1
|
Lee SK, Kwon JH, Jang JW, Bae SH, Yoon SK, Jung ES, Choi JY. The Critical Role of Regulatory T Cells in Immune Tolerance and Rejection Following Liver Transplantation: Interactions With the Gut Microbiome. Transplantation 2025; 109:784-793. [PMID: 39375899 DOI: 10.1097/tp.0000000000005220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Liver transplantation (LT) is the ultimate treatment for patients with end-stage liver disease or early hepatocellular carcinoma. In the context of LT, because of the unique immunological characteristics of human liver allograft, 5%-20% of selected LT recipients can achieve operational tolerance. Nonetheless, there remains a risk of rejection in LT patients. Maintaining immune homeostasis is thus crucial for improving clinical outcomes in these patients. In mechanism, several immune cells, including dendritic cells, Kupffer cells, myeloid-derived suppressor cells, hepatic stellate cells, regulatory B cells, and CD4 + regulatory T cells (Treg), contribute to achieving tolerance following LT. In terms of Treg, it plays a role in successfully minimizing immunosuppression or achieving tolerance post-LT while also reducing the risk of rejection. Furthermore, the gut microbiome modulates systemic immune functions along the gut-liver axis. Recent studies have explored changes in the microbiome and its metabolites under various conditions, including post-LT, acute rejection, and tolerance. Certain functional microbiomes and metabolites exhibit immunomodulatory functions, such as the augmentation of Treg, influencing immune homeostasis. Therefore, understanding the mechanisms of tolerance in LT, the role of Treg in tolerance and rejection, as well as their interactions with gut microbiome, is vital for the management of LT patients.
Collapse
Affiliation(s)
- Soon Kyu Lee
- Division of Hepatology, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung Hyun Kwon
- Division of Hepatology, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeong Won Jang
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Si Hyun Bae
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Kew Yoon
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Sun Jung
- Department of Pathology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jong Young Choi
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Division of Hepatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
2
|
Liu Z, Xu J, Que T, Que S, Valenti L, Zheng S. Molecular Mechanisms of Ischemia/Reperfusion Injury and Graft Dysfunction in Liver Transplantation: Insights from Multi-Omics Studies in Rodent Animal Models. Int J Biol Sci 2025; 21:2135-2154. [PMID: 40083684 PMCID: PMC11900806 DOI: 10.7150/ijbs.109449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 01/25/2025] [Indexed: 03/16/2025] Open
Abstract
Rodent ischemia-reperfusion injury (IRI) and liver transplantation (LT) models play crucial roles in mimicking graft injury and immune rejection, developing therapeutic approaches, and evaluating the efficacy of treatments. The application of integrated multi-omics data and advanced omics techniques like single-cell RNA sequencing in rodent models has expanded researchers' perspectives on pathophysiological processes in LT settings. This review summarizes key molecules and pathways associated with reperfusion injury and prognosis in LT models, highlighting the potential of omics data in understanding and improving transplant outcomes. In addition, we highlight the current challenges and future approaches for the application of omics data in rodent LT models. Cross-species validation with human data will improve therapeutic potential. Finally, further applications combining advanced single-cell, spatial omics technologies and machine learning algorithms will help to identify the key regulatory networks in specific cell populations underlying poor outcomes after LT.
Collapse
Affiliation(s)
- Zhengtao Liu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Shulan Hospital (Hangzhou), Hangzhou, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Organ Transplantation, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jun Xu
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Organ Transplantation, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ting Que
- Birth Defects Prevention and Control Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | | | - Luca Valenti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Precision Medicine, Biological Resource Center Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Shusen Zheng
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Shulan Hospital (Hangzhou), Hangzhou, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Organ Transplantation, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Kunasol C, Chattipakorn N, Chattipakorn SC. Impact of calcineurin inhibitors on gut microbiota: Focus on tacrolimus with evidence from in vivo and clinical studies. Eur J Pharmacol 2025; 987:177176. [PMID: 39637933 DOI: 10.1016/j.ejphar.2024.177176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/15/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Calcineurin Inhibitors (CNIs), including tacrolimus and cyclosporine A, are the most widely used immunosuppressive drugs in solid organ transplantation. Those drugs play a pivotal role in preventing graft rejection and reducing autoimmunity. However, recent studies indicate that CNIs can disrupt the composition of gut microbiota or result in "gut dysbiosis". This dysbiosis has been shown to be a significant factor in reducing host immunity by decreasing innate immune cells and impairing metabolic regulation, leading to lipid and glucose accumulation. Several in vivo and clinical studies have demonstrated a mechanistic link between gut dysbiosis and the side effects of CNI. Those studies have unveiled that gut dysbiosis induced by CNIs contributes to adverse effects such as hyperglycemia, nephrotoxicity, and diarrhea. These adverse effects of the induced gut dysbiosis require interventions to restore microbial balance. Probiotics and dietary supplements have emerged as potential interventions to mitigate the side effects of gut dysbiosis caused by CNIs. In this complex relationship between CNI treatment, gut dysbiosis, and interventions, several types of gut microbiota and host immunity are involved. However, the mechanisms underlying these relationships remain elusive. Therefore, the aim of this review is to comprehensively summarize and discuss the major findings from in vivo and clinical data regarding the impact of treatment with CNIs on gut microbiota. This review also explores interventions to mitigate dysbiosis for therapeutic approaches of the side effects of CNIs. The possible underlying mechanisms of CNIs-induced gut dysbiosis with or without interventions are also presented and discussed.
Collapse
Affiliation(s)
- Chanon Kunasol
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Research Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
4
|
Medina CK, Aykut B. Gut Microbial Dysbiosis and Implications in Solid Organ Transplantation. Biomedicines 2024; 12:2792. [PMID: 39767699 PMCID: PMC11673786 DOI: 10.3390/biomedicines12122792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
The gut microbiome has been shown to play a significant role in solid organ transplantation, potentially influencing graft function and patient outcomes. Dysbiosis, characterized by reduced microbial diversity and an increase in pathogenic taxa, has been linked to higher incidences of allograft rejection, graft dysfunction, and post-transplant mortality. Several studies suggest that the gut microbiome might be able to serve as both a biomarker and a therapeutic target, potentially guiding personalized immunosuppressive therapies and other interventions to improve outcomes after solid organ transplantation. As summarized in this review, clinical studies have shown that specific microbial shifts correlate with adverse outcomes, including acute rejection and chronic allograft dysfunction. As research surrounding the relationship between the gut microbiome and solid organ transplant progresses, the integration of microbial analysis into clinical practice has the potential to revolutionize post-transplant care, offering new avenues to improve graft survival and patient quality of life. This review aims to provide a comprehensive overview of the relationship between gut microbial dysbiosis and transplantation outcomes, emphasizing the impact on kidney, liver, lung, and heart transplant recipients.
Collapse
Affiliation(s)
| | - Berk Aykut
- Department of Surgery, Duke University, Durham, NC 27710, USA
| |
Collapse
|
5
|
Kiseleva YV, Zharikova TS, Maslennikov RV, Temirbekov SM, Olsufieva AV, Polyakova OL, Pontes-Silva A, Zharikov YO. Gut Microbiota and Liver Regeneration: A Synthesis of Evidence on Structural Changes and Physiological Mechanisms. J Clin Exp Hepatol 2024; 14:101455. [PMID: 39035190 PMCID: PMC11259939 DOI: 10.1016/j.jceh.2024.101455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/05/2024] [Indexed: 07/23/2024] Open
Abstract
Liver regeneration (LR) is a unique biological process with the ability to restore up to 70% of the organ. This allows for the preservation of liver resections for various liver tumors and for living donor liver transplantation (LDLT). However, in some cases, LR is insufficient and interventions that can improve LR are urgently needed. Gut microbiota (GM) is one of the factors influencing LR, as the liver and intestine are intimately connected through the gut-liver axis. Thus, healthy GM facilitates normal LR, whereas dysbiosis leads to impaired LR due to imbalance of bile acids, inflammatory cytokines, microbial metabolites, signaling pathways, etc. Therefore, GM can be considered as a new possible therapeutic target to improve LR. In this review, we critically observe the current knowledge about the influence of gut microbiota (GM) on liver regeneration (LR) and the possibility to improve this process, which may reduce complication and mortality rates after liver surgery. Although much research has been done on this topic, more clinical trials and systemic reviews are urgently needed to move this type of intervention from the experimental phase to the clinical field.
Collapse
Affiliation(s)
- Yana V. Kiseleva
- Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - Tatiana S. Zharikova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Roman V. Maslennikov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | - Anna V. Olsufieva
- Moscow University for Industry and Finance “Synergy”, Moscow, Russia
| | - Olga L. Polyakova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - André Pontes-Silva
- Postgraduate Program in Physical Therapy, Department of Physical Therapy, Universidade Federal de São Carlos, São Carlos (SP), Brazil
| | - Yury O. Zharikov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
6
|
Brossier C, Jardou M, Janaszkiewicz A, Firoud D, Petit I, Arnion H, Pinault E, Sauvage FL, Druilhe A, Picard N, Di Meo F, Marquet P, Lawson R. Gut microbiota biotransformation of drug glucuronides leading to gastrointestinal toxicity: Therapeutic potential of bacterial β-glucuronidase inhibition in mycophenolate-induced enteropathy. Life Sci 2024; 351:122792. [PMID: 38857657 DOI: 10.1016/j.lfs.2024.122792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/28/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
AIMS Drug-induced enteropathy is often associated with the therapeutic use of certain glucuronidated drugs. One such drug is mycophenolic acid (MPA), a well-established immunosuppressant of which gastrointestinal adverse effects are a major concern. The role of bacterial β-glucuronidase (β-G) from the gut microbiota in MPA-induced enteropathy has recently been discovered. Bacterial β-G hydrolyzes MPAG, the glucuronide metabolite of MPA excreted in the bile, leading to the digestive accumulation of MPA that would favor in turn these adverse events. We therefore hypothesized that taming bacterial β-G activity might reduce MPA digestive exposure and prevent its toxicity. MAIN METHODS By using a multiscale approach, we evaluated the effect of increasing concentrations of MPA on intestinal epithelial cells (Caco-2 cell line) viability, proliferation, and migration. Then, we investigated the inhibitory properties of amoxapine, a previously described bacterial β-G inhibitor, by using molecular dynamics simulations, and evaluated its efficiency in blocking MPAG hydrolysis in an Escherichia coli-based β-G activity assay. The pharmacological effect of amoxapine was evaluated in a mouse model. KEY FINDINGS We observed that MPA impairs intestinal epithelial cell homeostasis. Amoxapine efficiently blocks the hydrolysis of MPAG to MPA and significantly reduces digestive exposure to MPA in mice. As a result, administration of amoxapine in MPA-treated mice significantly attenuated gastrointestinal lesions. SIGNIFICANCE Collectively, these results suggest that the digestive accumulation of MPA is involved in the pathophysiology of MPA-gastrointestinal adverse effects. This study provides a proof-of-concept of the therapeutic potential of bacterial β-G inhibitors in glucuronidated drug-induced enteropathy.
