1
|
Khalid M, Adem A. The dynamic roles of advanced glycation end products. VITAMINS AND HORMONES 2024; 125:1-29. [PMID: 38997161 DOI: 10.1016/bs.vh.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Advanced glycation end products (AGEs) are a heterogeneous group of potentially harmful molecules that can form as a result of a non-enzymatic reaction between reducing sugars and proteins, lipids, or nucleic acids. The total body pool of AGEs reflects endogenously produced AGEs as well as exogeneous AGEs that come from sources such as diet and the environment. Engagement of AGEs with their cellular receptor, the receptor for advanced glycation end products (RAGE), which is expressed on the surface of various cell types, converts a brief pulse of cellular activation to sustained cellular dysfunction and tissue destruction. The AGEs/RAGE interaction triggers a cascade of intracellular signaling pathways such as mitogen-activated protein kinase/extracellular signal-regulated kinase, phosphoinositide 3-kinases, transforming growth factor beta, c-Jun N-terminal kinases (JNK), and nuclear factor kappa B, which leads to the production of pro-inflammatory cytokines, chemokines, adhesion molecules, and oxidative stress. All these events contribute to the progression of several chronic diseases. This chapter will provide a comprehensive understanding of the dynamic roles of AGEs in health and disease which is crucial to develop interventions that prevent and mitigate the deleterious effects of AGEs accumulation.
Collapse
Affiliation(s)
- Mariyam Khalid
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Abdu Adem
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
2
|
Lai SWT, Lopez Gonzalez EDJ, Zoukari T, Ki P, Shuck SC. Methylglyoxal and Its Adducts: Induction, Repair, and Association with Disease. Chem Res Toxicol 2022; 35:1720-1746. [PMID: 36197742 PMCID: PMC9580021 DOI: 10.1021/acs.chemrestox.2c00160] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Metabolism is an essential part of life that provides energy for cell growth. During metabolic flux, reactive electrophiles are produced that covalently modify macromolecules, leading to detrimental cellular effects. Methylglyoxal (MG) is an abundant electrophile formed from lipid, protein, and glucose metabolism at intracellular levels of 1-4 μM. MG covalently modifies DNA, RNA, and protein, forming advanced glycation end products (MG-AGEs). MG and MG-AGEs are associated with the onset and progression of many pathologies including diabetes, cancer, and liver and kidney disease. Regulating MG and MG-AGEs is a potential strategy to prevent disease, and they may also have utility as biomarkers to predict disease risk, onset, and progression. Here, we review recent advances and knowledge surrounding MG, including its production and elimination, mechanisms of MG-AGEs formation, the physiological impact of MG and MG-AGEs in disease onset and progression, and the latter in the context of its receptor RAGE. We also discuss methods for measuring MG and MG-AGEs and their clinical application as prognostic biomarkers to allow for early detection and intervention prior to disease onset. Finally, we consider relevant clinical applications and current therapeutic strategies aimed at targeting MG, MG-AGEs, and RAGE to ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Seigmund Wai Tsuen Lai
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Edwin De Jesus Lopez Gonzalez
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Tala Zoukari
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Priscilla Ki
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| | - Sarah C Shuck
- Department of Diabetes and Cancer Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States
| |
Collapse
|
3
|
Abstract
Smoking is a well-established risk factor for chronic obstructive pulmonary disease (COPD). Chronic lung inflammation continues even after smoking cessation and leads to COPD progression. To date, anti-inflammatory therapies are ineffective in improving pulmonary function and COPD symptoms, and new molecular targets are urgently needed to deal with this challenge. The receptor for advanced glycation end-products (RAGE) was shown to be relevant in COPD pathogenesis, since it is both a genetic determinant of low lung function and a determinant of COPD susceptibility. Moreover, RAGE is involved in the physiological response to cigarette smoke exposure. Since innate and acquired immunity plays an essential role in the development of chronic inflammation and emphysema in COPD, here we summarized the roles of RAGE and its ligand HMGB1 in COPD immunity.
Collapse
Affiliation(s)
- Lin Chen
- Department of Respiratory and Critical Care Medicine, Liuzhou People's Hospital, LiuZhou, Guangxi, China
| | - Xuejiao Sun
- Department of Respiratory and Critical Care Medicine, Liuzhou People's Hospital, LiuZhou, Guangxi, China
| | - Xiaoning Zhong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
4
|
Advanced Glycation End Products and Diabetes Mellitus: Mechanisms and Perspectives. Biomolecules 2022; 12:biom12040542. [PMID: 35454131 PMCID: PMC9030615 DOI: 10.3390/biom12040542] [Citation(s) in RCA: 348] [Impact Index Per Article: 116.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 02/06/2023] Open
Abstract
Persistent hyperglycemic state in type 2 diabetes mellitus leads to the initiation and progression of non-enzymatic glycation reaction with proteins and lipids and nucleic acids. Glycation reaction leads to the generation of a heterogeneous group of chemical moieties known as advanced glycated end products (AGEs), which play a central role in the pathophysiology of diabetic complications. The engagement of AGEs with its chief cellular receptor, RAGE, activates a myriad of signaling pathways such as MAPK/ERK, TGF-β, JNK, and NF-κB, leading to enhanced oxidative stress and inflammation. The downstream consequences of the AGEs/RAGE axis involve compromised insulin signaling, perturbation of metabolic homeostasis, RAGE-induced pancreatic beta cell toxicity, and epigenetic modifications. The AGEs/RAGE signaling instigated modulation of gene transcription is profoundly associated with the progression of type 2 diabetes mellitus and pathogenesis of diabetic complications. In this review, we will summarize the exogenous and endogenous sources of AGEs, their role in metabolic dysfunction, and current understandings of AGEs/RAGE signaling cascade. The focus of this review is to recapitulate the role of the AGEs/RAGE axis in the pathogenesis of type 2 diabetes mellitus and its associated complications. Furthermore, we present an overview of future perspectives to offer new therapeutic interventions to intervene with the AGEs/RAGE signaling pathway and to slow down the progression of diabetes-related complications.
Collapse
|
5
|
Kinscherf NA, Pehar M. Role and Therapeutic Potential of RAGE Signaling in Neurodegeneration. Curr Drug Targets 2022; 23:1191-1209. [PMID: 35702767 PMCID: PMC9589927 DOI: 10.2174/1389450123666220610171005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 04/29/2022] [Indexed: 01/03/2023]
Abstract
Activation of the receptor for advanced glycation end products (RAGE) has been shown to play an active role in the development of multiple neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis. Although originally identified as a receptor for advanced glycation end products, RAGE is a pattern recognition receptor able to bind multiple ligands. The final outcome of RAGE signaling is defined in a context and cell type specific manner and can exert both neurotoxic and neuroprotective functions. Contributing to the complexity of the RAGE signaling network, different RAGE isoforms with distinctive signaling capabilities have been described. Moreover, multiple RAGE ligands bind other receptors and RAGE antagonism can significantly affect their signaling. Here, we discuss the outcome of celltype specific RAGE signaling in neurodegenerative pathologies. In addition, we will review the different approaches that have been developed to target RAGE signaling and their therapeutic potential. A clear understanding of the outcome of RAGE signaling in a cell type- and disease-specific manner would contribute to advancing the development of new therapies targeting RAGE. The ability to counteract RAGE neurotoxic signaling while preserving its neuroprotective effects would be critical for the success of novel therapies targeting RAGE signaling.
Collapse
Affiliation(s)
- Noah Alexander Kinscherf
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Mariana Pehar
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.,Geriatric Research Education Clinical Center, Veterans Affairs Medical Center, Madison, WI, USA
| |
Collapse
|
6
|
DNA-Aptamer Raised against Receptor for Advanced Glycation End Products Improves Survival Rate in Septic Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9932311. [PMID: 34413930 PMCID: PMC8369179 DOI: 10.1155/2021/9932311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 12/29/2022]
Abstract
Despite remarkable scientific advances in the understanding of molecular mechanisms for sepsis, therapeutic options are far from satisfactory. High mobility group box 1 (HMGB1), one of the ligands of receptor for advanced glycation end products (RAGE), is a late mediator of lethality in septic mice. We have recently found that the DNA-aptamer raised against RAGE (RAGE-aptamer) significantly blocks experimental diabetic nephropathy and melanoma growth and metastasis. We examined the effects of RAGE-aptamer on sepsis score, survival rate, and inflammatory and oxidative stress responses in serum, peripheral monocytes, kidneys and livers of lipopolysaccharide- (LPS-) injected mice, and on LPS-exposed THP-1 cells. RAGE-aptamer inhibited the binding of HMGB1 to RAGE in vitro. RAGE-aptamer significantly (P = 0.002) improved sepsis score at 8 hours after LPS injection and survival rate at 24 hours (P < 0.01, 70%) in septic mice compared with LPS+vehicle- or LPS+control-aptamer-treated mice. RAGE-aptamer treatment significantly decreased expression of p-NF-κB p65, an active form of redox-sensitive transcriptional factor, NF-κB and gene or protein expression of TNF-α, IL-1β, IL-6, and HMGB1 in serum, peripheral monocytes, and kidneys of septic mice in association with the reduction of oxidative stress and improvement of metabolic acidosis, renal and liver damage. LPS-induced oxidative stress, inflammatory reactions, and growth suppression in THP-1 cells were significantly blocked by RAGE-aptamer. Our present study suggests that RAGE-aptamer could attenuate multiple organ damage in LPS-injected septic mice partly by inhibiting the inflammatory reactions via suppression of HMGB1-RAGE interaction.
