1
|
Xu J, Liang C, Yao S, Wang F. Melatonin Exerts Positive Effects on Sepsis Through Various Beneficial Mechanisms. Drug Des Devel Ther 2025; 19:1333-1345. [PMID: 40026332 PMCID: PMC11871935 DOI: 10.2147/dddt.s509735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/12/2025] [Indexed: 03/05/2025] Open
Abstract
In recent years, our understanding of sepsis has greatly advanced. However, due to the complex pathological and physiological mechanisms of sepsis, the mechanisms of sepsis are currently not fully elucidated, and it is difficult to translate the research results into specific sepsis treatment methods. Melatonin possesses broad anti-inflammatory, antioxidant, and immune-regulatory properties, making it a promising therapeutic agent for sepsis. In recent years, further research has deepened our understanding of the potential mechanisms and application prospects of melatonin in sepsis. The mechanisms underlying the protective effects of melatonin in sepsis are multifaceted. In this review, based on a substantial body of clinical trials and animal research findings, we first highlighted the significance of melatonin as an important biomarker for disease progression and prognosis in sepsis. We also described the extensive regulatory mechanisms of melatonin in sepsis-induced organ damage. In addition to its broad anti-inflammatory, and anti-oxidant effects, melatonin exerts positive effects by regulating metabolic disorders, hemodynamics, cell autophagy, cellular ion channels, endothelial cell permeability, ferroptosis and other complex pathological mechanisms. Furthermore, as a safe exogenous supplement with low toxicity, melatonin demonstrates positive synergistic effects with other anti-sepsis agents. In the face of the urgent medical challenge of transforming the increasing knowledge of sepsis molecular mechanisms into therapeutic interventions to improve patient prognosis, melatonin seems to be a promising option.
Collapse
Affiliation(s)
- Jing Xu
- Department of Critical Care Medicine, Capital Medical University Electric Power Teaching Hospital/State Grid Beijing Electric Power Hospital, Beijing, People’s Republic of China
| | - Cui Liang
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Shanglong Yao
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Fuquan Wang
- Department of Pain Management, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Ye R, Wei Y, Li J, Xu M, Xie H, Huang J, Deng L, Li C. MiRNAs and Neutrophil-Related Membrane Proteins from Plasma-Derived Extracellular Vesicles for Early Prediction of Organ Dysfunction and Prognosis in Septic Patients. J Inflamm Res 2024; 17:10347-10369. [PMID: 39649421 PMCID: PMC11625425 DOI: 10.2147/jir.s492902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/28/2024] [Indexed: 12/10/2024] Open
Abstract
Purpose The pathogenesis of sepsis-induced organ dysfunction remains elusive, and the mortality remains alarmingly high. We sought to investigate the profile of extracellular vesicles (EVs)-mediated communication between plasma and polymorphonuclear neutrophils (PMNs) in sepsis, and to elucidate whether miRNAs and PMN-related membrane proteins from plasma-derived EVs (plasma-EVs) are associated with sepsis-induced organ dysfunction and prognosis. Methods PMN-derived EVs (PMN-EVs) were isolated from the blood samples of healthy controls (N=3) and patients with septic shock (N=3) after ICU admission. We performed miRNA sequencing of the isolated EVs, followed by bioinformatic analysis. A miRNA model for comparing PMN-EVs and plasma-EVs was successfully established in the training cohort. Furthermore, miRNAs and PMN-related membrane proteins from the plasma-EV model were confirmed in the validation cohort. A logistic regression model, receiver operating characteristic (ROC) curves, and Kaplan-Meier analyses were performed to evaluate the efficiency of diagnostic and/or prognostic performance. Further, in vivo and in vitro experiments were conducted to explore the involvement of plasma-EVs in PMNs autophagy. Results Fifty-five miRNAs from PMN-EVs differed significantly between the healthy controls and patients with septic shock. Furthermore, the plasma-EV model (six miRNAs and eight PMN-related membrane proteins) was confirmed in the validation cohort, demonstrating that miR-34a-5p, miR-503-5p, miR-4772-3p, ITGAM, MPO, and MMP9 serve as sepsis biomarkers for distinguishing lung, liver, and kidney dysfunction. Kaplan-Meier survival analysis showed that miR-34a-5p, miR-4772-3p, ITGAM, and MMP9 were potential prognostic predictors. Finally, we found that plasma-EVs from sepsis patients exert an inhibitory effect on PMNs autophagy, which can be reversed by EV inhibitors such as GW4869 and enoxaparin. Conclusion These findings suggest that miRNAs and PMN-related membrane proteins from plasma-EVs could be valuable diagnostic tools for identifying sepsis-induced organ dysfunction and predicting prognosis, enabling proactive management of sepsis by physicians and improving the prognosis of sepsis patients.
Collapse
Affiliation(s)
- Rongzong Ye
- Department of Emergency Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Yating Wei
- Department of Emergency Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Jingwen Li
- Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Meili Xu
- Department of Emergency Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Haiyang Xie
- Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Jiahao Huang
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, People’s Republic of China
| | - Liehua Deng
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, People’s Republic of China
| | - Chaoqian Li
- Department of Emergency Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| |
Collapse
|
3
|
Qi P, Zhang W, Gao Y, Chen S, Jiang M, He R, Chen W, Wei X, Hu B, Xu H, Wu M, Tang R. N6-methyladenosine demethyltransferase FTO alleviates sepsis by upregulating BNIP3 to induce mitophagy. J Cell Physiol 2024; 239:e31448. [PMID: 39308045 DOI: 10.1002/jcp.31448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/02/2024] [Accepted: 09/13/2024] [Indexed: 12/18/2024]
Abstract
N6-methyladenosine (m6A) is known to be crucial in various biological processes, but its role in sepsis-induced circulatory and cardiac dysfunction is not well understood. Specifically, mitophagy, a specialized form of autophagy, is excessively activated during lipopolysaccharide (LPS)-induced myocardial injury. This study aimed to investigate the impact of LPS-induced endotoxemia on m6A-RNA methylation and its role in regulating mitophagy in sepsis-induced myocardial dysfunction. Our research demonstrated that FTO (fat mass and obesity-associated protein), an m6A demethylase, significantly affects abnormal m6A modification in the myocardium and cardiomyocytes following LPS treatment. In mice, cardiac dysfunction and cardiomyocyte apoptosis worsened after adeno-associated virus serotype 9 (AAV9)-mediated FTO knockdown. Further analyses to uncover the cellular mechanisms improving cardiac function showed that FTO reduced mitochondrial reactive oxygen species, restored both basal and maximal respiration, and preserved mitochondrial membrane potential. We revealed that FTO plays a critical role in activating mitophagy by targeting BNIP3. Additionally, the cardioprotective effects of AAV-FTO were significantly compromised by mdivi-1, a mitophagy inhibitor. Mechanistically, FTO interacted with BNIP3 transcripts and regulated their expression in an m6A-dependent manner. Following FTO silencing, BNIP3 transcripts with elevated m6A modification levels in their coding regions were bound by YTHDF2 (YT521-B homology m6A RNA-binding protein 2), leading to mRNA destabilization and decreased BNIP3 protein levels. These findings highlight the importance of FTO-dependent cardiac m6A methylation in regulating mitophagy and enhance our understanding of this critical interplay, which is essential for developing therapeutic strategies to protect cardiac mitochondrial function, alleviate cardiac dysfunction, and improve survival during sepsis.
Collapse
Affiliation(s)
- Pingping Qi
- The Second Affiliated Hospital of Guangxi Medical University Blood Transfusion Department, Nanning, 533000, Guangxi, People's Repulic of China
| | - Wei Zhang
- The First Affiliated Hospital of Harbin Medical University, Harbin, 533000, Heilongjiang, People's Repulic of China
| | - Yang Gao
- The Sixth Affiliated Hospital of Harbin Medical University, Harbin, 533000, Heilongjiang, People's Repulic of China
| | - Shengkui Chen
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 533000, Guangxi, People's Repulic of China
| | - Minghe Jiang
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 533000, Guangxi, People's Repulic of China
| | - Rong He
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 533000, Guangxi, People's Repulic of China
| | - Wenzhong Chen
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 533000, Guangxi, People's Repulic of China
| | - Xiawei Wei
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 533000, Guangxi, People's Repulic of China
| | - Bingquan Hu
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 533000, Guangxi, People's Repulic of China
| | - Hao Xu
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 533000, Guangxi, People's Repulic of China
| | - Minsheng Wu
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, 533000, Guangxi, People's Repulic of China
| | - Rong Tang
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine Intensive Care Unit, Nanning, 533000, Guangxi, People's Repulic of China
| |
Collapse
|
4
|
Liu AB, Tan B, Yang P, Tian N, Li JK, Wang SC, Yang LS, Ma L, Zhang JF. The role of inflammatory response and metabolic reprogramming in sepsis-associated acute kidney injury: mechanistic insights and therapeutic potential. Front Immunol 2024; 15:1487576. [PMID: 39544947 PMCID: PMC11560457 DOI: 10.3389/fimmu.2024.1487576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/11/2024] [Indexed: 11/17/2024] Open
Abstract
Sepsis represents a severe condition characterized by organ dysfunction resulting from a dysregulated host response to infection. Among the organs affected, the kidneys are particularly vulnerable, with significant functional impairment that markedly elevates mortality rates. Previous researches have highlighted that both inflammatory response dysregulation and metabolic reprogramming are crucial in the onset and progression of sepsis associated acute kidney injury (SA-AKI), making these processes potential targets for innovative therapies. This study aims to elucidate the pathophysiological mechanisms of renal injury in sepsis by perspective of inflammatory response dysregulation, with particular emphasis on pyroptosis, necroptosis, autophagy, and ferroptosis. Furthermore, it will incorporate insights into metabolic reprogramming to provide a detailed analysis of the mechanisms driving SA-AKI and explore potential targeted therapeutic strategies, providing solid theoretical framework for the development of targeted therapies for SA-AKI.
Collapse
Affiliation(s)
- An-Bu Liu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Bin Tan
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ping Yang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Na Tian
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jin-Kui Li
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Si-Cong Wang
- Department of Emergency Medical, Yanchi County People’s Hospital, Wuzhong, Ningxia, China
| | - Li-Shan Yang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Lei Ma
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jun-Fei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
5
|
Han D, Su T, Wang M, Zhang R, Xu H, Chu R, Zhu Z, Shen Y, Wang N, He S, Wang Y, Han Y, Wang Q. JAK2 inhibitor protects the septic heart through enhancing mitophagy in cardiomyocytes. Biomed Pharmacother 2024; 178:117279. [PMID: 39121587 DOI: 10.1016/j.biopha.2024.117279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/23/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024] Open
Abstract
Sepsis-induced myocardial dysfunction (SIMD) is a severe complication in sepsis, manifested as myocardial systolic dysfunction, which is associated with poor prognosis and higher mortality. Mitophagy, a self-protective mechanism maintaining cellular homeostasis, plays an indispensable role in cardioprotection. This study aimed to unveil the cardioprotective effects of Baricitinib on LPS-induced myocardial dysfunction and its effect on mitophagy. Herein, we demonstrated that LPS induced severe myocardial dysfunction and initiated mitophagy in septic mice hearts. Despite the initiation of mitophagy, a significant number of apoptotic cells and damaged mitochondria persisted in the myocardium, and myocardial energy metabolism remained impaired, indicating that the limited mitophagy was insufficient to mitigate LPS-induced damage. The JAK2-AKT-mTOR signaling pathway is activated in LPS-induced cardiomyocytes and in the hearts of septic mice. Baricitinib administration remarkably improved cardiac function, suppressed systemic inflammatory response, attenuated histopathological changes, inhibited cardiac cell apoptosis and alleviated myocardial damage in septic mice. Furthermore, Baricitinib treatment significantly enhanced PINK1-Parkin-mediated mitophagy, increased autophagosomes, decreased impaired mitochondria, and restored myocardial energy metabolism. Mechanically, the limited mitophagy in septic myocardium was associated with increased p-ULK1 (Ser757), which was regulated by p-mTOR. Baricitinib reduced p-ULK1 (Ser757) and enhanced mitophagy by inhibiting the JAK2-AKT-mTOR signaling pathway. Inhibition of mitophagy with Mdivi-1 reversed the cardiac protective and anti-inflammatory effects of Baricitinib in septic mice. These findings suggest that Baricitinib attenuates SIMD by enhancing mitophagy in cardiomyocytes via the JAK2-AKT-mTOR signaling pathway, providing a novel mechanistic and therapeutic insight into the SIMD.