Collapse
Affiliation(s)
- Clarisse Brossier
- Pharmacology & Transplantation (P&T), INSERM U1248, Université de Limoges, F-87000 Limoges, France
| | - Manon Jardou
- Pharmacology & Transplantation (P&T), INSERM U1248, Université de Limoges, F-87000 Limoges, France
| | - Angelika Janaszkiewicz
- Pharmacology & Transplantation (P&T), INSERM U1248, Université de Limoges, F-87000 Limoges, France
| | - Djouher Firoud
- Pharmacology & Transplantation (P&T), INSERM U1248, Université de Limoges, F-87000 Limoges, France
| | - Isy Petit
- Pharmacology & Transplantation (P&T), INSERM U1248, Université de Limoges, F-87000 Limoges, France
| | - Hélène Arnion
- Pharmacology & Transplantation (P&T), INSERM U1248, Université de Limoges, F-87000 Limoges, France
| | - Emilie Pinault
- Pharmacology & Transplantation (P&T), INSERM U1248, Université de Limoges, F-87000 Limoges, France
| | - François-Ludovic Sauvage
- Pharmacology & Transplantation (P&T), INSERM U1248, Université de Limoges, F-87000 Limoges, France
| | - Anne Druilhe
- Pharmacology & Transplantation (P&T), INSERM U1248, Université de Limoges, F-87000 Limoges, France
| | - Nicolas Picard
- Pharmacology & Transplantation (P&T), INSERM U1248, Université de Limoges, F-87000 Limoges, France; Department of Pharmacology, Toxicology and Pharmacovigilance, CHU Limoges, F-87000 Limoges, France
| | - Florent Di Meo
- Pharmacology & Transplantation (P&T), INSERM U1248, Université de Limoges, F-87000 Limoges, France
| | - Pierre Marquet
- Pharmacology & Transplantation (P&T), INSERM U1248, Université de Limoges, F-87000 Limoges, France; Department of Pharmacology, Toxicology and Pharmacovigilance, CHU Limoges, F-87000 Limoges, France
| | - Roland Lawson
- Pharmacology & Transplantation (P&T), INSERM U1248, Université de Limoges, F-87000 Limoges, France.
| |
Collapse
|
7
|
Xiong Z, Yang Z, Wang Q, Li T. Global research hotspots and trends of acute rejection after liver transplantation from 1988 to 2022: a bibliometric analysis. Front Pharmacol 2024; 15:1357468. [PMID: 38694927 PMCID: PMC11061468 DOI: 10.3389/fphar.2024.1357468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/05/2024] [Indexed: 05/04/2024] Open
Abstract
Background: Acute rejection (AR) is the predominant form of rejection observed in liver transplantation and plays a crucial role in transplant immunology. This study aims to utilize bibliometric analysis to understand the status quo, hotspots, and future trends of research on AR after liver transplantation. Methods: We searched the Web of Science Core Collection (WoSCC) for studies on AR after liver transplantation published from 1988 to 2022. The Bibliometric Online Analysis Platform, VOSviewer, and CiteSpace were used for analysis of all extracted publications. Results: This study included 2,398 articles published in 456 journals by 12,568 authors from 1,965 institutions in 55 countries/regions. The United States and its affiliated institution, the University of Pittsburgh, were the most productive contributors. Transplantation (n = 12,435) was the most frequently cited journal. Neuhaus P (n = 38) was the highest output author, and Demetris AJ (n = 670) was the most co-cited author. The research hotspots of AR after liver transplantation include pathogenesis, immunosuppressive therapy, and prognosis. Emerging research directions include regulatory T cells, immunosuppression minimization, intra-patient variability (IPV) of tacrolimus, and novel non-invasive diagnostic markers. Conclusion: Our study utilized bibliometric methods to analyze the study of AR after liver transplantation over the past 35 years. With the prolonged survival of liver transplant recipients, the most active areas currently focus on individualized treatment and improving patient prognosis. Minimizing adverse reactions to immunosuppressive therapy while simultaneously avoiding an increase in the risk of AR remains a future research focus.
Collapse
Affiliation(s)
- Zhiwei Xiong
- Department of Liver Transplantation, The Second Xiang-ya Hospital, Central South University, Changsha, China
| | - Zhen Yang
- The Intractable Diseases Diagnosis and Treatment Center for Liver, Gallbladder, Pancreas and Intestine, Department of Hepatobiliary Surgery, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Qiuguo Wang
- Department of Cardiovascular Surgery, The Second Xiang-ya Hospital, Central South University, Changsha, China
| | - Ting Li
- Department of Liver Transplantation, The Second Xiang-ya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
Elgarten CW, Margolis EB, Kelly MS. The Microbiome and Pediatric Transplantation. J Pediatric Infect Dis Soc 2024; 13:S80-S89. [PMID: 38417089 PMCID: PMC10901476 DOI: 10.1093/jpids/piad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/25/2023] [Indexed: 03/01/2024]
Abstract
The microbial communities that inhabit our bodies have been increasingly linked to host physiology and pathophysiology. This microbiome, through its role in colonization resistance, influences the risk of infections after transplantation, including those caused by multidrug-resistant organisms. In addition, through both direct interactions with the host immune system and via the production of metabolites that impact local and systemic immunity, the microbiome plays an important role in the establishment of immune tolerance after transplantation, and conversely, in the development of graft-versus-host disease and graft rejection. This review offers a comprehensive overview of the evidence for the role of the microbiome in hematopoietic cell and solid organ transplant complications, drivers of microbiome shift during transplantation, and the potential of microbiome-based therapies to improve pediatric transplantation outcomes.
Collapse
Affiliation(s)
- Caitlin W Elgarten
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elisa B Margolis
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Pediatrics, University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Matthew S Kelly
- Departments of Pediatrics and Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
9
|
Hong JS, Shamim A, Atta H, Nonnecke EB, Merl S, Patwardhan S, Manell E, Gunes E, Jordache P, Chen B, Lu W, Shen B, Dionigi B, Kiran RP, Sykes M, Zorn E, Bevins CL, Weiner J. Application of enzyme-linked immunosorbent assay to detect antimicrobial peptides in human intestinal lumen. J Immunol Methods 2024; 525:113599. [PMID: 38081407 PMCID: PMC10956375 DOI: 10.1016/j.jim.2023.113599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Intestinal transplantation is the definitive treatment for intestinal failure. However, tissue rejection and graft-versus-host disease are relatively common complications, necessitating aggressive immunosuppression that can itself pose further complications. Tracking intraluminal markers in ileal effluent from standard ileostomies may present a noninvasive and sensitive way to detect developing pathology within the intestinal graft. This would be an improvement compared to current assessments, which are limited by poor sensitivity and specificity, contributing to under or over-immunosuppression, respectively, and by the need for invasive biopsies. Herein, we report an approach to reproducibly analyze ileal fluid obtained through stoma sampling for antimicrobial peptide/protein concentrations, reasoning that these molecules may provide an assessment of intestinal homeostasis and levels of intestinal inflammation over time. Concentrations of lysozyme (LYZ), myeloperoxidase (MPO), calprotectin (S100A8/A9) and β-defensin 2 (DEFB2) were assessed using adaptations of commercially available enzyme-linked immunosorbent assays (ELISAs). The concentration of α-defensin 5 (DEFA5) was assessed using a newly developed sandwich ELISA. Our data support that with proper preparation of ileal effluent specimens, precise and replicable determination of antimicrobial peptide/protein concentrations can be achieved for each of these target molecules via ELISA. This approach may prove to be reliable as a clinically useful assessment of intestinal homeostasis over time for patients with ileostomies.
Collapse
Affiliation(s)
- Julie S Hong
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America.
| | - Abrar Shamim
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America; College of Dental Medicine, Columbia University, New York, NY, United States of America
| | - Hussein Atta
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America
| | - Eric B Nonnecke
- Department of Microbiology and Immunology, University of California Davis School of Medicine, Davis, CA, United States of America
| | - Sarah Merl
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States of America
| | - Satyajit Patwardhan
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America
| | - Elin Manell
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America; Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Esad Gunes
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America
| | - Philip Jordache
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America
| | - Bryan Chen
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America
| | - Wuyuan Lu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Bo Shen
- Department of Surgery, Columbia University/New York-Presbyterian Hospital, New York, NY, United States of America
| | - Beatrice Dionigi
- Department of Surgery, Columbia University/New York-Presbyterian Hospital, New York, NY, United States of America
| | - Ravi P Kiran
- Department of Surgery, Columbia University/New York-Presbyterian Hospital, New York, NY, United States of America
| | - Megan Sykes
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America; Department of Surgery, Columbia University/New York-Presbyterian Hospital, New York, NY, United States of America
| | - Emmanuel Zorn
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America
| | - Charles L Bevins
- Department of Microbiology and Immunology, University of California Davis School of Medicine, Davis, CA, United States of America
| | - Joshua Weiner
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America; Department of Surgery, Columbia University/New York-Presbyterian Hospital, New York, NY, United States of America
| |
Collapse
|
10
|
Lian X, Liu Z, Wu T, Lou J, Chen Y, Liu S, Jin L, Li S, Lian Y, Jiang Y, Ren Z. Oral microbiome alterations in epilepsy and after seizure control. Front Microbiol 2023; 14:1277022. [PMID: 38107849 PMCID: PMC10721976 DOI: 10.3389/fmicb.2023.1277022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/31/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND The existing diagnostic methods of epilepsy such as history collection and electroencephalogram have great limitations in practice, so more reliable and less difficult diagnostic methods are needed. METHODS By characterizing oral microbiota in patients diagnosed with epilepsy (EPs) and patients whose seizures were under control (EPRs), we sought to discover biomarkers for different disease states. 16S rRNA gene sequencing was performed on 480 tongue swabs [157 EPs, 22 EPRs, and 301 healthy controls (HCs)]. RESULTS Compared with normal individuals, patients with epilepsy exhibit increased alpha diversity in their oral microbiota, and the oral microbial communities of the two groups demonstrate significant beta diversity differences. EPs exhibit a significant increase in the abundance of 26 genera, including Streptococcus, Granulicatella, and Kluyvera, while the abundance of 14 genera, including Peptostreptococcus, Neisseria, and Schaalia, is significantly reduced. The area under the receiver operating characteristic curve (AUC) of oral microbial markers in the training cohort and validation cohort was 98.85% and 97.23%, respectively. Importantly, the AUC of the biomarker set achieved 92.44% of additional independent validation sets. In addition, EPRs also have their own unique oral community. CONCLUSION This study describes the characterization of the oral microbiome in EP and EPR and demonstrates the potential of the specific microbiome as a non-invasive diagnostic tool for epilepsy.