Collapse
|
7
|
The Effect and Regulatory Mechanism of High Mobility Group Box-1 Protein on Immune Cells in Inflammatory Diseases. Cells 2021; 10:cells10051044. [PMID: 33925132 PMCID: PMC8145631 DOI: 10.3390/cells10051044] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/18/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
High mobility group box-1 protein (HMGB1), a member of the high mobility group protein superfamily, is an abundant and ubiquitously expressed nuclear protein. Intracellular HMGB1 is released by immune and necrotic cells and secreted HMGB1 activates a range of immune cells, contributing to the excessive release of inflammatory cytokines and promoting processes such as cell migration and adhesion. Moreover, HMGB1 is a typical damage-associated molecular pattern molecule that participates in various inflammatory and immune responses. In these ways, it plays a critical role in the pathophysiology of inflammatory diseases. Herein, we review the effects of HMGB1 on various immune cell types and describe the molecular mechanisms by which it contributes to the development of inflammatory disorders. Finally, we address the therapeutic potential of targeting HMGB1.
Collapse
|
8
|
Watanabe H, Son M. The Immune Tolerance Role of the HMGB1-RAGE Axis. Cells 2021; 10:564. [PMID: 33807604 PMCID: PMC8001022 DOI: 10.3390/cells10030564] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
The disruption of the immune tolerance induces autoimmunity such as systemic lupus erythematosus and vasculitis. A chromatin-binding non-histone protein, high mobility group box 1 (HMGB1), is released from the nucleus to the extracellular milieu in particular environments such as autoimmunity, sepsis and hypoxia. Extracellular HMGB1 engages pattern recognition receptors, including Toll-like receptors (TLRs) and the receptor for advanced glycation endproducts (RAGE). While the HMGB1-RAGE axis drives inflammation in various diseases, recent studies also focus on the anti-inflammatory effects of HMGB1 and RAGE. This review discusses current perspectives on HMGB1 and RAGE's roles in controlling inflammation and immune tolerance. We also suggest how RAGE heterodimers responding microenvironments functions in immune responses.
Collapse
Affiliation(s)
- Haruki Watanabe
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA;
| | - Myoungsun Son
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA;
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
9
|
Kim OY, Song J. The importance of BDNF and RAGE in diabetes-induced dementia. Pharmacol Res 2020; 160:105083. [PMID: 32679182 DOI: 10.1016/j.phrs.2020.105083] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/30/2020] [Accepted: 07/12/2020] [Indexed: 01/11/2023]
Abstract
Diabetes-induced dementia is an emerging neurodisorder all over the world. The prevalence rates of dementia and diabetes have been gradually increasing worldwide. Diabetes has been known to lead to oxidative stress, inflammation aggravation, and hyperglycemia conditions in the brain. Various diabetic implications cause the lower secretion of brain-derived neurotrophic factor (BDNF) and the increase of receptor for advanced glycation end products (RAGE), ultimately leading to both cerebrovascular dysfunction and cognitive decline. Here, we summarized the significant evidences highlighting the specific mechanisms between BDNF and RAGE and cerebrovascular dysfunction and memory function and how these relate to diabetes-induced dementia. Especially, we review that the association between BDFN and RAGE in neuroinflammation, the reduction of long-term potentiation, and the vascular implications in brain.
Collapse
Affiliation(s)
- Oh Yoen Kim
- The Department of Food Science and Nutrition, Dong-A University, Busan 49315, Republic of Korea; The Center for Silver-Targeted Biomaterials, Brain Busan 21 Plus Program, Graduate School, Dong-A University, Busan 49315, Republic of Korea.
| | - Juhyun Song
- The Department of Anatomy, Chonnam National University, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea.
| |
Collapse
|
10
|
Weinhage T, Wirth T, Schütz P, Becker P, Lueken A, Skryabin BV, Wittkowski H, Foell D. The Receptor for Advanced Glycation Endproducts (RAGE) Contributes to Severe Inflammatory Liver Injury in Mice. Front Immunol 2020; 11:1157. [PMID: 32670276 PMCID: PMC7326105 DOI: 10.3389/fimmu.2020.01157] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/11/2020] [Indexed: 12/24/2022] Open
Abstract
Background: The receptor for advanced glycation end products (RAGE) is a multiligand receptor involved in a number of processes and disorders. While it is known that RAGE-signaling can contribute to toxic liver damage and fibrosis, its role in acute inflammatory liver injury and septic multiorgan failure is yet undefined. We examined RAGE in lipopolysaccharide (LPS) induced acute liver injury of D-galN sensitized mice as a classical model for tumor necrosis factor alpha (TNF-α) dependent inflammatory organ damage. Methods: Mice (Rage–/– and C57BL/6) were intraperitoneally injected with D-galN (300 mg/kg) and LPS (10 μg/kg). Animals were monitored clinically, and cytokines, damage associated molecular pattern molecules (DAMPs) as well as liver enzymes were determined in serum. Liver histology, hepatic cytokines as well as RAGE mRNA expression were analyzed. Cellular activation and functionality were evaluated by flow cytometry both in bone marrow- and liver-derived cells. Results: Genetic deficiency of RAGE significantly reduced the mortality of mice exposed to LPS/D-galN. Hepatocyte damage markers were reduced in Rage–/– mice, and liver histopathology was less severe. Rage–/– mice produced less pro-inflammatory cytokines and DAMPs in serum and liver. While immune cell functions appeared normal, TNF-α production by hepatocytes was reduced in Rage–/– mice. Conclusions: We found that RAGE deletion attenuated the expression of pro-inflammatory cytokines and DAMPs in hepatocytes without affecting cellular immune functions in the LPS/D-galN model of murine liver injury. Our data highlight the importance of tissue-specific RAGE-signaling also in acute inflammatory liver stress contributing to sepsis and multiorgan failure.
Collapse
Affiliation(s)
- Toni Weinhage
- Department of Pediatric Rheumatology and Immunology, University of Münster, Münster, Germany
| | - Timo Wirth
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Paula Schütz
- Department of Pediatric Rheumatology and Immunology, University of Münster, Münster, Germany
| | - Philipp Becker
- Department of Pediatric Rheumatology and Immunology, University of Münster, Münster, Germany
| | - Aloys Lueken
- Department of Pediatric Rheumatology and Immunology, University of Münster, Münster, Germany
| | - Boris V Skryabin
- Core Facility of Transgenic Animal and Genetic Engineering Models (TRAM), University of Münster, Münster, Germany
| | - Helmut Wittkowski
- Department of Pediatric Rheumatology and Immunology, University of Münster, Münster, Germany
| | - Dirk Foell
- Department of Pediatric Rheumatology and Immunology, University of Münster, Münster, Germany
| |
Collapse
|
11
|
Yang H, Wang H, Andersson U. Targeting Inflammation Driven by HMGB1. Front Immunol 2020; 11:484. [PMID: 32265930 PMCID: PMC7099994 DOI: 10.3389/fimmu.2020.00484] [Citation(s) in RCA: 405] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/02/2020] [Indexed: 12/22/2022] Open
Abstract
High mobility group box 1 (HMGB1) is a highly conserved, nuclear protein present in all cell types. It is a multi-facet protein exerting functions both inside and outside of cells. Extracellular HMGB1 has been extensively studied for its prototypical alarmin functions activating innate immunity, after being actively released from cells or passively released upon cell death. TLR4 and RAGE operate as the main HMGB1 receptors. Disulfide HMGB1 activates the TLR4 complex by binding to MD-2. The binding site is separate from that of LPS and it is now feasible to specifically interrupt HMGB1/TLR4 activation without compromising protective LPS/TLR4-dependent functions. Another important therapeutic strategy is established on the administration of HMGB1 antagonists precluding RAGE-mediated endocytosis of HMGB1 and HMGB1-bound molecules capable of activating intracellular cognate receptors. Here we summarize the role of HMGB1 in inflammation, with a focus on recent findings on its mission as a damage-associated molecular pattern molecule and as a therapeutic target in inflammatory diseases. Recently generated HMGB1-specific inhibitors for treatment of inflammatory conditions are discussed.
Collapse
Affiliation(s)
- Huan Yang
- Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Haichao Wang
- Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Ulf Andersson
- Department of Women's and Children's Health, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
12
|
Methods for Single-Cell Isolation and Preparation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1255:7-27. [PMID: 32949387 DOI: 10.1007/978-981-15-4494-1_2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Within the last decade, single-cell analysis has revolutionized our understanding of cellular processes and heterogeneity across all disciplines of life science. As the transcriptome, genome, or epigenome of individual cells can nowadays be analyzed at low cost and in high-throughput within a few days by modern techniques, tremendous improvements in disease diagnosis on the one hand and the investigation of disease-relevant mechanisms on the other were achieved so far. This relies on the parallel development of reliable cell capturing and single-cell sequencing approaches that have paved the way for comprehensive single-cell studies. Apart from single-cell isolation methods in high-throughput, a variety of methods with distinct specializations were developed, allowing for correlation of transcriptomics with cellular parameters like electrophysiology or morphology.For all single-cell-based approaches, accurate and reliable isolation with proper quality controls is prerequisite, whereby different options exist dependent on sample type and tissue properties. Careful consideration of an appropriate method is required to avoid incorrect or biased data that may lead to misinterpretations.In this chapter, we will provide a broad overview of the current state of the art in matters of single-cell isolation methods mostly applied for sequencing-based downstream analysis, and their respective advantages and drawbacks. Distinct technologies will be discussed in detail addressing key parameters like sample compatibility, viability, purity, throughput, and isolation efficiency.