Collapse
Affiliation(s)
- Dafei Han
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Tiantian Su
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Mingzhu Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Renhao Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Huihui Xu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Rui Chu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Zhenduo Zhu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Yawei Shen
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Nan Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Shufang He
- Department of Anesthesiology and Perioperative Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| | - Yongsheng Wang
- Department of Cardiology, The Third Affiliated Hospital of Anhui Medical University (The First People's Hospital of Hefei), Hefei, China.
| | - Yongsheng Han
- Department of Emergency Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Qingtong Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Hefei, China; Department of Cardiology, The Third Affiliated Hospital of Anhui Medical University (The First People's Hospital of Hefei), Hefei, China.
| |
Collapse
|
6
|
Ma W, Huang Z, Miao Y, Ma X, Zhang Z, Liu W, Xie P. ANXA1sp modulates the protective effect of Sirt3-induced mitophagy against sepsis-induced myocardial injury in mice. Acta Physiol (Oxf) 2024; 240:e14184. [PMID: 38822624 DOI: 10.1111/apha.14184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 06/03/2024]
Abstract
AIM Sepsis-induced myocardial injury (SIMI) may be associated with insufficient mitophagy in cardiomyocytes, but the exact mechanism involved remains unknown. Sirtuin 3 (Sirt3) is mainly found in the mitochondrial matrix and is involved in repairing mitochondrial function through means such as the activation of autophagy. Previously, we demonstrated that the annexin-A1 small peptide (ANXA1sp) can promote Sirt3 expression in mitochondria. In this study, we hypothesized that the activation of Sirt3 by ANXA1sp induces mitophagy, thereby providing a protective effect against SIMI in mice. METHODS A mouse model of SIMI was established via cecal ligation and puncture. Intraperitoneal injections of ANXA1sp, 3TYP, and 3MA were administered prior to modeling. After successful modeling, IL-6, TNF-α, CK-MB, and CTn-I levels were measured; cardiac function was assessed using echocardiography; myocardial mitochondrial membrane potential, ROS, and ATP production were determined; myocardial mitochondrial ultrastructure was observed using transmission electron microscopy; and the expression levels of Sirt3 and autophagy-related proteins were detected using western blotting. RESULTS ANXA1sp significantly reduced serum IL-6, TNF-α, CK-MB, and CTn-I levels; decreased myocardial ROS production; increased mitochondrial membrane potential and ATP synthesis; and improved myocardial mitochondrial ultrastructure in septic mice. Furthermore, ANXA1sp promoted Sirt3 expression and activated the AMPK-mTOR pathway to induce myocardial mitophagy. These protective effects of ANXA1sp were reversed upon treatment with the Sirt3 blocker, 3-TYP. CONCLUSION ANXA1sp can reverse SIMI, and the underlying mechanism may be related to the activation of the AMPK-mTOR pathway following upregulation of Sirt3 by ANXA1sp, which, in turn, induces autophagy.
Collapse
Affiliation(s)
- Wanyu Ma
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Zhijia Huang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yanmei Miao
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Xinglong Ma
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Zhiquan Zhang
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Wenjie Liu
- Department of Anesthesiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Peng Xie
- Department of Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
7
|
Cui YN, Tian N, Luo YH, Zhao JJ, Bi CF, Gou Y, Liu J, Feng K, Zhang JF. High-dose Vitamin C injection ameliorates against sepsis-induced myocardial injury by anti-apoptosis, anti-inflammatory and pro-autophagy through regulating MAPK, NF-κB and PI3K/AKT/mTOR signaling pathways in rats. Aging (Albany NY) 2024; 16:6937-6953. [PMID: 38643461 PMCID: PMC11087106 DOI: 10.18632/aging.205735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/13/2024] [Indexed: 04/22/2024]
Abstract
AIMS This study aimed to evaluate the effects of VC on SIMI in rats. METHODS In this study, the survival rate of high dose VC for SIMI was evaluated within 7 days. Rats were randomly assigned to three groups: Sham group, CLP group, and high dose VC (500 mg/kg i.v.) group. The animals in each group were treated with drugs for 1 day, 3 days or 5 days, respectively. Echocardiography, myocardial enzymes and HE were used to detect cardiac function. IL-1β, IL-6, IL-10 and TNF-α) in serum were measured using ELISA kits. Western blot was used to detect proteins related to apoptosis, inflammation, autophagy, MAPK, NF-κB and PI3K/Akt/mTOR signaling pathways. RESULTS High dose VC improved the survival rate of SIMI within 7 days. Echocardiography, HE staining and myocardial enzymes showed that high-dose VC relieved SIMI in rats in a time-dependent manner. And compared with CLP group, high-dose VC decreased the expressions of pro-apoptotic proteins, while increased the expression of anti-apoptotic protein. And compared with CLP group, high dose VC decreased phosphorylation levels of Erk1/2, P38, JNK, NF-κB and IKK α/β in SIMI rats. High dose VC increased the expression of the protein Beclin-1 and LC3-II/LC3-I ratio, whereas decreased the expression of P62 in SIMI rats. Finally, high dose VC attenuated phosphorylation of PI3K, AKT and mTOR compared with the CLP group. SIGNIFICANCE Our results showed that high dose VC has a good protective effect on SIMI after continuous treatment, which may be mediated by inhibiting apoptosis and inflammatory, and promoting autophagy through regulating MAPK, NF-κB and PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Ya-Nan Cui
- Medical Records and Statistics Room, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, China
| | - Na Tian
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750000, China
| | - Yan-Hai Luo
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, China
| | - Ji-Jun Zhao
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, China
| | - Cheng-Fei Bi
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750000, China
| | - Yi Gou
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750000, China
| | - Jia Liu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, China
| | - Ke Feng
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, China
| | - Jun-Fei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750000, China
| |
Collapse
|
8
|
Cui Y, Li Y, Meng S, Song Y, Xie K. Molecular hydrogen attenuates sepsis-induced cardiomyopathy in mice by promoting autophagy. BMC Anesthesiol 2024; 24:72. [PMID: 38395800 PMCID: PMC10885652 DOI: 10.1186/s12871-024-02462-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/18/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Approximately 40 to 60% of patients with sepsis develop sepsis-induced cardiomyopathy (SIC), which is associated with a substantial increase in mortality. We have found that molecular hydrogen (H2) inhalation improved the survival rate and cardiac injury in septic mice. However, the mechanism remains unclear. This study aimed to explore the regulatory mechanism by which hydrogen modulates autophagy and its role in hydrogen protection of SIC. METHODS Cecal ligation and puncture (CLP) was used to induce sepsis in adult C57BL/6J male mice. The mice were randomly divided into 4 groups: Sham, Sham + 2% hydrogen inhalation (H2), CLP, and CLP + H2 group. The 7-day survival rate was recorded. Myocardial pathological scores were calculated. Myocardial troponin I (cTnI) levels in serum were detected, and the levels of autophagy- and mitophagy-related proteins in myocardial tissue were measured. Another four groups of mice were also studied: CLP, CLP + Bafilomycin A1 (BafA1), CLP + H2, and CLP + H2 + BafA1 group. Mice in the BafA1 group received an intraperitoneal injection of the autophagy inhibitor BafA1 1 mg/kg 1 h after operation. The detection indicators remained the same as before. RESULTS The survival rate of septic mice treated with H2 was significantly improved, myocardial tissue inflammation was improved, serum cTnI level was decreased, autophagy flux was increased, and mitophagy protein content was decreased (P < 0.05). Compared to the CLP + H2 group, the CLP + H2 + BafA1 group showed a decrease in autophagy level and 7-day survival rate, an increase in myocardial tissue injury and cTnI level, which reversed the protective effect of hydrogen (P < 0.05). CONCLUSION Hydrogen exerts protective effect against SIC, which may be achieved through the promotion of autophagy and mitophagy.
Collapse
Affiliation(s)
- Yan Cui
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yingning Li
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
| | - Shuqi Meng
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yu Song
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Keliang Xie
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, China.
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
9
|
Salami OM, Habimana O, Peng JF, Yi GH. Therapeutic Strategies Targeting Mitochondrial Dysfunction in Sepsis-induced Cardiomyopathy. Cardiovasc Drugs Ther 2024; 38:163-180. [PMID: 35704247 DOI: 10.1007/s10557-022-07354-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/06/2022] [Indexed: 11/03/2022]
Abstract
Sepsis is an increasingly worldwide problem; it is currently regarded as a complex life-threatening dysfunction of one or more organs as a result of dysregulated host immune response to infections. The heart is one of the most affected organs, as roughly 10% to 70% of sepsis cases are estimated to turn into sepsis-induced cardiomyopathy (SIC). SIC can be defined as a reversible myocardial dysfunction characterized by dilated ventricles, impaired contractility, and decreased ejection fraction. Mitochondria play a critical role in the normal functioning of cardiac tissues as the heart is highly dependent on its production of adenosine triphosphate (ATP), its damage during SIC includes morphology impairment, mitophagy, biogenesis disequilibrium, electron transport chain disturbance, molecular damage from the actions of pro-inflammatory cytokines and many other different impairments that are major contributing factors to the severity of SIC. Although mitochondria-targeted therapies usage is still inadequate in clinical settings, the preclinical study outcomes promise that the implementation of these therapies may effectively treat SIC. This review summarizes the different therapeutic strategies targeting mitochondria structure, quality, and quantity abnormalities for the treatment of SIC.
Collapse
Affiliation(s)
| | - Olive Habimana
- International College, University of South China, 28, W Changsheng Road, Hengyang, 421001, Hunan, China
| | - Jin-Fu Peng
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, 28, W Changsheng Road, Hengyang, 421001, Hunan, China
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, 28, W Changsheng Road, Hengyang, 421001, Hunan, China
| | - Guang-Hui Yi
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, 28, W Changsheng Road, Hengyang, 421001, Hunan, China.
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, 28, W Changsheng Road, Hengyang, 421001, Hunan, China.
| |
Collapse
|
10
|
Liu AB, Li SJ, Yu YY, Zhang JF, Ma L. Current insight on the mechanisms of programmed cell death in sepsis-induced myocardial dysfunction. Front Cell Dev Biol 2023; 11:1309719. [PMID: 38161332 PMCID: PMC10754983 DOI: 10.3389/fcell.2023.1309719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Sepsis is a clinical syndrome characterized by a dysregulated host response to infection, leading to life-threatening organ dysfunction. It is a high-fatality condition associated with a complex interplay of immune and inflammatory responses that can cause severe harm to vital organs. Sepsis-induced myocardial injury (SIMI), as a severe complication of sepsis, significantly affects the prognosis of septic patients and shortens their survival time. For the sake of better administrating hospitalized patients with sepsis, it is necessary to understand the specific mechanisms of SIMI. To date, multiple studies have shown that programmed cell death (PCD) may play an essential role in myocardial injury in sepsis, offering new strategies and insights for the therapeutic aspects of SIMI. This review aims to elucidate the role of cardiomyocyte's programmed death in the pathophysiological mechanisms of SIMI, with a particular focus on the classical pathways, key molecules, and signaling transduction of PCD. It will explore the role of the cross-interaction between different patterns of PCD in SIMI, providing a new theoretical basis for multi-target treatments for SIMI.
Collapse
Affiliation(s)
- An-Bu Liu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Shu-Jing Li
- Department of Pediatrics Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yuan-Yuan Yu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jun-Fei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Lei Ma
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
11
|
Schwertz H, Middleton EA. Autophagy and its consequences for platelet biology. Thromb Res 2023; 231:170-181. [PMID: 36058760 PMCID: PMC10286736 DOI: 10.1016/j.thromres.2022.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/26/2022] [Accepted: 08/19/2022] [Indexed: 01/18/2023]
Abstract
Autophagy, the continuous recycling of intracellular building blocks, molecules, and organelles is necessary to preserve cellular function and homeostasis. In this context, it was demonstrated that autophagy plays an important role in megakaryopoiesis, the development and differentiation of hematopoietic progenitor cells into megakaryocytes. Furthermore, in recent years, autophagic proteins were detected in platelets, anucleate cells generated by megakaryocytes, responsible for hemostasis, thrombosis, and a key cell in inflammation and host immune responses. In the last decade studies have indicated the occurrence of autophagy in platelets. Moreover, autophagy in platelets was subsequently demonstrated to be involved in platelet aggregation, adhesion, and thrombus formation. Here, we review the current knowledge about autophagy in platelets, its function, and clinical implications. However, at the advent of platelet autophagy research, additional discoveries derived from evolving work will be required to precisely define the contributions of autophagy in platelets, and to expand the ever increasing physiologic and pathologic roles these remarkable and versatile blood cells play.
Collapse
Affiliation(s)
- Hansjörg Schwertz
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA; Division of Occupational Medicine, University of Utah, Salt Lake City, UT 84112, USA; Department of Occupational Medicine, Billings Clinic Bozeman, Bozeman, MT 59718, USA.
| | - Elizabeth A Middleton
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA; Division of Pulmonary Medicine and Critical Care, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
12
|
Fu X, Liu Z, Wang Y. Advances in the Study of Immunosuppressive Mechanisms in Sepsis. J Inflamm Res 2023; 16:3967-3981. [PMID: 37706064 PMCID: PMC10497210 DOI: 10.2147/jir.s426007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023] Open
Abstract
Sepsis is a life-threatening disease caused by a systemic infection that triggers a dysregulated immune response. Sepsis is an important cause of death in intensive care units (ICUs), poses a major threat to human health, and is a common cause of death in ICUs worldwide. The pathogenesis of sepsis is intricate and involves a complex interplay of pro- and anti-inflammatory mechanisms that can lead to excessive inflammation, immunosuppression, and potentially long-term immune disorders. Recent evidence highlights the importance of immunosuppression in sepsis. Immunosuppression is recognized as a predisposing factor for increased susceptibility to secondary infections and mortality in patients. Immunosuppression due to sepsis increases a patient's chance of re-infection and increases organ load. In addition, antibiotics, fluid resuscitation, and organ support therapy have limited impact on the prognosis of septic patients. Therapeutic approaches by suppressing excessive inflammation have not achieved the desired results in clinical trials. Research into immunosuppression has brought new hope for the treatment of sepsis, and a number of therapeutic approaches have demonstrated the potential of immunostimulatory therapies. In this article, we will focus on the mechanisms of immunosuppression and markers of immune monitoring in sepsis and describe various targets for immunostimulatory therapy in sepsis.
