1
|
Minagar A, Jabbour R. The Human Gut Microbiota: A Dynamic Biologic Factory. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2025; 189:91-106. [PMID: 38337077 DOI: 10.1007/10_2023_243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
The human body constitutes a living environment for trillions of microorganisms, which establish the microbiome and, the largest population among them, reside within the gastrointestinal tract, establishing the gut microbiota. The term "gut microbiota" refers to a set of many microorganisms [mainly bacteria], which live symbiotically within the human host. The term "microbiome" means the collective genomic content of these microorganisms. The number of bacterial cells within the gut microbiota exceeds the host's cells; collectively and their genes quantitatively surpass the host's genes. Immense scientific research into the nature and function of the gut microbiota is unraveling its roles in certain human health activities such as metabolic, physiology, and immune activities and also in pathologic states and diseases. Interestingly, the microbiota, a dynamic ecosystem, inhabits a particular environment such as the human mouth or gut. Human microbiota can evolve and even adapt to the host's unique features such as eating habits, genetic makeup, underlying diseases, and even personalized habits. In the past decade, biologists and bioinformaticians have concentrated their research effort on the potential roles of the gut microbiome in the development of human diseases, particularly immune-mediated diseases and colorectal cancer, and have initiated the assessment of the impact of the gut microbiome on the host genome. In the present chapter, we focus on the biological features of gut microbiota, its physiology as a biological factory, and its impacts on the host's health and disease status.
Collapse
Affiliation(s)
- Alireza Minagar
- Department of Biotechnology (Bioinformatics), University of Maryland Global Campus, Adelphi, MD, USA
| | - Rabih Jabbour
- University of Maryland Global Campus, Largo, MD, USA
| |
Collapse
|
2
|
Dupouy-Manescau N, Méric T, Sénécat O, Drut A, Valentin S, Leal RO, Hernandez J. Updating the Classification of Chronic Inflammatory Enteropathies in Dogs. Animals (Basel) 2024; 14:681. [PMID: 38473066 DOI: 10.3390/ani14050681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Chronic inflammatory enteropathies (CIEs) in dogs are currently classified based on response to sequential treatment trials into food-responsive (FREs); antibiotic-responsive (AREs); immunosuppressant-responsive (IREs); and non-responsive enteropathies (NREs). Recent studies have reported that a proportion of NRE dogs ultimately respond to further dietary trials and are subsequently misclassified. The FRE subset among CIEs is therefore probably underestimated. Moreover, alterations in the gut microbiota composition and function (dysbiosis) have been shown to be involved in CIE pathogenesis in recent research on dogs. Metronidazole and other antibiotics that have been used for decades for dogs with AREs have been demonstrated to result in increased antimicrobial resistance and deleterious effects on the gut microbiota. As a consequence, the clinical approach to CIEs has evolved in recent years toward the gradual abandonment of the use of antibiotics and their replacement by other treatments with the aim of restoring a diverse and functional gut microbiota. We propose here to refine the classification of canine CIEs by replacing the AREs category with a microbiota-related modulation-responsive enteropathies (MrMREs) category.
Collapse
Affiliation(s)
- Noémie Dupouy-Manescau
- Oniris VetAgroBio Nantes, Department of Clinical Sciences, Nantes-Atlantic College of Veterinary Medicine and Food Sciences, 44300 Nantes, France
| | - Tristan Méric
- Oniris VetAgroBio Nantes, Department of Clinical Sciences, Nantes-Atlantic College of Veterinary Medicine and Food Sciences, 44300 Nantes, France
| | - Odile Sénécat
- Oniris VetAgroBio Nantes, Department of Clinical Sciences, Nantes-Atlantic College of Veterinary Medicine and Food Sciences, 44300 Nantes, France
| | - Amandine Drut
- Oniris VetAgroBio Nantes, Department of Clinical Sciences, Nantes-Atlantic College of Veterinary Medicine and Food Sciences, 44300 Nantes, France
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgrosParisTech, Université Paris-Saclay, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, 78350 Jouy-en-Josas, France
| | - Suzy Valentin
- Hopia, Bozon Veterinary Clinic, 78280 Guyancourt, France
| | - Rodolfo Oliveira Leal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1649-004 Lisbon, Portugal
| | - Juan Hernandez
- Oniris VetAgroBio Nantes, Department of Clinical Sciences, Nantes-Atlantic College of Veterinary Medicine and Food Sciences, 44300 Nantes, France
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgrosParisTech, Université Paris-Saclay, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, 78350 Jouy-en-Josas, France
| |
Collapse
|
3
|
Martínez JL, Baquero F. What are the missing pieces needed to stop antibiotic resistance? Microb Biotechnol 2023; 16:1900-1923. [PMID: 37417823 PMCID: PMC10527211 DOI: 10.1111/1751-7915.14310] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/08/2023] Open
Abstract
As recognized by several international agencies, antibiotic resistance is nowadays one of the most relevant problems for human health. While this problem was alleviated with the introduction of new antibiotics into the market in the golden age of antimicrobial discovery, nowadays few antibiotics are in the pipeline. Under these circumstances, a deep understanding on the mechanisms of emergence, evolution and transmission of antibiotic resistance, as well as on the consequences for the bacterial physiology of acquiring resistance is needed to implement novel strategies, beyond the development of new antibiotics or the restriction in the use of current ones, to more efficiently treat infections. There are still several aspects in the field of antibiotic resistance that are not fully understood. In the current article, we make a non-exhaustive critical review of some of them that we consider of special relevance, in the aim of presenting a snapshot of the studies that still need to be done to tackle antibiotic resistance.
Collapse
Affiliation(s)
| | - Fernando Baquero
- Ramón y Cajal Institute for Health Research (IRYCIS), Department of MicrobiologyRamón y Cajal University Hospital, CIBER en Epidemiología y Salud Pública (CIBERESP)MadridSpain
| |
Collapse
|
4
|
Toresson L, Spillmann T, Pilla R, Ludvigsson U, Hellgren J, Olmedal G, Suchodolski JS. Clinical Effects of Faecal Microbiota Transplantation as Adjunctive Therapy in Dogs with Chronic Enteropathies—A Retrospective Case Series of 41 Dogs. Vet Sci 2023; 10:vetsci10040271. [PMID: 37104426 PMCID: PMC10145442 DOI: 10.3390/vetsci10040271] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Chronic enteropathies (CE) are common in dogs, but not all affected dogs respond to standard therapy. Successful responses to faecal microbial transplantation (FMT) in dogs with non-responsive CE have been reported in two case series. The objective of this retrospective study was to describe the clinical effects of FMT as an adjunctive therapy in a larger population of dogs with CE. Forty-one dogs aged 0.6–13.0 years (median 5.8) under treatment for CE at one referral animal hospital were included. Dogs were treated with 1–5 (median 3) FMTs as a rectal enema at a dose of 5–7 g/kg body weight. The canine inflammatory bowel disease activity index (CIBDAI) was compared at baseline versus after the last FMT. Stored faecal samples (n = 16) were analysed with the dysbiosis index. CIBDAI at baseline was 2–17 (median 6), which decreased to 1–9 (median 2; p < 0.0001) after FMT. Subsequently, 31/41 dogs responded to treatment, resulting in improved faecal quality and/or activity level in 24/41 and 24/41 dogs, respectively. The dysbiosis index at baseline was significantly lower for good responders versus poor responders (p = 0.043). Results suggest that FMT can be useful as an adjunctive therapy in dogs with poorly responsive CE.
Collapse
Affiliation(s)
- Linda Toresson
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, Agnes Sjöberginkatu 2, Helsinki University, 00014 Helsinki, Finland
- Evidensia Specialist Animal Hospital, Bergavagen 3, 25466 Helsingborg, Sweden
| | - Thomas Spillmann
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, Agnes Sjöberginkatu 2, Helsinki University, 00014 Helsinki, Finland
| | - Rachel Pilla
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M School of Veterinary Medicine & Biomedical Sciences, 4474 TAMU, College Station, TX 77843, USA
| | - Ulrika Ludvigsson
- Evidensia Specialist Animal Hospital, Bergavagen 3, 25466 Helsingborg, Sweden
| | - Josefin Hellgren
- Evidensia Specialist Animal Hospital, Bergavagen 3, 25466 Helsingborg, Sweden
| | - Gunilla Olmedal
- Evidensia Specialist Animal Hospital, Bergavagen 3, 25466 Helsingborg, Sweden
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M School of Veterinary Medicine & Biomedical Sciences, 4474 TAMU, College Station, TX 77843, USA
| |
Collapse
|
5
|
Chen CC, Chiu CH. Current and future applications of fecal microbiota transplantation for children. Biomed J 2021; 45:11-18. [PMID: 34781002 PMCID: PMC9133305 DOI: 10.1016/j.bj.2021.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/23/2021] [Accepted: 11/07/2021] [Indexed: 12/18/2022] Open
Abstract
Fecal microbiota transplantation (FMT) is a new and adequate route to modify the microbial ecosystem in gastrointestinal tract of the hosts. Intestinal microbiota is highly associated with human health and disease. According to the reports of human clinical trials or case series, the application of FMT ranged from Clostridiodes difficile infection (CDI), inflammatory bowel disease (IBD), irritable bowel syndrome, refractory diarrhea, diabetes mellitus, metabolic syndrome, and even neurologic diseases, including Parkinson disease, and neuropsychiatric disorder (autism spectrum disorder, ASD). Although the current allowed indication of FMT is CDI in Taiwan, more application and development are expectable in the future. There is a relative rare data available for children in application of fecal microbiota transplantation. Thus, we review previous published research inspecting FMT in children, and address particular considerations when conducting FMT in pediatric patients.