Collapse
|
13
|
Yehya N. Lessons learned in acute respiratory distress syndrome from the animal laboratory. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:503. [PMID: 31728356 DOI: 10.21037/atm.2019.09.33] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Since the description of the acute respiratory distress syndrome (ARDS) in 1967, investigators have struggled to reproduce the syndrome in the animal laboratory. While several different models of experimental acute lung injury (ALI) have been developed, none completely capture the inciting etiologies, initial inflammation, heterogeneity, and resolution of human ARDS. This potentially has contributed to the poor translation of potential therapeutics between animal ALI models and human ARDS. It was only recently that standardized criteria were suggested for what makes an ALI model comparable to human ARDS. Nevertheless, despite model heterogeneity, these models have contributed substantially to our understanding of the syndrome. From the initial studies identifying the risks of mechanical ventilation to the identification of potentially targetable inflammatory mediators, to modern studies focusing on regional heterogeneity and novel molecular pathways, animal models continue to inform our understanding of ARDS. This review will cover several major lessons learned from animal models of ALI, and provide some direction for future studies in this field.
Collapse
Affiliation(s)
- Nadir Yehya
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
14
|
Gotts JE, Bernard O, Chun L, Croze RH, Ross JT, Nesseler N, Wu X, Abbott J, Fang X, Calfee CS, Matthay MA. Clinically relevant model of pneumococcal pneumonia, ARDS, and nonpulmonary organ dysfunction in mice. Am J Physiol Lung Cell Mol Physiol 2019; 317:L717-L736. [PMID: 31509438 DOI: 10.1152/ajplung.00132.2019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pneumonia is responsible for more deaths in the United States than any other infectious disease. Severe pneumonia is a common cause of acute respiratory failure and acute respiratory distress syndrome (ARDS). Despite the introduction of effective antibiotics and intensive supportive care in the 20th century, death rates from community-acquired pneumonia among patients in the intensive care unit remain as high as 35%. Beyond antimicrobial treatment, no targeted molecular therapies have yet proven effective, highlighting the need for additional research. Despite some limitations, small animal models of pneumonia and the mechanistic insights they produce are likely to continue to play an important role in generating new therapeutic targets. Here we describe the development of an innovative mouse model of pneumococcal pneumonia developed for enhanced clinical relevance. We first reviewed the literature of small animal models of bacterial pneumonia that incorporated antibiotics. We then did a series of experiments in mice in which we systematically varied the pneumococcal inoculum and the timing of antibiotics while measuring systemic and lung-specific end points, producing a range of models that mirrors the spectrum of pneumococcal lung disease in patients, from mild self-resolving infection to severe pneumonia refractory to antibiotics. A delay in antibiotic treatment resulted in ongoing inflammation and renal and hepatic dysfunction despite effective bacterial killing. The addition of fluid resuscitation to the model improved renal function but worsened the severity of lung injury based on direct measurements of pulmonary edema and lung compliance, analogous to patients with pneumonia and sepsis who develop ARDS following fluid administration.
Collapse
Affiliation(s)
- Jeffrey E Gotts
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California.,Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California
| | - Olivier Bernard
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California.,Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California
| | - Lauren Chun
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California.,Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California
| | | | - James T Ross
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California.,Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California
| | - Nicolas Nesseler
- Department of Anesthesia and Critical Care, Pontchaillou, University Hospital of Rennes, Rennes, France
| | - Xueling Wu
- Shanghai Jiaotong University, Respiratory Medicine, Renji Hospital, Shanghai, China
| | - Jason Abbott
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California.,Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California
| | - Xiaohui Fang
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California.,Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California
| | - Carolyn S Calfee
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California.,Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California
| | - Michael A Matthay
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, California.,Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California
| |
Collapse
|
15
|
Inhibition of the Receptor for Advanced Glycation End-Products in Acute Respiratory Distress Syndrome: A Randomised Laboratory Trial in Piglets. Sci Rep 2019; 9:9227. [PMID: 31239497 PMCID: PMC6592897 DOI: 10.1038/s41598-019-45798-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 06/12/2019] [Indexed: 02/08/2023] Open
Abstract
The receptor for advanced glycation end-products (RAGE) modulates the pathogenesis of acute respiratory distress syndrome (ARDS). RAGE inhibition attenuated lung injury and restored alveolar fluid clearance (AFC) in a mouse model of ARDS. However, clinical translation will require assessment of this strategy in larger animals. Forty-eight anaesthetised Landrace piglets were randomised into a control group and three treatment groups. Animals allocated to treatment groups underwent orotracheal instillation of hydrochloric acid (i) alone; (ii) in combination with intravenous administration of a RAGE antagonist peptide (RAP), or (iii) recombinant soluble (s)RAGE. The primary outcome was net AFC at 4 h. Arterial oxygenation was assessed hourly and alveolar-capillary permeability, alveolar inflammation and lung histology were assessed at 4 h. Treatment with either RAP or sRAGE improved net AFC (median [interquartile range], 21.2 [18.8–21.7] and 19.5 [17.1–21.5] %/h, respectively, versus 12.6 [3.2–18.8] %/h in injured, untreated controls), oxygenation and decreased alveolar inflammation and histological evidence of tissue injury after ARDS. These findings suggest that RAGE inhibition restored AFC and attenuated lung injury in a piglet model of acid-induced ARDS.
Collapse
|
16
|
Yang H, Liu H, Zeng Q, Imperato GH, Addorisio ME, Li J, He M, Cheng KF, Al-Abed Y, Harris HE, Chavan SS, Andersson U, Tracey KJ. Inhibition of HMGB1/RAGE-mediated endocytosis by HMGB1 antagonist box A, anti-HMGB1 antibodies, and cholinergic agonists suppresses inflammation. Mol Med 2019; 25:13. [PMID: 30975096 PMCID: PMC6460792 DOI: 10.1186/s10020-019-0081-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/21/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Extracellular high mobility group box 1 protein (HMGB1) serves a central role in inflammation as a transporter protein, which binds other immune-activating molecules that are endocytosed via the receptor for advanced glycation end-products (RAGE). These pro-inflammatory complexes are targeted to the endolysosomal compartment, where HMGB1 permeabilizes the lysosomes. This enables HMGB1-partner molecules to avoid degradation, to leak into the cytosol, and to reach cognate immune-activating sensors. Lipopolysaccharide (LPS) requires this pathway to generate pyroptosis by accessing its key cytosolic receptors, murine caspase 11, or the human caspases 4 and 5. This lytic, pro-inflammatory cell death plays a fundamental pathogenic role in gram-negative sepsis. The aim of the study was to identify molecules inhibiting HMGB1 or HMGB1/LPS cellular internalization. METHODS Endocytosis was studied in cultured macrophages using Alexa Fluor-labeled HMGB1 or complexes of HMGB1 and Alexa Fluor-labeled LPS in the presence of an anti-HMGB1 monoclonal antibody (mAb), recombinant HMGB1 box A protein, acetylcholine, the nicotinic acetylcholine receptor subtype alpha 7 (α7 nAChR) agonist GTS-21, or a dynamin-specific inhibitor of endocytosis. Images were obtained by fluorescence microscopy and quantified by the ImageJ processing program (NIH). Data were analyzed using student's t test or one-way ANOVA followed by the least significant difference or Tukey's tests. RESULTS Anti-HMGB1 mAb, recombinant HMGB1 antagonist box A protein, acetylcholine, GTS-21, and the dynamin-specific inhibitor of endocytosis inhibited internalization of HMGB1 or HMGB1-LPS complexes in cultured macrophages. These agents prevented macrophage activation in response to HMGB1 and/or HMGB1-LPS complexes. CONCLUSION These results demonstrate that therapies based on HMGB1 antagonists and the cholinergic anti-inflammatory pathway share a previously unrecognized molecular mechanism of substantial clinical relevance.