Collapse
Affiliation(s)
- Xuzhe Fu
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Zhi Liu
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Yu Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
13
|
Sheng SY, Li JM, Hu XY, Wang Y. Regulated cell death pathways in cardiomyopathy. Acta Pharmacol Sin 2023; 44:1521-1535. [PMID: 36914852 PMCID: PMC10374591 DOI: 10.1038/s41401-023-01068-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/20/2023] [Indexed: 03/16/2023]
Abstract
Heart disease is a worldwide health menace. Both intractable primary and secondary cardiomyopathies contribute to malignant cardiac dysfunction and mortality. One of the key cellular processes associated with cardiomyopathy is cardiomyocyte death. Cardiomyocytes are terminally differentiated cells with very limited regenerative capacity. Various insults can lead to irreversible damage of cardiomyocytes, contributing to progression of cardiac dysfunction. Accumulating evidence indicates that majority of cardiomyocyte death is executed by regulating molecular pathways, including apoptosis, ferroptosis, autophagy, pyroptosis, and necroptosis. Importantly, these forms of regulated cell death (RCD) are cardinal features in the pathogenesis of various cardiomyopathies, including dilated cardiomyopathy, diabetic cardiomyopathy, sepsis-induced cardiomyopathy, and drug-induced cardiomyopathy. The relevance between abnormity of RCD with adverse outcome of cardiomyopathy has been unequivocally evident. Therefore, there is an urgent need to uncover the molecular and cellular mechanisms for RCD in order to better understand the pathogenesis of cardiomyopathies. In this review, we summarize the latest progress from studies on RCD pathways in cardiomyocytes in context of the pathogenesis of cardiomyopathies, with particular emphasis on apoptosis, necroptosis, ferroptosis, autophagy, and pyroptosis. We also elaborate the crosstalk among various forms of RCD in pathologically stressed myocardium and the prospects of therapeutic applications targeted to various cell death pathways.
Collapse
Affiliation(s)
- Shu-Yuan Sheng
- Department of Cardiology, Zhejiang University School of Medicine, Second Affiliated Hospital, Hangzhou, 310009, China
| | - Jia-Min Li
- Department of Cardiology, Zhejiang University School of Medicine, Second Affiliated Hospital, Hangzhou, 310009, China
| | - Xin-Yang Hu
- Department of Cardiology, Zhejiang University School of Medicine, Second Affiliated Hospital, Hangzhou, 310009, China
| | - Yibin Wang
- Department of Cardiology, Zhejiang University School of Medicine, Second Affiliated Hospital, Hangzhou, 310009, China.
- Signature Program in Cardiovascular and Metabolic Diseases, DukeNUS Medical School and National Heart Center of Singapore, Singapore, Singapore.
| |
Collapse
|
14
|
Yin L, Yuan L, Tang Y, Luo Z, Lin X, Wang S, Liang P, Jiang B. NUCLEOLIN PROMOTES AUTOPHAGY THROUGH PGC-1Α IN LPS-INDUCED MYOCARDIAL INJURY. Shock 2023; 60:227-237. [PMID: 37249064 DOI: 10.1097/shk.0000000000002152] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
ABSTRACT As a multifunctional protein, nucleolin can participate in a variety of cellular processes. Nucleolin also has multiple protective effects on heart disease. Previous studies have shown that nucleolin could not only resist oxidative stress damage and inflammatory damage, but also regulate autophagy to play a protective role in cardiac ischemia. However, the specific mechanism has not been fully elucidated in LPS-induced myocardial injury. Therefore, the aim of this study is to explore the underlying mechanism by which nucleolin regulates autophagy to protect against LPS-induced myocardial injury in vivo and in vitro . In our study, we found that nucleolin could bind to PGC-1α, and we predicted that this interaction could promote autophagy and played a role in inhibiting cardiomyocyte apoptosis. Downregulation of nucleolin in H9C2 cells resulted in decreased autophagy and increased cell apoptosis during LPS-induced myocardial injury, while upregulation of PGC-1α had the opposite protective effect. Upregulation of nucleolin expression in cardiomyocytes could increase the level of autophagy during LPS-induced myocardial injury. In contrast, interference with PGC-1α expression resulted in a decrease in the protective effect of nucleolin, leading to reduced autophagy and thus increasing apoptosis. By using tandem fluorescent-tagged LC3 autophagic flux detection system, we observed autophagic flux and determined that PGC-1α interference could block autophagic lysosomal progression. We further tested our hypothesis in the nucleolin cardiac-specific knockout mice. Finally, we also found that inhibition of autophagy can reduce mitochondrial biogenesis as well as increase apoptosis, which demonstrated the importance of autophagy. Therefore, we can speculate that nucleolin can protect LPS-induced myocardial injury by regulating autophagy, and this protective effect may be mediated by the interaction with PGC-1α, which can positively regulate the ULK1, an autophagy-related protein. Our study provides a new clue for the cardioprotective effect of nucleolin, and may provide new evidence for the treatment of LPS-induced myocardial injury through the regulation of autophagy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | |
Collapse
|
15
|
Cheng J, Ding C, Tang H, Zhou H, Wu M, Chen Y. An Autophagy-Associated MITF-GAS5-miR-23 Loop Attenuates Vascular Oxidative and Inflammatory Damage in Sepsis. Biomedicines 2023; 11:1811. [PMID: 37509452 PMCID: PMC10376991 DOI: 10.3390/biomedicines11071811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Sepsis induces GAS5 expression in the vascular endothelium, but the molecular mechanism is unclear, as is the role of GAS5 in sepsis. METHODS AND RESULTS We observed that GAS5 expression in the endothelium was significantly upregulated in a sepsis mouse model. ChIP-PCR and EMSA confirmed that the oxidative stress (OS)-activated MiT-TFE transcription factor (MITF, TFE3, and TFEB)-mediated GAS5 transcription. In vitro, GAS5 overexpression attenuated OS and inflammation in endothelial cells (ECs) while maintaining the structural and functional integrity of mitochondria. In vivo, GAS5 reduced tissue ROS levels, maintained vascular barrier function to reduce leakage, and ultimately attenuated sepsis-induced lung injury. Luciferase reporter assays revealed that GAS5 protected MITF from degradation by sponging miR-23, thereby forming a positive feedback loop consisting of MITF, GAS5, and miR-23. Despite the fact that the OS-activated MITF-GAS5-miR-23 loop boosted MITF-mediated p62 transcription, ECs do not need to increase mitophagy to exert mitochondrial quality control since MITF-mediated Nrf2 transcription exists. Compared to mitophagy, MITF-transcribed p62 prefers to facilitate the autophagic degradation of Keap1 through a direct interaction, thereby relieving the inhibition of Nrf2 by Keap1, indicating that MITF can upregulate Nrf2 at both the transcriptional and posttranscriptional levels. Following this, ChIP-PCR demonstrated that Nrf2 can also transcribe MITF, revealing that there is a reciprocal positive regulatory association between MITF and Nrf2. CONCLUSION In sepsis, the ROS-activated MITF-GAS5-miR-23 loop integrated the antioxidant and autophagy systems through MITF-mediated transcription of Nrf2 and p62, which dynamically regulate the level and type of autophagy, as well as exert antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Junning Cheng
- Department of Vascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
- Central Laboratory of School of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Chang Ding
- Central Laboratory of School of Life Sciences, Chongqing Medical University, Chongqing 400016, China
- Department of Ultrasound, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400013, China
| | - Huying Tang
- Central Laboratory of School of Life Sciences, Chongqing Medical University, Chongqing 400016, China
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing 400038, China
| | - Haonan Zhou
- Department of Vascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Mingdong Wu
- Department of Vascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yikuan Chen
- Department of Vascular Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
16
|
Santovito D, Steffens S, Barachini S, Madonna R. Autophagy, innate immunity, and cardiac disease. Front Cell Dev Biol 2023; 11:1149409. [PMID: 37234771 PMCID: PMC10206260 DOI: 10.3389/fcell.2023.1149409] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Autophagy is an evolutionarily conserved mechanism of cell adaptation to metabolic and environmental stress. It mediates the disposal of protein aggregates and dysfunctional organelles, although non-conventional features have recently emerged to broadly extend the pathophysiological relevance of autophagy. In baseline conditions, basal autophagy critically regulates cardiac homeostasis to preserve structural and functional integrity and protect against cell damage and genomic instability occurring with aging. Moreover, autophagy is stimulated by multiple cardiac injuries and contributes to mechanisms of response and remodeling following ischemia, pressure overload, and metabolic stress. Besides cardiac cells, autophagy orchestrates the maturation of neutrophils and other immune cells, influencing their function. In this review, we will discuss the evidence supporting the role of autophagy in cardiac homeostasis, aging, and cardioimmunological response to cardiac injury. Finally, we highlight possible translational perspectives of modulating autophagy for therapeutic purposes to improve the care of patients with acute and chronic cardiac disease.
Collapse
Affiliation(s)
- Donato Santovito
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Unit of Milan, Institute for Genetic and Biomedical Research (IRGB), National Research Council, Milan, Italy
| | - Sabine Steffens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Serena Barachini
- Hematology Division, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rosalinda Madonna
- Cardiology Division, Cardio-Thoracic and Vascular Department, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
- Department of Surgical, Medical, Molecular Pathology & Critical Care Sciences, University of Pisa, Pisa, Italy
| |
Collapse
|
17
|
Cao YY, Qiao Y, Wang ZH, Chen Q, Qi YP, Lu ZM, Wang Z, Lu WH. The Polo-Like Kinase 1-Mammalian Target of Rapamycin Axis Regulates Autophagy to Prevent Intestinal Barrier Dysfunction During Sepsis. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:296-312. [PMID: 36509119 DOI: 10.1016/j.ajpath.2022.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/19/2022] [Accepted: 11/04/2022] [Indexed: 12/13/2022]
Abstract
The intestines play a crucial role in the development of sepsis. The balance between autophagy and apoptosis in intestinal epithelial cells is dynamic and determines intestinal permeability. The present study focused on the potential role of autophagy in sepsis-induced intestinal barrier dysfunction and explored the mechanisms in vivo and in vitro. Excessive apoptosis in intestinal epithelia and a disrupted intestinal barrier were observed in septic mice. Promoting autophagy with rapamycin reduced intestinal epithelial apoptosis and restored intestinal barrier function, presenting as decreased serum diamine oxidase (DAO) and fluorescein isothiocyanate-dextran 40 (FD40) levels and increased expression of zonula occludens-1 (ZO-1) and Occludin. Polo-like kinase 1 (PLK1) knockdown in mice ameliorated intestinal epithelial apoptosis and the intestinal barrier during sepsis, whereas these effects were reduced with chloroquine and enhanced with rapamycin. PLK1 also promoted cell autophagy and improved lipopolysaccharide-induced apoptosis and high permeability in vitro. Moreover, PLK1 physically interacted with mammalian target of rapamycin (mTOR) and participated in reciprocal regulatory crosstalk in intestinal epithelial cells during sepsis. This study provides novel insight into the role of autophagy in sepsis-induced intestinal barrier dysfunction and indicates that the PLK1-mTOR axis may be a promising therapeutic target for sepsis.
Collapse
Affiliation(s)
- Ying-Ya Cao
- Department of Critical Care Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China; Anhui Province Clinical Research Center for Critical Care Medicine (Respiratory Disease), Wuhu, China
| | - Yang Qiao
- Department of Anesthesiology, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Zhong-Han Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China; Anhui Province Clinical Research Center for Critical Care Medicine (Respiratory Disease), Wuhu, China
| | - Qun Chen
- Department of Critical Care Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China; Anhui Province Clinical Research Center for Critical Care Medicine (Respiratory Disease), Wuhu, China
| | - Yu-Peng Qi
- Department of Critical Care Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China; Anhui Province Clinical Research Center for Critical Care Medicine (Respiratory Disease), Wuhu, China
| | - Zi-Meng Lu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Zhen Wang
- Department of General Practice, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Wei-Hua Lu
- Department of Critical Care Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China; Anhui Province Clinical Research Center for Critical Care Medicine (Respiratory Disease), Wuhu, China.
| |
Collapse
|
18
|
Liu MX, Yang J, Qin Y, Li ZD, Jin J, Zhang YB, Yang XJ. ESMOLOL PROTECTS AGAINST LPS-INDUCED CARDIAC INJURY VIA THE AMPK/mTOR/ULK1 PATHWAY IN RAT. Shock 2023; 59:469-476. [PMID: 36579896 DOI: 10.1097/shk.0000000000002071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
ABSTRACT Aim: The purpose of this study was to investigate the effect of esmolol (ES) on LPS-induced cardiac injury and the possible mechanism. Methods: Sepsis was induced by i.p. injection of LPS (10 mg/kg) in male Sprague-Dawley rats pretreated with ES, 3-methyladenine or rapamycin. The severity of myocardial damage was analyzed by hematoxylin-eosin staining, and myocardial damage scores were calculated. The concentration of cardiac troponin was measured by enzyme-linked immunosorbent assay. The expression of autophagy-related proteins (beclin-1, LC3-II, p-AMPK, p-ULK1, p-mTOR) in myocardial tissue was detected by Western blotting. Autophagosome formation and the ultrastructural damage of mitochondria were assessed using transmission electron microscopy. Results: LPS induced an increase in myocardial damage score in a time-dependent manner, accompanied with an increase in autophagy at 3 h and decrease in autophagy at 6, 12, and 24 h. Pretreatment of LPS-treated rats with ES or rapamycin reduced myocardial injury (release of cardiac troponin, myocardial damage score) and increased autophagy (LC3-II, beclin-1, p-AMPK, and p-ULK1 levels and autophagosome numbers) at 12 and 24 h. In contrast, 3-methyladenine showed no effect. Conclusion: Esmolol alleviates LPS-induced myocardial damage through activating the AMPK/mTOR/ULK1 signal pathway-regulated autophagy.