Collapse
Affiliation(s)
- Xiaolei Lian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Zhenguo Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tianwen Wu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiamin Lou
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuan Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shanshuo Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Limin Jin
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuang Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yajun Lian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Jiang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Sucu S, Basarir KE, Mihaylov P, Balik E, Lee JTC, Fridell JA, Emamaullee JA, Ekser B. Impact of gut microbiota on liver transplantation. Am J Transplant 2023; 23:1485-1495. [PMID: 37277064 DOI: 10.1016/j.ajt.2023.05.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/26/2023] [Accepted: 05/24/2023] [Indexed: 06/07/2023]
Abstract
The gut microbiota has been gaining attention due to its interactions with the human body and its role in pathophysiological processes. One of the main interactions is the "gut-liver axis," in which disruption of the gut mucosal barrier seen in portal hypertension and liver disease can influence liver allograft function over time. For example, in patients who are undergoing liver transplantation, preexisting dysbiosis, perioperative antibiotic use, surgical stress, and immunosuppressive use have each been associated with alterations in gut microbiota, potentially impacting overall morbidity and mortality. In this review, studies exploring gut microbiota changes in patients undergoing liver transplantation are reviewed, including both human and experimental animal studies. Common themes include an increase in Enterobacteriaceae and Enterococcaceae species and a decrease in Faecalibacterium prausnitzii and Bacteriodes, while a decrease in the overall diversity of gut microbiota after liver transplantation.
Collapse
Affiliation(s)
- Serkan Sucu
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Surgery, Koc University School of Medicine, Istanbul, Turkey
| | - Kerem E Basarir
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Plamen Mihaylov
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Emre Balik
- Department of Surgery, Koc University School of Medicine, Istanbul, Turkey
| | - Jason T C Lee
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA; Division of Abdominal Organ Transplantation and Hepatobiliary Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jonathan A Fridell
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Juliet A Emamaullee
- Division of Abdominal Organ Transplantation and Hepatobiliary Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| |
Collapse
|
12
|
Manes A, Di Renzo T, Dodani L, Reale A, Gautiero C, Di Lauro M, Nasti G, Manco F, Muscariello E, Guida B, Tarantino G, Cataldi M. Pharmacomicrobiomics of Classical Immunosuppressant Drugs: A Systematic Review. Biomedicines 2023; 11:2562. [PMID: 37761003 PMCID: PMC10526314 DOI: 10.3390/biomedicines11092562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The clinical response to classical immunosuppressant drugs (cIMDs) is highly variable among individuals. We performed a systematic review of published evidence supporting the hypothesis that gut microorganisms may contribute to this variability by affecting cIMD pharmacokinetics, efficacy or tolerability. The evidence that these drugs affect the composition of intestinal microbiota was also reviewed. The PubMed and Scopus databases were searched using specific keywords without limits of species (human or animal) or time from publication. One thousand and fifty five published papers were retrieved in the initial database search. After screening, 50 papers were selected to be reviewed. Potential effects on cIMD pharmacokinetics, efficacy or tolerability were observed in 17/20 papers evaluating this issue, in particular with tacrolimus, cyclosporine, mycophenolic acid and corticosteroids, whereas evidence was missing for everolimus and sirolimus. Only one of the papers investigating the effect of cIMDs on the gut microbiota reported negative results while all the others showed significant changes in the relative abundance of specific intestinal bacteria. However, no unique pattern of microbiota modification was observed across the different studies. In conclusion, the available evidence supports the hypothesis that intestinal microbiota could contribute to the variability in the response to some cIMDs, whereas data are still missing for others.
Collapse
Affiliation(s)
- Annalaura Manes
- Section of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, Federico II University of Naples, 80131 Naples, Italy; (A.M.); (L.D.); (F.M.)
| | - Tiziana Di Renzo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy; (T.D.R.); (A.R.)
| | - Loreta Dodani
- Section of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, Federico II University of Naples, 80131 Naples, Italy; (A.M.); (L.D.); (F.M.)
| | - Anna Reale
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy; (T.D.R.); (A.R.)
| | - Claudia Gautiero
- Physiology Nutrition Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131 Naples, Italy; (C.G.); (M.D.L.); (G.N.); (B.G.)
| | - Mariastella Di Lauro
- Physiology Nutrition Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131 Naples, Italy; (C.G.); (M.D.L.); (G.N.); (B.G.)
| | - Gilda Nasti
- Physiology Nutrition Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131 Naples, Italy; (C.G.); (M.D.L.); (G.N.); (B.G.)
| | - Federica Manco
- Section of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, Federico II University of Naples, 80131 Naples, Italy; (A.M.); (L.D.); (F.M.)
| | - Espedita Muscariello
- Nutrition Unit, Department of Prevention, Local Health Authority Napoli 3 Sud, 80059 Naples, Italy;
| | - Bruna Guida
- Physiology Nutrition Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131 Naples, Italy; (C.G.); (M.D.L.); (G.N.); (B.G.)
| | - Giovanni Tarantino
- Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131 Naples, Italy;
| | - Mauro Cataldi
- Section of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, Federico II University of Naples, 80131 Naples, Italy; (A.M.); (L.D.); (F.M.)
| |
Collapse
|
13
|
The Role of Microbiota in Liver Transplantation and Liver Transplantation-Related Biliary Complications. Int J Mol Sci 2023; 24:ijms24054841. [PMID: 36902269 PMCID: PMC10003075 DOI: 10.3390/ijms24054841] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Liver transplantation as a treatment option for end-stage liver diseases is associated with a relevant risk for complications. On the one hand, immunological factors and associated chronic graft rejection are major causes of morbidity and carry an increased risk of mortality due to liver graft failure. On the other hand, infectious complications have a major impact on patient outcomes. In addition, abdominal or pulmonary infections, and biliary complications, including cholangitis, are common complications in patients after liver transplantation and can also be associated with a risk for mortality. Thereby, these patients already suffer from gut dysbiosis at the time of liver transplantation due to their severe underlying disease, causing end-stage liver failure. Despite an impaired gut-liver axis, repeated antibiotic therapies can cause major changes in the gut microbiome. Due to repeated biliary interventions, the biliary tract is often colonized by several bacteria with a high risk for multi-drug resistant germs causing local and systemic infections before and after liver transplantation. Growing evidence about the role of gut microbiota in the perioperative course and their impact on patient outcomes in liver transplantation is available. However, data about biliary microbiota and their impact on infectious and biliary complications are still sparse. In this comprehensive review, we compile the current evidence for the role of microbiome research in liver transplantation with a focus on biliary complications and infections due to multi-drug resistant germs.
Collapse
|
14
|
Salimov UR, Olegovich SI, Aliakseevich KA, Nikolaevna HT, Mikhailovich FA, Eugenievich SA, Rummo OO. GUT MICROBIOTA MIGHT INFLUENCE THE RISK OF REJECTION AFTER LIVER TRANSPLANTATION. JOURNAL OF LIVER TRANSPLANTATION 2023. [DOI: 10.1016/j.liver.2023.100140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
15
|
Taner T, Bruner J, Emaumaullee J, Bonaccorsi-Riani E, Zarrinpar A. New Approaches to the Diagnosis of Rejection and Prediction of Tolerance in Liver Transplantation. Transplantation 2022; 106:1952-1962. [PMID: 35594482 PMCID: PMC9529763 DOI: 10.1097/tp.0000000000004160] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Immunosuppression after liver transplantation is essential for preventing allograft rejection. However, long-term drug toxicity and associated complications necessitate investigation of immunosuppression minimization and withdrawal protocols. Development of such protocols is hindered by reliance on current paradigms for monitoring allograft function and rejection status. The current standard of care for diagnosis of rejection is histopathologic assessment and grading of liver biopsies in accordance with the Banff Rejection Activity Index. However, this method is limited by cost, sampling variability, and interobserver variation. Moreover, the invasive nature of biopsy increases the risk of patient complications. Incorporating noninvasive techniques may supplement existing methods through improved understanding of rejection causes, hepatic spatial architecture, and the role of idiopathic fibroinflammatory regions. These techniques may also aid in quantification and help integrate emerging -omics analyses with current assessments. Alternatively, emerging noninvasive methods show potential to detect and distinguish between different types of rejection while minimizing risk of adverse advents. Although biomarkers have yet to replace biopsy, preliminary studies suggest that several classes of analytes may be used to detect rejection with greater sensitivity and in earlier stages than traditional methods, possibly when coupled with artificial intelligence. Here, we provide an overview of the latest efforts in optimizing the diagnosis of rejection in liver transplantation.