Collapse
Affiliation(s)
- Huan Yang
- Center for Biomedical Science The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030 USA
| | - Hui Liu
- Center for Biomedical Science The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030 USA
| | - Qiong Zeng
- Center for Biomedical Science The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030 USA
| | - Gavin H. Imperato
- Center for Biomedical Science The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030 USA
| | - Meghan E. Addorisio
- Center for Biomedical Science The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030 USA
| | - Jianhua Li
- Center for Biomedical Science The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030 USA
| | - Mingzhu He
- Center for Molecular Innovation, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030 USA
| | - Kai Fan Cheng
- Center for Molecular Innovation, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030 USA
| | - Yousef Al-Abed
- Center for Bioelectronic Medicine, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030 USA
- Elmezzi Graduate School of Molecular Medicine, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
- Center for Molecular Innovation, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030 USA
| | - Helena E. Harris
- Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institute, 17176 Stockholm, Sweden
| | - Sangeeta S. Chavan
- Center for Biomedical Science The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030 USA
- Center for Bioelectronic Medicine, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030 USA
- Elmezzi Graduate School of Molecular Medicine, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Ulf Andersson
- Department of Women’s and Children’s Health, Karolinska Institute, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Kevin J. Tracey
- Center for Biomedical Science The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030 USA
- Center for Bioelectronic Medicine, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030 USA
- Elmezzi Graduate School of Molecular Medicine, Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| |
Collapse
|
17
|
Ma KC, Schenck EJ, Pabon MA, Choi AMK. The Role of Danger Signals in the Pathogenesis and Perpetuation of Critical Illness. Am J Respir Crit Care Med 2019; 197:300-309. [PMID: 28977759 DOI: 10.1164/rccm.201612-2460pp] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Kevin C Ma
- 1 Division of Pulmonary and Critical Care Medicine and.,2 New York-Presbyterian Hospital, New York, New York
| | - Edward J Schenck
- 1 Division of Pulmonary and Critical Care Medicine and.,2 New York-Presbyterian Hospital, New York, New York
| | - Maria A Pabon
- 3 Division of General Internal Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York; and.,2 New York-Presbyterian Hospital, New York, New York
| | - Augustine M K Choi
- 1 Division of Pulmonary and Critical Care Medicine and.,2 New York-Presbyterian Hospital, New York, New York
| |
Collapse
|
18
|
Nguyen QH, Pervolarakis N, Nee K, Kessenbrock K. Experimental Considerations for Single-Cell RNA Sequencing Approaches. Front Cell Dev Biol 2018; 6:108. [PMID: 30234113 PMCID: PMC6131190 DOI: 10.3389/fcell.2018.00108] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 08/20/2018] [Indexed: 01/01/2023] Open
Abstract
Single-cell transcriptomic technologies have emerged as powerful tools to explore cellular heterogeneity at the resolution of individual cells. Previous scientific knowledge in cell biology is largely limited to data generated by bulk profiling methods, which only provide averaged read-outs that generally mask cellular heterogeneity. This averaged approach is particularly problematic when the biological effect of interest is limited to only a subpopulation of cells such as stem/progenitor cells within a given tissue, or immune cell subsets infiltrating a tumor. Great advances in single-cell RNA sequencing (scRNAseq) enabled scientists to overcome this limitation and allow for in depth interrogation of previously unexplored rare cell types. Due to the high sensitivity of scRNAseq, adequate attention must be put into experimental setup and execution. Careful handling and processing of cells for scRNAseq is critical to preserve the native expression profile that will ensure meaningful analysis and conclusions. Here, we delineate the individual steps of a typical single-cell analysis workflow from tissue procurement, cell preparation, to platform selection and data analysis, and we discuss critical challenges in each of these steps, which will serve as a helpful guide to navigate the complex field of single-cell sequencing.
Collapse
Affiliation(s)
- Quy H. Nguyen
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, United States
| | - Nicholas Pervolarakis
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, United States
| | - Kevin Nee
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, United States
| | - Kai Kessenbrock
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
19
|
Wang Y, Wang C, Zhang D, Wang H, Bo L, Deng X. Dexmedetomidine Protects Against Traumatic Brain Injury-Induced Acute Lung Injury in Mice. Med Sci Monit 2018; 24:4961-4967. [PMID: 30013022 PMCID: PMC6067036 DOI: 10.12659/msm.908133] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Background Traumatic brain injury (TBI) leads to acute lung injury (ALI), in which the inflammatory response plays an important role in its pathophysiology. Recent studies suggest that dexmedetomidine (Dex) plays a protective role in acute inflammatory diseases. However, whether Dex has a protective effect on TBI-induced ALI is not clear. The aim of this study was to investigate the effect of Dex on TBI-induced ALI in mice. Material/Methods Mice were randomly divided into 5 groups: 1) sham group; 2) TBI group; 3) TBI+Dex group; 4) TBI+atipamezole (Atip) group; and 5) TBI+Dex+Atip group. Dex (50 μg/kg) was intraperitoneal injected immediately after TBI. The α2 adrenergic antagonist Atip (250 μg/kg) was intraperitoneal injected 15 minutes prior to Dex treatment. Then 24 hours later, the protein concentration in the bronchoalveolar lavage fluid (BALF), lung wet to dry weight ratio, hematoxylin and eosin (H&E) staining of lungs, the level of high-mobility group box protein 1(HMGB1) in serum, and the receptor for advanced glycation end products (RAGE) expression in lung were detected. Results Dex ameliorated the score of lung histological examination, as well as the severity of pulmonary edema and permeability. Moreover, Dex was observed to significantly suppress the expression of HMGBI and RAGE. However, the protective effects of Dex were partially reversed by the administration of Atip. Conclusions Dex may protect against TBI-induced ALI via the HMGB1-RAGE signal pathway, and this protective effect is partly dependent on its α2 adrenoceptor agonist action.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China (mainland).,Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China (mainland)
| | - Changli Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China (mainland)
| | - Dan Zhang
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China (mainland).,Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China (mainland)
| | - Huihui Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China (mainland)
| | - Lulong Bo
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China (mainland)
| | - Xiaoming Deng
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China (mainland).,Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China (mainland)
| |
Collapse
|
20
|
Srinivasan L, Kilpatrick L, Shah SS, Abbasi S, Harris MC. Elevations of novel cytokines in bacterial meningitis in infants. PLoS One 2018; 13:e0181449. [PMID: 29394248 PMCID: PMC5796685 DOI: 10.1371/journal.pone.0181449] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/01/2017] [Indexed: 12/21/2022] Open
Abstract
Background Bacterial meningitis is challenging to diagnose in infants, especially in the common setting of antibiotic pre-treatment, which diminishes yield of cerebrospinal fluid (CSF) cultures. Prior studies of diagnostic markers have not demonstrated sufficient accuracy. Interleukin-23 (IL-23), interleukin-18 (IL-18) and soluble receptor for advanced glycation end products (sRAGE) possess biologic plausibility, and may be useful as diagnostic markers in bacterial meningitis. Methods In a prospective cohort study, we measured IL-23, IL-18 and sRAGE levels in CSF. We compared differences between infected and non-infected infants, and conducted receiver operating characteristic (ROC) analyses to identify individual markers and combinations of markers with the best diagnostic accuracy. Results 189 infants <6 months, including 8 with bacterial meningitis, 30 without meningitis, and 151 with indeterminate diagnosis (due to antibiotic pretreatment) were included. CSF IL-23, IL-18 and sRAGE levels were significantly elevated in infants with culture proven meningitis. Among individual markers, IL-23 possessed the greatest accuracy for diagnosis of bacterial meningitis (area under the curve (AUC) 0.9698). The combination of all three markers had an AUC of 1. Conclusions IL-23, alone and in combination with IL-18 and sRAGE, identified bacterial meningitis with excellent accuracy. Following validation, these markers could aid clinicians in diagnosis of bacterial meningitis and decision-making regarding prolongation of antibiotic therapy.
Collapse
Affiliation(s)
- Lakshmi Srinivasan
- Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
- The Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA, United States of America
- * E-mail:
| | - Laurie Kilpatrick
- Center for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States of America
| | - Samir S. Shah
- Division of Hospital Medicine, Cincinnati Children’s Hospital Medical Center; Cincinnati, OH, United States of America
- University of Cincinnati College of Medicine, Cincinnati, OH, United States of America
| | - Soraya Abbasi
- Division of Newborn Pediatrics, Pennsylvania Hospital, Philadelphia, PA, United States of America
| | - Mary C. Harris
- Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
- The Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA, United States of America
| |
Collapse
|
21
|
Abstract
The receptor for advanced glycation end-products (RAGE) is involved in inflammatory response during acute respiratory distress syndrome (ARDS). Growing body of evidence support strategies of RAGE inhibition in experimental lung injury, but its modalities and effects remain underinvestigated. Anesthetised C57BL/6JRj mice were divided in four groups; three of them underwent orotracheal instillation of acid and were treated with anti-RAGE monoclonal antibody (mAb) or recombinant soluble RAGE (sRAGE), acting as a decoy receptor. The fourth group served as a control. Lung injury was assessed by the analysis of blood gases, alveolar permeability, histology, AFC, and cytokines. Lung expression and distribution epithelial channels ENaC, Na,K-ATPase, and aquaporin (AQP)−5 were assessed. Treatment with either anti-RAGE mAb or sRAGE improved lung injury, arterial oxygenation and decreased alveolar inflammation in acid-injured animals. Anti-RAGE therapies were associated with restored AFC and increased lung expression of AQP-5 in alveolar cell. Blocking RAGE had potential therapeutic effects in a translational mouse model of ARDS, possibly through a decrease in alveolar type 1 epithelial cell injury as shown by restored AFC and lung AQP-5 expression. Further mechanistic studies are warranted to describe intracellular pathways that may control such effects of RAGE on lung epithelial injury and repair.
