receptors (TLRs) expressed on cells of the immune system. Ten TLR homologues have been identified in humans and toll-like receptor-4 (TLR4) has been studied most intensively. Initially found to recognise bacterial lipopolysaccharide (LPS), it has also recently been discovered that TLR4 is capable of activation by endogenous 'danger signal' molecules released following cellular injury; this has since implicated TLR4 in several non-infectious pathophysiologic processes, including HS/R. The exact events leading to multi-organ dysfunction following HS/R have not yet been clearly defined, although TLR4 is believed to play a central role as has been shown to be expressed at sites including the liver, lungs and myocardium following HS/R. Multi-organ dysfunction syndrome remains an important cause of morbidity and mortality in trauma patients, and current therapy is based on supportive care. Understanding the pathophysiology of HS/R will allow for the development of targeted therapeutic strategies aimed at minimising organ dysfunction and improving patient outcomes following traumatic haemorrhage. A review of the pathogenesis of haemorrhagic shock is presented, and the complex, yet critical role of TLR4 as both a key mediator and therapeutic target is discussed.
Collapse
Affiliation(s)
- Lee J McGhan
- Resident in General Surgery, Mayo Clinic, 5777 East Mayo Boulevard, Phoenix, AZ 85054, United States.
| | | |
Collapse
|
16
|
|
17
|
Liu Y, Sun XJ, Liu J, Kang ZM, Deng XM. Heme oxygenase-1 could mediate the protective effects of hyperbaric oxygen preconditioning against hepatic ischemia-reperfusion injury in rats. Clin Exp Pharmacol Physiol 2011; 38:675-82. [DOI: 10.1111/j.1440-1681.2011.05560.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
18
|
Klemcke HG, Joe B, Rose R, Ryan KL. Life or death? A physiogenomic approach to understand individual variation in responses to hemorrhagic shock. Curr Genomics 2011; 12:428-42. [PMID: 22379396 PMCID: PMC3178911 DOI: 10.2174/138920211797248574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/29/2011] [Accepted: 07/06/2011] [Indexed: 11/22/2022] Open
Abstract
Severe hemorrhage due to trauma is a major cause of death throughout the world. It has often been observed that some victims are able to withstand hemorrhage better than others. For decades investigators have attempted to identify physiological mechanisms that distinguish survivors from nonsurvivors for the purpose of providing more informed therapies. As an alternative approach to address this issue, we have initiated a research program to identify genes and genetic mechanisms that contribute to this phenotype of survival time after controlled hemorrhage. From physiogenomic studies using inbred rat strains, we have demonstrated that this phenotype is a heritable quantitative trait, and is therefore a complex trait regulated by multiple genes. Our work continues to identify quantitative trait loci as well as potential epigenetic mechanisms that might influence survival time after severe hemorrhage. Our ultimate goal is to improve survival to traumatic hemorrhage and attendant shock via regulation of genetic mechanisms and to provide knowledge that will lead to genetically-informed personalized treatments.