Collapse
Affiliation(s)
- Mao-Xia Liu
- Department of Intensive Care Unit, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jia Yang
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, Shanxi China
| | - Yan Qin
- Department of Emergency Medicine, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zheng-da Li
- Department of Intensive Care Unit, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jun Jin
- Department of Intensive Care Unit, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yan-Bing Zhang
- Department of Anesthesiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xin-Jing Yang
- Department of Intensive Care Unit, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
19
|
Tsoporis JN, Amatullah H, Gupta S, Izhar S, Ektesabi AM, Vaswani CM, Desjardins JF, Kabir G, Teixera Monteiro AP, Varkouhi AK, Kavantzas N, Salpeas V, Rizos I, Marshall JC, Parker TG, Leong-Poi H, Dos Santos CC. DJ-1 Deficiency Protects against Sepsis-Induced Myocardial Depression. Antioxidants (Basel) 2023; 12:antiox12030561. [PMID: 36978809 PMCID: PMC10045744 DOI: 10.3390/antiox12030561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/07/2023] [Accepted: 02/20/2023] [Indexed: 03/30/2023] Open
Abstract
Oxidative stress is considered one of the early underlying contributors of sepsis-induced myocardial depression. DJ-1, also known as PARK7, has a well-established role as an antioxidant. We have previously shown, in a clinically relevant model of polymicrobial sepsis, DJ-1 deficiency improved survival and bacterial clearance by decreasing ROS production. In the present study, we investigated the role of DJ-1 in sepsis-induced myocardial depression. Here we compared wildtype (WT) with DJ-1 deficient mice at 24 and 48 h after cecal ligation and puncture (CLP). In WT mice, DJ-1 was increased in the myocardium post-CLP. DJ-1 deficient mice, despite enhanced inflammatory and oxidative responses, had an attenuated hypertrophic phenotype, less apoptosis, improved mitochondrial function, and autophagy, that was associated with preservation of myocardial function and improved survival compared to WT mice post-CLP. Collectively, these results identify DJ-1 as a regulator of myocardial function and as such, makes it an attractive therapeutic target in the treatment of early sepsis-induced myocardial depression.
Collapse
Affiliation(s)
- James N Tsoporis
- The Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Hajera Amatullah
- The Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sahil Gupta
- The Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shehla Izhar
- The Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Amin M Ektesabi
- The Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Chirag M Vaswani
- The Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jean-Francois Desjardins
- The Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Golam Kabir
- The Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Ana Paula Teixera Monteiro
- The Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Amir K Varkouhi
- The Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Nikolaos Kavantzas
- 1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Vasileios Salpeas
- 1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Ioannis Rizos
- 2nd Department of Cardiology, Attikon University Hospital, 12462 Athens, Greece
| | - John C Marshall
- The Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Thomas G Parker
- The Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Howard Leong-Poi
- The Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada
| | - Claudia C Dos Santos
- The Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Unity Health Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
20
|
Wang Z, Xiao D, Ji Q, Li Y, Cai Z, Fang L, Huo H, Zhou G, Yan X, Shen L, He B. Jujuboside A attenuates sepsis-induced cardiomyopathy by inhibiting inflammation and regulating autophagy. Eur J Pharmacol 2022; 947:175451. [PMID: 36502962 DOI: 10.1016/j.ejphar.2022.175451] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Jujuboside A (JuA), as a main effective component of Jujubogenin, has long been known as a sedative-hypnotic drug. The aim of the current study was to investigate the potential effect of JuA on sepsis-induced cardiomyopathy (SIC) induced by lipopolysaccharide (LPS). METHOD Wide type C57BL/6 mice and neonatal rat cardiomyocytes (NRCMs) were exposed to LPS to establish myocardial toxicity models. Cardiac function of septic mice was detected by echocardiography. Moreover, the survival rate was calculated for 7 days. ELISA assays were used to analyze inflammatory factors in serum. Furthermore, western blotting, flow cytometry and TUNEL staining were performed to assess cell apoptosis and transmission electron microscopy detect the number of autophagosomes in myocardium. Finally, the expression of proteins related to pyroptosis, autophagy and oxidative stress was analyzed by western blotting and immunohistochemistry staining. RESULTS Results showed that JuA pretreatment significantly improved the survival rate and cardiac function, and suppressed systemic inflammatory response in septic mice. Further study revealed that JuA could decrease cell apoptosis and pyroptosis; instead, it strengthened autophagy in SIC. Moreover, JuA also significantly decreased oxidative stress and nitrodative stress, as evidenced by suppressing the superoxide production and downregulating iNOS and gp91 expression in vivo. In addition, the autophagy inhibitor 3-MA significantly abolished the effect of JuA on autophagic activity in SIC. CONCLUSION In conclusion, the findings indicated that JuA attenuates cardiac function via blocking inflammasome-mediated apoptosis and pyroptosis, at the same time by enhancing autophagy in SIC, heralding JuA as a potential therapy for sepsis.
Collapse
|
21
|
Shutong L, Yu J, Jia W, Huafei D, Shifan Y, Huili W, Lianhong Z, Xiehong L, Yanjuan L, Fang C. HO-1/autophagic flux axis alleviated sepsis-induced acute lung injury via inhibiting NLRP3 inflammasome. Cell Signal 2022; 100:110473. [PMID: 36150419 DOI: 10.1016/j.cellsig.2022.110473] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/28/2022]
Abstract
Among the multiple organ injuries induced by sepsis, acute lung injury (ALI) triggered by an excessive inflammatory response is one of the main causes contributing to patient death, and inhibition of the inflammation cascade is the key therapeutic strategy to improve prognosis. The NLRP3 inflammasome complex is considered an intracellular signaling molecule closely associated with the uncontrolled inflammatory response in sepsis-induced ALI. Therefore, exploring new targets to repress its activation is regarded as a potential therapeutic strategy. Growing evidence demonstrated that heme oxygenase-1 (HO-1) contributed to general anti-inflammation and exerted a protective role in ALI, but its underlying mechanisms have not been clarified completely. Herein, we investigated HO-1 was elevated in alveolar macrophages isolated from bronchoalveolar lavage fluid (BALF) of sepsis mice. HO-1 abundance suppressed NLRP3 inflammasome complex activation and attenuated pro-inflammatory cytokines release, thereby alleviating sepsis-induced ALI. Whereas inhibition of HO-1 reached the opposite effect. Meanwhile, HO-1 is an effective and functionally relevant regulator of autophagic flux. HO-1 activator decreased the expression of P62 and enhanced the LC3 II/LC3 I ratio, resulting in autophagic flux activation. In addition, the protective effects HO-1 exerted in sepsis-induced ALI could be abolished by autophagic flux inhibitor. Autophagic flux activator could suppress NLRP3 inflammasome activation and attenuate ALI, while autophagic flux inhibitor had the opposite effect. In conclusion, our study revealed increased HO-1 expression inhibited the level of NLRP3 inflammasome via regulating the activation of autophagic flux, thus attenuating inflammatory response and alleviating sepsis-induced ALI.
Collapse
Affiliation(s)
- Li Shutong
- The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Department of Emergency, Institute of Emergency Medicine, Key Laboratory of Emergency and Critical Care Metabonomic, Changsha, Hunan 410000, China
| | - Jiang Yu
- The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Department of Emergency, Institute of Emergency Medicine, Key Laboratory of Emergency and Critical Care Metabonomic, Changsha, Hunan 410000, China; Central Laboratory of Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410015, China
| | - Wang Jia
- The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Department of Emergency, Institute of Emergency Medicine, Key Laboratory of Emergency and Critical Care Metabonomic, Changsha, Hunan 410000, China
| | - Deng Huafei
- Department of Pathophysiology, School of Basic Medical Science, Xiangnan University, Chenzhou, Hunan 423000, China
| | - Yan Shifan
- The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Department of Emergency, Institute of Emergency Medicine, Key Laboratory of Emergency and Critical Care Metabonomic, Changsha, Hunan 410000, China
| | - Wen Huili
- The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Department of Emergency, Institute of Emergency Medicine, Key Laboratory of Emergency and Critical Care Metabonomic, Changsha, Hunan 410000, China
| | - Zou Lianhong
- The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Department of Emergency, Institute of Emergency Medicine, Key Laboratory of Emergency and Critical Care Metabonomic, Changsha, Hunan 410000, China; Central Laboratory of Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410015, China
| | - Liu Xiehong
- The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Department of Emergency, Institute of Emergency Medicine, Key Laboratory of Emergency and Critical Care Metabonomic, Changsha, Hunan 410000, China; Central Laboratory of Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410015, China
| | - Liu Yanjuan
- The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Department of Emergency, Institute of Emergency Medicine, Key Laboratory of Emergency and Critical Care Metabonomic, Changsha, Hunan 410000, China; Central Laboratory of Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410015, China.
| | - Chen Fang
- The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Department of Emergency, Institute of Emergency Medicine, Key Laboratory of Emergency and Critical Care Metabonomic, Changsha, Hunan 410000, China; Central Laboratory of Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410015, China.
| |
Collapse
|
22
|
He FF, Wang YM, Chen YY, Huang W, Li ZQ, Zhang C. Sepsis-induced AKI: From pathogenesis to therapeutic approaches. Front Pharmacol 2022; 13:981578. [PMID: 36188562 PMCID: PMC9522319 DOI: 10.3389/fphar.2022.981578] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Sepsis is a heterogenous and highly complex clinical syndrome, which is caused by infectious or noninfectious factors. Acute kidney injury (AKI) is one of the most common and severe complication of sepsis, and it is associated with high mortality and poor outcomes. Recent evidence has identified that autophagy participates in the pathophysiology of sepsis-associated AKI. Despite the use of antibiotics, the mortality rate is still at an extremely high level in patients with sepsis. Besides traditional treatments, many natural products, including phytochemicals and their derivatives, are proved to exert protective effects through multiple mechanisms, such as regulation of autophagy, inhibition of inflammation, fibrosis, and apoptosis, etc. Accumulating evidence has also shown that many pharmacological inhibitors might have potential therapeutic effects in sepsis-induced AKI. Hence, understanding the pathophysiology of sepsis-induced AKI may help to develop novel therapeutics to attenuate the complications of sepsis and lower the mortality rate. This review updates the recent progress of underlying pathophysiological mechanisms of sepsis-associated AKI, focuses specifically on autophagy, and summarizes the potential therapeutic effects of phytochemicals and pharmacological inhibitors.
Collapse
|
23
|
Neutrophil extracellular traps-triggered impaired autophagic flux via METTL3 underlies sepsis-associated acute lung injury. Cell Death Dis 2022; 8:375. [PMID: 36030287 PMCID: PMC9420153 DOI: 10.1038/s41420-022-01166-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 11/29/2022]
Abstract
Neutrophil extracellular traps (NETs) assist pathogen clearance, while excessive NETs formation is associated with exacerbated inflammatory responses and tissue injury in acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Autophagy is generally considered to be a protective process, but autophagy dysfunction is harmful. Whether and how NETs affect autophagic flux during sepsis-induced ALI are currently unknown. Here, we confirmed that the level of NETs was increased in ARDS patients and mice models, which led to impairment of autophagic flux and deterioration of the disease. Mechanistically, NETs activated METTL3 mediated m6A methylation of Sirt1 mRNA in alveolar epithelial cells, resulting in abnormal autophagy. These findings provide new insights into how NETs contribute to the development of sepsis-associated ALI/ARDS.
Collapse
|
24
|
Zhu CL, Wang Y, Liu Q, Li HR, Yu CM, Li P, Deng XM, Wang JF. Dysregulation of neutrophil death in sepsis. Front Immunol 2022; 13:963955. [PMID: 36059483 PMCID: PMC9434116 DOI: 10.3389/fimmu.2022.963955] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Sepsis is a prevalent disease that has alarmingly high mortality rates and, for several survivors, long-term morbidity. The modern definition of sepsis is an aberrant host response to infection followed by a life-threatening organ dysfunction. Sepsis has a complicated pathophysiology and involves multiple immune and non-immune mediators. It is now believed that in the initial stages of sepsis, excessive immune system activation and cascading inflammation are usually accompanied by immunosuppression. During the pathophysiology of severe sepsis, neutrophils are crucial. Recent researches have demonstrated a clear link between the process of neutrophil cell death and the emergence of organ dysfunction in sepsis. During sepsis, spontaneous apoptosis of neutrophils is inhibited and neutrophils may undergo some other types of cell death. In this review, we describe various types of neutrophil cell death, including necrosis, apoptosis, necroptosis, pyroptosis, NETosis, and autophagy, to reveal their known effects in the development and progression of sepsis. However, the exact role and mechanisms of neutrophil cell death in sepsis have not been fully elucidated, and this remains a major challenge for future neutrophil research. We hope that this review will provide hints for researches regarding neutrophil cell death in sepsis and provide insights for clinical practitioners.
Collapse
|
25
|
Zhu CL, Xie J, Zhao ZZ, Li P, Liu Q, Guo Y, Meng Y, Wan XJ, Bian JJ, Deng XM, Wang JF. PD-L1 maintains neutrophil extracellular traps release by inhibiting neutrophil autophagy in endotoxin-induced lung injury. Front Immunol 2022; 13:949217. [PMID: 36016930 PMCID: PMC9396256 DOI: 10.3389/fimmu.2022.949217] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Programmed death ligand 1 (PD-L1) is not only an important molecule in mediating tumor immune escape, but also regulates inflammation development. Here we showed that PD-L1 was upregulated on neutrophils in lipopolysaccharide (LPS)-induced acute respiratory distress syndrome (ARDS). Neutrophil specific knockout of PD-L1 reduced lung injury in ARDS model induced by intratracheal LPS injection. The level of NET release was reduced and autophagy is elevated by PD-L1 knockout in ARDS neutrophils both in vivo and in vitro. Inhibition of autophagy could reverse the inhibitory effect of PD-L1 knockout on NET release. PD-L1 interacted with p85 subunit of PI3K at the endoplasmic reticulum (ER) in neutrophils from ARDS patients, activating the PI3K/Akt/mTOR pathway. An extrinsic neutralizing antibody against PD-L1 showed a protective effect against ARDS. Together, PD-L1 maintains the release of NETs by regulating autophagy through the PI3K/Akt/mTOR pathway in ARDS. Anti-PD-L1 therapy may be a promising measure in treating ARDS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jin-jun Bian
- *Correspondence: Jin-jun Bian, ; Xiao-ming Deng, ; Jia-feng Wang,
| | - Xiao-ming Deng
- *Correspondence: Jin-jun Bian, ; Xiao-ming Deng, ; Jia-feng Wang,
| | - Jia-feng Wang
- *Correspondence: Jin-jun Bian, ; Xiao-ming Deng, ; Jia-feng Wang,
| |
Collapse
|
26
|
Zhang G, Dong D, Wan X, Zhang Y. Cardiomyocyte death in sepsis: Mechanisms and regulation (Review). Mol Med Rep 2022; 26:257. [PMID: 35703348 PMCID: PMC9218731 DOI: 10.3892/mmr.2022.12773] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 05/20/2022] [Indexed: 11/06/2022] Open
Abstract
Sepsis‑induced cardiac dysfunction is one of the most common types of organ dysfunction in sepsis; its pathogenesis is highly complex and not yet fully understood. Cardiomyocytes serve a key role in the pathophysiology of cardiac function; due to the limited ability of cardiomyocytes to regenerate, their loss contributes to decreased cardiac function. The activation of inflammatory signalling pathways affects cardiomyocyte function and modes of cardiomyocyte death in sepsis. Prevention of cardiomyocyte death is an important therapeutic strategy for sepsis‑induced cardiac dysfunction. Thus, understanding the signalling pathways that activate cardiomyocyte death and cross‑regulation between death modes are key to finding therapeutic targets. The present review focused on advances in understanding of sepsis‑induced cardiomyocyte death pathways, including apoptosis, necroptosis, mitochondria‑mediated necrosis, pyroptosis, ferroptosis and autophagy. The present review summarizes the effect of inflammatory activation on cardiomyocyte death mechanisms, the diversity of regulatory mechanisms and cross‑regulation between death modes and the effect on cardiac function in sepsis to provide a theoretical basis for treatment of sepsis‑induced cardiac dysfunction.