Collapse
Affiliation(s)
- Timucin Taner
- Departments of Surgery & Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Julia Bruner
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Juliet Emaumaullee
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Eliano Bonaccorsi-Riani
- Abdominal Transplant Unit, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Ali Zarrinpar
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
16
|
Yao S, Yagi S, Ogawa E, Hirata M, Miyachi Y, Iwamura S, Uozumi R, Sugimoto T, Asahara T, Uemoto S, Hatano E. Dysbiosis and Depletion of Fecal Organic Acids Correlate With the Severity of Rejection After Rat Liver Transplantation. Transpl Int 2022; 35:10728. [PMID: 36187462 PMCID: PMC9519788 DOI: 10.3389/ti.2022.10728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022]
Abstract
The impact of T cell-mediated rejection (TCMR) after liver transplantation (LT) on the alterations in the gut microbiota (GM) and associated intestinal environment represented by fecal organic acids (OAs) require further elucidation. A rat allogeneic LT model was prepared without immunosuppressants or antibiotics, and a syngeneic model was used as a control. Qualitative and quantitative analyses of fecal samples at fixed time points were performed. Correlation analyses were also performed between liver function and GMs and OA levels. In the allogeneic TCMR group, the number of predominant obligate anaerobes decreased as liver function declined. Clostridioides difficile, Enterobacteriaceae, Enterococcus, Streptococcus, and Staphylococcus were significantly increased. Regarding fecal OA concentration, short-chain fatty acid (SCFA) concentrations were depleted as liver function declined. In contrast, in the syngeneic group, GM and OAs exhibited only slight, transient, and reversible disturbances. In addition, alanine aminotransferase and total bilirubin were positively correlated with the number of Enterobacteriaceae and Enterococcus, and negatively correlated with the fecal concentration of SCFAs. The allogeneic TCMR model demonstrated distinct dysbiosis and depletion of fecal OAs as TCMR progressed after LT. The degree of graft injury was closely related to the number of specific bacterial strains and the concentrations of fecal SCFAs.
Collapse
Affiliation(s)
- Siyuan Yao
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- *Correspondence: Siyuan Yao, ; Shintaro Yagi,
| | - Shintaro Yagi
- Department of Surgery, Graduate School of Medicine, Kanazawa University, Ishikawa, Japan
- *Correspondence: Siyuan Yao, ; Shintaro Yagi,
| | - Eri Ogawa
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaaki Hirata
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yosuke Miyachi
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sena Iwamura
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryuji Uozumi
- Department of Biomedical Statistics and Bioinformatics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takuya Sugimoto
- Yakult Central Institute, Yakult Honsha Co., Ltd., Tokyo, Japan
| | - Takashi Asahara
- Yakult Central Institute, Yakult Honsha Co., Ltd., Tokyo, Japan
| | | | - Etsuro Hatano
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
17
|
Priscilla C, Kumar S, Kumar CG, Parameswaran S, Viswanathan P, Ganesh RN. Pre-transplant Ratio of Firmicutes/Bacteroidetes of Gut Microbiota as a Potential Biomarker of Allograft Rejection in Renal Transplant Recipients. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022; 16:1799-1808. [DOI: 10.22207/jpam.16.3.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The advent of technologies has made allogenic transplantation a potential curative therapy for end-stage renal diseases, but the episodes of rejection still remain as one of the challenges in the post-transplant scenario. In the recent years, several human and animal studies have elucidated that gut microbial dysbiosis is closely linked with allogenic transplantation and post-transplant complications. But most of the studies focused on the use of high through-put sequencing technologies to analyze gut microbiota despite of its high cost, analysis and time constraints. Hence, in this work we aimed to study the impact of the two dominant gut phyla Firmicutes and Bacteroidetes on 38 renal transplant recipients, before and after transplantation and to find its association with allograft rejection. Significant changes (p<0.01) were observed in the relative abundances of the phyla Firmicutes and Bacteroidetes at pre- and post-transplant period. We have also found that the recipients who had an increase in Firmicutes/Bacteroidetes (F/B) ratio before transplant were highly prone to rejection in the first-year post-transplant. The Receiver Operating Characteristic (ROC) curve analysis has shown that the ratio of F/B were able to discriminate between rejection and non-rejection cases with an Area under the ROC Curve (AUC) of 0.91. Additionally, we observed that the ratio of F/B have reduced during the time of rejection postulating that gut microbial dysbiosis has more association with rejection. Thus, the assessment of F/B ratio using qPCR would be of a more practical approach for diagnosis and monitoring of graft function in a cost-effective and timely manner.
Collapse
|
18
|
Wong HJ, Lim WH, Ng CH, Tan DJH, Bonney GK, Kow AWC, Huang DQ, Siddiqui MS, Noureddin M, Syn N, Muthiah MD. Predictive and Prognostic Roles of Gut Microbial Variation in Liver Transplant. Front Med (Lausanne) 2022; 9:873523. [PMID: 35620719 PMCID: PMC9127379 DOI: 10.3389/fmed.2022.873523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Patients undergoing liver transplant (LTX) typically confront a challenging postoperative journey. A dysbiotic gut microbiome is associated with the development of complications, including post-LTX allograft rejection, metabolic diseases and de novo or recurrent cancer. A major explanation of this are the bipartite interactions between the gut microbiota and host immunity, which modulates the alloimmune response towards the liver allograft. Furthermore, bacterial translocation from dysbiosis causes pathogenic changes in the concentrations of microbial metabolites like lipopolysaccharides, short-chain fatty acids (SCFAs) and Trimethylamine-N-Oxide, with links to cardiovascular disease development and diabetes mellitus. Gut dysbiosis also disrupts bile acid metabolism, with implications for various post-LTX metabolic diseases. Certain taxonomy of microbiota such as lactobacilli, F.prausnitzii and Bacteroides appear to be associated with these undesired outcomes. As such, an interesting but as yet unproven hypothesis exists as to whether induction of a “beneficial” composition of gut microbiota may improve prognosis in LTX patients. Additionally, there are roles of the microbiome as predictive and prognostic indicators for clinicians in improving patient care. Hence, the gut microbiome represents an exceptionally exciting avenue for developing novel prognostic, predictive and therapeutic applications.
Collapse
Affiliation(s)
- Hon Jen Wong
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore, Singapore
| | - Wen Hui Lim
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Cheng Han Ng
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Darren Jun Hao Tan
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Glenn K Bonney
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore.,National University Centre for Organ Transplantation, National University Health System, Singapore, Singapore.,Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, National University Hospital Singapore, Singapore, Singapore
| | - Alfred W C Kow
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore.,National University Centre for Organ Transplantation, National University Health System, Singapore, Singapore.,Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, National University Hospital Singapore, Singapore, Singapore
| | - Daniel Q Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore.,National University Centre for Organ Transplantation, National University Health System, Singapore, Singapore
| | - Mohammad Shadab Siddiqui
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Mazen Noureddin
- Cedars-Sinai Fatty Liver Program, Division of Digestive and Liver Diseases, Department of Medicine, Comprehensive Transplant Centre, Cedars-Sinai Medical Centre, Los Angeles, CA, United States
| | - Nicholas Syn
- National University Centre for Organ Transplantation, National University Health System, Singapore, Singapore
| | - Mark D Muthiah
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore.,National University Centre for Organ Transplantation, National University Health System, Singapore, Singapore
| |
Collapse
|
19
|
Binda C, Gibiino G, Coluccio C, Sbrancia M, Dajti E, Sinagra E, Capurso G, Sambri V, Cucchetti A, Ercolani G, Fabbri C. Biliary Diseases from the Microbiome Perspective: How Microorganisms Could Change the Approach to Benign and Malignant Diseases. Microorganisms 2022; 10:312. [PMID: 35208765 PMCID: PMC8877314 DOI: 10.3390/microorganisms10020312] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 11/18/2022] Open
Abstract
Recent evidence regarding microbiota is modifying the cornerstones on pathogenesis and the approaches to several gastrointestinal diseases, including biliary diseases. The burden of biliary diseases, indeed, is progressively increasing, considering that gallstone disease affects up to 20% of the European population. At the same time, neoplasms of the biliary system have an increasing incidence and poor prognosis. Framing the specific state of biliary eubiosis or dysbiosis is made difficult by the use of heterogeneous techniques and the sometimes unwarranted invasive sampling in healthy subjects. The influence of the microbial balance on the health status of the biliary tract could also account for some of the complications surrounding the post-liver-transplant phase. The aim of this extensive narrative review is to summarize the current evidence on this topic, to highlight gaps in the available evidence in order to guide further clinical research in these settings, and, eventually, to provide new tools to treat biliary lithiasis, biliopancreatic cancers, and even cholestatic disease.
Collapse
Affiliation(s)
- Cecilia Binda
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì, Italy; (C.B.); (G.G.); (M.S.); (E.D.); (C.F.)
| | - Giulia Gibiino
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì, Italy; (C.B.); (G.G.); (M.S.); (E.D.); (C.F.)
| | - Chiara Coluccio
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì, Italy; (C.B.); (G.G.); (M.S.); (E.D.); (C.F.)
| | - Monica Sbrancia
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì, Italy; (C.B.); (G.G.); (M.S.); (E.D.); (C.F.)
| | - Elton Dajti
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì, Italy; (C.B.); (G.G.); (M.S.); (E.D.); (C.F.)
- Department of Medical and Surgical Sciences–DIMEC, Alma Mater Studiorum–University of Bologna, 90015 Bologna, Italy; (A.C.); (G.E.)
| | - Emanuele Sinagra
- Endoscopy Unit, Fondazione Istituto San Raffaele-G. Giglio, 90015 Cefalù, Italy;
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90100 Palermo, Italy
| | - Gabriele Capurso
- Division of Pancreato-Biliary Endoscopy and EUS, Pancreas Translational and Clinical Research Center, San Raffaele Scientific Institute IRCCS, 20132 Milano, Italy;
| | - Vittorio Sambri
- Unit of Microbiology, The Great Romagna Hub Laboratory, 47522 Pievesestina, Italy;
- Unit of Microbiology, Department of Pathological Anatomy, Trasfusion Medicine and Laboratory Medicine, University of Bologna, 40125 Bologna, Italy
| | - Alessandro Cucchetti
- Department of Medical and Surgical Sciences–DIMEC, Alma Mater Studiorum–University of Bologna, 90015 Bologna, Italy; (A.C.); (G.E.)