Collapse
Affiliation(s)
- Harold G Klemcke
- U.S. Army Institute of Surgical Research, Fort Sam Houston, TX 78234, USA
| | - Bina Joe
- Physiological Genomics Laboratory, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Rajiv Rose
- U.S. Army Institute of Surgical Research, Fort Sam Houston, TX 78234, USA
| | - Kathy L Ryan
- U.S. Army Institute of Surgical Research, Fort Sam Houston, TX 78234, USA
| |
Collapse
|
19
|
Plant polyphenols attenuate hepatic injury after hemorrhage/resuscitation by inhibition of apoptosis, oxidative stress, and inflammation via NF-kappaB in rats. Eur J Nutr 2011; 51:311-21. [PMID: 21698494 DOI: 10.1007/s00394-011-0216-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 06/01/2011] [Indexed: 01/04/2023]
Abstract
PURPOSE Oxidative stress and inflammation contribute to hepatic injury after hemorrhage/resuscitation (H/R). Natural plant polyphenols, i.e., green tea extract (GTE) possess high anti-oxidant and anti-inflammatory activities in various models of acute inflammation. However, possible protective effects and feasible mechanisms by which plant polyphenols modulate pro-inflammatory, apoptotic, and oxidant signaling after H/R in the liver remain unknown. Therefore, we investigated the effects of GTE and its impact on the activation of NF-kappaB in the pathogenesis of hepatic injury induced by H/R. METHODS Twenty-four female LEWIS rats (180-250 g) were fed a standard chow (ctrl) or a diet containing 0.1% polyphenolic extracts (GTE) from Camellia sinensis starting 5 days before H/R. Rats were hemorrhaged to a mean arterial pressure of 30 ± 2 mmHg for 60 min and resuscitated (H/R and GTE H/R groups). Control groups (sham, ctrl, and GTE) underwent surgical procedures without H/R. Two hours after resuscitation, tissues were harvested. RESULTS Plasma alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) increased 3.5-fold and fourfold, respectively, in vehicle-treated rats as compared to GTE-fed rats. Histopathological analysis revealed significantly decreased hepatic necrosis and apoptosis in GTE-fed rats after H/R. Real-time PCR showed that GTE diminished gene expression of pro-apoptotic caspase-8 and Bax, while anti-apoptotic Bcl-2 was increased after H/R. Hepatic oxidative (4-hydroxynonenal) and nitrosative (3-nitrotyrosine) stress as well as systemic IL-6 level and hepatic IL-6 mRNA were markedly reduced in GTE-fed rats compared with controls after H/R. Plant polyphenols also decreased the activation of both JNK and NFκB. CONCLUSIONS Taken together, GTE application blunts hepatic damage, apoptotic, oxidative, and pro-inflammatory changes after H/R. These results underline the important roles of JNK and NF-kappaB in inflammatory processes after H/R and the beneficial impact of plant polyphenols in preventing their activation.
Collapse
|
20
|
Effects of green tea catechins on the pro-inflammatory response after haemorrhage/resuscitation in rats. Br J Nutr 2011; 105:1791-7. [PMID: 21294935 DOI: 10.1017/s000711451000560x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Plant polyphenols, i.e. green tea extract (GTE), possess high antioxidative and anti-inflammatory capacity, thus being protective in various models of acute inflammation. However, their anti-inflammatory effect and a feasible mechanism in haemorrhage/resuscitation (H/R)-induced liver injury remain unknown. We investigated the effects of GTE and the role of NF-κB in the pathogenesis of liver injury induced by H/R, and their effects on intercellular adhesion molecule-1 (ICAM-1) expression and neutrophil infiltration. Female Lewis rats were fed a standard chow diet (control, ctrl) or a diet containing 0·1 % polyphenolic GTE for five consecutive days before H/R. Rats were haemorrhaged to a mean arterial pressure of 30 (sem 2) mmHg for 60 min and resuscitated. Control groups (sham_ctrl and sham_GTE) underwent surgical procedures without H/R. At 2 h after resuscitation, tissues were harvested. Serum alanine aminotransferase (ALT) and IL-6 were measured. Hepatic necrosis, ICAM-1 expression and polymorphonuclear leucocyte (PMNL) infiltration were assessed. Hepatic expression of IκBα (phospho) was measured. H/R induced strong liver damage with increased necrosis and serum ALT levels. Compared with both sham groups, inflammatory markers (serum IL-6 and hepatic PMNL infiltration) were elevated after H/R (P < 0·05). Also, H/R increased IκBα phosphorylation. GTE administration markedly (P < 0·05) decreased serum ALT and IL-6 levels, hepatic necrosis as well as PMNL infiltration and the expression of ICAM-1 and phosphorylated IκBα compared with H/R. In conclusion, we observed that NF-κB activation plays an important role in the pathogenesis of liver injury after H/R through the up-regulation of hepatic ICAM-1 expression and subsequent PMNL infiltration. GTE pre-treatment prevents liver damage in this model of acute inflammation through a NF-κB-dependent mechanism.