Collapse
Affiliation(s)
- Geping Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Dan Dong
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Xianyao Wan
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Yongli Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
27
|
Jiang M, Wan S, Dai X, Ye Y, Hua W, Ma G, Pang X, Wang H, Shi B. Protective effect of ghrelin on intestinal I/R injury in rats. Open Med (Wars) 2022; 17:1308-1317. [PMID: 35937002 PMCID: PMC9307145 DOI: 10.1515/med-2022-0520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
This study aimed to investigate whether ghrelin affected the autophagy and inflammatory response of intestinal intraepithelial lymphocytes (IELs) by regulating the NOD2/Beclin-1 pathway in an intestinal ischemia–reperfusion (I/R) injury model. Twenty hours after implementing the intestinal I/R injury rat model, the small intestine and both lungs were collected for histological analysis. The morphological changes in the intestinal mucosa epithelium and lung tissues were evaluated using hematoxylin-eosin staining. The activity of autophagic vacuoles and organ injury were evaluated using electron microscopy. The cytokine levels (IL-10 and TNF-α) in IEL cells and lung tissue were determined using enzyme-linked immunosorbent assay. RT-qPCR and western blot assays were conducted to check the NOD2, Beclin-1, and ATG16 levels. Ghrelin relieved the I/R-induced destruction of the intestinal mucosa epithelium and lung tissues. Moreover, ghrelin enhanced autophagy in the intestinal epithelium and lungs of I/R rats. In addition, the levels of autophagy-associated proteins (Beclin-1, ATG16, and NOD2) were higher in the ghrelin treatment group than in rats with I/R. Ghrelin reduced significantly the IL-10 and TNF-α levels. However, these changes were reversed by the NOD2 antagonist. In conclusion, ghrelin may relieve I/R-induced acute intestinal mucosal damage, autophagy disorder, and inflammatory response in IELs by regulating the NOD2/Beclin-1 pathway.
Collapse
Affiliation(s)
- Meng Jiang
- Department of Emergency Intensive Care Unit, Yangpu Hospital, Tongji University , Shanghai 200090 , China
| | - Shengxia Wan
- Department of Neurology, The Fourth Affiliated Hospital of Jiangsu University , Zhenjiang 212000 , China
| | - Xiaoyong Dai
- Department of Emergency Intensive Care Unit, Yangpu Hospital, Tongji University , Shanghai 200090 , China
| | - Youwen Ye
- Department of Emergency Intensive Care Unit, Yangpu Hospital, Tongji University , Shanghai 200090 , China
| | - Wei Hua
- Department of Emergency Intensive Care Unit, Yangpu Hospital, Tongji University , Shanghai 200090 , China
| | - Guoguang Ma
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University , Shanghai 200032 , China
| | - Xiufeng Pang
- Department of Emergency Intensive Care Unit, Yangpu Hospital, Tongji University , Shanghai 200090 , China
| | - Huanhuan Wang
- Department of Emergency Intensive Care Unit, Yangpu Hospital, Tongji University , Shanghai 200090 , China
| | - Bin Shi
- Department of Emergency Intensive Care Unit, Yangpu Hospital, Tongji University , Shanghai 200090 , China
| |
Collapse
|
28
|
Schwertz H, Rowley JW, Portier I, Middleton EA, Tolley ND, Campbell RA, Eustes AS, Chen K, Rondina MT. Human platelets display dysregulated sepsis-associated autophagy, induced by altered LC3 protein-protein interaction of the Vici-protein EPG5. Autophagy 2022; 18:1534-1550. [PMID: 34689707 PMCID: PMC9298447 DOI: 10.1080/15548627.2021.1990669] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 02/08/2023] Open
Abstract
Platelets mediate central aspects of host responses during sepsis, an acute profoundly systemic inflammatory response due to infection. Macroautophagy/autophagy, which mediates critical aspects of cellular responses during inflammatory conditions, is known to be a functional cellular process in anucleate platelets, and is essential for normal platelet functions. Nevertheless, how sepsis may alter autophagy in platelets has never been established. Using platelets isolated from septic patients and matched healthy controls, we show that during clinical sepsis, the number of autophagosomes is increased in platelets, most likely due to an accumulation of autophagosomes, some containing mitochondria and indicative of mitophagy. Therefore, autophagy induction or early-stage autophagosome formation (as compared to decreased later-stage autophagosome maturation or autophagosome-late endosome/lysosome fusion) is normal or increased. This was consistent with decreased fusion of autophagosomes with lysosomes in platelets. EPG5 (ectopic P-granules autophagy protein 5 homolog), a protein essential for normal autophagy, expression did increase, while protein-protein interactions between EPG5 and MAP1LC3/LC3 (which orchestrate the fusion of autophagosomes and lysosomes) were significantly reduced in platelets during sepsis. Furthermore, data from a megakaryocyte model demonstrate the importance of TLR4 (toll like receptor 4), LPS-dependent signaling for regulating this mechanism. Similar phenotypes were also observed in platelets isolated from a patient with Vici syndrome: an inherited condition caused by a naturally occurring, loss-of-function mutation in EPG5. Together, we provide evidence that autophagic functions are aberrant in platelets during sepsis, due in part to reduced EPG5-LC3 interactions, regulated by TLR4 engagement, and the resultant accumulation of autophagosomes.Abbreviations: ACTB: beta actin; CLP: cecal ligation and puncture; Co-IP: co-immunoprecipitation; DAP: death associated protein; DMSO: dimethyl sulfoxide; EPG5: ectopic P-granules autophagy protein 5 homolog; ECL: enhanced chemiluminescence; HBSS: Hanks' balanced salt solution; HRP: horseradish peroxidase; ICU: intensive care unit; LPS: lipopolysaccharide; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; MKs: megakaryocytes; PFA: paraformaldehyde; PBS: phosphate-buffered saline; PLA: proximity ligation assay; pRT-PCR: quantitative real-time polymerase chain reaction; RT: room temperature; SQSTM1/p62: sequestosome 1; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; TLR4: toll like receptor 4; TEM: transmission electron microscopy; WGA: wheat germ agglutinin.
Collapse
Affiliation(s)
- Hansjörg Schwertz
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
- Work Wellness Clinic, University of Utah, Salt Lake City, UT, USA
- Division of Occupational Medicine, University of Utah, Salt Lake City, UT, USA
- Occupational Medicine, Billings Clinic Bozeman, Bozeman, MT, USA
| | - Jesse W. Rowley
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
- Division of Pulmonary Medicine, University of Utah, Salt Lake City, UT, USA
| | - Irina Portier
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
| | - Elizabeth A. Middleton
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
- Division of Pulmonary Medicine, University of Utah, Salt Lake City, UT, USA
| | - Neal D. Tolley
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
| | - Robert A. Campbell
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
- Departments of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Alicia S. Eustes
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
- Department of Internal Medicine, University of Iowa in Iowa City, IA, USA
| | - Karin Chen
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
- Department of Pediatrics, University of Washington School of Medicine, and Seattle Children’s Hospital, Seattle, WA, USA
| | - Matthew T. Rondina
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
- Departments of Internal Medicine, University of Utah, Salt Lake City, UT, USA
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
- Department of Internal Medicine, George E. Wahlen Salt Lake City VAMC, Salt Lake City, UT84112, USA
| |
Collapse
|
29
|
Wu Y, Guo X, Peng Y, Fang Z, Zhang X. Roles and Molecular Mechanisms of Physical Exercise in Sepsis Treatment. Front Physiol 2022; 13:879430. [PMID: 35845992 PMCID: PMC9277456 DOI: 10.3389/fphys.2022.879430] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 06/08/2022] [Indexed: 12/03/2022] Open
Abstract
Physical exercise is a planned, purposeful action to keep a healthy lifestyle and improve physical fitness. Physical exercise has been widely used as a non-pharmacological approach to preventing and improving a wide range of diseases, including cardiovascular disease, cancer, metabolic disease, and neurodegenerative disease. However, the effects of physical exercise on sepsis have not been summarized until now. In this review, we discuss the effects of physical exercise on multiple organ functions and the short- and long-time outcomes of sepsis. Furthermore, the molecular mechanisms underlying the protective effects of physical exercise on sepsis are discussed. In conclusion, we consider that physical exercise may be a beneficial and non-pharmacological alternative for the treatment of sepsis.
Collapse
Affiliation(s)
- You Wu
- Department of Intensive Care Unit, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Xiaofeng Guo
- Department of Intensive Care Unit, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- Department of Intensive Care Unit, Joint Logistics Force No. 988 Hospital, Zhengzhou, China
| | - Yuliang Peng
- Department of Intensive Care Unit, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Zongping Fang
- Department of Intensive Care Unit, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- *Correspondence: Zongping Fang, ; Xijing Zhang,
| | - Xijing Zhang
- Department of Intensive Care Unit, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- *Correspondence: Zongping Fang, ; Xijing Zhang,
| |
Collapse
|
30
|
Tobeiha M, Jafari A, Fadaei S, Mirazimi SMA, Dashti F, Amiri A, Khan H, Asemi Z, Reiter RJ, Hamblin MR, Mirzaei H. Evidence for the Benefits of Melatonin in Cardiovascular Disease. Front Cardiovasc Med 2022; 9:888319. [PMID: 35795371 PMCID: PMC9251346 DOI: 10.3389/fcvm.2022.888319] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022] Open
Abstract
The pineal gland is a neuroendocrine gland which produces melatonin, a neuroendocrine hormone with critical physiological roles in the circadian rhythm and sleep-wake cycle. Melatonin has been shown to possess anti-oxidant activity and neuroprotective properties. Numerous studies have shown that melatonin has significant functions in cardiovascular disease, and may have anti-aging properties. The ability of melatonin to decrease primary hypertension needs to be more extensively evaluated. Melatonin has shown significant benefits in reducing cardiac pathology, and preventing the death of cardiac muscle in response to ischemia-reperfusion in rodent species. Moreover, melatonin may also prevent the hypertrophy of the heart muscle under some circumstances, which in turn would lessen the development of heart failure. Several currently used conventional drugs show cardiotoxicity as an adverse effect. Recent rodent studies have shown that melatonin acts as an anti-oxidant and is effective in suppressing heart damage mediated by pharmacologic drugs. Therefore, melatonin has been shown to have cardioprotective activity in multiple animal and human studies. Herein, we summarize the most established benefits of melatonin in the cardiovascular system with a focus on the molecular mechanisms of action.
Collapse
Affiliation(s)
- Mohammad Tobeiha
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Fadaei
- Department of Internal Medicine and Endocrinology, Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Atefeh Amiri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, United States
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Johannesburg, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
31
|
Exogenous H2S Protects against Septic Cardiomyopathy by Inhibiting Autophagy through the AMPK/mTOR Pathway. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:8464082. [PMID: 35815056 PMCID: PMC9205691 DOI: 10.1155/2022/8464082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/26/2022] [Accepted: 04/13/2022] [Indexed: 01/18/2023]
Abstract
Background Given the cardioprotective role of autophagy, this study aimed to investigate the protective effect of exogenous H2S (NaHS) on infectious cardiomyopathy through the inhibition of the AMPK/mTOR pathway. Methods In this study, sepsis models were established by cecal ligation and puncture (CLP) induction in vivo and intraperitoneal injection of NaHS was performed. Autophagy- and apoptosis-related proteins were observed by western blot, isolated myocardial tissue morphology was observed by hematoxylin-eosin (H&E) staining, and myocardial apoptosis was evaluated by the tunnel method. The ultrastructure of autophagy was observed by using an electron transmission electron microscope. Results In an SD rat model of cecum ligation puncture-induced sepsis, the level of autophagy-related proteins was significantly increased, and hematoxylin and eosin staining showed irregular myocardial bands and swollen cardiomyocytes. Following NaHS treatment, the level of autophagy-related proteins decreased, and electron transmission microscopy revealed decreased autophagosomes. Echocardiography suggested an increase in ejection fraction and significant relief of myocardial inhibition. Conclusions Our results suggest that NaHS treatment can attenuate the cellular damage caused by excessive autophagy through the AMPK/mTOR pathway.