Collapse
Affiliation(s)
- Chien-Chang Chen
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| |
Collapse
|
6
|
How to: prophylactic interventions for prevention of Clostridioides difficile infection. Clin Microbiol Infect 2021; 27:1777-1783. [PMID: 34245901 DOI: 10.1016/j.cmi.2021.06.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Clostridioides difficile infection (CDI) remains the leading cause of healthcare-associated diarrhoea, despite existing guidelines for infection control measures and antimicrobial stewardship. The high associated health and economic burden of CDI calls for novel strategies to prevent the development and spread of CDI in susceptible patients. OBJECTIVES We aim to review CDI prophylactic treatment strategies and their implementation in clinical practice. SOURCES We searched PubMed, Embase, Emcare, Web of Science, and the COCHRANE Library databases to identify prophylactic interventions aimed at prevention of CDI. The search was restricted to articles published in English since 2012. CONTENT A toxin-based vaccine candidate is currently being investigated in a phase III clinical trial. However, a recent attempt to develop a toxin-based vaccine has failed. Conventional probiotics have not yet proved to be an effective strategy for prevention of CDI. New promising microbiota-based interventions that bind and inactivate concomitantly administered antibiotics, such as ribaxamase and DAV-132, have been developed. Prophylaxis of CDI with C. difficile antibiotics should not be performed routinely and should be considered only for secondary prophylaxis in very selected patients who are at the highest imminent risk for recurrent CDI (R-CDI) after a thorough evaluation. Faecal microbiota transplantation (FMT) has proved to be a very effective treatment for patients with multiple recurrences. Bezlotoxumab provides protection against R-CDI, mainly in patients with primary episodes and a high risk of relapse. IMPLICATIONS There are no proven effective, evidenced-based prophylaxis options for primary CDI. As for secondary prevention, FMT is considered the option of choice in patients with multiple recurrences. Bezlotoxumab can be added to standard treatment for patients at high risk for R-CDI. The most promising strategies are those aimed at reducing changes in intestinal microbiota and development of a new effective non-toxin-based vaccine.
Collapse
|
7
|
Gilbert J, Leslie J, Putler R, Weiner S, Standke A, Penkevich A, Keidan M, Young VB, Rao K. Anti-toxin antibody is not associated with recurrent Clostridium difficile infection. Anaerobe 2021; 67:102299. [PMID: 33227427 PMCID: PMC8094835 DOI: 10.1016/j.anaerobe.2020.102299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/23/2020] [Accepted: 11/16/2020] [Indexed: 02/08/2023]
Abstract
Clostridium difficile infection (CDI) recurs in ∼20% of patients. Prior studies indicated that antibody responses directed against the C. difficile toxins A and B were potentially associated with lower risk of recurrent CDI. Here we tested the hypothesis that circulating anti-toxin IgG antibody levels associate with reduced risk of recurrent CDI. A cohort study with prospective enrollment and retrospective data abstraction examined antibody levels in 275 adult patients at the University of Michigan with CDI. We developed an enzyme linked immunosorbent assay to detect IgG antibodies against toxin A and toxin B in sera obtained at the time of diagnosis. Logistic regression examined the relationship between antibody levels and recurrence, and sensitivity tests evaluated for follow-up and survivor biases, history of CDI, and PCR ribotype. Follow-up data were available for 174 subjects, of whom 36 (20.7%) had recurrence. Comparing antibody levels vs. recurrence and CDI history, anti-toxin A levels were similar, while anti-toxin B levels had a greater range of values. In unadjusted analysis, detection of anti-toxin A antibodies, but not anti-toxin B antibodies, associated with an increased risk of recurrence (OR 2.71 [1.06, 8.37], P = .053). Adjusting for confounders weakened this association. The results were the same in sensitivity analyses. We observed a borderline increased risk of recurrence in patients positive for anti-toxin A antibodies, and sensitivity analyses showed this was not simply a reflection of prior exposure status. Future studies are needed to assess how neutralizing antibody or levels after treatment associate with recurrence.
Collapse
Affiliation(s)
| | | | - Rose Putler
- Department of Microbiology and Immunology, USA
| | - Shayna Weiner
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, Ann Arbor, MI, USA
| | - Alexandra Standke
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, Ann Arbor, MI, USA
| | - Aline Penkevich
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, Ann Arbor, MI, USA
| | - Micah Keidan
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, Ann Arbor, MI, USA
| | - Vincent B Young
- Department of Microbiology and Immunology, USA; Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, Ann Arbor, MI, USA
| | - Krishna Rao
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Achard CS, Dupouy V, Cauquil L, Arpaillange N, Bousquet-Melou A, Floc’h NL, Zemb O. Early Inoculation of Microbial Suspension in Suckling Piglets Affects the Transmission of Maternal Microbiota and the Associated Antibiotic Resistance Genes. Microorganisms 2020; 8:microorganisms8101576. [PMID: 33066283 PMCID: PMC7602062 DOI: 10.3390/microorganisms8101576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/29/2020] [Accepted: 10/07/2020] [Indexed: 12/18/2022] Open
Abstract
Antibiotic resistance of microbes thriving in the animal gut is a growing concern for public health as it may serve as a hidden reservoir for antibiotic resistance genes (ARGs). We compared 16 control piglets to 24 piglets fed for 3 weeks with S1 or S2 fecal suspensions from two sows that were not exposed to antibiotics for at least 6 months: the first suspension decreased the erythromycin resistance gene ermB and the aminoglycoside phosphotransferase gene conferring resistance to kanamycine (aphA3), while the second decreased the tetracycline resistance gene tetL, with an unexpected increase in ARGs. Using 16S RNA sequencing, we identified microbial species that are likely to carry ARGs, such as the lincosamide nucleotidyltransferase lnuB, the cephalosporinase cepA, and the tetracycline resistance genes tetG and tetM, as well as microbes that never co-exist with the tetracycline resistance gene tetQ, the erythromycin resistance gene ermG and aphA3. Since 73% of the microbes detected in the sows were not detected in the piglets at weaning, a neutral model was applied to estimate whether a microbial species is more important than chance would predict. This model confirmed that force-feeding modifies the dynamics of gut colonization. In conclusion, early inoculation of gut microbes is an interesting possibility to stimulate gut microbiota towards a desirable state in pig production, but more work is needed to be able to predict which communities should be used.
Collapse
Affiliation(s)
- Caroline S. Achard
- Génétique Physiologie et Systèmes d’Elevage (GenPhySE), Université de Toulouse, Institut National De Recherche Pour L’agriculture, L’alimentation Et L’environnement (INRAE), Institut National Polytechnique de Toulouse (INPT), École nationale vétérinaire de Toulouse (ENVT), F-31320 Castanet Tolosan, France; (C.S.A.); (L.C.)
- Lallemand SAS, 19 rue des Briquetiers, BP 59, 31702 Blagnac CEDEX, France
| | - Veronique Dupouy
- Innovations thérapeutiques et résistances (INTHERES), Université de Toulouse, INRAE, ENVT, F-31300 Toulouse, France; (V.D.); (N.A.); (A.B.-M.)
| | - Laurent Cauquil
- Génétique Physiologie et Systèmes d’Elevage (GenPhySE), Université de Toulouse, Institut National De Recherche Pour L’agriculture, L’alimentation Et L’environnement (INRAE), Institut National Polytechnique de Toulouse (INPT), École nationale vétérinaire de Toulouse (ENVT), F-31320 Castanet Tolosan, France; (C.S.A.); (L.C.)
| | - Nathalie Arpaillange
- Innovations thérapeutiques et résistances (INTHERES), Université de Toulouse, INRAE, ENVT, F-31300 Toulouse, France; (V.D.); (N.A.); (A.B.-M.)
| | - Alain Bousquet-Melou
- Innovations thérapeutiques et résistances (INTHERES), Université de Toulouse, INRAE, ENVT, F-31300 Toulouse, France; (V.D.); (N.A.); (A.B.-M.)
| | - Nathalie Le Floc’h
- Physiologie, Environnement et Génétique pour l’Animal et les Systèmes d’Élevage (PEGASE), Institut national de recherche pour l’agriculture, l’alimentation et l’environnement (INRAE), Institut Agro, 35590 Saint-Gilles, France;
| | - Olivier Zemb
- Génétique Physiologie et Systèmes d’Elevage (GenPhySE), Université de Toulouse, Institut National De Recherche Pour L’agriculture, L’alimentation Et L’environnement (INRAE), Institut National Polytechnique de Toulouse (INPT), École nationale vétérinaire de Toulouse (ENVT), F-31320 Castanet Tolosan, France; (C.S.A.); (L.C.)