- Department of General and Oncologic Surgery, Morgagni-Pierantoni Hospital, Ausl Romagna, 47121 Forlì, Italy
| | - Giorgio Ercolani
- Department of Medical and Surgical Sciences–DIMEC, Alma Mater Studiorum–University of Bologna, 90015 Bologna, Italy; (A.C.); (G.E.)
- Department of General and Oncologic Surgery, Morgagni-Pierantoni Hospital, Ausl Romagna, 47121 Forlì, Italy
| | - Carlo Fabbri
- Gastroenterology and Digestive Endoscopy Unit, Forlì-Cesena Hospitals, Ausl Romagna, 47121 Forlì, Italy; (C.B.); (G.G.); (M.S.); (E.D.); (C.F.)
| |
Collapse
|
20
|
Lee SK, Jhun J, Lee SY, Choi S, Choi SS, Park MS, Lee SY, Cho KH, Lee AR, Ahn J, Choi HJ, You YK, Sung PS, Jang JW, Bae SH, Yoon SK, Cho ML, Choi JY. A decrease in functional microbiomes represented as Faecalibacterium affects immune homeostasis in long-term stable liver transplant patients. Gut Microbes 2022; 14:2102885. [PMID: 35951731 PMCID: PMC9377238 DOI: 10.1080/19490976.2022.2102885] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 06/21/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
LT, liver transplantation; HCC, hepatocellular carcinoma; IS, immunosuppressants; DC, dendritic cells; Treg, regulatory T; Th17, T helper 17; AST, aspartate transaminase; ALT, alanine transaminase; OUT, operational taxonomic unit; LEfSe, linear discriminant analysis effect size; LDA, linear discriminant analysis; IL, interleukin; TGF, transforming growth factor; GM-CSF, granulocyte-macrophage colony-stimulating factor; IFN, interferon; TNF-α, tumor necrosis factor-α; MIP-1α, macrophage inflammatory protein-1α; IP-10, interferon γ-induced protein; MCP-1, monocyte chemoattractant protein-1; ACR, acute cellular rejection; NF-κB, nuclear factor κB; PT INR, prothrombin time; QC, quality check; PBMC, peripheral blood mononuclear cells; PBS, phosphate-buffered saline; ELISA, enzyme-linked immunosorbent assay.
Collapse
Affiliation(s)
- Soon Kyu Lee
- Division of gastroenterology and hepatology, Department of Internal Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - JooYeon Jhun
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Yoon Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sukjung Choi
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, Korea
| | - Sun Shim Choi
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, Korea
| | | | - Seon-Young Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Keun-Hyung Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - A Ram Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Joseph Ahn
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ho Joong Choi
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Young Kyoung You
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Pil Soo Sung
- Division of gastroenterology and hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeong Won Jang
- Division of gastroenterology and hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Si Hyun Bae
- Division of gastroenterology and hepatology, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Kew Yoon
- Division of gastroenterology and hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jong Young Choi
- Division of gastroenterology and hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Although gut dysbiosis can hasten disease progression in end-stage liver disease and contribute to disease severity, morbidity and mortality, its impact during and after transplant needs further study. RECENT FINDINGS Changes in the microbiome are associated with hepatic decompensation. Immune homeostasis is further disrupted during transplant and with immunosuppressants required after transplant. There is increasing evidence of the role of microbiota in peri and posttransplant complications. SUMMARY Although transplant is highly successful with acceptable survival rates, infections, rejection, disease recurrence and death remain important complications. Prognostication and interventions involving the gut microbiome could be beneficial.
Collapse
Affiliation(s)
- Nikki Duong
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia, USA
| | | |
Collapse
|
22
|
Peruhova M, Peshevska-Sekulovska M, Velikova T. Interactions between human microbiome, liver diseases, and immunosuppression after liver transplant. World J Immunol 2021; 11:11-16. [DOI: 10.5411/wji.v11.i2.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/16/2021] [Accepted: 10/15/2021] [Indexed: 02/06/2023] Open
Affiliation(s)
- Milena Peruhova
- Department of Gastroenterology, University Hospital Lozenetz, Sofia 1407, Bulgaria
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| | | | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
- Department of Clinical Immunology, University Hospital Lozenetz, Sofia 1407, Bulgaria
| |
Collapse
|
23
|
Winichakoon P, Chaiwarith R, Chattipakorn N, Chattipakorn SC. Impact of gut microbiota on kidney transplantation. Transplant Rev (Orlando) 2021; 36:100668. [PMID: 34688985 DOI: 10.1016/j.trre.2021.100668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/29/2021] [Accepted: 10/12/2021] [Indexed: 12/18/2022]
Abstract
Kidney transplantation is recognized as one of the most effective treatments for patients who suffer from end-stage renal disease. The major potential outcomes following kidney transplantation include engraftment, rejection, and associated complications. The outcomes are dependent on a variety of factors in those who underwent renal grafts or kidney transplant recipients. Those factors include the administration of immunosuppressive drugs and prophylactic antimicrobial agents to recipients. Recent studies have shown that gut microbiota play an important role in the outcome of subjects with kidney transplantation. An imbalance of the components/diversity of gut microbiota, known as gut dysbiosis, has been shown to have a big impact on the immune system of the host and the modification of host inflammatory cytokines. Although gut dysbiosis is affected by variation in diet and medication, a substantial amount of evidence showing a link between alteration in human gut microbiota and outcomes of kidney transplantation has recently been reported. Therefore, the objective of this review is to comprehensively summarize and discuss the major findings from in vivo and clinical data pertaining to the impact of gut microbiota on kidney transplantation. Any controversial findings are compiled to enable a clear overview of the role of gut microbiota and the outcome of kidney transplantation.
Collapse
Affiliation(s)
- Poramed Winichakoon
- Division of Infectious Disease and Tropical Medicine, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Thailand
| | - Romanee Chaiwarith
- Division of Infectious Disease and Tropical Medicine, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Thailand
| | - Nipon Chattipakorn
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Neuroelectrophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
24
|
Lu H, Yao Y, Yang J, Zhang H, Li L. Microbiome-miRNA interactions in the progress from undifferentiated arthritis to rheumatoid arthritis: evidence, hypotheses, and opportunities. Rheumatol Int 2021; 41:1567-1575. [PMID: 33856544 PMCID: PMC8316166 DOI: 10.1007/s00296-021-04798-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/20/2021] [Indexed: 02/05/2023]
Abstract
The human microbiome has attracted attention for its potential utility in precision medicine. Increasingly, more researchers are recognizing changes in intestinal microbiome can upset the balance between pro- and anti-inflammatory factors of host immune system, potentially contributing to arthritis immunopathogenesis. Patients who develop rheumatoid arthritis from undifferentiated arthritis can face multiple irreversible joint lesions and even deformities. Strategies for identifying undifferentiated arthritis patients who have a tendency to develop rheumatoid arthritis and interventions to prevent rheumatoid arthritis development are urgently needed. Intestinal microbiome dysbiosis and shifts in the miRNA profile affect undifferentiated arthritis progression, and may play an important role in rheumatoid arthritis pathophysiologic process via stimulating inflammatory cytokines and disturbing host and microbial metabolic functions. However, a causal relationship between microbiome-miRNA interactions and rheumatoid arthritis development from undifferentiated arthritis has not been uncovered yet. Changes in the intestinal microbiome and miRNA profiles of undifferentiated arthritis patients with different disease outcomes should be studied together to uncover the role of the intestinal microbiome in rheumatoid arthritis development and to identify potential prognostic indicators of rheumatoid arthritis in undifferentiated arthritis patients. Herein, we discuss the possibility of microbiome-miRNA interactions contributing to rheumatoid arthritis development and describe the gaps in knowledge regarding their influence on undifferentiated arthritis prognosis that should be addressed by future studies.
Collapse
Affiliation(s)
- Haifeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 Zhejiang People’s Republic of China
| | - Yujun Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 Zhejiang People’s Republic of China
| | - Jiezuan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 Zhejiang People’s Republic of China
| | - Hua Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 Zhejiang People’s Republic of China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 Zhejiang People’s Republic of China
| |
Collapse
|
25
|
Dery KJ, Górski A, Międzybrodzki R, Farmer DG, Kupiec-Weglinski JW. Therapeutic Perspectives and Mechanistic Insights of Phage Therapy in Allotransplantation. Transplantation 2021; 105:1449-1458. [PMID: 33273319 DOI: 10.1097/tp.0000000000003565] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bacterio(phages) are bacteria-infecting viruses that employ host translation machinery to replicate, and upon cell lysis, release new particles into the environment. As a result, phages are prey-specific, thus making targeted phage therapy (PT) possible. Indeed, pre- and posttransplant bacterial infections pose a substantial risk to allograft recipients in their clinical course. Moreover, with the increasing threat of antibiotic resistance, the interest in PT as a potential solution to the crisis of multidrug-resistant bacterial pathogens has rapidly grown. Although little is known about the specific characteristics of the phage-directed immune responses, recent studies indicate phages exert anti-inflammatory and immunomodulatory functions, which could be beneficial in allotransplantation (allo-Tx). PT targeting multidrug-resistant Klebsiella pneumoniae, Mycobacterium abscessus, and Pseudomonas aeruginosa have been successfully applied in renal, lung, and liver allo-Tx patients. In parallel, the gastrointestinal microbiota appears to influence allo-Tx immunity by modulating the endoplasmic reticulum stress and autophagy signaling pathways through hepatic EP4/CHOP/LC3B platforms. This review highlights the current relevant immunobiology, clinical developments, and management of PT, and lays the foundation for future potential standard care use of PT in allo-Tx to mitigate early allograft dysfunction and improve outcomes. In conclusion, with novel immunobiology and metabolomics insights, harnessing the potential of PT to modulate microbiota composition/diversity may offer safe and effective refined therapeutic means to reduce risks of infections and immunosuppression in allo-Tx recipients.