Collapse
|
32
|
Deng J, Wang R, Huang S, Ding J, Zhou W. Macrophages-regulating nanomedicines for sepsis therapy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
33
|
Wen X, Xie B, Yuan S, Zhang J. The "Self-Sacrifice" of ImmuneCells in Sepsis. Front Immunol 2022; 13:833479. [PMID: 35572571 PMCID: PMC9099213 DOI: 10.3389/fimmu.2022.833479] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 04/05/2022] [Indexed: 12/15/2022] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by the host’s malfunctioning response to infection. Due to its high mortality rate and medical cost, sepsis remains one of the world’s most intractable diseases. In the early stage of sepsis, the over-activated immune system and a cascade of inflammation are usually accompanied by immunosuppression. The core pathogenesis of sepsis is the maladjustment of the host’s innate and adaptive immune response. Many immune cells are involved in this process, including neutrophils, mononuclear/macrophages and lymphocytes. The immune cells recognize pathogens, devour pathogens and release cytokines to recruit or activate other cells in direct or indirect manner. Pyroptosis, immune cell-extracellular traps formation and autophagy are several novel forms of cell death that are different from apoptosis, which play essential roles in the progress of sepsis. Immune cells can initiate “self-sacrifice” through the above three forms of cell death to protect or kill pathogens. However, the exact roles and mechanisms of the self-sacrifice in the immune cells in sepsis are not fully elucidated. This paper mainly analyzes the self-sacrifice of several representative immune cells in the forms of pyroptosis, immune cell-extracellular traps formation and autophagy to reveal the specific roles they play in the occurrence and progression of sepsis, also to provide inspiration and references for further investigation of the roles and mechanisms of self-sacrifice of immune cells in the sepsis in the future, meanwhile, through this work, we hope to bring inspiration to clinical work.
Collapse
Affiliation(s)
- Xiaoyue Wen
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Xie
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiancheng Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
34
|
Wang X, Xie D, Dai H, Ye J, Liu Y, Fei A. Clemastine protects against sepsis-induced myocardial injury in vivo and in vitro. Bioengineered 2022; 13:7134-7146. [PMID: 35274595 PMCID: PMC9208445 DOI: 10.1080/21655979.2022.2047256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Sepsis-induced myocardial dysfunction (SIMD) is associated with high morbidity and mortality rates; however, it lacks targeted therapies. Modulating cardiomyocyte autophagy maintains intracellular homeostasis during SIMD. Clemastine, a histamine receptor inhibitor, promotes autophagy and other effective biological functions. Nevertheless, the effect of clemastine on SIMD remains unclear. This study aimed to explore the underlying mechanism of clemastine in cardiomyocyte injury in cecum ligation and perforation (CLP)-induced rats and lipopolysaccharide (LPS)-stimulated H9c2 cells. Clemastine (10 mg/kg, 30 mg/kg, and 50 mg/kg) was intraperitoneally injected after 30 min of CLP surgery. Serum cTnI levels and the 7-day survival rate were evaluated. Echocardiograms and H&E staining were used to evaluate cardiac function and structure. TEM was used to detect the mitochondrial ultrastructure and autophagosomes. Clemastine significantly improved the survival rate and reduced cTnI production in serum. Clemastine ameliorated cellular apoptosis, improved mitochondrial ultrastructure both in vivo and in vitro, increased ATP content, decreased dynamin-related protein 1 (DRP1) expression, and decreased mitochondrial ROS levels. Additionally, clemastine treatment increased autophagosome concentration, LC3II/LC3I rate, and Beclin 1 expression. However, 3-methyladenine (3-MA), an autophagy inhibitor, could abolish the effect of clemastine on alleviating myocardial apoptosis. In conclusion, clemastine protected against cardiac structure destruction and function dysfunction, mitochondrial damage, apoptosis, and autophagy in vivo and in vitro. Moreover, clemastine attenuated myocardial apoptosis by promoting autophagy. This study provides a novel favorable perspective for SIMD therapy.
Collapse
Affiliation(s)
- Xiaowan Wang
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Di Xie
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hui Dai
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiawei Ye
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuqi Liu
- Department of General Practice, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Aihua Fei
- Department of General Practice, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
35
|
Zhang RX, Kang R, Tang DL. STING1 in sepsis: Mechanisms, functions, and implications. Chin J Traumatol 2022; 25:1-10. [PMID: 34334261 PMCID: PMC8787237 DOI: 10.1016/j.cjtee.2021.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/06/2021] [Accepted: 07/10/2021] [Indexed: 02/07/2023] Open
Abstract
Sepsis is a life-threatening clinical syndrome and one of the most challenging health problems in the world. Pathologically, sepsis and septic shock are caused by a dysregulated host immune response to infection, which can eventually lead to multiple organ failure and even death. As an adaptor transporter between the endoplasmic reticulum and Golgi apparatus, stimulator of interferon response cGAMP interactor 1 (STING1, also known as STING or TMEM173) has been found to play a vital role at the intersection of innate immunity, inflammation, autophagy, and cell death in response to invading microbial pathogens or endogenous host damage. There is ample evidence that impaired STING1, through its immune and non-immune functions, is involved in the pathological process of sepsis. In this review, we discuss the regulation and function of the STING1 pathway in sepsis and highlight it as a suitable drug target for the treatment of lethal infection.
Collapse
Affiliation(s)
- Ruo-Xi Zhang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Dao-Lin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
36
|
Busch K, Kny M, Huang N, Klassert TE, Stock M, Hahn A, Graeger S, Todiras M, Schmidt S, Chamling B, Willenbrock M, Groß S, Biedenweg D, Heuser A, Scheidereit C, Butter C, Felix SB, Otto O, Luft FC, Slevogt H, Fielitz J. Inhibition of the NLRP3/IL-1β axis protects against sepsis-induced cardiomyopathy. J Cachexia Sarcopenia Muscle 2021; 12:1653-1668. [PMID: 34472725 PMCID: PMC8718055 DOI: 10.1002/jcsm.12763] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 06/03/2021] [Accepted: 07/09/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Septic cardiomyopathy worsens the prognosis of critically ill patients. Clinical data suggest that interleukin-1β (IL-1β), activated by the NLRP3 inflammasome, compromises cardiac function. Whether or not deleting Nlrp3 would prevent cardiac atrophy and improve diastolic cardiac function in sepsis was unclear. Here, we investigated the role of NLRP3/IL-1β in sepsis-induced cardiomyopathy and cardiac atrophy. METHODS Male Nlrp3 knockout (KO) and wild-type (WT) mice were exposed to polymicrobial sepsis by caecal ligation and puncture (CLP) surgery (KO, n = 27; WT, n = 33) to induce septic cardiomyopathy. Sham-treated mice served as controls (KO, n = 11; WT, n = 16). Heart weights and morphology, echocardiography and analyses of gene and protein expression were used to evaluate septic cardiomyopathy and cardiac atrophy. IL-1β effects on primary and immortalized cardiomyocytes were investigated by morphological and molecular analyses. IonOptix and real-time deformability cytometry (RT-DC) analysis were used to investigate functional and mechanical effects of IL-1β on cardiomyocytes. RESULTS Heart morphology and echocardiography revealed preserved systolic (stroke volume: WT sham vs. WT CLP: 33.1 ± 7.2 μL vs. 24.6 ± 8.7 μL, P < 0.05; KO sham vs. KO CLP: 28.3 ± 8.1 μL vs. 29.9 ± 9.9 μL, n.s.; P < 0.05 vs. WT CLP) and diastolic (peak E wave velocity: WT sham vs. WT CLP: 750 ± 132 vs. 522 ± 200 mm/s, P < 0.001; KO sham vs. KO CLP: 709 ± 152 vs. 639 ± 165 mm/s, n.s.; P < 0.05 vs. WT CLP) cardiac function and attenuated cardiac (heart weight-tibia length ratio: WT CLP vs. WT sham: -26.6%, P < 0.05; KO CLP vs. KO sham: -3.3%, n.s.; P < 0.05 vs. WT CLP) and cardiomyocyte atrophy in KO mice during sepsis. IonOptix measurements showed that IL-1β decreased contractility (cell shortening: IL-1β: -15.4 ± 2.3%, P < 0.001 vs. vehicle, IL-1RA: -6.1 ± 3.3%, P < 0.05 vs. IL-1β) and relaxation of adult rat ventricular cardiomyocytes (time-to-50% relengthening: IL-1β: 2071 ± 225 ms, P < 0.001 vs. vehicle, IL-1RA: 564 ± 247 ms, P < 0.001 vs. IL-1β), which was attenuated by an IL-1 receptor antagonist (IL-1RA). RT-DC analysis indicated that IL-1β reduced cardiomyocyte size (P < 0.001) and deformation (P < 0.05). RNA sequencing showed that genes involved in NF-κB signalling, autophagy and lysosomal protein degradation were enriched in hearts of septic WT but not in septic KO mice. Western blotting and qPCR disclosed that IL-1β activated NF-κB and its target genes, caused atrophy and decreased myosin protein in myocytes, which was accompanied by an increased autophagy gene expression. These effects were attenuated by IL-1RA. CONCLUSIONS IL-1β causes atrophy, impairs contractility and relaxation and decreases deformation of cardiomyocytes. Because NLRP3/IL-1β pathway inhibition attenuates cardiac atrophy and cardiomyopathy in sepsis, it could be useful to prevent septic cardiomyopathy.
Collapse
Affiliation(s)
- Katharina Busch
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Melanie Kny
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Nora Huang
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Department of Cardiology, Heart Center Brandenburg and Medical School Brandenburg (MHB), Bernau, Germany
| | - Tilman E Klassert
- ZIK Septomics, Host Septomics, Jena, Germany.,Jena University Hospital, Integrated Research and Treatment Center - Center for Sepsis Control and Care (CSCC), Jena, Germany
| | - Magdalena Stock
- ZIK Septomics, Host Septomics, Jena, Germany.,Jena University Hospital, Integrated Research and Treatment Center - Center for Sepsis Control and Care (CSCC), Jena, Germany
| | - Alexander Hahn
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Sebastian Graeger
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany
| | - Mihail Todiras
- Laboratory of Molecular Biology of Peptide Hormones, Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Nicolae Testemiţanu State University of Medicine and Pharmacy, Chișinău, Moldova
| | - Sibylle Schmidt
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Bishwas Chamling
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany.,Department of Internal Medicine B, Molecular Cardiology, University Medicine Greifswald, Greifswald, Germany
| | - Michael Willenbrock
- Signal Transduction in Development and Cancer, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Stefan Groß
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany.,Department of Internal Medicine B, Molecular Cardiology, University Medicine Greifswald, Greifswald, Germany
| | - Doreen Biedenweg
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany.,Centre for Innovation Competence - Humoral Immune Response in Cardiovascular Diseases, University of Greifswald, Greifswald, Germany
| | - Arnd Heuser
- Animal Phenotyping Facility, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Claus Scheidereit
- Signal Transduction in Development and Cancer, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Christian Butter
- Department of Cardiology, Heart Center Brandenburg and Medical School Brandenburg (MHB), Bernau, Germany
| | - Stephan B Felix
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany.,Department of Internal Medicine B, Molecular Cardiology, University Medicine Greifswald, Greifswald, Germany
| | - Oliver Otto
- DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany.,Centre for Innovation Competence - Humoral Immune Response in Cardiovascular Diseases, University of Greifswald, Greifswald, Germany
| | - Friedrich C Luft
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Hortense Slevogt
- ZIK Septomics, Host Septomics, Jena, Germany.,Jena University Hospital, Integrated Research and Treatment Center - Center for Sepsis Control and Care (CSCC), Jena, Germany
| | - Jens Fielitz
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Greifswald, Greifswald, Germany.,Department of Internal Medicine B, Molecular Cardiology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
37
|
Irisin Protects Against LPS-Stressed Cardiac Damage Through Inhibiting Inflammation, Apoptosis, and Pyroptosis. Shock 2021; 56:1009-1018. [PMID: 34779800 DOI: 10.1097/shk.0000000000001775] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
ABSTRACT Septic cardiac dysfunction remains a clinical problem due to its high morbidity and mortality. Uncontrolled cell death and excessive inflammatory response are closely related to sepsis-induced cardiac dysfunction. Irisin has been found to play cardioprotective roles in sepsis. However, there is enough uncertainty in the mechanism of irisin-mediated cardioprotection. We hypothesized that irisin may ameliorate myocardial dysfunction via reducing cardiac apoptosis, pyroptosis, and inflammation during LPS-induced sepsis. Mice were subjected to LPS with or without irisin treatment. After stimuli of LPS, the function of myocardium was distinctly impaired, which was closely related to increased level of apoptosis (decreased expression of Bcl-2 and elevated expression of Caspase-3 and Bax), pyroptosis (increased expression of Caspase1, NLR family pyrin domain containing 3 (NLRP3), and gasdermin D) and inflammatory mediators (increased level of IL-1β, TNF-α, and IL-6). This process is consistent with increased toll-like receptor 4 (TLR4)/nuclear factor-kappa B signal, apoptotic signal, and NLRP3-mediated pyroptotic signal. Activation of apoptosis and pyroptosis enhanced the expression of proinflammatory cytokines and further exacerbated septic myocardial damage. However, irisin can inhibit the expression of TLR4 and its downstream signaling molecules and also lower the level of apoptosis and pyroptosis. Besides, similar results were also found in vitro model of LPS-induced H9c2 cardiomyocyte injury. In general, irisin suppressed inflammation, apoptosis, and pyroptosis by blocking the TLR4 and NLRP3 inflammasome signalings to mitigate myocardial dysfunction in sepsis.