- Correspondence:
| |
Collapse
|
9
|
Hernando-Amado S, Coque TM, Baquero F, Martínez JL. Antibiotic Resistance: Moving From Individual Health Norms to Social Norms in One Health and Global Health. Front Microbiol 2020; 11:1914. [PMID: 32983000 PMCID: PMC7483582 DOI: 10.3389/fmicb.2020.01914] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/21/2020] [Indexed: 12/16/2022] Open
Abstract
Antibiotic resistance is a problem for human health, and consequently, its study had been traditionally focused toward its impact for the success of treating human infections in individual patients (individual health). Nevertheless, antibiotic-resistant bacteria and antibiotic resistance genes are not confined only to the infected patients. It is now generally accepted that the problem goes beyond humans, hospitals, or long-term facility settings and that it should be considered simultaneously in human-connected animals, farms, food, water, and natural ecosystems. In this regard, the health of humans, animals, and local antibiotic-resistance-polluted environments should influence the health of the whole interconnected local ecosystem (One Health). In addition, antibiotic resistance is also a global problem; any resistant microorganism (and its antibiotic resistance genes) could be distributed worldwide. Consequently, antibiotic resistance is a pandemic that requires Global Health solutions. Social norms, imposing individual and group behavior that favor global human health and in accordance with the increasingly collective awareness of the lack of human alienation from nature, will positively influence these solutions. In this regard, the problem of antibiotic resistance should be understood within the framework of socioeconomic and ecological efforts to ensure the sustainability of human development and the associated human-natural ecosystem interactions.
Collapse
Affiliation(s)
- Sara Hernando-Amado
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Teresa M. Coque
- Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Centro de Investigación Biomédica en Red Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Fernando Baquero
- Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Centro de Investigación Biomédica en Red Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - José L. Martínez
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
10
|
Clinical nutrition for the gastroenterologist: bedside strategies for feeding the hospitalized patient. Curr Opin Gastroenterol 2020; 36:122-128. [PMID: 31895701 DOI: 10.1097/mog.0000000000000617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE OF REVIEW The timing, advancement, and use of appropriate monitors determine whether the hospitalized patient experiences the full benefit of nutritional therapy. This article reviews management strategies in delivering the optimal nutrition regimen capable of improving outcomes in the hospitalized patient. RECENT FINDINGS Enteral nutrition should be initiated in the first 24-36 h after admission. Determination of nutritional risk helps guide the urgency with which nutritional therapy is provided and predicts the likelihood for difficulties in delivering the prescribed regimen. Feeds should be advanced slowly over 3-4 days to meet 70-80% of goal for calories (20 kcal/kg/day) and 100% for protein (2.0 gm/kg/day). Reaching protein goals early on may be more important than achieving energy goals. Patients should be monitored for hemodynamic stability, evidence of refeeding syndrome, and tolerance in the setting of gastrointestinal dysfunction. Parenteral nutrition should be utilized in select high-risk patients where the feasibility of full enteral nutrition is questioned. SUMMARY Timing with early initiation of enteral nutrition, avoidance of overfeeding, and step-wise advancement of feeds are required to safely realize the benefits of such therapy.
Collapse
|
11
|
Schmidt EKA, Torres-Espin A, Raposo PJF, Madsen KL, Kigerl KA, Popovich PG, Fenrich KK, Fouad K. Fecal transplant prevents gut dysbiosis and anxiety-like behaviour after spinal cord injury in rats. PLoS One 2020; 15:e0226128. [PMID: 31940312 PMCID: PMC6961833 DOI: 10.1371/journal.pone.0226128] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/20/2019] [Indexed: 12/26/2022] Open
Abstract
Secondary manifestations of spinal cord injury beyond motor and sensory dysfunction can negatively affect a person's quality of life. Spinal cord injury is associated with an increased incidence of depression and anxiety; however, the mechanisms of this relationship are currently not well understood. Human and animal studies suggest that changes in the composition of the intestinal microbiota (dysbiosis) are associated with mood disorders. The objective of the current study is to establish a model of anxiety following a cervical contusion spinal cord injury in rats and to determine whether the microbiota play a role in the observed behavioural changes. We found that spinal cord injury caused dysbiosis and increased symptoms of anxiety-like behaviour. Treatment with a fecal transplant prevented both spinal cord injury-induced dysbiosis as well as the development of anxiety-like behaviour. These results indicate that an incomplete unilateral cervical spinal cord injury can cause affective disorders and intestinal dysbiosis, and that both can be prevented by treatment with fecal transplant therapy.
Collapse
Affiliation(s)
- Emma K. A. Schmidt
- Neuroscience and Mental Health Institute, University of Alberta; Edmonton, Canada
| | - Abel Torres-Espin
- Faculty of Rehabilitation Medicine, University of Alberta; Edmonton, Canada
- Department of Physical Therapy, University of Alberta; Edmonton, Canada
| | - Pamela J. F. Raposo
- Faculty of Rehabilitation Medicine, University of Alberta; Edmonton, Canada
- Department of Physical Therapy, University of Alberta; Edmonton, Canada
| | - Karen L. Madsen
- Division of Gastroenterology, Faculty of Medicine and Dentistry, University of Alberta; Edmonton, Canada
| | - Kristina A. Kigerl
- Department of Neuroscience, Center for Brain and Spinal Cord Repair, The Belford Center for Spinal Cord Injury, The Ohio State University, Wexner Medical Center; Columbus, United States of America
| | - Phillip G. Popovich
- Department of Neuroscience, Center for Brain and Spinal Cord Repair, The Belford Center for Spinal Cord Injury, The Ohio State University, Wexner Medical Center; Columbus, United States of America
| | - Keith K. Fenrich
- Neuroscience and Mental Health Institute, University of Alberta; Edmonton, Canada
- Faculty of Rehabilitation Medicine, University of Alberta; Edmonton, Canada
| | - Karim Fouad
- Neuroscience and Mental Health Institute, University of Alberta; Edmonton, Canada
- Faculty of Rehabilitation Medicine, University of Alberta; Edmonton, Canada
- Department of Physical Therapy, University of Alberta; Edmonton, Canada
- * E-mail:
| |
Collapse
|
12
|
Cotter JM, Nicholson MR, Kociolek LK. An Infectious Diseases Perspective on Fecal Microbiota Transplantation for Clostridioides difficile Infection in Children. J Pediatric Infect Dis Soc 2019; 8:580-584. [PMID: 31550348 PMCID: PMC7317149 DOI: 10.1093/jpids/piz062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 08/06/2019] [Indexed: 01/05/2023]
Abstract
Fecal microbiota transplantation (FMT) is efficacious for treatment of recurrent Clostridioides difficile infections (rCDIs). Pediatric experience with FMT for rCDIs is increasing, particularly at large centers. While retrospective studies suggest that FMT is generally safe in the short term, particularly in immunocompetent patients and with rigorous donor screening, additional large prospective studies are needed. This particularly includes those at high risk for infectious complications, such as immunocompromised hosts. Further, long-term implications of altering the intestinal microbiome with FMT are not well understood. The role of FMT in children, particularly in high-risk patients, will require continual reexamination with future availability of pediatric safety and efficacy data. This review summarizes key points for infectious diseases physicians to consider when evaluating a child for FMT.
Collapse
Affiliation(s)
- Jillian M Cotter
- Department of Pediatrics, University of Colorado School of Medicine, Division of Hospital Medicine, Children’s Hospital Colorado, Aurora
| | - Maribeth R Nicholson
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Larry K Kociolek
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Division of Infectious Diseases, Ann & Robert H. Lurie Children’s Hospital of Chicago, Illinois
| |
Collapse
|
13
|
Lomeli BK, Galbraith H, Schettler J, Saviolakis GA, El-Amin W, Osborn B, Ravel J, Hazleton K, Lozupone CA, Evans RJ, Bell SJ, Ochsner UA, Jarvis TC, Baqar S, Janjic N. Multiple-Ascending-Dose Phase 1 Clinical Study of the Safety, Tolerability, and Pharmacokinetics of CRS3123, a Narrow-Spectrum Agent with Minimal Disruption of Normal Gut Microbiota. Antimicrob Agents Chemother 2019; 64:e01395-19. [PMID: 31685472 PMCID: PMC7187627 DOI: 10.1128/aac.01395-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/09/2019] [Indexed: 12/26/2022] Open
Abstract
CRS3123 is a novel small molecule that potently inhibits methionyl-tRNA synthetase of Clostridioides difficile, inhibiting C. difficile toxin production and spore formation. CRS3123 has been evaluated in a multiple-ascending-dose placebo-controlled phase 1 trial. Thirty healthy subjects, ages 18 to 45 years, were randomized into three cohorts of 10 subjects each, receiving either 200, 400, or 600 mg of CRS3123 (8 subjects per cohort) or placebo (2 subjects per cohort) by oral administration twice daily for 10 days. CRS3123 was generally safe and well tolerated, with no serious adverse events (SAEs) or severe treatment-emergent adverse events (TEAEs) reported. All subjects completed their assigned treatment and follow-up visits, and there were no trends in systemic, vital sign, or laboratory TEAEs. There were no QTcF interval changes or any clinically significant changes in other electrocardiogram (ECG) intervals or morphology. CRS3123 showed limited but detectable systemic uptake; although absorption increased with increasing dose, the increase was less than dose proportional. Importantly, the bulk of the oral dose was not absorbed, and fecal concentrations were substantially above the MIC90 value of 1 μg/ml at all dosages tested. Subjects receiving either of the two lower doses of CRS3123 exhibited minimal disruption of normal gut microbiota after 10 days of twice-daily dosing. CRS3123 was inactive against important commensal anaerobes, including Bacteroides, bifidobacteria, and commensal clostridia. Microbiome data showed favorable differentiation compared to other CDI therapeutics. These results support further development of CRS3123 as an oral agent for the treatment of CDI. (This study has been registered at Clinicaltrials.gov under identifier NCT02106338.).