Collapse
|
22
|
Oczypok EA, Perkins TN, Oury TD. All the "RAGE" in lung disease: The receptor for advanced glycation endproducts (RAGE) is a major mediator of pulmonary inflammatory responses. Paediatr Respir Rev 2017; 23:40-49. [PMID: 28416135 PMCID: PMC5509466 DOI: 10.1016/j.prrv.2017.03.012] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 03/10/2017] [Indexed: 02/07/2023]
Abstract
The receptor for advanced glycation endproducts (RAGE) is a pro-inflammatory pattern recognition receptor (PRR) that has been implicated in the pathogenesis of numerous inflammatory diseases. It was discovered in 1992 on endothelial cells and was named for its ability to bind advanced glycation endproducts and promote vascular inflammation in the vessels of patients with diabetes. Further studies revealed that RAGE is most highly expressed in lung tissue and spurred numerous explorations into RAGE's role in the lung. These studies have found that RAGE is an important mediator in allergic airway inflammation (AAI) and asthma, pulmonary fibrosis, lung cancer, chronic obstructive pulmonary disease (COPD), acute lung injury, pneumonia, cystic fibrosis, and bronchopulmonary dysplasia. RAGE has not yet been targeted in the lungs of paediatric or adult clinical populations, but the development of new ways to inhibit RAGE is setting the stage for the emergence of novel therapeutic agents for patients suffering from these pulmonary conditions.
Collapse
Affiliation(s)
| | | | - Tim D. Oury
- Corresponding author. Tel.: +1 412 648 9659; Fax: +1 412 648 9527
| |
Collapse
|
23
|
RAGE-Mediated Suppression of Interleukin-10 Results in Enhanced Mortality in a Murine Model of Acinetobacter baumannii Sepsis. Infect Immun 2017; 85:IAI.00954-16. [PMID: 28052995 DOI: 10.1128/iai.00954-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/29/2016] [Indexed: 12/17/2022] Open
Abstract
The receptor for advanced glycation end products (RAGE) is a pattern recognition receptor capable of recognizing multiple pathogen-associated and danger-associated molecular patterns that contributes to the initiation and potentiation of inflammation in many disease processes. During infection, RAGE functions to either exacerbate disease severity or enhance pathogen clearance depending on the pathogen studied. Acinetobacter baumannii is an opportunistic human pathogen capable of causing severe infections, including pneumonia and sepsis, in impaired hosts. The role of RAGE signaling in response to opportunistic bacterial infections is largely unknown. In murine models of A. baumannii pneumonia, RAGE signaling alters neither inflammation nor bacterial clearance. In contrast, RAGE-/- mice systemically infected with A. baumannii exhibit increased survival and reduced bacterial burdens in the liver and spleen. The increased survival of RAGE-/- mice is associated with increased circulating levels of the anti-inflammatory cytokine interleukin-10 (IL-10). Neutralization of IL-10 in RAGE-/- mice results in decreased survival during systemic A. baumannii infection that mirrors that of wild-type (WT) mice, and exogenous IL-10 administration to WT mice enhances survival in this model. These findings demonstrate the role for RAGE-dependent IL-10 suppression as a key modulator of mortality from Gram-negative sepsis.
Collapse
|
24
|
Mohammad M, Na M, Welin A, Svensson MND, Ali A, Jin T, Pullerits R. RAGE Deficiency Impairs Bacterial Clearance in Murine Staphylococcal Sepsis, but Has No Significant Impact on Staphylococcal Septic Arthritis. PLoS One 2016; 11:e0167287. [PMID: 27907047 PMCID: PMC5131947 DOI: 10.1371/journal.pone.0167287] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/11/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Septic arthritis is a serious joint disease often caused by Staphylococcus aureus (S. aureus). Receptor for Advanced Glycation End products (RAGE) has an important role in several infections. We sought to investigate the role of RAGE in staphylococcal septic arthritis and sepsis in mice. METHODS Wild-type (WT) and RAGE deficient (RAGE-/-) mice were intra-articularly or intravenously inoculated with an arthritic or septic dose of S. aureus LS-1 strain. Clinical arthritis, weight development and mortality were monitored for 14 days. Serum levels of cytokines, kidney bacterial loads as well as micro-CT and histopathology of the joints were assessed. RESULTS RAGE-/- mice with septic arthritis had significantly lower IL-17A and higher bone mineral density (BMD) compared to the control group. However, no significant differences between the groups were observed regarding the weight loss, the severity and frequency of arthritis, and bacterial loads in the kidneys. In mice with sepsis, the overall mortality rate was similar in RAGE-/- (39%) and in WT mice (45%). However, RAGE-/- mice with sepsis had significantly higher bacterial load in their kidneys compared to the WT controls. In line with data from hematogenous S. aureus arthritis, RAGE deficiency had no impact on arthritis severity in local joint infection. CONCLUSIONS Our results indicate that lack of RAGE has no significant impact on septic arthritis. However, RAGE-/- mice had significantly higher BMD compared to WT mice, which coincided with lower IL-17A in RAGE-/- mice. In sepsis, RAGE deficiency impairs bacterial kidney clearance.
Collapse
Grants
- The Swedish Medical Research Council, the Gothenburg Medical Society, the Swedish Medical Society, the Rune and Ulla Amlövs Foundation, the Tore Nilsons Foundation, the Gothenburg Association against Rheumatism, the Swedish Association against Rheumatism, the Nanna Svartz Foundation, the Stiftelsen Clas Groschinskys Minnesfond, the Lundberg Foundation, and the University of Gothenburg.
Collapse
Affiliation(s)
- Majd Mohammad
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Manli Na
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Amanda Welin
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Mattias N. D. Svensson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Abukar Ali
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Tao Jin
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Rille Pullerits
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
25
|
Hunt WR, Helfman BR, McCarty NA, Hansen JM. Advanced glycation end products are elevated in cystic fibrosis-related diabetes and correlate with worse lung function. J Cyst Fibros 2016; 15:681-8. [DOI: 10.1016/j.jcf.2015.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 11/09/2015] [Accepted: 12/14/2015] [Indexed: 11/27/2022]
|
26
|
Shao Y, Shao X, He J, Cai Y, Zhao J, Chen F, Tao H, Yin Z, Tan X, He Y, Lin Y, Li K, Cui L. The promoter polymorphisms of receptor for advanced glycation end products were associated with the susceptibility and progression of sepsis. Clin Genet 2016; 91:564-575. [PMID: 27172264 DOI: 10.1111/cge.12800] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/16/2016] [Accepted: 05/08/2016] [Indexed: 12/18/2022]
Abstract
Receptor for advanced glycation end products (RAGE) is considered a major pattern recognition receptor, which plays an important role in the development of sepsis. Increasing evidence showed an association between RAGE polymorphisms and the susceptibility to several inflammatory-related diseases. However, little is known about the clinical relationship between RAGE polymorphisms and sepsis. In this study, we analyzed the association of sepsis with three functional RAGE gene polymorphisms (rs1800624, rs1800625 and rs2070600) in a Chinese Han population (372 sepsis cases and 400 healthy controls). Significant differences were observed in the rs1800624 and rs1800625 genotype/allele distributions between the sepsis and controls, but no significant difference was observed in the rs2070600 genotype/allele. Moreover, our results also revealed a significant difference in the genotype/allele frequencies of the rs1800624 and rs1800625 polymorphisms between the sepsis and severe sepsis subtypes, the rs1800624 TT or rs1800625 TT genotype carriers exhibited a significant increase in RAGE mRNA, sRAGE, TNF-α and IL-6 expression compared with the rs1800624 AT/AA or rs1800625 CT/CC carriers in sepsis patients. Overall, this study might provide valuable clinical evidence between the RAGE gene polymorphisms and the risk or the development of sepsis.
Collapse
Affiliation(s)
- Y Shao
- The Intensive Care Unit, Affiliated Hospital of Guangdong Medical University, Zhanjiang, PR China
| | - X Shao
- The Intensive Care Unit, Affiliated Hospital of Guangdong Medical University, Zhanjiang, PR China
| | - J He
- The Intensive Care Unit, Affiliated Hospital of Guangdong Medical University, Zhanjiang, PR China
| | - Y Cai
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, PR China
| | - J Zhao
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, PR China
| | - F Chen
- The Intensive Care Unit, Affiliated Hospital of Guangdong Medical University, Zhanjiang, PR China
| | - H Tao
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, PR China
| | - Z Yin
- The Intensive Care Unit, Affiliated Hospital of Guangdong Medical University, Zhanjiang, PR China
| | - X Tan
- The Intensive Care Unit, Affiliated Hospital of Guangdong Medical University, Zhanjiang, PR China
| | - Y He
- The Department of Clinical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, PR China
| | - Y Lin
- The Department of Stomatology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, PR China
| | - K Li
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, PR China.,Institute of Clinical Medicine, Jinan University, Guangzhou, PR China
| | - L Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, PR China
| |
Collapse
|
27
|
LEI MING, LIU XINXIN. Vagus nerve electrical stimulation inhibits serum levels of S100A8 protein in septic shock rats. Mol Med Rep 2016; 13:4122-8. [DOI: 10.3892/mmr.2016.5002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 02/18/2016] [Indexed: 11/06/2022] Open
|
28
|
Rasid O, Cavaillon JM. Recent developments in severe sepsis research: from bench to bedside and back. Future Microbiol 2016; 11:293-314. [PMID: 26849633 DOI: 10.2217/fmb.15.133] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Severe sepsis remains a worldwide threat, not only in industrialized countries, due to their aging population, but also in developing countries where there still are numerous cases of neonatal and puerperal sepsis. Tools for early diagnosis, a prerequisite for rapid and appropriate antibiotic therapy, are still required. In this review, we highlight some recent developments in our understanding of the associated systemic inflammatory response that help deciphering pathophysiology (e.g., epigenetic, miRNA, regulatory loops, compartmentalization, apoptosis and synergy) and discuss some of the consequences of sepsis (e.g., immune status, neurological and muscular alterations). We also emphasize the challenge to better define animal models and discuss past failures in clinical investigations in order to define new efficient therapies.