Collapse
|
38
|
Zhang S, Huang X, Xiu H, Zhang Z, Zhang K, Cai J, Cai Z, Chen Z, Zhang Z, Cui W, Zhang G, Xiang M. The attenuation of Th1 and Th17 responses via autophagy protects against methicillin-resistant Staphylococcus aureus-induced sepsis. Microbes Infect 2021; 23:104833. [PMID: 33930602 DOI: 10.1016/j.micinf.2021.104833] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023]
Abstract
Whether autophagy affects methicillin-resistant Staphylococcus aureus (MRSA)-induced sepsis and the associated mechanisms are largely unknown. This study investigated the role of autophagy in MRSA-induced sepsis. The levels of microtubule-associated protein light chain 3 (LC3)-II/I, Beclin-1 and p62 after USA300 infection were examined by Western blotting and immunohistochemical staining. Bacterial burden analysis, hematoxylin-eosin staining, and Kaplan-Meier analysis were performed to evaluate the effect of autophagy on MRSA-induced sepsis. IFN-γ and IL-17 were analyzed by ELISA, and CD4+ T cell differentiation was assessed by flow cytometry. Our results showed that LC3-II/I and Beclin-1 were increased, while p62 was decreased after infection. Survival rates were decreased in the LC3B-/- and Beclin-1+/- groups, accompanied by worsened organ injuries and increased IFN-γ and IL-17 levels, whereas rapamycin alleviated organ damage, decreased IFN-γ and IL-17 levels, and improved the survival rate. However, there was no significant difference in bacterial burden. Flow cytometric analysis showed that rapamycin treatment decreased the frequencies of Th1 and Th17 cells, whereas these cells were upregulated in the LC3B-/- and Beclin-1+/- groups. Therefore, autophagy plays a protective role in MRSA-induced sepsis, which may be partly associated with the alleviation of organ injuries via the downregulation of Th1 and Th17 responses. These results provide a nonantibiotic treatment strategy for sepsis.
Collapse
Affiliation(s)
- Shufang Zhang
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Cardiovascular Key Lab of Zhejiang Province, Hangzhou, Zhejiang 310009, China
| | - Xiaofang Huang
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Huiqing Xiu
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhongheng Zhang
- Department of Emergency Medicine, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Kai Zhang
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jiachang Cai
- Clinical Microbiology Laboratory, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhijian Cai
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zhanghui Chen
- Clinical Research Center, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang 510004, China
| | - Zhaocai Zhang
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Wei Cui
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Gensheng Zhang
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Meixiang Xiang
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Cardiovascular Key Lab of Zhejiang Province, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
39
|
Hydrogen alleviates cell damage and acute lung injury in sepsis via PINK1/Parkin-mediated mitophagy. Inflamm Res 2021; 70:915-930. [PMID: 34244821 DOI: 10.1007/s00011-021-01481-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2021] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Multiple organ failure (MOF) is the main cause of early death in septic shock. Lungs are among the organs that are affected in MOF, resulting in acute lung injury. Inflammation is an important factor that causes immune cell dysfunction in the pathogenesis of sepsis. Autophagy is involved in the process of inflammation and also occurs in response to cell and tissue injury in several diseases. We previously demonstrated that hydrogen alleviated the inflammation-induced cell injury and organ damage in septic mice. AIM The focus of the present study was to elucidate whether mitophagy mediates the inflammatory response or oxidative injury in sepsis in vitro and in vivo. Furthermore, we evaluated the role of mitophagy in the protective effects of hydrogen against cell injury or organ dysfunction in sepsis. METHOD RAW 264.7 macrophages induced by lipopolysaccharide (LPS) were used as an in vitro model for inflammation, and cecal ligation and puncture (CLP)-induced acute lung injury mice were used as an in vivo model for sepsis. The key protein associated with mitophagy, PTEN-induced putative kinase 1 (PINK1), was knocked down by PINK1 shRNA transfection in RAW 264.7 macrophages or mice. RESULTS Hydrogen ameliorated cell injury and enhanced mitophagy in macrophages stimulated by LPS. PINK1 was required for the mitigation of the cell impairment in LPS-stimulated macrophages by hydrogen treatment. PINK1 knockdown abrogated the beneficial effects of hydrogen on mitophagy in LPS-stimulated macrophages. Hydrogen inhibited acute lung injury in CLP mice via activation of PINK1-mediated mitophagy. CONCLUSION These results suggest that PINK1-mediated mitophagy plays a key role in the protective effects of hydrogen against cell injury in LPS-induced inflammation and CLP-induced acute lung injury.
Collapse
|
40
|
Preau S, Vodovar D, Jung B, Lancel S, Zafrani L, Flatres A, Oualha M, Voiriot G, Jouan Y, Joffre J, Huel F, De Prost N, Silva S, Azabou E, Radermacher P. Energetic dysfunction in sepsis: a narrative review. Ann Intensive Care 2021; 11:104. [PMID: 34216304 PMCID: PMC8254847 DOI: 10.1186/s13613-021-00893-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
Background Growing evidence associates organ dysfunction(s) with impaired metabolism in sepsis. Recent research has increased our understanding of the role of substrate utilization and mitochondrial dysfunction in the pathophysiology of sepsis-related organ dysfunction. The purpose of this review is to present this evidence as a coherent whole and to highlight future research directions. Main text Sepsis is characterized by systemic and organ-specific changes in metabolism. Alterations of oxygen consumption, increased levels of circulating substrates, impaired glucose and lipid oxidation, and mitochondrial dysfunction are all associated with organ dysfunction and poor outcomes in both animal models and patients. The pathophysiological relevance of bioenergetics and metabolism in the specific examples of sepsis-related immunodeficiency, cerebral dysfunction, cardiomyopathy, acute kidney injury and diaphragmatic failure is also described. Conclusions Recent understandings in substrate utilization and mitochondrial dysfunction may pave the way for new diagnostic and therapeutic approaches. These findings could help physicians to identify distinct subgroups of sepsis and to develop personalized treatment strategies. Implications for their use as bioenergetic targets to identify metabolism- and mitochondria-targeted treatments need to be evaluated in future studies. Supplementary Information The online version contains supplementary material available at 10.1186/s13613-021-00893-7.
Collapse
Affiliation(s)
- Sebastien Preau
- U1167 - RID-AGE - Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, F-59000, Lille, France.
| | - Dominique Vodovar
- Centre AntiPoison de Paris, Hôpital Fernand Widal, APHP, 75010, Paris, France.,Faculté de pharmacie, UMRS 1144, 75006, Paris, France.,Université de Paris, UFR de Médecine, 75010, Paris, France
| | - Boris Jung
- Medical Intensive Care Unit, Lapeyronie Teaching Hospital, Montpellier University Hospital and PhyMedExp, University of Montpellier, Montpellier, France
| | - Steve Lancel
- U1167 - RID-AGE - Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, F-59000, Lille, France
| | - Lara Zafrani
- Médecine Intensive Réanimation, Hôpital Saint-Louis, AP-HP, Université de Paris, Paris, France.,INSERM UMR 976, Hôpital Saint Louis, Université de Paris, Paris, France
| | | | - Mehdi Oualha
- Pediatric Intensive Care Unit, Necker Hospital, APHP, Centre - Paris University, Paris, France
| | - Guillaume Voiriot
- Service de Médecine Intensive Réanimation, Sorbonne Université, Assistance Publique - Hôpitaux de Paris, Hôpital Tenon, Paris, France
| | - Youenn Jouan
- Service de Médecine Intensive Réanimation, CHRU Tours, Tours, France.,Faculté de Médecine de Tours, INSERM U1100 Centre d'Etudes des Pathologies Respiratoires, Tours, France
| | - Jeremie Joffre
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, 94143, USA
| | - Fabrice Huel
- Réanimation médico-chirurgicale, Université de Paris, Assistance Publique - Hôpitaux de Paris, Hôpital Louis Mourier, Paris, France
| | - Nicolas De Prost
- Service de Réanimation Médicale, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Cedex 94010, Créteil, France
| | - Stein Silva
- Réanimation URM CHU Purpan, Cedex 31300, Toulouse, France.,Toulouse NeuroImaging Center INSERM1214, Cedex 31300, Toulouse, France
| | - Eric Azabou
- Clinical Neurophysiology and Neuromodulation Unit, Departments of Physiology and Critical Care Medicine, Raymond Poincaré Hospital, AP-HP, Inserm UMR 1173, Infection and Inflammation (2I), University of Versailles (UVSQ), Paris-Saclay University, Paris, France
| | - Peter Radermacher
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum, Ulm, Germany
| |
Collapse
|
41
|
Zhu CL, Yao RQ, Li LX, Li P, Xie J, Wang JF, Deng XM. Mechanism of Mitophagy and Its Role in Sepsis Induced Organ Dysfunction: A Review. Front Cell Dev Biol 2021; 9:664896. [PMID: 34164394 PMCID: PMC8215549 DOI: 10.1164/rccm.202111-2484oc+10.3389/fcell.2021.664896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/18/2021] [Indexed: 01/17/2024] Open
Abstract
Autophagy, an evolutionarily conserved process, plays an important role in maintaining cellular homeostasis under physiological and pathophysiological conditions. It is widely believed that mitochondria influence the development of disease by regulating cellular metabolism. When challenged by different stimuli, mitochondria may experience morphological disorders and functional abnormalities, leading to a selective form of autophagy-mitophagy, which can clear damaged mitochondria to promote mitochondrial quality control. Sepsis is a complex global problem with multiple organ dysfunction, often accompanied by manifold mitochondrial damage. Recent studies have shown that autophagy can regulate both innate and acquired immune processes to protect against organ dysfunction in sepsis. Sepsis-induced mitochondrial dysfunction may play a pathophysiological role in the initiation and progression of sepsis-induced organ failure. Mitophagy is reported to be beneficial for sepsis by eliminating disabled mitochondria and maintaining homeostasis to protect against organ failure. In this review, we summarize the recent findings and mechanisms of mitophagy and its involvement in septic organ dysfunction as a potential therapeutic target.
Collapse
Affiliation(s)
- Cheng-long Zhu
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Ren-qi Yao
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China
- Department of Burn Surgery, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Lu-xi Li
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Peng Li
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Jian Xie
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Jia-feng Wang
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Xiao-ming Deng
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| |
Collapse
|
42
|
Zhu CL, Yao RQ, Li LX, Li P, Xie J, Wang JF, Deng XM. Mechanism of Mitophagy and Its Role in Sepsis Induced Organ Dysfunction: A Review. Front Cell Dev Biol 2021; 9:664896. [PMID: 34164394 PMCID: PMC8215549 DOI: 10.1164/rccm.202111-2484oc 10.3389/fcell.2021.664896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Autophagy, an evolutionarily conserved process, plays an important role in maintaining cellular homeostasis under physiological and pathophysiological conditions. It is widely believed that mitochondria influence the development of disease by regulating cellular metabolism. When challenged by different stimuli, mitochondria may experience morphological disorders and functional abnormalities, leading to a selective form of autophagy-mitophagy, which can clear damaged mitochondria to promote mitochondrial quality control. Sepsis is a complex global problem with multiple organ dysfunction, often accompanied by manifold mitochondrial damage. Recent studies have shown that autophagy can regulate both innate and acquired immune processes to protect against organ dysfunction in sepsis. Sepsis-induced mitochondrial dysfunction may play a pathophysiological role in the initiation and progression of sepsis-induced organ failure. Mitophagy is reported to be beneficial for sepsis by eliminating disabled mitochondria and maintaining homeostasis to protect against organ failure. In this review, we summarize the recent findings and mechanisms of mitophagy and its involvement in septic organ dysfunction as a potential therapeutic target.
Collapse
Affiliation(s)
- Cheng-long Zhu
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Ren-qi Yao
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China,Department of Burn Surgery, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Lu-xi Li
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Peng Li
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Jian Xie
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Jia-feng Wang
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China,*Correspondence: Jia-feng Wang,
| | - Xiao-ming Deng
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China,Xiao-ming Deng,
| |
Collapse
|
43
|
Zhu CL, Yao RQ, Li LX, Li P, Xie J, Wang JF, Deng XM. Mechanism of Mitophagy and Its Role in Sepsis Induced Organ Dysfunction: A Review. Front Cell Dev Biol 2021; 9:664896. [PMID: 34164394 PMCID: PMC8215549 DOI: 10.3389/fcell.2021.664896] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022] Open
Abstract
Autophagy, an evolutionarily conserved process, plays an important role in maintaining cellular homeostasis under physiological and pathophysiological conditions. It is widely believed that mitochondria influence the development of disease by regulating cellular metabolism. When challenged by different stimuli, mitochondria may experience morphological disorders and functional abnormalities, leading to a selective form of autophagy-mitophagy, which can clear damaged mitochondria to promote mitochondrial quality control. Sepsis is a complex global problem with multiple organ dysfunction, often accompanied by manifold mitochondrial damage. Recent studies have shown that autophagy can regulate both innate and acquired immune processes to protect against organ dysfunction in sepsis. Sepsis-induced mitochondrial dysfunction may play a pathophysiological role in the initiation and progression of sepsis-induced organ failure. Mitophagy is reported to be beneficial for sepsis by eliminating disabled mitochondria and maintaining homeostasis to protect against organ failure. In this review, we summarize the recent findings and mechanisms of mitophagy and its involvement in septic organ dysfunction as a potential therapeutic target.
Collapse
Affiliation(s)
- Cheng-Long Zhu
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Ren-Qi Yao
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, China.,Department of Burn Surgery, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Lu-Xi Li
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Peng Li
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Jian Xie
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Jia-Feng Wang
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| | - Xiao-Ming Deng
- Department of Anesthesiology and Intensive Care, Changhai Hospital, The Naval Medical University, Shanghai, China
| |
Collapse
|
44
|
Pi QZ, Wang XW, Jian ZL, Chen D, Zhang C, Wu QC. Melatonin Alleviates Cardiac Dysfunction Via Increasing Sirt1-Mediated Beclin-1 Deacetylation and Autophagy During Sepsis. Inflammation 2021; 44:1184-1193. [PMID: 33452667 DOI: 10.1007/s10753-021-01413-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/13/2020] [Accepted: 01/02/2021] [Indexed: 12/23/2022]
Abstract
Cardiac dysfunction is a major cause leading to multiple organ failure in sepsis. Beclin-1-dependent autophagy has been evidenced to exert protective effects on hearts in sepsis. However, the mechanisms on how Beclin-1 and autophagy are regulated remains enigmatic. To explore the detailed mechanisms controlling Beclin-1-dependent autophagy in septic heart and whether melatonin could protect against sepsis via regulating cardiac autophagy, adult Sprague-Dawley (SD) rats were subjected to cecal ligation and puncture (CLP) to induce sepsis. Rats were intraperitoneally administrated with 30 mg/kg melatonin within 5-min post-CLP surgery. Our data showed that sepsis induced Becline-1 acetylation and inhibited autophagy in hearts, resulting in impaired cardiac function. However, melatonin treatment facilitated Beclin-1 deacetylation and increased autophagy in septic hearts, thus improved cardiac function. Moreover, melatonin increased the expression and activity of Sirtuin 1 (Sirt1), and inhibition of Sirt1 abolished the protective effects of melatonin on Beclin-1 deacetylation and cardiac function. In conclusion, increased Beclin-1 acetylation was involved in impaired autophagy in septic hearts, while melatonin contributed to Beclin-1 deacetylation via Sirt1, leading to improved autophagy and cardiac function in sepsis. Our study sheds light on the important role of Beclin-1 acetylation in regulating autophagy in sepsis and suggests that melatonin is a potential candidate drug for the treatment of sepsis.