Collapse
Affiliation(s)
| | - Hal Galbraith
- Quintiles Phase One Services, Overland Park, Kansas, USA
| | | | | | - Wael El-Amin
- DynPort Vaccine Company LLC, Frederick, Maryland, USA
| | - Blaire Osborn
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jacques Ravel
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Keith Hazleton
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Catherine A Lozupone
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | | | | | | | - Shahida Baqar
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
14
|
Rokkas T, Gisbert JP, Gasbarrini A, Hold GL, Tilg H, Malfertheiner P, Megraud F, O'Morain C. A network meta-analysis of randomized controlled trials exploring the role of fecal microbiota transplantation in recurrent Clostridium difficile infection. United European Gastroenterol J 2019; 7:1051-1063. [PMID: 31662862 PMCID: PMC6794697 DOI: 10.1177/2050640619854587] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/07/2019] [Indexed: 01/23/2023] Open
Abstract
Background Recurrence remains a challenge in Clostridium difficile infection (CDI), and in this field fecal microbiota transplantation (FMT) has attracted significant interest. Network meta-analysis (NWM) has been established as an evidence-synthesis tool that incorporates direct and indirect evidence in a collection of randomized controlled trials. So far no NWM exists concerning therapeutic interventions for recurrent CDI (rCDI). Objective In this NWM we assessed the comparative effectiveness of various therapies for rCDI to examine the efficacy rank order and determine the optimum therapeutic approach. Methods A Bayesian network meta-analysis was performed to investigate the efficacy rank order of rCDI interventions. Results Six eligible RCTs were entered into an NWM. They included 348 rCDI patients, in whom seven therapeutic interventions were used, i.e. donor fecal microbiota transplantation (DFMT), vancomycin, fidaxomicin, vancomycin + DFMT, vancomycin + bowel lavage, autologous FMT and placebo. DFMT showed the highest efficacy in comparison with vancomycin [odds ratio (95% credible interval), 20.02 (7.05-70.03)] and fidaxomicin (22.01 (4.38-109.63)). Conclusion This NWM showed that DFMT is the optimum therapeutic approach for rCDI, as it was the most efficacious among various therapeutic interventions, particularly in comparison with commonly used antibiotics such as vancomycin or fidaxomicin.
Collapse
Affiliation(s)
- Theodore Rokkas
- Gastroenterology Clinic, Henry Dunant
Hospital, Athens, Greece
| | - Javier P Gisbert
- Gastroenterology Unit, Hospital
Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa
(IIS-IP), Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red
de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Antonio Gasbarrini
- Department of Internal Medicine,
Catholic University of the Sacred Heart, Rome, Italy
| | - Georgina L Hold
- Microbiome Research Centre, St George
& Sutherland Clinical School, UNSW Medicine, UNSW Sydney, Kogarah,
Australia
| | - Herbert Tilg
- Medical University Innsbruck, Department
of Gastroenterology, Hepatology, Endocrinology & Metabolism, Innsbruck,
Austria
| | - Peter Malfertheiner
- Otto-von-Guericke-Universität
Magedeburg, Medizinische Fakultät Zentrum für Innere Medizin\Klinik für
Gastroenterologie, Hepatologie und Infektiologie, Magdeburg, Germany
| | - Francis Megraud
- Laboratoire de Bactériologie, Hôpital
Pellegrin, Bordeaux, France
| | - Colm O'Morain
- Department of Gastroenterology,
Meath/Adelaide Hospital, Dublin, Ireland
| |
Collapse
|
15
|
Achard CS, Dupouy V, Siviglia S, Arpaillange N, Cauquil L, Bousquet-Mélou A, Zemb O. Variability of the Ability of Complex Microbial Communities to Exclude Microbes Carrying Antibiotic Resistance Genes in Rabbits. Front Microbiol 2019; 10:1503. [PMID: 31333614 PMCID: PMC6615258 DOI: 10.3389/fmicb.2019.01503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/14/2019] [Indexed: 01/16/2023] Open
Abstract
Reducing antibiotic use is a necessary step toward less antibiotic resistance in livestock, but many antibiotic resistance genes can persist for years, even in an antibiotic-free environment. In this study, we investigated the potential of three fecal complex microbial communities from antibiotic-naive does to drive the microbiota of kits from antibiotic-exposed dams and outcompete bacteria-carrying antibiotic-resistant genes. The fecal complex microbial communities were either orally delivered or simply added as fresh fecal pellets in four to five nests that were kept clean from maternal feces. Additionally, four nests were cleaned for the maternal feces and five nests were handled according to the common farm practice (i.e., cleaning once a week) as controls. At weaning, we measured the relative abundance of 26 antibiotic resistance genes, the proportion of Enterobacteriaceae resistant to tetracycline and sulfonamide antibiotics, and the taxonomic composition of the microbiota by sequencing the 16S rRNA genes of one kit per nest. Changing the surrounding microbes of the kits can hinder the transmission of antibiotic resistance genes from one generation to the next, but the three communities widely differed in their ability to orient gut microbes and in their impact on antibiotic resistance genes. The most efficient delivery of the microbial community reduced the proportion of resistant Enterobacteria from 93 to 9%, decreased the relative abundance of eight antibiotic resistance genes, and changed the gut microbes of the kits at weaning. The least efficient did not reduce any ARG or modify the bacterial community. In addition, adding fecal pellets was more efficient than the oral inoculation of the anaerobic suspension derived from these fecal pellets. However, we were unable to predict the outcome of the exclusion from the data of the donor does (species composition and abundance of antibiotic resistance genes). In conclusion, we revealed major differences between microbial communities regarding their ability to exclude antibiotic resistance genes, but more work is needed to understand the components leading to the successful exclusion of antibiotic resistance genes from the gut. As a consequence, studies about the impact of competitive exclusion should use several microbial communities in order to draw general conclusions.
Collapse
Affiliation(s)
| | | | - Suzanne Siviglia
- GenPhySE, INRA, ENVT, Université de Toulouse, Toulouse, France.,InTheRes, INRA, ENVT, Université de Toulouse, Toulouse, France
| | | | - Laurent Cauquil
- GenPhySE, INRA, ENVT, Université de Toulouse, Toulouse, France
| | | | - Olivier Zemb
- GenPhySE, INRA, ENVT, Université de Toulouse, Toulouse, France
| |
Collapse
|
16
|
Stewart D, Romo JA, Lamendella R, Kumamoto CA. The role of fungi in C. difficile infection: An underappreciated transkingdom interaction. Fungal Genet Biol 2019; 129:1-6. [PMID: 30978391 DOI: 10.1016/j.fgb.2019.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/27/2019] [Accepted: 04/09/2019] [Indexed: 02/07/2023]
Abstract
Novel culture independent technologies have further elucidated the composition of the human mycobiome, though the role of fungi in human health and disease remains largely unknown. Recent studies have suggested conflicting roles for fungi in the gastrointestinal tract, underscoring the complexity of the interactions between the mycobiome, its bacterial counterpart, and the host. One key example is the observation that fungal taxa are overrepresented in patients with Clostridioides difficile infection (CDI), suggesting a role for fungi in this disease. Recent studies in murine models have demonstrated the ability of the commensal fungus Candida albicans to alter the course of CDI, supporting the notion that fungi play a role in this infection. This review summarizes current data on fungi and CDI, and shows that views of the dysbiotic state that is central to the pathogenesis of CDI are incomplete without consideration of the mycobiome.
Collapse
Affiliation(s)
- David Stewart
- Department of Surgery, University of Arizona, Tucson, AZ 85724, USA.
| | - Jesus A Romo
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111, USA.
| | | | - Carol A Kumamoto
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111, USA.
| |
Collapse
|
17
|
Why do current strategies for optimal nutritional therapy neglect the microbiome? Nutrition 2019; 60:100-105. [DOI: 10.1016/j.nut.2018.09.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/28/2018] [Accepted: 09/28/2018] [Indexed: 12/12/2022]
|
18
|
Cani PD, Van Hul M, Lefort C, Depommier C, Rastelli M, Everard A. Microbial regulation of organismal energy homeostasis. Nat Metab 2019; 1:34-46. [PMID: 32694818 DOI: 10.1038/s42255-018-0017-4] [Citation(s) in RCA: 344] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 11/15/2018] [Indexed: 12/13/2022]
Abstract
The gut microbiome has emerged as a key regulator of host metabolism. Here we review the various mechanisms through which the gut microbiome influences the energy metabolism of its host, highlighting the complex interactions between gut microbes, their metabolites and host cells. Among the most important bacterial metabolites are short-chain fatty acids, which serve as a direct energy source for host cells, stimulate the production of gut hormones and act in the brain to regulate food intake. Other microbial metabolites affect systemic energy expenditure by influencing thermogenesis and adipose tissue browning. Both direct and indirect mechanisms of action are known for specific metabolites, such as bile acids, branched chain amino acids, indole propionic acid and endocannabinoids. We also discuss the roles of specific bacteria in the production of specific metabolites and explore how external factors, such as antibiotics and exercise, affect the microbiome and thereby energy homeostasis. Collectively, we present a large body of evidence supporting the concept that gut microbiota-based therapies can be used to modulate host metabolism, and we expect to see such approaches moving from bench to bedside in the near future.