Collapse
Affiliation(s)
- Orhan Rasid
- Unit Cytokines & Inflammation, Institut Pasteur, 28 rue Dr. Roux, Paris, France
| | - Jean-Marc Cavaillon
- Unit Cytokines & Inflammation, Institut Pasteur, 28 rue Dr. Roux, Paris, France
| |
Collapse
|
29
|
Achouiti A, de Vos AF, van ‘t Veer C, Florquin S, Tanck MW, Nawroth PP, Bierhaus A, van der Poll T, van Zoelen MAD. Receptor for Advanced Glycation End Products (RAGE) Serves a Protective Role during Klebsiella pneumoniae - Induced Pneumonia. PLoS One 2016; 11:e0141000. [PMID: 26824892 PMCID: PMC4732606 DOI: 10.1371/journal.pone.0141000] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 10/02/2015] [Indexed: 01/01/2023] Open
Abstract
Klebsiella species is the second most commonly isolated gram-negative organism in sepsis and a frequent causative pathogen in pneumonia. The receptor for advanced glycation end products (RAGE) is expressed on different cell types and plays a key role in diverse inflammatory responses. We here aimed to investigate the role of RAGE in the host response to Klebsiella (K.) pneumoniae pneumonia and intransally inoculated rage gene deficient (RAGE-/-) and normal wild-type (Wt) mice with K. pneumoniae. Klebsiella pneumonia resulted in an increased pulmonary expression of RAGE. Furthermore, the high-affinity RAGE ligand high mobility group box-1 was upregulated during K. pneumoniae pneumonia. RAGE deficiency impaired host defense as reflected by a worsened survival, increased bacterial outgrowth and dissemination in RAGE-/- mice. RAGE-/- neutrophils showed a diminished phagocytosing capacity of live K. pneumoniae in vitro. Relative to Wt mice, RAGE-/- mice demonstrated similar lung inflammation, and slightly elevated—if any—cytokine and chemokine levels and unchanged hepatocellular injury. In addition, RAGE-/- mice displayed an unaltered response to intranasally instilled Klebsiella lipopolysaccharide (LPS) with respect to pulmonary cell recruitment and local release of cytokines and chemokines. These data suggest that (endogenous) RAGE protects against K. pneumoniae pneumonia. Also, they demonstrate that RAGE contributes to an effective antibacterial defense during K. pneumoniae pneumonia, at least partly via its participation in the phagocytic properties of professional granulocytes. Additionally, our results indicate that RAGE is not essential for the induction of a local and systemic inflammatory response to either intact Klebsiella or Klebsiella LPS.
Collapse
Affiliation(s)
- Ahmed Achouiti
- Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Alex F. de Vos
- Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Cornelis van ‘t Veer
- Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Sandrine Florquin
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Michael W. Tanck
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Peter P. Nawroth
- Department of Internal Medicine and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Angelika Bierhaus
- Department of Internal Medicine and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Tom van der Poll
- Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Marieke A. D. van Zoelen
- Laboratory of Biomedical Science, Feinstein Institute for Medical Research, North Shore Long Island University Hospital, Manhassat, New York, United States of America
- Division of Internal Medicine and Infectious Diseases, University Medical Center of Utrecht, Utrecht, the Netherlands
- Laboratory of Translational Immunology (LTI), University Medical Center of Utrecht, Utrecht, the Netherlands
- * E-mail:
| |
Collapse
|
30
|
Siriopol D, Hogas S, Veisa G, Mititiuc I, Volovat C, Apetrii M, Onofriescu M, Busila I, Oleniuc M, Covic A. Tissue advanced glycation end products (AGEs), measured by skin autofluorescence, predict mortality in peritoneal dialysis. Int Urol Nephrol 2014; 47:563-9. [DOI: 10.1007/s11255-014-0870-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 10/21/2014] [Indexed: 02/01/2023]
|
31
|
S100A12 and soluble receptor for advanced glycation end products levels during human severe sepsis. Shock 2014; 40:188-94. [PMID: 23846410 DOI: 10.1097/shk.0b013e31829fbc38] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
S100A12 is highly expressed, and serum levels correlate with individual disease activity in patients with inflammatory diseases. We here sought to determine the extent of S100A12 release and its soluble high-affinity receptor for advanced glycation end products (sRAGE) in patients with severe sepsis stratified to the three most common infectious sources (lungs, abdomen, and urinary tract) and to determine S100A12 and sRAGE concentrations at the site of infection during peritonitis. Two patient populations were studied: (a) 51 patients with sepsis due to (i) peritonitis (n = 12), (ii) pneumonia (n = 29), or (iii) urinary tract infection (n = 10); and (b) 17 patients with peritonitis. In addition, eight healthy humans were studied after intravenous injection of lipopolysaccharide (4 ng/kg). Compared with healthy volunteers, patients with severe sepsis displayed increased circulating S100A12 concentrations at day 0 (591.2 ± 101.0 vs. 106.2 ± 15.6 ng/mL [control subjects], P < 0.0001) and at day 3 (637.2 ± 111.2 vs. 106.2 ± 15.6 ng/mL [control subjects], P < 0.0001). All three severe sepsis subgroups had elevated serum S100A12 concentrations at both time points (sepsis due to [i] peritonitis [393.5 ± 89.9 at day 0 and 337.9 ± 97.2 at day 3 vs. 106.2 ± 15.6 ng/mL, control subjects, P < 0.005 and P < 0.05, respectively]; [ii] pneumonia [716.9 ± 167.0 at day 0 and 787.5 ± 164.7 at day 3 vs. 106.2 ± 15.6 ng/mL, control subjects, both P < 0.0001]; and [iii] urinary tract infection [464.2 ± 115.6 at day 0 and 545.6 ± 254.9 at day 3 vs. 106.2 ± 15.6 ng/mL, control subjects, P < 0.0001 and P < 0.05, respectively]). Remarkably, patients with sepsis due to pneumonia had the highest S100A12 levels (716.9 ± 167.0 and 787.5 ± 164.7 ng/mL at days 0 and 3, respectively). S100A12 levels were not correlated to either Acute Physiology and Chronic Health Evaluation II scores (r = -0.185, P = 0.19) or Sepsis-Related Organ Failure Assessment scores (r = -0.194, P = 0.17). Intravenous lipopolysaccharide injection in healthy humans elevated systemic S100A12 levels (peak levels at 3 h of 59.6 ± 22.0 vs. 12.4 ± 3.6 ng/mL; t = 0 h, P < 0.005). In contrast to S100A12, sRAGE concentrations did not change during severe sepsis or human endotoxemia. During peritonitis, S100A12 concentrations in abdominal fluid (12945.8 ± 4142.1 ng/mL) were more than 100-fold higher than in concurrently obtained plasma (121.2 ± 80.4 ng/mL, P < 0.0005), whereas sRAGE levels in abdominal fluid (148.8 ± 36.0 pg/mL) were lower than those in plasma (648.7 ± 145.6 pg/mL, P < 0.005) and did not increase. In conclusion, in severe sepsis, S100A12 is released systemically irrespective of the primary source of infection. During abdominal sepsis, S100A12 release likely predominantly occurs at the site of infection. Concentrations of its high-affinity sRAGE do not change during infection or human endotoxemia.
Collapse
|
32
|
Achouiti A, de Vos AF, de Beer R, Florquin S, van 't Veer C, van der Poll T. Limited role of the receptor for advanced glycation end products during Streptococcus pneumoniae bacteremia. J Innate Immun 2013; 5:603-12. [PMID: 23774862 DOI: 10.1159/000348739] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 02/07/2013] [Indexed: 12/22/2022] Open
Abstract
Streptococcus pneumoniae is one of the most common causes of sepsis. Sepsis is associated with the release of 'damage-associated molecular patterns' (DAMPs). The receptor for advanced glycation end products (RAGE) is a multiligand receptor, abundantly expressed in the lungs, that recognizes several of these DAMPs. Triggering of RAGE leads to activation of the NF-κB pathway and perpetuation of inflammation. Earlier investigations have shown that the absence of RAGE reduces inflammation and bacterial dissemination and increases survival in sepsis caused by S. pneumoniae pneumonia. We hypothesized that the detrimental role of RAGE depends on the level of RAGE expression in the primary organ of infection. By directly injecting S. pneumoniae intravenously, thereby circumventing the extensive RAGE-expressing lung, we here determined whether RAGE contributes to an adverse outcome of bacteremia or whether its role is restricted to primary lung infection. During late-stage infection (48 h), rage(-/-) mice had an attenuated systemic inflammatory response, as reflected by lower plasma levels of proinflammatory cytokines, reduced endothelial cell activation (as measured by E-selectin levels) and less neutrophil accumulation in lung tissue. However, RAGE deficiency did not influence bacterial loads or survival in this model. In accordance, plasma markers for cell injury were similar in both mouse strains. These results demonstrate that while RAGE plays a harmful part in S. pneumoniae sepsis originating from the respiratory tract, this receptor has a limited role in the outcome of primary bloodstream infection by this pathogen.