Collapse
Affiliation(s)
- Kenneth J Dery
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Andrzej Górski
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
- Infant Jesus Teaching Hospital, Department of Clinical Immunology, The Medical University of Warsaw, Warsaw, Poland
| | - Ryszard Międzybrodzki
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
- Department of Clinical Immunology, The Medical University of Warsaw, Warsaw, Poland
| | - Douglas G Farmer
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Jerzy W Kupiec-Weglinski
- The Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, CA
| |
Collapse
|
26
|
Rao B, Lou J, Lu H, Liang H, Li J, Zhou H, Fan Y, Zhang H, Sun Y, Zou Y, Wu Z, Jiang Y, Ren Z, Yu Z. Oral Microbiome Characteristics in Patients With Autoimmune Hepatitis. Front Cell Infect Microbiol 2021; 11:656674. [PMID: 34094998 PMCID: PMC8170700 DOI: 10.3389/fcimb.2021.656674] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
Autoimmune hepatitis (AIH) is a common cause of liver cirrhosis. To identify the characteristics of the oral microbiome in patients with AIH, we collected 204 saliva samples including 68 AIH patients and 136 healthy controls and performed microbial MiSeq sequencing after screening. All samples were randomly divided into discovery cohorts (46 AIH and 92 HCs) and validation cohorts (22 AIH and 44 HCs). Moreover, we collected samples of 12 AIH patients from Hangzhou for cross-regional validation. We described the oral microbiome characteristics of AIH patients and established a diagnostic model. In the AIH group, the oral microbiome diversity was significantly increased. The microbial communities remarkably differed between the two groups. Seven genera, mainly Fusobacterium, Actinomyces and Capnocytophaga, were dominant in the HC group, while 51 genera, Streptococcus, Veillonella and Leptotrichia, were enriched in the AIH group. Notably, we found 23 gene functions, including Membrane Transport, Carbohydrate Metabolism, and Glycerolipid metabolism that were dominant in AIH and 31 gene functions that prevailed in HCs. We further investigated the correlation between the oral microbiome and clinical parameters. The optimal 5 microbial markers were figured out through a random forest model, and the distinguishing potential achieved 99.88% between 46 AIH and 92 HCs in the discovery cohort and 100% in the validation cohort. Importantly, the distinguishing potential reached 95.55% in the cross-regional validation cohort. In conclusion, this study is the first to characterize the oral microbiome in AIH patients and to report the successful establishment of a diagnostic model and the cross-regional validation of microbial markers for AIH. Importantly, oral microbiota-targeted biomarkers may be able to serve as powerful and noninvasive diagnostic tools for AIH.
Collapse
Affiliation(s)
- Benchen Rao
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiamin Lou
- Department of Infectious Diseases, Yiwu Central Hospital, Yiwu, China
| | - Haifeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hongxia Liang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Juan Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Heqi Zhou
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yajuan Fan
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hua Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ying Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yawen Zou
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhongwen Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yan Jiang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zujiang Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
27
|
Wang J, Li X, Wu X, Wang Z, Zhang C, Cao G, Liu S, Yan T. Gut microbiota alterations associated with antibody-mediated rejection after kidney transplantation. Appl Microbiol Biotechnol 2021; 105:2473-2484. [PMID: 33625548 DOI: 10.1007/s00253-020-11069-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 12/02/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022]
Abstract
Antibody-mediated rejection (AMR) has become the major challenge for kidney transplantation, and the efficacy of existing therapies was limited to prevent AMR. Increasing evidences have demonstrated the link between gut microbiota alterations and allograft outcome. However, there has been no comprehensive analysis to profile the gut microbiota associated with AMR after kidney transplantation. We performed this study to characterize the gut microbiota possibly associated with AMR. Fecal specimens were collected from 24 kidney transplantation recipients with AMR and 29 controls. DNA extracted from the specimens was processed for 16S rRNA gene sequencing using Illumina MiSeq. Gut microbial community of recipients with AMR was significantly different from that of controls based on unweighted (P = 0.001) and weighted (P = 0.02) UniFrac distances, and the bacterial richness (observed species: P = 0.0448; Chao1 index: P = 0.0450; ACE index: P = 0.0331) significantly decreased in the AMR group. LEfSe showed that 1 phylum, 5 classes, 7 families, and 10 genera were increased, whereas 1 class, 2 order, 3 families, and 4 genera were decreased in the AMR group. Specific taxa such as Clostridiales could be potentially used as biomarkers to distinguish the recipients with AMR from the controls (AUC = 0.77). PICRUSt analysis illustrated that 16 functional pathways were with significantly different abundances in the AMR and control groups. Our findings provide a foundation for further investigation on the role of gut microbiota in AMR after kidney transplantation, and potentially support novel diagnostic biomarkers and therapeutic options for AMR. KEY POINTS: • Gut microbial community of kidney recipients with AMR was different from that of controls. • Clostridiales is a potential marker to distinguish recipients with AMR from controls.
Collapse
Affiliation(s)
- Junpeng Wang
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, China.,Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xin Li
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou, 450001, China.,Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaoqiang Wu
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, China
| | - Zhiwei Wang
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, China
| | - Chan Zhang
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, China
| | - Guanghui Cao
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, China
| | - Shun Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Tianzhong Yan
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, 450003, China.
| |
Collapse
|
28
|
Campbell PM, Humphreys GJ, Summers AM, Konkel JE, Knight CG, Augustine T, McBain AJ. Does the Microbiome Affect the Outcome of Renal Transplantation? Front Cell Infect Microbiol 2020; 10:558644. [PMID: 33425774 PMCID: PMC7785772 DOI: 10.3389/fcimb.2020.558644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 11/17/2020] [Indexed: 12/31/2022] Open
Abstract
The role of the human microbiome in health and disease is becoming increasingly apparent. Emerging evidence suggests that the microbiome is affected by solid organ transplantation. Kidney transplantation is the gold standard treatment for End-Stage Renal Disease (ESRD), the advanced stage of Chronic Kidney Disease (CKD). The question of how ESRD and transplantation affect the microbiome and vice versa includes how the microbiome is affected by increased concentrations of toxins such as urea and creatinine (which are elevated in ESRD), whether restoration of renal function following transplantation alters the composition of the microbiome, and the impact of lifelong administration of immunosuppressive drugs on the microbiome. Changes in microbiome composition and activity have been reported in ESRD and in therapeutic immunosuppression, but the effect on the outcome of transplantation is not well-understood. Here, we consider the current evidence that changes in kidney function and immunosuppression following transplantation influence the oral, gut, and urinary microbiomes in kidney transplant patients. The potential for changes in these microbiomes to lead to disease, systemic inflammation, or rejection of the organ itself is discussed, along with the possibility that restoration of kidney function might re-establish orthobiosis.
Collapse
Affiliation(s)
- Paul M Campbell
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Gavin J Humphreys
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Angela M Summers
- Department of Renal and Pancreatic Transplantation, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Joanne E Konkel
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Christopher G Knight
- School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, United Kingdom
| | - Titus Augustine
- Department of Renal and Pancreatic Transplantation, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Andrew J McBain
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
29
|
Micó-Carnero M, Rojano-Alfonso C, Álvarez-Mercado AI, Gracia-Sancho J, Casillas-Ramírez A, Peralta C. Effects of Gut Metabolites and Microbiota in Healthy and Marginal Livers Submitted to Surgery. Int J Mol Sci 2020; 22:44. [PMID: 33375200 PMCID: PMC7793124 DOI: 10.3390/ijms22010044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 12/12/2022] Open
Abstract
Microbiota is defined as the collection of microorganisms within the gastrointestinal ecosystem. These microbes are strongly implicated in the stimulation of immune responses. An unbalanced microbiota, termed dysbiosis, is related to the development of several liver diseases. The bidirectional relationship between the gut, its microbiota and the liver is referred to as the gut-liver axis. The translocation of bacterial products from the intestine to the liver induces inflammation in different cell types such as Kupffer cells, and a fibrotic response in hepatic stellate cells, resulting in deleterious effects on hepatocytes. Moreover, ischemia-reperfusion injury, a consequence of liver surgery, alters the microbiota profile, affecting inflammation, the immune response and even liver regeneration. Microbiota also seems to play an important role in post-operative outcomes (i.e., liver transplantation or liver resection). Nonetheless, studies to determine changes in the gut microbial populations produced during and after surgery, and affecting liver function and regeneration are scarce. In the present review we analyze and discuss the preclinical and clinical studies reported in the literature focused on the evaluation of alterations in microbiota and its products as well as their effects on post-operative outcomes in hepatic surgery.
Collapse
Affiliation(s)
- Marc Micó-Carnero
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.M.-C.); (C.R.-A.)
| | - Carlos Rojano-Alfonso
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.M.-C.); (C.R.-A.)
| | - Ana Isabel Álvarez-Mercado
- Departamento de Bioquímica y Biología Molecular II, Escuela de Farmacia, Universidad de Granada, 18071 Granada, Spain;
- Institut of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs, GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory IDIBAPS, 03036 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain
| | - Araní Casillas-Ramírez
- Hospital Regional de Alta Especialidad de Ciudad Victoria “Bicentenario 2010”, Ciudad Victoria 87087, Mexico;
- Facultad de Medicina e Ingeniería en Sistemas Computacionales de Matamoros, Universidad Autónoma de Tamaulipas, Matamoros 87300, Mexico
| | - Carmen Peralta
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.M.-C.); (C.R.-A.)
| |
Collapse
|
30
|
Khachatoorian Y, Khachadourian V, Chang E, Sernas ER, Reed EF, Deng M, Piening BD, Pereira AC, Keating B, Cadeiras M. Noninvasive biomarkers for prediction and diagnosis of heart transplantation rejection. Transplant Rev (Orlando) 2020; 35:100590. [PMID: 33401139 DOI: 10.1016/j.trre.2020.100590] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 01/12/2023]
Abstract
For most patients with end-stage heart failure, heart transplantation is the treatment of choice. Allograft rejection is one of the major post-transplantation complications affecting graft outcome and survival. Recent advancements in science and technology offer an opportunity to integrate genomic and other omics-based biomarkers into clinical practice, facilitating noninvasive evaluation of allograft for diagnostic and prognostic purposes. Omics, including gene expression profiling (GEP) of blood immune cell components and donor-derived cell-free DNA (dd-cfDNA) are of special interest to researchers. Several studies have investigated levels of dd-cfDNA and miroRNAs in blood as potential markers for early detection of allograft rejection. One of the achievements in the field of transcriptomics is AlloMap, GEP of peripheral blood mononuclear cells (PBMC), which can identify 11 differentially expressed genes and help with detection of moderate and severe acute cellular rejection in stable heart transplant recipients. In recent years, the utilization of GEP of PBMC for identifying differentially expressed genes to diagnose acute antibody-mediated rejection and cardiac allograft vasculopathy has yielded promising results. Advancements in the field of metabolomics and proteomics as well as their potential implications have been further discussed in this paper.