Collapse
Affiliation(s)
- Patrice D Cani
- Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium.
| | - Matthias Van Hul
- Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Charlotte Lefort
- Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Clara Depommier
- Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Marialetizia Rastelli
- Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Amandine Everard
- Metabolism and Nutrition Research Group, WELBIO-Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
19
|
Davidovics ZH, Michail S, Nicholson MR, Kociolek LK, Pai N, Hansen R, Schwerd T, Maspons A, Shamir R, Szajewska H, Thapar N, de Meij T, Mosca A, Vandenplas Y, Kahn SA, Kellermayer R. Fecal Microbiota Transplantation for Recurrent Clostridium difficile Infection and Other Conditions in Children: A Joint Position Paper From the North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition and the European Society for Pediatric Gastroenterology, Hepatology, and Nutrition. J Pediatr Gastroenterol Nutr 2019; 68:130-143. [PMID: 30540704 PMCID: PMC6475090 DOI: 10.1097/mpg.0000000000002205] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fecal microbiota transplantation (FMT) is becoming part of the treatment algorithms against recurrent Clostridium difficile infection (rCDI) both in adult and pediatric gastroenterology practice. With our increasing recognition of the critical role the microbiome plays in human health and disease, FMT is also being considered as a potential therapy for other disorders, including inflammatory bowel disease (Crohn disease, ulcerative colitis), graft versus host disease, neuropsychiatric diseases, and metabolic syndrome. Controlled trials with FMT for rCDI have not been performed in children, and numerous clinical and regulatory considerations have to be considered when using this untraditional therapy. This report is intended to provide guidance for FMT in the treatment of rCDI in pediatric patients.
Collapse
Affiliation(s)
- Zev H. Davidovics
- Department of Pediatric Gastroenterology, Digestive Diseases, Hepatology, and Nutrition, Connecticut Children’s Medical Center, University of Connecticut School of Medicine, Farmington, CT
| | - Sonia Michail
- Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA
| | - Maribeth R. Nicholson
- D. Brent Polk Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, TN
| | - Larry K. Kociolek
- Ann and Robert H. Lurie Children’s Hospital of Chicago, North-western University Feinberg School of Medicine, Chicago, IL
| | - Nikhil Pai
- Division of Pediatric Gastroenterology and Nutrition, McMaster Children’s Hospital, McMaster University, Hamilton, Ontario, Canada
| | - Richard Hansen
- Department of Paediatric Gastroenterology, Royal Hospital for Children, Glasgow, Scotland
| | - Tobias Schwerd
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, Munich, Germany
| | | | - Raanan Shamir
- Institute for Gastroenterology, Nutrition and Liver Disease, Schneider Children’s Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hania Szajewska
- Department of Paediatrics, The Medical University of Warsaw, Warsaw, Poland
| | - Nikhil Thapar
- Department of Paediatric Gastroenterology, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Tim de Meij
- Department of Paediatric Gastroenterology, VU University Medical Center, Amsterdam, The Netherlands
| | - Alexis Mosca
- Division of Pediatric Gastroenterology and Nutrition, Robert Debré Hospital (APHP)
- French Group of Fecal Transplantation, St Antoine Hospital (APHP), Paris, France
| | - Yvan Vandenplas
- KidZ Health Castle, Universitair Ziekenuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stacy A. Kahn
- Division of Gastroetenterology and Nutrition, Inflammatory Bowel Disease Center, Boston Children’s Hospital, Harvard Medical School, 17 Boston, MA
| | - Richard Kellermayer
- Section of Pediatric Gastroenterology and Nutrition, Texas Children’s Hospital, Baylor College of Medicine, Children’s Nutrition and Research Center, Houston, TX
| | - FMT Special Interest Group of the North American Society of Pediatric Gastroenterology Hepatology, Nutrition, the European Society for Pediatric Gastroenterology Hepatology, Nutrition
- Department of Pediatric Gastroenterology, Digestive Diseases, Hepatology, and Nutrition, Connecticut Children’s Medical Center, University of Connecticut School of Medicine, Farmington, CT
- Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA
- D. Brent Polk Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, TN
- Ann and Robert H. Lurie Children’s Hospital of Chicago, North-western University Feinberg School of Medicine, Chicago, IL
- Division of Pediatric Gastroenterology and Nutrition, McMaster Children’s Hospital, McMaster University, Hamilton, Ontario, Canada
- Department of Paediatric Gastroenterology, Royal Hospital for Children, Glasgow, Scotland
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, LMU Munich, Munich, Germany
- VeMiDoc, LLC, El Paso, TX
- Institute for Gastroenterology, Nutrition and Liver Disease, Schneider Children’s Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Paediatrics, The Medical University of Warsaw, Warsaw, Poland
- Department of Paediatric Gastroenterology, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
- Department of Paediatric Gastroenterology, VU University Medical Center, Amsterdam, The Netherlands
- Division of Pediatric Gastroenterology and Nutrition, Robert Debré Hospital (APHP)
- French Group of Fecal Transplantation, St Antoine Hospital (APHP), Paris, France
- KidZ Health Castle, Universitair Ziekenuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
- Division of Gastroetenterology and Nutrition, Inflammatory Bowel Disease Center, Boston Children’s Hospital, Harvard Medical School, 17 Boston, MA
- Section of Pediatric Gastroenterology and Nutrition, Texas Children’s Hospital, Baylor College of Medicine, Children’s Nutrition and Research Center, Houston, TX
| |
Collapse
|
20
|
Wing AC, Kremenchutzky M. Multiple sclerosis and faecal microbiome transplantation: are you going to eat that? Benef Microbes 2018; 10:27-32. [PMID: 30525949 DOI: 10.3920/bm2018.0029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Gut microbiome interaction goes beyond commensal function as vitamin production or support nutrients digestion. It also interplays with the host immune system and may be related to the development of immune-mediated diseases. Multiple sclerosis patients have dysbiosis compared to healthy individuals. But how this relates to disease development and severity is still uncertain. Dietary change including probiotic mixtures or ketogenic regimen has proven to change microbiome in multiple sclerosis (MS) subjects to one similar to healthy controls. However, proof of clinical benefits is lacking. We dissert on current knowledge about immune system and gut bacteria interactions. We discuss faecal microbial transplantation as a potential intervention to ameliorate gut dysbiosis in MS as well as the caveats of a clinical trial design.
Collapse
Affiliation(s)
- A C Wing
- 1 University of Western Ontario, 339 Windermere Rd, London, ON N6A 5A5, Canada
| | - M Kremenchutzky
- 1 University of Western Ontario, 339 Windermere Rd, London, ON N6A 5A5, Canada
| |
Collapse
|
21
|
Research Agenda for Microbiome Based Research for Multidrug-resistant Organism Prevention in the Veterans Health Administration System. Infect Control Hosp Epidemiol 2018; 39:202-209. [PMID: 29417924 DOI: 10.1017/ice.2017.311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Hassoun A. Clostridium difficile associated disease. BMJ 2018; 363:k4369. [PMID: 30373736 DOI: 10.1136/bmj.k4369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Ali Hassoun
- Alabama Infectious Diseases Center, Huntsville, AL, USA
| |
Collapse
|
23
|
An Observational Cohort Study of Clostridium difficile Ribotype 027 and Recurrent Infection. mSphere 2018; 3:3/3/e00033-18. [PMID: 29794054 PMCID: PMC5967198 DOI: 10.1128/msphere.00033-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/02/2018] [Indexed: 12/18/2022] Open
Abstract
CDI is a major public health issue, with over 400,000 cases per year in the United States alone. Recurrent CDI is common, occurring in approximately one in five individuals after a primary episode. Although interventions exist that could reduce the risk of recurrence, deployment in all patients is limited by cost, invasiveness, and/or an undetermined long-term safety profile. Thus, clinicians need risk stratification tools to properly allocate treatments. Because prior research on clinical predictors has failed to yield a reliable, reproducible, and effective predictive model to assist treatment decisions, accurate biomarkers of recurrence would be of great value. This study tested whether PCR ribotype independently predicted rCDI, and the data build upon prior research in showing that ribotype 027 is associated with rCDI. Recurrent Clostridium difficile infection (rCDI) frequently complicates recovery from CDI. Accurately predicting rCDI would allow judicious allocation of limited resources, but published models have met with limited success. Thus, biomarkers predictive of recurrence have been sought. This study tested whether PCR ribotype independently predicted rCDI. Stool samples from nonpregnant inpatients ≥18 years of age with diarrhea were included from October 2010 to January 2013 after the patients tested positive for C. difficile in the clinical microbiology laboratory. Per guidelines, the rCDI was defined as a positive test for C. difficile at >2 weeks but ≤8 weeks from the index episode. For each sample, a single colony of C. difficile was isolated by anaerobic culture, confirmed to be toxigenic by PCR, and ribotyped. Simple logistic regression and multiple logistic regression were used to model the primary outcome of rCDI, incorporating a wide range of clinical parameters. In total, 927 patients with 968 index episodes of CDI were included, with 110 (11.4%) developing rCDI. Age and use of proton pump inhibitors or concurrent antibiotics did not increase the risk of rCDI. Low serum bilirubin levels and ribotype 027 were associated with increased risk of rCDI on unadjusted analysis, with health care-associated CDI being inversely associated. In the final multivariable model, ribotype 027 was the strongest independent predictor of rCDI (odds ratio, 2.17; 95% confidence interval, 1.33 to 3.56; P = 0.002). Ribotype 027 is an independent predictor of rCDI. IMPORTANCE CDI is a major public health issue, with over 400,000 cases per year in the United States alone. Recurrent CDI is common, occurring in approximately one in five individuals after a primary episode. Although interventions exist that could reduce the risk of recurrence, deployment in all patients is limited by cost, invasiveness, and/or an undetermined long-term safety profile. Thus, clinicians need risk stratification tools to properly allocate treatments. Because prior research on clinical predictors has failed to yield a reliable, reproducible, and effective predictive model to assist treatment decisions, accurate biomarkers of recurrence would be of great value. This study tested whether PCR ribotype independently predicted rCDI, and the data build upon prior research in showing that ribotype 027 is associated with rCDI.