Collapse
Affiliation(s)
- Qiang-Zhong Pi
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiao-Wen Wang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Zhao-Lei Jian
- Department of Cardiothoracic Surgery, Shanghai Jiao Tong University School of Medicine Xinhua Hospital, Shanghai, 200233, China
| | - Dan Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Centre for Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Cheng Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Centre for Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Qing-Chen Wu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
45
|
Hepatoprotective effect of anemoside B4 against sepsis-induced acute liver injury through modulating the mTOR/p70S6K-mediated autophagy. Chem Biol Interact 2021; 345:109534. [PMID: 34051206 DOI: 10.1016/j.cbi.2021.109534] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 04/25/2021] [Accepted: 05/24/2021] [Indexed: 12/27/2022]
Abstract
Sepsis triggers liver dysfunction with high morbidity and mortality. Here, we elucidated the effect of anemoside B4 on sepsis in cecal ligation and puncture (CLP)-induced mouse model and LPS-induced primary hepatocytes. Following CLP surgery, septic mice were intraperitoneally injected with anemoside B4 (50 or 100 mg/kg). Anemoside B4 improved septic mouse survival rate, decreased serum AST and ALT levels and attenuated liver histopathologic damages. Western blot analysis showed that anemoside B4 elevated the expression of Beclin-1, LC3II/LC3I, Atg3, Atg5, and Atg7, and reduced p62, suggesting the restoration of autophagy flux in liver. More autophagic vesicles were observed in liver after anemoside B4 treatment using transmission electron microscopy. Using ELISA and commercial enzyme kits, we found that anemoside B4 decreased serum TNF-α, IL-6, and IL-1β levels and increased CAT, SOD and GSH activities. TUNEL staining and western blot revealed that anemoside B4 suppressed cell apoptosis, along with decreased Bax, leaved caspase-3, cleaved PARP, but increased Bcl-2. Consistent with in vivo findings, anemoside B4 inhibited apoptosis, inflammatory response, and oxidative stress and enhanced autophagy in LPS-induced primary hepatocytes. Importantly, these cellular processes were possibly mediated by mTOR/p70S6K signaling, as reflected by the offset of 3-MA in the immunosuppression of anemoside B4.
Collapse
|
46
|
Ji W, Wan T, Zhang F, Zhu X, Guo S, Mei X. Aldehyde Dehydrogenase 2 Protects Against Lipopolysaccharide-Induced Myocardial Injury by Suppressing Mitophagy. Front Pharmacol 2021; 12:641058. [PMID: 34025411 PMCID: PMC8139555 DOI: 10.3389/fphar.2021.641058] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 04/19/2021] [Indexed: 01/18/2023] Open
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Sepsis-induced circulatory and cardiac dysfunction is associated with high mortality rates. Mitophagy, a specific form of autophagy, is excessively activated in lipopolysaccharide-induced myocardial injury. The present study investigated whether aldehyde dehydrogenase 2 (ALDH2) regulates mitophagy in sepsis-induced myocardial dysfunction. After lipopolysaccharide administration, cardiac dysfunction, inflammatory cell infiltration, biochemical indicators of myocardial cell injury, and cardiomyocyte apoptosis were ameliorated in mice by ALDH2 activation or overexpression. In contrast, cardiac dysfunction and cardiomyocyte apoptosis were exacerbated in mice followed ALDH2 inhibition. Moreover, ALDH2 activation or overexpression regulated mitophagy by suppressing the expression of phosphatase and tensin homolog-induced putative kinase 1 (PINK1)/Parkin, by preventing the accumulation of 4-hydroxy-trans-nonenal. Conversely, ALDH2 inhibition promoted the expression of LC3B by increasing 4-hydroxy-trans-2-nonenal accumulation. Consequently, ALDH2 may protect the heart from lipopolysaccharide-induced injury by suppressing PINK1/Parkin-dependent mitophagy.
Collapse
Affiliation(s)
- Wenqing Ji
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing, China
| | - Tiantian Wan
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing, China
| | - Fang Zhang
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing, China
| | - Xiaomei Zhu
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing, China
| | - Shubin Guo
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing, China
| | - Xue Mei
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing, China
| |
Collapse
|
47
|
Wang R, Xu Y, Zhang W, Fang Y, Yang T, Zeng D, Wei T, Liu J, Zhou H, Li Y, Huang ZP, Zhang M. Inhibiting miR-22 Alleviates Cardiac Dysfunction by Regulating Sirt1 in Septic Cardiomyopathy. Front Cell Dev Biol 2021; 9:650666. [PMID: 33869205 PMCID: PMC8047209 DOI: 10.3389/fcell.2021.650666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/05/2021] [Indexed: 01/20/2023] Open
Abstract
High morbidity and mortality are the most typical characteristics of septic cardiomyopathy. We aimed to reveal the role of miR-22 in septic cardiomyopathy and to explore the underlying mechanisms. miR-22 cardiac-specific knockout (miR-22cKO) mice and miR-22 cardiac-specific transgenic (miR-22cOE) mice were subjected to a cecal ligation and puncture (CLP) operation, while a sham operation was used in the control group. The echocardiogram results suggested that miR-22cKO CLP mice cardiac dysfunction was alleviated. The serum LDH and CK-MB were reduced in the miR-22cKO CLP mice. As expected, there was reduced apoptosis, increased autophagy and alleviated mitochondrial dysfunction in the miR-22cKO CLP mice, while it had contrary role in the miR-22cOE group. Inhibiting miR-22 promoted autophagy by increasing the LC3II/GAPDH ratio and decreasing the p62 level. Additionally, culturing primary cardiomyocytes with lipopolysaccharide (LPS) simulated sepsis-induced cardiomyopathy in vitro. Inhibiting miR-22 promoted autophagic flux confirmed by an increased LC3II/GAPDH ratio and reduced p62 protein level under bafilomycin A1 conditions. Knocking out miR-22 may exert a cardioprotective effect on sepsis by increasing autophagy and decreasing apoptosis via sirt1. Our results revealed that targeting miR-22 may become a new strategy for septic cardiomyopathy treatment.
Collapse
Affiliation(s)
- Runze Wang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.,Department of Hematology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yuerong Xu
- Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Wei Zhang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yexian Fang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Tiqun Yang
- Department of Cardiology, Center for Translational Medicine, The First Affiliated Hospital, Institute of Precision Medicine, Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Di Zeng
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ting Wei
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jing Liu
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Haijia Zhou
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yan Li
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhan-Peng Huang
- Department of Cardiology, Center for Translational Medicine, The First Affiliated Hospital, Institute of Precision Medicine, Sun Yat-sen University, Guangzhou, China.,NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - Mingming Zhang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
48
|
Li Y, Suo L, Fu Z, Li G, Zhang J. Pivotal role of endothelial cell autophagy in sepsis. Life Sci 2021; 276:119413. [PMID: 33794256 DOI: 10.1016/j.lfs.2021.119413] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/03/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022]
Abstract
Sepsis is a fatal organ dysfunction resulting from a disordered host response to infection. Endothelial cells (ECs) are usually the primary targets of inflammatory mediators in sepsis; damage to ECs plays a pivotal part in vital organ failure. In recent studies, autophagy was suggested to play a critical role in the ECs injury although the mechanisms by which ECs are injured in sepsis are not well elucidated. Autophagy is a highly conserved catabolic process that includes sequestrating plasma contents and transporting cargo to lysosomes for recycling the vital substrates required for metabolism. This pathway also counteracts microbial invasion to balance and retain homeostasis, especially during sepsis. Increasing evidence indicates that autophagy is closely associated with endothelial function. The role of autophagy in sepsis may or may not be favorable depending upon conditions. In the present review, the current knowledge of autophagy in the process of sepsis and its influence on ECs was evaluated. In addition, the potential of targeting EC autophagy for clinical treatment of sepsis was discussed.
Collapse
Affiliation(s)
- Yuexian Li
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004, PR China
| | - Liangyuan Suo
- Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shengjing Hospital of China Medical University, No. 44 Xiaoheyan Road, Shengyang, Liaoning 110042, PR China
| | - Zhiling Fu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004, PR China
| | - Guoqing Li
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang Street, Dalian, Liaoning 116001, PR China
| | - Jin Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, Liaoning 110004, PR China.
| |
Collapse
|
49
|
Mao S, Ma H, Chen P, Liang Y, Zhang M, Hinek A. Fat-1 transgenic mice rich in endogenous omega-3 fatty acids are protected from lipopolysaccharide-induced cardiac dysfunction. ESC Heart Fail 2021; 8:1966-1978. [PMID: 33665922 PMCID: PMC8120410 DOI: 10.1002/ehf2.13262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 01/16/2021] [Accepted: 01/29/2021] [Indexed: 12/18/2022] Open
Abstract
Aims Cardiac malfunctions developing in result of sepsis are hard to treat so they eventually contribute to the increased mortality. Previous reports indicated for therapeutic potential of exogenous ω‐3 polyunsaturated fatty acids (PUFA) in sepsis, but potential benefits of this compound on the malfunctional heart have not been explored yet. In the present study, we investigated whether the constantly elevated levels of endogenous ω‐3 PUFA in transgenic fat‐1 mice would alleviate the lipopolysaccharide (LPS)‐induced cardiac failure and death. Methods and results After both wild type (WT) and transgenic fat‐1 mice were challenged with LPS, a Kaplan–Meier curve and echocardiography were performed to evaluate the survival rates and cardiac function. Proteomics analysis, RT‐PCR, western blotting, immune‐histochemistry, and transmission electron microscopy were further performed to investigate the underlying mechanisms. Results showed that transgenic fat‐1 mice exhibited the significantly lower mortality after LPS challenge as compared with their WT counterparts (30% vs. 42.5%, P < 0.05). LPS injection consistently impaired the left ventricular contractile function and caused the cardiac injury in the wild type mice, but not significantly affected the fat‐1 mice (P < 0.05). Proteomic analyses, ELISA, and immunohistochemistry further revealed that myocardium of the LPS‐challenged fat‐1 mice demonstrated the significantly lower levels of pro‐inflammatory markers and ROS than WT mice. Meaningfully, the LPS‐treated fat‐1 mice also demonstrated a significantly higher levels of LC3 II/I and Atg7 expressions than the LPS‐treated WT mice (P < 0.05), as well as displayed a selectively increased levels of peroxisome proliferator‐activated receptor (PPAR) γ and sirtuin (Sirt)‐1 expression, associated with a parallel decrease in NFκB activation. Conclusions The fat‐1 mice were protected from the detrimental LPS‐induced inflammation and oxidative stress, and exhibited enhancement of the autophagic flux activities, associating with the increased Sirt‐1 and PPARγ signals.
Collapse
Affiliation(s)
- Shuai Mao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China.,Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Huan Ma
- Heart Center, Guangdong Provincial General Hospital, Guangzhou, China
| | - Peipei Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Yubin Liang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Minzhou Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Aleksander Hinek
- Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
50
|
Wang H, Han W, Guo R, Bai G, Chen J, Cui N. CD8 + T cell survival in lethal fungal sepsis was ameliorated by T-cell-specific mTOR deletion. Int J Med Sci 2021; 18:3004-3013. [PMID: 34220329 PMCID: PMC8241777 DOI: 10.7150/ijms.55592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 06/03/2021] [Indexed: 01/18/2023] Open
Abstract
Lethal fungal sepsis causes high morbidity and mortality in intensive care patients. Fungal infections have an immunological basis, and it has been shown in recent studies that decreased CD8+ T-cell count in fungal infections is related to prognosis, while the underlying mechanism is still unclear. Here, a lethal fungal sepsis model induced by candidemia was created and we found a decreased CD8+ T-cell count and exaggerated apoptosis. Simultaneously, expression of light chain (LC)3B in CD8+ T cells increased, along with increased autophagosomes and accumulation of p62 in infected mice. We regulated the activity of the mammalian target of rapamycin (mTOR) pathway using T-cell-specific mTOR/ TSC1 deletion mice. We observed increased number of autophagosomes and expression of LC3B in CD8+T cells after T-cell-specific mTOR knockout, while accumulation of p62 was not ameliorated, and there was no increase in the number of autolysosomes. Apoptosis rate and expression of BIM, a pro-apoptotic gene, decreased in CD8+ T cells in mTOR-deletion mice but increased in TSC1-deletion mice. Our results showed increased CD8+ T-cell death in spleen of lethal fungal sepsis mice, and decreased expression of mTOR ameliorated CD8+ T-cell survival. mTOR may be a possible target to reverse CD8+ T-cell immune dysfunction in lethal fungal sepsis.
Collapse
Affiliation(s)
- Hao Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100730, China
| | - Wen Han
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100730, China
| | - Ran Guo
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100730, China
| | - Guangxu Bai
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100730, China
| | - Jianwei Chen
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100730, China
| | - Na Cui
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100730, China.,Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science; Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing 100730, China
| |
Collapse
|