Collapse
Affiliation(s)
- Yeraz Khachatoorian
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America.
| | - Vahe Khachadourian
- Turpanjian School of Public Health, American University of Armenia, Yerevan, Armenia
| | - Eleanor Chang
- Division of Cardiology, David Geffen School of Medicine, Los Angeles, CA, United States of America
| | - Erick R Sernas
- Division of Cardiovascular Medicine, University of California Davis, Davis, CA, United States of America
| | - Elaine F Reed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, United States of America
| | - Mario Deng
- Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA, United States of America
| | - Brian D Piening
- Earle A Chiles Research Institute, Providence Health and Services, Portland, OR, United States of America
| | | | - Brendan Keating
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Martin Cadeiras
- Division of Cardiovascular Medicine, University of California Davis, Davis, CA, United States of America
| |
Collapse
|
31
|
Baghai Arassi M, Zeller G, Karcher N, Zimmermann M, Toenshoff B. The gut microbiome in solid organ transplantation. Pediatr Transplant 2020; 24:e13866. [PMID: 32997434 DOI: 10.1111/petr.13866] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/06/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023]
Abstract
Despite ground-breaking advances in allogeneic transplantation, allograft rejection and immunosuppressant-specific complications remain a major challenge in transplant medicine. Growing evidence suggests the human gut microbiome as a potential contributor to transplant outcome and patient health. After breakthrough findings in haematopoietic stem cell transplantation (HSCT), the relevance of the microbiome in solid organ transplantation (SOT) is becoming increasingly clear. Here, we review the role of the microbiome in SOT focusing on its significance for transplant-associated complications such as allograft rejection and infections, and highlight its potential impact on immunosuppressive treatment. Moreover, we shed light on the emerging role of the microbiome as a diagnostic biomarker and therapeutic target and discuss current microbial intervention strategies. In addition, this review includes some practical considerations in designing clinical microbiome trials and offers some advice for the interpretation of the resulting data. Further investigation of the gut microbiome harbours countless clinical application possibilities and holds great promise of having a lasting impact on transplant medicine.
Collapse
Affiliation(s)
- Maral Baghai Arassi
- Department of Paediatrics I, University Children's Hospital Heidelberg, Heidelberg, Germany.,Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Georg Zeller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Nicolai Karcher
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Michael Zimmermann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Burkhard Toenshoff
- Department of Paediatrics I, University Children's Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
32
|
Ren Z, Fan Y, Li A, Shen Q, Wu J, Ren L, Lu H, Ding S, Ren H, Liu C, Liu W, Gao D, Wu Z, Guo S, Wu G, Liu Z, Yu Z, Li L. Alterations of the Human Gut Microbiome in Chronic Kidney Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001936. [PMID: 33101877 PMCID: PMC7578882 DOI: 10.1002/advs.202001936] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/23/2020] [Indexed: 05/07/2023]
Abstract
Gut microbiota make up the largest microecosystem in the human body and are closely related to chronic metabolic diseases. Herein, 520 fecal samples are collected from different regions of China, the gut microbiome in chronic kidney disease (CKD) is characterized, and CKD classifiers based on microbial markers are constructed. Compared with healthy controls (HC, n = 210), gut microbial diversity is significantly decreased in CKD (n = 110), and the microbial community is remarkably distinguished from HC. Genera Klebsiella and Enterobacteriaceae are enriched, while Blautia and Roseburia are reduced in CKD. Fifty predicted microbial functions including tryptophan and phenylalanine metabolisms increase, while 36 functions including arginine and proline metabolisms decrease in CKD. Notably, five optimal microbial markers are identified using the random forest model. The area under the curve (AUC) reaches 0.9887 in the discovery cohort and 0.9512 in the validation cohort (49 CKD vs 63 HC). Importantly, the AUC reaches 0.8986 in the extra diagnosis cohort from Hangzhou. Moreover, Thalassospira and Akkermansia are increased with CKD progression. Thirteen operational taxonomy units are correlated with six clinical indicators of CKD. In conclusion, this study comprehensively characterizes gut microbiome in non-dialysis CKD and demonstrates the potential of microbial markers as non-invasive diagnostic tools for CKD in different regions of China.
Collapse
Affiliation(s)
- Zhigang Ren
- Department of Infectious DiseasesThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
- Gene Hospital of Henan Province Precision Medicine CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
| | - Yajuan Fan
- Department of NephrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
| | - Ang Li
- Department of Infectious DiseasesThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
- Gene Hospital of Henan Province Precision Medicine CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
- Health Management CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
| | - Quanquan Shen
- Department of Nephrology, Zhejiang Provincial People's HospitalPeople's Hospital of Hangzhou Medical CollegeHangzhouZhejiang310014China
- Department of NephrologyChun'an First People's HospitalHangzhouZhejiang311770China
| | - Jian Wu
- College of Public HealthZhengzhou UniversityZhengzhou450052China
| | - Lingyan Ren
- Department of NephrologyThe First Affiliated Hospital of Huzhou Teachers CollegeThe First People's Hospital of HuzhouHuzhouZhejiang313000China
| | - Haifeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseaseNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhou310003China
| | - Suying Ding
- Health Management CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
| | - Hongyan Ren
- Shanghai Mobio Biomedical Technology Co., Ltd.Shanghai201111China
| | - Chao Liu
- Shanghai Mobio Biomedical Technology Co., Ltd.Shanghai201111China
| | - Wenli Liu
- Clinical Laboratory Diagnostics, Medical Technology CollegeBeihua UniversityJilin132013China
| | - Dan Gao
- Department of NephrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
| | - Zhongwen Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseaseNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhou310003China
| | - Shiyuan Guo
- Department of NephrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
| | - Ge Wu
- Department of NephrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
| | - Zhangsuo Liu
- Department of NephrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
| | - Zujiang Yu
- Department of Infectious DiseasesThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
- Gene Hospital of Henan Province Precision Medicine CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseaseNational Clinical Research Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhou310003China
| |
Collapse
|
33
|
|
34
|
Analysis of the diversity of intestinal microbiome and its potential value as a biomarker in patients with schizophrenia: A cohort study. Psychiatry Res 2020; 291:113260. [PMID: 32763534 DOI: 10.1016/j.psychres.2020.113260] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/15/2020] [Accepted: 06/26/2020] [Indexed: 02/08/2023]
Abstract
Exploring the gut microbiota characteristics of patients with acute and remission schizophrenia (SCZ) and evaluating the potential of the gut microbiome as a non-invasive biomarker for SCZ. A total of 87 fecal samples were collected, including a total of 58 samples from 29 SCZ patients over two different periods (remission and onset period) and 29 samples from the control group for 16S rRNA Miseq.The changes of intestinal microbiota in SCZ patients from remission to onset were analyzed, and a random forest model was constructed to recognize biomarkers. The optimal three genus-level diagnosis biomarkers were identified through an AUC validation on a random forest model, furthermore, an AUC of 0.76 (95% CI (0.63, 0.89)) was achieved between 29 aSCZ and 29 HCs. Compared with the control group, the first 11 OUT-level' biomarkers were identified in rSCZ group. As a status marker of the disease, the AUC of 0.7 (95% CI (0.56, 0.84)) was achieved between 29 rSCZ and 29 HCs. There were differences between SCZ patients and HCs, acute and remission patients as well, suggesting that the potential of the gut microbiota as a non-invasive diagnostic tool. Moreover, the features of the gut microbiome of SCZ provide clues for disease prognosis assessment and targeted intervention.
Collapse
|
35
|
Roberts MB, Fishman JA. Immunosuppressive Agents and Infectious Risk in Transplantation: Managing the "Net State of Immunosuppression". Clin Infect Dis 2020; 73:e1302-e1317. [PMID: 32803228 DOI: 10.1093/cid/ciaa1189] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Indexed: 12/14/2022] Open
Abstract
Successful solid organ transplantation reflects meticulous attention to the details of immunosuppression, balancing risks for graft rejection against risks for infection. The 'net state of immune suppression' is a conceptual framework of all factors contributing to infectious risk. Assays which measure immune function in the immunosuppressed transplant recipient relative to infectious risk and allograft function are lacking. The best measures of integrated immune function may be quantitative viral loads to assess the individual's ability to control latent viral infections. Few studies address adjustment of immunosuppression during active infections. Thus, confronted with infection in solid organ recipients, the management of immunosuppression is based largely on clinical experience. This review examines known measures of immune function and the immunologic effects of common immunosuppressive drugs and available studies reporting modification of drug regimens for specific infections. These data provide a conceptual framework for the management of immunosuppression during infection in organ recipients.