Collapse
|
24
|
|
25
|
Emerging Topics in Gastroenterology. Prim Care 2017; 44:733-742. [PMID: 29132532 DOI: 10.1016/j.pop.2017.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The bacteria and fungi in the human gut make up a community of microorganisms that lives in symbiosis with humans, engaging in numerous diverse interactions that influence health. This article outlines the current knowledge on emerging topics in gastroenterology, including microbiome and probiotics, fecal microbiota transplantation, cyclic vomiting syndrome, eosinophilic esophagitis, and microscopic colitis.
Collapse
|
26
|
Resultados de la implementación de un programa multidisciplinar de trasplante de microbiota fecal por colonoscopia para el tratamiento de la infección recurrente por Clostridium difficile. GASTROENTEROLOGIA Y HEPATOLOGIA 2017; 40:605-614. [DOI: 10.1016/j.gastrohep.2017.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 02/22/2017] [Accepted: 03/13/2017] [Indexed: 12/16/2022]
|
27
|
Romaní-Pérez M, Agusti A, Sanz Y. Innovation in microbiome-based strategies for promoting metabolic health. Curr Opin Clin Nutr Metab Care 2017; 20:484-491. [PMID: 28862999 DOI: 10.1097/mco.0000000000000419] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Update on the development of microbiome-based interventions and dietary supplements to combat obesity and related comorbidities, which are leading causes of global mortality. RECENT FINDINGS The role of intestinal dysbiosis, partly resulting from unhealthy diets, in the development of obesity and metabolic disorders, is well documented by recent translational research. Human experimental trials with whole-faecal transplants are ongoing, and their results will be crucial as proof of concept that interventions intended to modulate the microbiome composition and function could be alternatives for the management of obesity and related comorbidities. Potential next-generation probiotic bacteria (Akkermansia, Bacteroides spp., Eubacterium halli) and microbiota-derived molecules (e.g. membrane proteins, short-chain fatty acids) are being evaluated in preclinical and clinical trials to promote the development of innovative dietary supplements. The fact that live or inactivated bacteria and their products can regulate pathways that increase energy expenditure, and reduce energy intake, and absorption and systemic inflammation make them attractive research targets from a nutritional and clinical perspective. SUMMARY Understanding which are the beneficial bacteria and their bioactive products is helping us to envisage innovative microbiome-based dietary interventions to tackle obesity. Advances will likely result from future refinements of these strategies according to the individual's microbiome configuration and its particular response to interventions, thereby progressing towards personalized nutrition.
Collapse
Affiliation(s)
- Marina Romaní-Pérez
- Microbial Ecology, Nutrition & Health Research Unit. Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | | | | |
Collapse
|
28
|
Howard BM, Kornblith LZ, Christie SA, Conroy AS, Nelson MF, Campion EM, Callcut RA, Calfee CS, Lamere BJ, Fadrosh DW, Lynch S, Cohen MJ. Characterizing the gut microbiome in trauma: significant changes in microbial diversity occur early after severe injury. Trauma Surg Acute Care Open 2017; 2:e000108. [PMID: 29766103 PMCID: PMC5877916 DOI: 10.1136/tsaco-2017-000108] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/15/2017] [Accepted: 06/26/2017] [Indexed: 01/25/2023] Open
Abstract
Background Recent studies have demonstrated the vital influence of commensal microbial communities on human health. The central role of the gut in the response to injury is well described; however, no prior studies have used culture-independent profiling techniques to characterize the gut microbiome after severe trauma. We hypothesized that in critically injured patients, the gut microbiome would undergo significant compositional changes in the first 72 hours after injury. Methods Trauma stool samples were prospectively collected via digital rectal examination at the time of presentation (0 hour). Patients admitted to the intensive care unit (n=12) had additional stool samples collected at 24 hours and/or 72 hours. Uninjured patients served as controls (n=10). DNA was extracted from stool samples and 16S rRNA-targeted PCR amplification was performed; amplicons were sequenced and binned into operational taxonomic units (OTUs; 97% sequence similarity). Diversity was analyzed using principle coordinates analyses, and negative binomial regression was used to determine significantly enriched OTUs. Results Critically injured patients had a median Injury Severity Score of 27 and suffered polytrauma. At baseline (0 hour), there were no detectable differences in gut microbial community diversity between injured and uninjured patients. Injured patients developed changes in gut microbiome composition within 72 hours, characterized by significant alterations in phylogenetic composition and taxon relative abundance. Members of the bacterial orders Bacteroidales, Fusobacteriales and Verrucomicrobiales were depleted during 72 hours, whereas Clostridiales and Enterococcus members enriched significantly. Discussion In this initial study of the gut microbiome after trauma, we demonstrate that significant changes in phylogenetic composition and relative abundance occur in the first 72 hours after injury. This rapid change in intestinal microbiota represents a critical phenomenon that may influence outcomes after severe trauma. A better understanding of the nature of these postinjury changes may lead to the ability to intervene in otherwise pathological clinical trajectories. Level of evidence III Study type Prognostic/epidemiological
Collapse
Affiliation(s)
- Benjamin M Howard
- Department of Surgery, San Francisco General Hospital, University of California San Francisco, California, USA
| | - Lucy Z Kornblith
- Department of Surgery, San Francisco General Hospital, University of California San Francisco, California, USA
| | - Sabrinah A Christie
- Department of Surgery, San Francisco General Hospital, University of California San Francisco, California, USA
| | - Amanda S Conroy
- Department of Surgery, San Francisco General Hospital, University of California San Francisco, California, USA
| | - Mary F Nelson
- Department of Surgery, San Francisco General Hospital, University of California San Francisco, California, USA
| | - Eric M Campion
- Department of Surgery, Denver Health and Hospital Authority, University of Colorado, Denver, Colorado, USA
| | - Rachael A Callcut
- Department of Surgery, San Francisco General Hospital, University of California San Francisco, California, USA
| | - Carolyn S Calfee
- Division of Pulmonary and Critical Care Medicine, Departments of Medicine and Anesthesia, University of California San Francisco, California, USA
| | - Brandon J Lamere
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, California, USA
| | - Douglas W Fadrosh
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, California, USA
| | - Susan Lynch
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, California, USA
| | - Mitchell Jay Cohen
- Department of Surgery, Denver Health and Hospital Authority, University of Colorado, Denver, Colorado, USA
| |
Collapse
|
29
|
Moayyedi P, Yuan Y, Baharith H, Ford AC. Faecal microbiota transplantation for <em>Clostridium difficile</em>-associated diarrhoea: a systematic review of randomised controlled trials. Med J Aust 2017; 207:166-172. [PMID: 28814204 DOI: 10.5694/mja17.00295] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/28/2017] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Faecal microbiota transplantation (FMT) has emerged as a useful approach for treating Clostridium difficile-associated diarrhoea (CDAD). Randomised controlled trials (RCTs) have recently evaluated its effectiveness, but systematic reviews have focused on evidence from case series. We therefore conducted a systematic review and meta-analysis of RCTs evaluating the effectiveness of FMT for treating CDAD. STUDY DESIGN We included RCTs that primarily recruited adults with CDAD and compared the effectiveness of FMT with that of placebo, antibiotic therapy, or autologous stool transplantation, or compared different preparations or modes of delivery of FMT. Dichotomous symptom data were pooled to calculate a relative risk (RR) of CDAD persisting after therapy, and the number needed to treat (NNT). DATA SOURCES MEDLINE, EMBASE, and the Cochrane Controlled Trials Register and Database of Systematic Reviews were searched to 6 February 2017. DATA SYNTHESIS We identified ten RCTs that evaluated the treatment of a total of 657 patients with CDAD. Five RCTs compared FMT with placebo (including autologous FMT) or vancomycin treatment (total of 284 patients); FMT was statistically significantly more effective (RR, 0.41; 95% CI, 0.22-0.74; NNT, 3; 95% CI, 2-7). Heterogeneity across studies was significant (I<sup>2</sup> = 61%); this heterogeneity was attributable to the mode of delivery of FMT, and to the therapy being more successful in European than in North American trials. The other five RCTs evaluated different approaches to FMT therapy. Frozen FMT preparations were as efficacious as fresh material in one RCT, but the numbers of patients in the remaining RCTs were too small to allow definitive conclusions. CONCLUSIONS Moderate quality evidence from RCT trials indicates that FMT is more effective in patients with CDAD than vancomycin or placebo. Further investigations are needed to determine the best route of administration and FMT preparation.