Collapse
Affiliation(s)
- Ahmed Achouiti
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Aldini G, Vistoli G, Stefek M, Chondrogianni N, Grune T, Sereikaite J, Sadowska-Bartosz I, Bartosz G. Molecular strategies to prevent, inhibit, and degrade advanced glycoxidation and advanced lipoxidation end products. Free Radic Res 2013; 47 Suppl 1:93-137. [PMID: 23560617 DOI: 10.3109/10715762.2013.792926] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advanced glycoxidation end products (AGEs) and lipoxidation end products (ALEs) contribute to the development of diabetic complications and of other pathologies. The review discusses the possibilities of counteracting the formation and stimulating the degradation of these species by pharmaceuticals and natural compounds. The review discusses inhibitors of ALE and AGE formation, cross-link breakers, ALE/AGE elimination by enzymes and proteolytic systems, receptors for advanced glycation end products (RAGEs) and blockade of the ligand-RAGE axis.
Collapse
Affiliation(s)
- Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
RAGE is a key molecule in the onset and sustainment of the inflammatory response. New studies indicate that RAGE might represent a new link between the innate and adaptive immune system. RAGE belongs to the superfamily of Ig cell-surface receptors and is expressed on all types of leukocytes promoting activation, migration, or maturation of the different cells. RAGE expression is prominent on the activated endothelium, where it mediates leukocyte adhesion and transmigration. Moreover, proinflammatory molecules released from the inflamed or injured vascular system induce migration and proliferation of SMCs. RAGE binds a large number of different ligands and is therefore considered as a PRR, recognizing a structural motif rather than a specific ligand. In this review, we summarize the current knowledge about the signaling pathways activated in the different cell types and discuss a potential activation mechanism of RAGE, as well as putative options for therapeutic intervention.
Collapse
Affiliation(s)
- Katrin Kierdorf
- Department of Neuropathology, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
36
|
Yamamoto Y, Yamamoto H. RAGE-Mediated Inflammation, Type 2 Diabetes, and Diabetic Vascular Complication. Front Endocrinol (Lausanne) 2013; 4:105. [PMID: 23970880 PMCID: PMC3748367 DOI: 10.3389/fendo.2013.00105] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 08/06/2013] [Indexed: 12/21/2022] Open
Abstract
Obesity is associated with inflammation and type 2 diabetes. Innate immune system comprised of cellular and molecular components plays an important role in the inflammatory reactions. Immune cells like macrophages and their cell surface pattern-recognition receptors (PRRs) are representative for innate immunity promoting inflammatory reactions. The receptor for advanced glycation end-products (RAGE) is a member of PRRs and a proinflammatory molecular device that mediates danger signals to the body. The expression of RAGE is observed in adipocytes as well as immune cells, endothelial cells, and pancreatic β cells under certain conditions. It has been reported that RAGE is implicated in adipocyte hypertrophy and insulin resistance. RAGE-mediated regulation of adiposity and inflammation may attribute to type 2 diabetes and diabetic vascular complications.
Collapse
Affiliation(s)
- Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
- *Correspondence: Yasuhiko Yamamoto, Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa 920-8640, Japan e-mail:
| | - Hiroshi Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| |
Collapse
|
37
|
Wang L, Chang EWY, Wong SC, Ong SM, Chong DQY, Ling KL. Increased myeloid-derived suppressor cells in gastric cancer correlate with cancer stage and plasma S100A8/A9 proinflammatory proteins. THE JOURNAL OF IMMUNOLOGY 2012; 190:794-804. [PMID: 23248262 DOI: 10.4049/jimmunol.1202088] [Citation(s) in RCA: 201] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Immune dysfunction may contribute to tumor progression in gastric cancer (GC) patients. One mechanism of immune dysfunction is the suppression of T cell activation and impairment of the efficacy of cancer immunotherapy by myeloid-derived suppressor cells (MDSCs). We assessed the phenotype and immunosuppressive function of MDSCs in GC patients. We further investigated the role of S100A8/A9 in GC and the relationship between S100A8/A9 and MDSC function. Lastly, the effect of MDSCs on survival rates and its potential as a prognostic factor in GC patients were investigated. MDSCs from PBMCs of GC patients were identified by comparing the expression of specific surface markers with PBMCs from healthy individuals. The ability of MDSCs to suppress T lymphocyte response and the effect of S100A8/A9 and RAGE blocking were tested in vitro by (autologous) MLR. GC patients had significantly more MDSCs than healthy individuals. These MDSCs suppressed both T lymphocyte proliferation and IFN-γ production and had high arginase-I expression. Levels of S100A8/A9 in plasma were higher in GC patients compared with healthy individuals, and they correlated with MDSC levels in the blood. Blocking of S100A8/A9 itself and the S100A8/A9 receptor RAGE on MDSCs from GC patients abrogated T cell effector function. We found that high levels of MDSCs correlated with more advanced cancer stage and with reduced survival (p = 0.006). S100A8/A9 has been identified as a potential target to modulate antitumor immunity by reversing MDSC-mediated immunosuppression.
Collapse
Affiliation(s)
- Linda Wang
- Department of Gastroenterology, Singapore General Hospital, Singapore 169608, Republic of Singapore.
| | | | | | | | | | | |
Collapse
|
38
|
Sukkar MB, Ullah MA, Gan WJ, Wark PAB, Chung KF, Hughes JM, Armour CL, Phipps S. RAGE: a new frontier in chronic airways disease. Br J Pharmacol 2012; 167:1161-76. [PMID: 22506507 PMCID: PMC3504985 DOI: 10.1111/j.1476-5381.2012.01984.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 02/13/2012] [Accepted: 02/22/2012] [Indexed: 12/21/2022] Open
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are heterogeneous inflammatory disorders of the respiratory tract characterized by airflow obstruction. It is now clear that the environmental factors that drive airway pathology in asthma and COPD, including allergens, viruses, ozone and cigarette smoke, activate innate immune receptors known as pattern-recognition receptors, either directly or indirectly by causing the release of endogenous ligands. Thus, there is now intense research activity focused around understanding the mechanisms by which pattern-recognition receptors sustain the airway inflammatory response, and how these mechanisms might be targeted therapeutically. One pattern-recognition receptor that has recently come to attention in chronic airways disease is the receptor for advanced glycation end products (RAGE). RAGE is a member of the immunoglobulin superfamily of cell surface receptors that recognizes pathogen- and host-derived endogenous ligands to initiate the immune response to tissue injury, infection and inflammation. Although the role of RAGE in lung physiology and pathophysiology is not well understood, recent genome-wide association studies have linked RAGE gene polymorphisms with airflow obstruction. In addition, accumulating data from animal and clinical investigations reveal increased expression of RAGE and its ligands, together with reduced expression of soluble RAGE, an endogenous inhibitor of RAGE signalling, in chronic airways disease. In this review, we discuss recent studies of the ligand-RAGE axis in asthma and COPD, highlight important areas for future research and discuss how this axis might potentially be harnessed for therapeutic benefit in these conditions.
Collapse
Affiliation(s)
- Maria B Sukkar
- School of Pharmacy, The University of Technology SydneyNSW, Australia
- Woolcock Institute of Medical Research, Sydney Medical School, The University of SydneyNSW, Australia
| | - Md Ashik Ullah
- Woolcock Institute of Medical Research, Sydney Medical School, The University of SydneyNSW, Australia
- School of Biomedical Sciences and Australian Infectious Diseases Research Centre, The University of QueenslandQld, Australia
| | - Wan Jun Gan
- School of Biomedical Sciences and Australian Infectious Diseases Research Centre, The University of QueenslandQld, Australia
| | - Peter AB Wark
- Centre for Asthma and Respiratory Disease, Hunter Medical Research Institute, University of NewcastleNSW, Australia
- Department of Respiratory and Sleep Medicine, John Hunter HospitalNSW, Australia
| | - Kian Fan Chung
- Airways Disease Section, National Heart and Lung Institute, Imperial College LondonLondon, UK
| | | | - Carol L Armour
- Woolcock Institute of Medical Research, Sydney Medical School, The University of SydneyNSW, Australia
| | - Simon Phipps
- School of Biomedical Sciences and Australian Infectious Diseases Research Centre, The University of QueenslandQld, Australia
| |
Collapse
|
39
|
Andrades MÉ, Lorenzi R, Nagai R, Moreira JCF, Ritter C, Dal-Pizzol F. Plasma glycation levels are associated with severity in sepsis. Eur J Clin Invest 2012; 42:1055-60. [PMID: 22625221 DOI: 10.1111/j.1365-2362.2012.02694.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Advanced glycation end-products (AGE) have been involved in inflammatory diseases and may have an important role in the progression of symptoms. However, few studies have analysed the levels of glycated proteins in sepsis. In this study, we evaluated the levels of the well-known AGE (N(ε) -(carboxymethyl)lysine (CML) and N(ε) -(carboxyethyl)lysine (CEL)) in the plasma of septic patients. MATERIAL AND METHODS Plasma from 36 patients admitted to an adult intensive care unit and 6 healthy controls had the levels of CML/CEL measured by ELISA. RESULTS The level of AGE in plasma decreased with the increase of severity (1·40±0·46 nmol/mg of protein in sepsis, 0·58±0·23 nmol/mg of protein in severe sepsis and 0·31±0·12 nmol/mg of protein in septic shock). Control plasma presented low AGE concentration (0·06±0·01 nmol/mg protein). Also, we found a decrease in plasma AGE in those patients that died at the end of 28 days follow-up (0·80±0·50 nmol/mg of protein in survivors vs. 0·31±0·10 nmol/mg of protein in nonsurvivors), being associated with the renal component of sequential organ failure assessment (SOFA) score. In the same line, there was a decrease in plasma AGE with the increase in SOFA. CONCLUSIONS Our data demonstrate that plasma AGE levels are inversely associated with the severity of sepsis and may be associated with kidney dysfunction.