Collapse
|
21
|
Cai C, Gill R, Eum HA, Cao Z, Loughran PA, Darwiche S, Edmonds RD, Menzel CL, Billiar TR. Complement factor 3 deficiency attenuates hemorrhagic shock-related hepatic injury and systemic inflammatory response syndrome. Am J Physiol Regul Integr Comp Physiol 2010; 299:R1175-82. [PMID: 20702808 DOI: 10.1152/ajpregu.00282.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Although complement activation is known to occur in the setting of severe hemorrhagic shock and tissue trauma (HS/T), the extent to which complement drives the initial inflammatory response and end-organ damage is uncertain. In this study, complement factor 3-deficient (C3(-/-)) mice and wild-type control mice were subjected to 1.5-h hemorrhagic shock, bilateral femur fracture, and soft tissue injury, followed by 4.5-h resuscitation (HS/T). C57BL/6 mice were also given 15 U of cobra venom factor (CVF) or phosphate-buffered saline injected intraperitoneally, followed by HS/T 24 h later. The results showed that HS/T resulted in C3 consumption in wild-type mice and C3 deposition in injured livers. C3(-/-) mice had significantly lower serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and circulating DNA levels, together with much lower circulating interleukin (IL)-6, IL-10, and high-mobility group box 1 (HMGB1) levels. Temporary C3 depletion by CVF preconditioning also led to reduced transaminases and a blunted cytokine release. C3(-/-) mice displayed well-preserved hepatic structure. C3(-/-) mice subjected to HS/T had higher levels of heme oxygenase-1, which has been associated with tissue protection in HS models. Our data indicate that complement activation contributes to inflammatory pathways and liver damage in HS/T. This suggests that targeting complement activation in the setting of severe injury could be useful.
Collapse
Affiliation(s)
- Changchun Cai
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Mandal P, Pritchard MT, Nagy LE. Anti-inflammatory pathways and alcoholic liver disease: role of an adiponectin/interleukin-10/heme oxygenase-1 pathway. World J Gastroenterol 2010; 16:1330-1336. [PMID: 20238399 PMCID: PMC2842524 DOI: 10.3748/wjg.v16.i11.1330] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 01/16/2010] [Accepted: 01/23/2010] [Indexed: 02/06/2023] Open
Abstract
The development of alcoholic liver disease (ALD) is a complex process involving both the parenchymal and non-parenchymal cells in the liver. Enhanced inflammation in the liver during ethanol exposure is an important contributor to injury. Kupffer cells, the resident macrophages in liver, are particularly critical to the onset of ethanol-induced liver injury. Chronic ethanol exposure sensitizes Kupffer cells to activation by lipopolysaccharide via Toll-like receptor 4. This sensitization enhances production of inflammatory mediators, such as tumor necrosis factor-alpha and reactive oxygen species, that contribute to hepatocyte dysfunction, necrosis, apoptosis, and fibrosis. Impaired resolution of the inflammatory process probably also contributes to ALD. The resolution of inflammation is an active, highly coordinated response that can potentially be manipulated via therapeutic interventions to treat chronic inflammatory diseases. Recent studies have identified an adiponectin/interleukin-10/heme oxygenase-1 (HO-1) pathway that is profoundly effective in dampening the enhanced activation of innate immune responses in primary cultures of Kupffer cells, as well as in an in vivo mouse model of chronic ethanol feeding. Importantly, induction of HO-1 also reduces ethanol-induced hepatocellular apoptosis in this in vivo model. Based on these data, we hypothesize that the development of therapeutic agents to regulate HO-1 and its downstream targets could be useful in enhancing the resolution of inflammation during ALD and preventing progression of early stages of liver injury.
Collapse
|
23
|
What's new in Shock, March 2010? Shock 2010; 33:227-8. [PMID: 20160608 DOI: 10.1097/shk.0b013e3181ce984a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|