Collapse
|
30
|
Sivignon A, Bouckaert J, Bernard J, Gouin SG, Barnich N. The potential of FimH as a novel therapeutic target for the treatment of Crohn’s disease. Expert Opin Ther Targets 2017; 21:837-847. [DOI: 10.1080/14728222.2017.1363184] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Adeline Sivignon
- M2iSH, UMR 1071 Inserm, INRA USC-2018, Institut Universitaire Technologique, Université Clermont Auvergne, Clermont-Ferrand 63001, France
| | - Julie Bouckaert
- Univ. Lille, CNRS, UMR 8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Julien Bernard
- Université de Lyon, Lyon, France ; INSA-Lyon, Ingénierie des Matériaux Polymères (IMP), Villeurbanne, France ; CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Villeurbanne, France
- INSA-Lyon, IMP, Villeurbanne, France
- UMR 5223, Ingénierie des Matériaux Polymères, CNRS, Villeurbanne, France
| | - Sebastien G. Gouin
- CEISAM, Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation, UMR CNRS 6230, UFR des Sciences et des Techniques, LUNAM Université, Nantes Cedex 3, France
| | - Nicolas Barnich
- M2iSH, UMR 1071 Inserm, INRA USC-2018, Institut Universitaire Technologique, Université Clermont Auvergne, Clermont-Ferrand 63001, France
| |
Collapse
|
31
|
McCreery G, Jones PM, Kidane B, DeMelo V, Mele T. Polyethylene glycol intestinal lavage in addition to usual antibiotic treatment for severe Clostridium difficile colitis: a randomised controlled pilot study. BMJ Open 2017; 7:e016803. [PMID: 28760801 PMCID: PMC5642754 DOI: 10.1136/bmjopen-2017-016803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Clostridium difficile infections (CDI) are common, costly and potentially life threatening. Most CDI will respond to antibiotic therapy, but 3%-10% of all patients with CDI will progress to a severe, life-threatening course. Complete removal of the large bowel is indicated for severe CDI. However, the 30-day mortality following surgical intervention for severe CDI ranges from 20% to 70%. A less invasive approach using surgical faecal diversion and direct colonic lavage with polyethylene glycol (PEG) and vancomycin has demonstrated a relative mortality reduction of approximately 50%. As an alternative to these operative approaches, we propose to treat patients with bedside intestinal lavage with PEG and vancomycin instillation via nasojejunal tube, in addition to usual antibiotic management. Preliminary data collected by our research group are encouraging. METHODS AND ANALYSIS We will conduct a 1-year, single-centre, pilot randomised controlled trial to study this new treatment strategy for patients with severe CDI and additional risk factors for fulminant or complicated infection. After informed consent, patients with severe-complicated CDI without immediate indication for surgery will be randomised to either usual antibiotic treatment or usual antibiotic treatment with the addition of 8 L of PEG lavage via nasojejunal tube. This pilot trial will evaluate our eligibility and enrolment rate, protocol compliance and adverse event rates and provide further data to inform a more robust sample size calculation and protocol modifications for a definitive multicentre trial design. Based on historical data, we anticipate enrolling approximately 24 patients during the 1-year pilot study period.As a pilot study, data will be reported in aggregate. Between-group differences will be assessed in a blinded fashion for evidence of harm, and to further refine our sample size calculation. ETHICS AND DISSEMINATION This study protocol has been reviewed and approved by our local institutional review board. Results of the pilot trial and subsequent main trial will be submitted for publication in a peer-reviewed journal. TRIAL REGISTRATION NUMBER NCT02466698; Pre-results.
Collapse
Affiliation(s)
- Greig McCreery
- Departments of Surgery and Critical Care Medicine, University of Western Ontario, London, Ontario, Canada
| | - Philip M Jones
- Departments of Surgery and Critical Care Medicine, University of Western Ontario, London, Ontario, Canada
- Anesthesia and Perioperative Medicine, University of Western Ontario, London, Ontario, Canada
| | | | - Vanessa DeMelo
- Departments of Surgery and Critical Care Medicine, University of Western Ontario, London, Ontario, Canada
| | - Tina Mele
- Departments of Surgery and Critical Care Medicine, University of Western Ontario, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
32
|
Selber-Hnatiw S, Rukundo B, Ahmadi M, Akoubi H, Al-Bizri H, Aliu AF, Ambeaghen TU, Avetisyan L, Bahar I, Baird A, Begum F, Ben Soussan H, Blondeau-Éthier V, Bordaries R, Bramwell H, Briggs A, Bui R, Carnevale M, Chancharoen M, Chevassus T, Choi JH, Coulombe K, Couvrette F, D'Abreau S, Davies M, Desbiens MP, Di Maulo T, Di Paolo SA, Do Ponte S, Dos Santos Ribeiro P, Dubuc-Kanary LA, Duncan PK, Dupuis F, El-Nounou S, Eyangos CN, Ferguson NK, Flores-Chinchilla NR, Fotakis T, Gado Oumarou H D M, Georgiev M, Ghiassy S, Glibetic N, Grégoire Bouchard J, Hassan T, Huseen I, Ibuna Quilatan MF, Iozzo T, Islam S, Jaunky DB, Jeyasegaram A, Johnston MA, Kahler MR, Kaler K, Kamani C, Karimian Rad H, Konidis E, Konieczny F, Kurianowicz S, Lamothe P, Legros K, Leroux S, Li J, Lozano Rodriguez ME, Luponio-Yoffe S, Maalouf Y, Mantha J, McCormick M, Mondragon P, Narayana T, Neretin E, Nguyen TTT, Niu I, Nkemazem RB, O'Donovan M, Oueis M, Paquette S, Patel N, Pecsi E, Peters J, Pettorelli A, Poirier C, Pompa VR, Rajen H, Ralph RO, Rosales-Vasquez J, Rubinshtein D, Sakr S, Sebai MS, Serravalle L, Sidibe F, Sinnathurai A, Soho D, Sundarakrishnan A, Svistkova V, Ugbeye TE, Vasconcelos MS, Vincelli M, Voitovich O, Vrabel P, Wang L, et alSelber-Hnatiw S, Rukundo B, Ahmadi M, Akoubi H, Al-Bizri H, Aliu AF, Ambeaghen TU, Avetisyan L, Bahar I, Baird A, Begum F, Ben Soussan H, Blondeau-Éthier V, Bordaries R, Bramwell H, Briggs A, Bui R, Carnevale M, Chancharoen M, Chevassus T, Choi JH, Coulombe K, Couvrette F, D'Abreau S, Davies M, Desbiens MP, Di Maulo T, Di Paolo SA, Do Ponte S, Dos Santos Ribeiro P, Dubuc-Kanary LA, Duncan PK, Dupuis F, El-Nounou S, Eyangos CN, Ferguson NK, Flores-Chinchilla NR, Fotakis T, Gado Oumarou H D M, Georgiev M, Ghiassy S, Glibetic N, Grégoire Bouchard J, Hassan T, Huseen I, Ibuna Quilatan MF, Iozzo T, Islam S, Jaunky DB, Jeyasegaram A, Johnston MA, Kahler MR, Kaler K, Kamani C, Karimian Rad H, Konidis E, Konieczny F, Kurianowicz S, Lamothe P, Legros K, Leroux S, Li J, Lozano Rodriguez ME, Luponio-Yoffe S, Maalouf Y, Mantha J, McCormick M, Mondragon P, Narayana T, Neretin E, Nguyen TTT, Niu I, Nkemazem RB, O'Donovan M, Oueis M, Paquette S, Patel N, Pecsi E, Peters J, Pettorelli A, Poirier C, Pompa VR, Rajen H, Ralph RO, Rosales-Vasquez J, Rubinshtein D, Sakr S, Sebai MS, Serravalle L, Sidibe F, Sinnathurai A, Soho D, Sundarakrishnan A, Svistkova V, Ugbeye TE, Vasconcelos MS, Vincelli M, Voitovich O, Vrabel P, Wang L, Wasfi M, Zha CY, Gamberi C. Human Gut Microbiota: Toward an Ecology of Disease. Front Microbiol 2017; 8:1265. [PMID: 28769880 PMCID: PMC5511848 DOI: 10.3389/fmicb.2017.01265] [Show More Authors] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/23/2017] [Indexed: 12/17/2022] Open
Abstract
Composed of trillions of individual microbes, the human gut microbiota has adapted to the uniquely diverse environments found in the human intestine. Quickly responding to the variances in the ingested food, the microbiota interacts with the host via reciprocal biochemical signaling to coordinate the exchange of nutrients and proper immune function. Host and microbiota function as a unit which guards its balance against invasion by potential pathogens and which undergoes natural selection. Disturbance of the microbiota composition, or dysbiosis, is often associated with human disease, indicating that, while there seems to be no unique optimal composition of the gut microbiota, a balanced community is crucial for human health. Emerging knowledge of the ecology of the microbiota-host synergy will have an impact on how we implement antibiotic treatment in therapeutics and prophylaxis and how we will consider alternative strategies of global remodeling of the microbiota such as fecal transplants. Here we examine the microbiota-human host relationship from the perspective of the microbial community dynamics.