Collapse
Affiliation(s)
- Michael Éverton Andrades
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | | | | | | | | | | |
Collapse
|
40
|
Guo WA, Knight PR, Raghavendran K. The receptor for advanced glycation end products and acute lung injury/acute respiratory distress syndrome. Intensive Care Med 2012; 38:1588-98. [PMID: 22777515 DOI: 10.1007/s00134-012-2624-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 06/04/2012] [Indexed: 01/10/2023]
Abstract
The receptor for advanced glycation end products (RAGE) is a pattern-recognition receptor and evolutionary member of the immunoglobulin superfamily that is involved in the host response to infection, injury, and inflammation. It exists in two forms: membrane-bound and soluble forms (sRAGE). RAGE recognizes a variety of ligands and, via a receptor-driven signaling cascade, activates the transcription factor NF-κB, leading to the expression of proinflammatory cytokines. The soluble form, sRAGE, is a decoy receptor and competitively inhibits membrane RAGE activation. RAGE is constitutively expressed abundantly in the lung under basal conditions. This expression is enhanced during inflammatory states such as with acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). This review summarizes the characteristics of RAGE, RAGE isoforms, RAGE ligands, and signaling pathways in the pathogenesis of ALI and ARDS. Additionally, the review explores the potential of RAGE as an important therapeutic target in ALI/ARDS.
Collapse
Affiliation(s)
- Weidun Alan Guo
- Department of Surgery, State University of New York at Buffalo, 462 Grider Street, Buffalo, NY 14215, USA.
| | | | | |
Collapse
|
41
|
Zeng L, Zhang AQ, Gu W, Zhou J, Zhang LY, Du DY, Zhang M, Wang HY, Yan J, Yang C, Jiang JX. Identification of haplotype tag single nucleotide polymorphisms within the receptor for advanced glycation end products gene and their clinical relevance in patients with major trauma. Crit Care 2012; 16:R131. [PMID: 22827914 PMCID: PMC3580716 DOI: 10.1186/cc11436] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/13/2012] [Accepted: 07/24/2012] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION The receptor for advanced glycation end products (RAGE) has been considered as one of the major pattern recognition receptors and plays an important role in the development of sepsis and multiple organ dysfunction in critical illnesses. Although genetic variants of the RAGE gene have been shown to be well associated with susceptibility to some inflammatory diseases, little is known about their clinical relevance in the development of sepsis in critical ill patients. METHODS Four genetic variants were selected from the entire RAGE gene and genotyped using pyrosequencing and polymerase chain reaction-length polymorphism methods. Association studies were performed in two independent Chinese Han populations. RESULTS Among the four genetic variants, only the rs1800625 polymorphism was significantly associated with sepsis morbidity rate and multiple organ dysfunction (MOD) scores in patients with major trauma both in Chongqing (n = 496) and Zhejiang (n = 232) districts, respectively. Results from ex vivo responsiveness of peripheral blood leukocytes indicated that the rs1800625 polymorphism was well associated with decreased production of TNFα. In addition, the rs1800625 polymorphism could significantly inhibit the promoter activities of the RAGE gene. CONCLUSIONS The rs1800625 polymorphism is a functional variant, which might be used as a relevant risk estimate for the development of sepsis and multiple organ dysfunction syndrome in patients with major trauma.
Collapse
Affiliation(s)
- Ling Zeng
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Changjiang Road 10, Yuzhong District, Chongqing, 400042, China
| | - An-qiang Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Changjiang Road 10, Yuzhong District, Chongqing, 400042, China
| | - Wei Gu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Changjiang Road 10, Yuzhong District, Chongqing, 400042, China
| | - Jian Zhou
- Department of Traumatic Surgery, Daping Hospital, Third Military Medical University, Changjiang Road 10, Yuzhong District, Chongqing, 400042, China
| | - Lian-yang Zhang
- Department of Traumatic Surgery, Daping Hospital, Third Military Medical University, Changjiang Road 10, Yuzhong District, Chongqing, 400042, China
| | - Ding-yuan Du
- Chongqing Emergency Medical Center, Jiankang Road, Yuzhong District, Chongqing, 400042, China
| | - Mao Zhang
- Department of Emergency Medical Center, the Second Affiliated Hospital, Zhejiang University, Jiefang Road 88, Zhejiang, 310009, China
| | - Hai-yan Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Changjiang Road 10, Yuzhong District, Chongqing, 400042, China
| | - Jun Yan
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Changjiang Road 10, Yuzhong District, Chongqing, 400042, China
| | - Ce Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Changjiang Road 10, Yuzhong District, Chongqing, 400042, China
| | - Jian-xin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Changjiang Road 10, Yuzhong District, Chongqing, 400042, China
| |
Collapse
|
42
|
Receptor for advanced glycation end products in bacterial infection: is there a role for immune modulation of receptor for advanced glycation end products in the treatment of sepsis? Curr Opin Infect Dis 2012; 25:304-11. [PMID: 22327468 DOI: 10.1097/qco.0b013e3283519b82] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE OF REVIEW Sepsis is still associated with excess morbidity and mortality worldwide, despite significant advances in critical care medicine. A novel approach is needed in the treatment of sepsis, one that will aim to correct the specific immunologic imbalance that is detrimental to the septic host. RECENT FINDINGS As receptor for advanced glycation end products (RAGE) is involved in diverse cellular mechanisms that to a lesser or greater extent participate in the septic process, modulating its function could favorably affect outcome. Altering RAGE may result in regulating the release of proinflammatory cytokines, controlling apoptosis or modifying endothelial architecture. In that regard, several strategies have been used to study RAGE deficiency in experimental models of sepsis including antibodies against RAGE, genetically deleted RAGE knockouts, siRNA to silence RAGE, soluble forms of RAGE, and antibodies and inhibitors directed toward RAGE ligands, such as HMGB1 and S100 proteins. SUMMARY These studies thus far have yielded inconsistent results as to whether RAGE is beneficial or not to the host response during bacterial infection and sepsis.
Collapse
|
43
|
Ramasamy R, Yan SF, Schmidt AM. Receptor for AGE (RAGE): signaling mechanisms in the pathogenesis of diabetes and its complications. Ann N Y Acad Sci 2012; 1243:88-102. [PMID: 22211895 DOI: 10.1111/j.1749-6632.2011.06320.x] [Citation(s) in RCA: 383] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The receptor for advanced glycation endproducts (RAGE) was first described as a signal transduction receptor for advanced glycation endproducts (AGEs), the products of nonenzymatic glycation and oxidation of proteins and lipids that accumulate in diabetes and in inflammatory foci. The discovery that RAGE was a receptor for inflammatory S100/calgranulins and high mobility group box 1 (HMGB1) set the stage for linking RAGE to both the consequences and causes of types 1 and 2 diabetes. Recent discoveries regarding the structure of RAGE as well as novel intracellular binding partner interactions advance our understanding of the mechanisms by which RAGE evokes pathological consequences and underscore strategies by which antagonism of RAGE in the clinic may be realized. Finally, recent data tracking RAGE in the clinic suggest that levels of soluble RAGEs and polymorphisms in the gene encoding RAGE may hold promise for the identification of patients who are vulnerable to the complications of diabetes and/or are receptive to therapeutic interventions designed to prevent and reverse the damage inflicted by chronic hyperglycemia, irrespective of its etiology.
Collapse
Affiliation(s)
- Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University School of Medicine, New York, New York 10016, USA
| | | | | |
Collapse
|
44
|
Christaki E, Anyfanti P, Opal SM. Immunomodulatory therapy for sepsis: an update. Expert Rev Anti Infect Ther 2012; 9:1013-33. [PMID: 22029521 DOI: 10.1586/eri.11.122] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Currently the treatment mainstay of sepsis is early and appropriate antibiotic therapy, accompanied by aggressive fluid administration, the use of vasopressors when needed and the prompt initiation of measures to support each failing organ. Activated protein C and hydrocortisone, when used accordingly can affect mortality. As the pathophysiologic events that take place during sepsis are being elucidated, new molecules that target each step of those pathways are being tested. However, a lot of those molecules affect various mediators of the sepsis cascade including inflammatory cytokines, cellular receptors, nuclear transcription factors, coagulation activators and apoptosis regulators. Over the last decade, a multitude of clinical trials and animal studies have investigated strategies that aimed to restore immune homeostasis either by reducing inflammation or by stimulating the innate and adaptive immune responses. Antibiotics, statins and other molecules with multipotent immunomodulatory actions have also been studied in the treatment of sepsis.
Collapse
Affiliation(s)
- Eirini Christaki
- Second Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippokration Hospital, Thessaloniki, Greece.
| | | | | |
Collapse
|
45
|
What's New In Shock, May 2011? Shock 2011; 35:437-9. [DOI: 10.1097/shk.0b013e31821555cb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|