Collapse
Affiliation(s)
| | - Belise Rukundo
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Masoumeh Ahmadi
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Hayfa Akoubi
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Hend Al-Bizri
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Adelekan F Aliu
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Lilit Avetisyan
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Irmak Bahar
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Alexandra Baird
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Fatema Begum
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | - Helene Bramwell
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Alicia Briggs
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Richard Bui
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | - Talia Chevassus
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Jin H Choi
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Karyne Coulombe
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | - Meghan Davies
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Tamara Di Maulo
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | | | - Paola K Duncan
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Sara El-Nounou
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | - Tanya Fotakis
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Metodi Georgiev
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | - Tazkia Hassan
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Iman Huseen
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Tania Iozzo
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Safina Islam
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Dilan B Jaunky
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | | | - Cedric Kamani
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | - Filip Konieczny
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | - Karina Legros
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Jun Li
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | - Yara Maalouf
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Jessica Mantha
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | | | - Thi T T Nguyen
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Ian Niu
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | - Matthew Oueis
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Nehal Patel
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Emily Pecsi
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Jackie Peters
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | | | | | | | | | - Surya Sakr
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Lisa Serravalle
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Fily Sidibe
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | - Dominique Soho
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | | | | | | | | | | | - Olga Voitovich
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Pamela Vrabel
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Lu Wang
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Maryse Wasfi
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Cong Y Zha
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| | - Chiara Gamberi
- Department of Biology, Concordia UniversityMontréal, QC, Canada
| |
Collapse
|
33
|
Kroh HK, Chandrasekaran R, Rosenthal K, Woods R, Jin X, Ohi MD, Nyborg AC, Rainey GJ, Warrener P, Spiller BW, Lacy DB. Use of a neutralizing antibody helps identify structural features critical for binding of Clostridium difficile toxin TcdA to the host cell surface. J Biol Chem 2017; 292:14401-14412. [PMID: 28705932 DOI: 10.1074/jbc.m117.781112] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 07/05/2017] [Indexed: 12/17/2022] Open
Abstract
Clostridium difficile is a clinically significant pathogen that causes mild-to-severe (and often recurrent) colon infections. Disease symptoms stem from the activities of two large, multidomain toxins known as TcdA and TcdB. The toxins can bind, enter, and perturb host cell function through a multistep mechanism of receptor binding, endocytosis, pore formation, autoproteolysis, and glucosyltransferase-mediated modification of host substrates. Monoclonal antibodies that neutralize toxin activity provide a survival benefit in preclinical animal models and prevent recurrent infections in human clinical trials. However, the molecular mechanisms involved in these neutralizing activities are unclear. To this end, we performed structural studies on a neutralizing monoclonal antibody, PA50, a humanized mAb with both potent and broad-spectrum neutralizing activity, in complex with TcdA. Electron microscopy imaging and multiangle light-scattering analysis revealed that PA50 binds multiple sites on the TcdA C-terminal combined repetitive oligopeptides (CROPs) domain. A crystal structure of two PA50 Fabs bound to a segment of the TcdA CROPs helped define a conserved epitope that is distinct from previously identified carbohydrate-binding sites. Binding of TcdA to the host cell surface was directly blocked by either PA50 mAb or Fab and suggested that receptor blockade is the mechanism by which PA50 neutralizes TcdA. These findings highlight the importance of the CROPs C terminus in cell-surface binding and a role for neutralizing antibodies in defining structural features critical to a pathogen's mechanism of action. We conclude that PA50 protects host cells by blocking the binding of TcdA to cell surfaces.
Collapse
Affiliation(s)
- Heather K Kroh
- From the Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2363
| | - Ramyavardhanee Chandrasekaran
- From the Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2363
| | | | - Rob Woods
- MedImmune LLC, Gaithersburg, Maryland 20878-2204
| | - Xiaofang Jin
- MedImmune LLC, Gaithersburg, Maryland 20878-2204
| | - Melanie D Ohi
- the Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37232-8240
| | | | | | | | - Benjamin W Spiller
- From the Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2363, .,the Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600, and
| | - D Borden Lacy
- From the Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2363, .,the Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee 37212-2637
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW The newly discovered female urinary microbiota has the potential to deepen our understanding of urinary tract health and disease, including common lower urinary tract conditions such as urinary incontinence and urinary tract infection. The spectrum of painful bladder disorders and other less common conditions also may benefit from additional research that includes consideration of the resident bacterial community of the female bladder. The present review provides a clinical context for the rapidly emerging research regarding the female urinary microbiota and its relationships with urinary tract conditions of interest. RECENT FINDINGS Studies using culture-independent techniques confirm prior reports of bacteria that reside in the female urinary bladder. These resident communities, the female urinary microbiota, possess characteristics that differ between women affected by urgency urinary incontinence and matched, unaffected controls. Enhanced urine culture techniques permit cultivation of organisms, including uropathogens, missed by standard urine culture, but detected by culture-independent sequencing techniques. SUMMARY New technology is available. Clinical laboratories can modify traditional standard urine culture methods to enhance detection of uropathogens. However, given the existence of the female urinary microbiota, the simple presence of bacteria in the lower urinary tract should not be taken as evidence of infection.
Collapse
Affiliation(s)
- Elizabeth R. Mueller
- Departments of Obstetrics & Gynecology and Urology, Loyola University Chicago Stritch School of Medicine
| | - Alan J. Wolfe
- Department of Microbiology and Immunology, Loyola University Chicago Stritch School of Medicine
| | - Linda Brubaker
- Departments of Obstetrics & Gynecology and Urology, Loyola University Chicago Stritch School of Medicine
| |
Collapse
|
35
|
Meng M, Klingensmith NJ, Coopersmith CM. New insights into the gut as the driver of critical illness and organ failure. Curr Opin Crit Care 2017; 23:143-148. [PMID: 28092310 PMCID: PMC5373099 DOI: 10.1097/mcc.0000000000000386] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW The gut has long been hypothesized to be the 'motor' of multiple organ dysfunction syndrome. This review serves as an update on new data elucidating the role of the gut as the propagator of organ failure in critical illness. RECENT FINDINGS Under basal conditions, the gut absorbs nutrients and serves as a barrier that prevents approximately 40 trillion intraluminal microbes and their products from causing host injury. However, in critical illness, gut integrity is disrupted with hyperpermeability and increased epithelial apoptosis, allowing contamination of extraluminal sites that are ordinarily sterile. These alterations in gut integrity are further exacerbated in the setting of preexisting comorbidities. The normally commensal microflora is also altered in critical illness, with increases in microbial virulence and decreases in diversity, which leads to further pathologic responses within the host. SUMMARY All components of the gut are adversely impacted by critical illness. Gut injury can not only propagate local damage, but can also cause distant injury and organ failure. Understanding how the multifaceted components of the gut interact and how these are perturbed in critical illness may play an important role in turning off the 'motor' of multiple organ dysfunction syndrome in the future.
Collapse
Affiliation(s)
- Mei Meng
- aDepartment of Critical Care Medicine, Shandong Provincial Hospital Affiliated, Shandong University, Jinan, China bDepartment of Surgery and Emory Center for Critical Care, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | |
Collapse
|
36
|
Giles SL, Laheij RJF. Successful treatment of persistent Clostridium difficile infection with manuka honey. Int J Antimicrob Agents 2017; 49:522-523. [PMID: 28257905 DOI: 10.1016/j.ijantimicag.2017.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 02/06/2017] [Accepted: 02/22/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Sophie L Giles
- Department of Gastroenterology and Hepatology, Elisabeth-TweeSteden Hospital, Hilvarenbeekse Weg 60, 5022GC Tilburg, The Netherlands
| | - Robert J F Laheij
- Department of Gastroenterology and Hepatology, Elisabeth-TweeSteden Hospital, Hilvarenbeekse Weg 60, 5022GC Tilburg, The Netherlands.
| |
Collapse
|
37
|
Abstract
Antibiotics have been widely used for a number of decades for human therapy and farming production. Since a high percentage of antibiotics are discharged from the human or animal body without degradation, this means that different habitats, from the human body to river water or soils, are polluted with antibiotics. In this situation, it is expected that the variable concentration of this type of microbial inhibitor present in different ecosystems may affect the structure and the productivity of the microbiota colonizing such habitats. This effect can occur at different levels, including changes in the overall structure of the population, selection of resistant organisms, or alterations in bacterial physiology. In this review, I discuss the available information on how the presence of antibiotics may alter the microbiota and the consequences of such alterations for human health and for the activity of microbiota from different habitats.
Collapse
Affiliation(s)
- José Luis Martínez
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Calle Darwin, Madrid, Spain
| |
Collapse
|
38
|
Klingensmith NJ, Coopersmith CM. Fecal microbiota transplantation for multiple organ dysfunction syndrome. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:398. [PMID: 27989233 PMCID: PMC5165718 DOI: 10.1186/s13054-016-1567-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Nathan J Klingensmith
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Craig M Coopersmith
- Department of Surgery and Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA, USA. .,Emory University School of Medicine, 101 Woodruff Circle, Suite WMB 5105, Atlanta, GA, 30322, USA.
| |
Collapse
|