Collapse
Affiliation(s)
- Matthew B Roberts
- Transplant Infectious Disease and Compromised Host Program and Transplant Center, Massachusetts General Hospital, Boston MA
| | - Jay A Fishman
- Transplant Infectious Disease and Compromised Host Program and Transplant Center, Massachusetts General Hospital, Boston MA.,Harvard Medical School, Boston, MA
| |
Collapse
|
36
|
Lou J, Jiang Y, Rao B, Li A, Ding S, Yan H, Zhou H, Liu Z, Shi Q, Cui G, Yu Z, Ren Z. Fecal Microbiomes Distinguish Patients With Autoimmune Hepatitis From Healthy Individuals. Front Cell Infect Microbiol 2020; 10:342. [PMID: 32850468 PMCID: PMC7416601 DOI: 10.3389/fcimb.2020.00342] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 06/04/2020] [Indexed: 12/12/2022] Open
Abstract
Objective: The intestinal microbiome is associated with various autoimmune diseases. Regional difference is the main influencing factor of intestinal microbial difference. This study aimed to identify the differences in fecal microbiome between autoimmune hepatitis (AIH) patients and healthy controls (HCs) in Central China, and to validate the efficacy of fecal microbiome as a diagnostic tool for AIH. Design: We collected 115 fecal samples from AIH patients (N = 37) and HCs (N = 78) in Central China and performed gene sequencing. Fecal microbiomes were characterized and microbial markers for AIH were identified. Results: Fecal microbial diversity showed a downward trend in AIH compared with HCs. Fecal microbial communities significantly differed between both groups. At the phylum level, Verrucomicrobia abundance was significantly increased, while Lentisphaerae and Synergistetes were significantly decreased in the AIH patients vs. the HCs. Compared to the HCs, 15 genera, including Veillonella, Faecalibacterium, and Akkermansia, were enriched, while 19 genera, such as Pseudobutyrivibrio, Lachnospira, and Ruminococcaceae, were decreased in the AIH patients. Ten genera, including Veillonella, Faecalibacterium, and Akkermansia, predominated in the AIH patients. Five microbial biomarkers were deemed optimal diagnostic tools for AIH. The probability of disease was significantly increased in AIH group vs. HCs, achieving 83.25% value of area under the curve. Conclusion: We present the characteristics of AIH patients in Central China for the first time. Five microbial biomarkers, including Lachnospiraceae, Veillonella, Bacteroides, Roseburia, and Ruminococcaceae, achieved a high potential distinguishing AIH patients from HCs.
Collapse
Affiliation(s)
- Jiamin Lou
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Jiang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Benchen Rao
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ang Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Suying Ding
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hang Yan
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Heqi Zhou
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenguo Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qingmiao Shi
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangying Cui
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zujiang Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
37
|
Dery KJ, Kadono K, Hirao H, Górski A, Kupiec-Weglinski JW. Microbiota in organ transplantation: An immunological and therapeutic conundrum? Cell Immunol 2020; 351:104080. [PMID: 32139071 DOI: 10.1016/j.cellimm.2020.104080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 12/15/2022]
Abstract
The gastrointestinal (GI) tract microbiota is an environmental factor that regulates host immunity in allo-transplantation (allo-Tx). It is required for the development of resistance against pathogens and the stabilization of mucosa-associated lymphoid tissue. The gut-microbiota axis may also precipitate allograft rejection by producing metabolites that activate host cell-mediated and humoral immunity. Here, we discuss new insights into microbial immunomodulation, highlighting ongoing attempts to affect commensal colonization in an attempt to ameliorate allograft rejection cascade. Recent progress on the use of antibiotics to modulate GI microbiota diversity and innate-adaptive immune interface are discussed. Our focus on the microbiota's influence of endoplasmic reticulum (ER) stress and autophagy signaling through hepatic EP4/CHOP/LC3B platforms reveals a novel molecular pathway and potential biomarkers determining the progression of allo-Tx damage. Understanding and harnessing the potential of microbiome/bacteriophage therapies may offer safe and effective means for personalized treatment to reduce risks of infections and immunosuppression in allo-Tx.
Collapse
Affiliation(s)
- Kenneth J Dery
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles 90095, CA, USA
| | - Kentaro Kadono
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles 90095, CA, USA
| | - Hirofumi Hirao
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles 90095, CA, USA
| | - Andrzej Górski
- Bacteriophage Laboratory and Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Jerzy W Kupiec-Weglinski
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles 90095, CA, USA.
| |
Collapse
|
38
|
Cornide-Petronio ME, Álvarez-Mercado AI, Jiménez-Castro MB, Peralta C. Current Knowledge about the Effect of Nutritional Status, Supplemented Nutrition Diet, and Gut Microbiota on Hepatic Ischemia-Reperfusion and Regeneration in Liver Surgery. Nutrients 2020; 12:284. [PMID: 31973190 PMCID: PMC7071361 DOI: 10.3390/nu12020284] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 02/06/2023] Open
Abstract
Ischemia-reperfusion (I/R) injury is an unresolved problem in liver resection and transplantation. The preexisting nutritional status related to the gut microbial profile might contribute to primary non-function after surgery. Clinical studies evaluating artificial nutrition in liver resection are limited. The optimal nutritional regimen to support regeneration has not yet been exactly defined. However, overnutrition and specific diet factors are crucial for the nonalcoholic or nonalcoholic steatohepatitis liver diseases. Gut-derived microbial products and the activation of innate immunity system and inflammatory response, leading to exacerbation of I/R injury or impaired regeneration after resection. This review summarizes the role of starvation, supplemented nutrition diet, nutritional status, and alterations in microbiota on hepatic I/R and regeneration. We discuss the most updated effects of nutritional interventions, their ability to alter microbiota, some of the controversies, and the suitability of these interventions as potential therapeutic strategies in hepatic resection and transplantation, overall highlighting the relevance of considering the extended criteria liver grafts in the translational liver surgery.
Collapse
Affiliation(s)
| | - Ana Isabel Álvarez-Mercado
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain;
- Institute of Nutrition and Food Technology “José Mataix,” Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n, 18016 Armilla, Granada, Spain
- Instituto de Investigación Biosanitaria ibs, GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Mónica B. Jiménez-Castro
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.E.C.-P.); (M.B.J.-C.)
| | - Carmen Peralta
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain; (M.E.C.-P.); (M.B.J.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain
| |
Collapse
|
39
|
Ren Z, Chen X, Hong L, Zhao X, Cui G, Li A, Liu Y, Zhou L, Sun R, Shen S, Li J, Lou J, Zhou H, Wang J, Xu G, Yu Z, Song Y, Chen X. Nanoparticle Conjugation of Ginsenoside Rg3 Inhibits Hepatocellular Carcinoma Development and Metastasis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905233. [PMID: 31814271 DOI: 10.1002/smll.201905233] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/11/2019] [Indexed: 05/25/2023]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. The prognosis of HCC remains very poor; thus, an effective treatment remains urgent. Herein, a type of nanomedicine is developed by conjugating Fe@Fe3 O4 nanoparticles with ginsenoside Rg3 (NpRg3), which achieves an excellent coupling effect. In the dimethylnitrosamine-induced HCC model, NpRg3 application significantly prolongs the survival of HCC mice. Further research indicates that NpRg3 application significantly inhibits HCC development and eliminates HCC metastasis to the lung. Notably, NpRg3 application delays HCC-induced ileocecal morphology and gut microbial alterations more than 12 weeks during HCC progression. NpRg3 administration elevates the abundance of Bacteroidetes and Verrucomicrobia, but decreases Firmicutes. Twenty-nine predicted microbial gene functions are enriched, while seven gene functions are reduced after NpRg3 administration. Moreover, the metabolomics profile presents a significant progression during HCC development, but NpRg3 administration corrects tumor-dominant metabolomics. NpRg3 administration decreases 3-indolepropionic acid and urea, but elevates free fatty acids. Importantly, NpRg3 application remodels the unbalanced correlation networks between gut microbiota and metabolism during HCC therapy. In conclusion, nanoparticle conjugation of ginsenoside Rg3 inhibits HCC development and metastasis via the remodeling of unbalanced gut microbiota and metabolism in vivo, providing an antitumor therapy strategy.
Collapse
Affiliation(s)
- Zhigang Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xinmei Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Liangjie Hong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China
| | - Xiaoxiong Zhao
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, Center for Modern Physics Technology, Science and Technology University of Beijing, Beijing, 100083, China
| | - Guangying Cui
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ang Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yang Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lina Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Ranran Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shen Shen
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Juan Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jiamin Lou
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Heqi Zhou
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Junmei Wang
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, Center for Modern Physics Technology, Science and Technology University of Beijing, Beijing, 100083, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zujiang Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yujun Song
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, Center for Modern Physics Technology, Science and Technology University of Beijing, Beijing, 100083, China
- Department of Physics, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Xinhua Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China
| |
Collapse
|
40
|
Spence CD, Vanaudenaerde B, Einarsson GG, Mcdonough J, Lee AJ, Johnston E, Verleden GM, Elborn JS, Dupont LJ, Van Herck A, Gilpin DF, Vos R, Tunney MM, Verleden SE. Influence of azithromycin and allograft rejection on the post-lung transplant microbiota. J Heart Lung Transplant 2019; 39:176-183. [PMID: 31812487 DOI: 10.1016/j.healun.2019.11.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/22/2019] [Accepted: 11/11/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Alterations in the lung microbiota may drive disease development and progression in patients with chronic respiratory diseases. Following lung transplantation (LTx), azithromycin is used to both treat and prevent chronic lung allograft dysfunction (CLAD). The objective of this study was to determine the association between azithromycin use, CLAD, acute rejection, airway inflammation, and bacterial microbiota composition and structure after LTx. METHODS Bronchoalveolar lavage samples (n = 219) from 69 LTx recipients (azithromycin, n = 32; placebo, n = 37) from a previously conducted randomized placebo-controlled trial with azithromycin were analyzed. Samples were collected at discharge, 1, and 2 years following randomization and at CLAD diagnosis. Bacterial microbial community composition and structure was determined using 16S ribosomal RNA gene sequencing and associated with clinically important variables. RESULTS At discharge and following 1 and 2 years of azithromycin therapy, no clear differences in microbial community composition or overall diversity were observed. Moreover, no changes in microbiota composition were observed in CLAD phenotypes. However, acute rejection was associated with a reduction in community diversity (p = 0.0009). Significant correlations were observed between microbiota composition, overall diversity, and levels of inflammatory cytokines in bronchoalveolar lavage, particularly CXCL8. CONCLUSIONS Chronic azithromycin usage did not disturb the bacterial microbiota. However, acute rejection episodes were associated with bacterial dysbiosis.
Collapse
Affiliation(s)
| | - Bart Vanaudenaerde
- Leuven Lung Transplant Unit, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Gísli G Einarsson
- School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - John Mcdonough
- Leuven Lung Transplant Unit, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Andrew J Lee
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Elinor Johnston
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Geert M Verleden
- Leuven Lung Transplant Unit, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - J Stuart Elborn
- School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Lieven J Dupont
- Leuven Lung Transplant Unit, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Anke Van Herck
- Leuven Lung Transplant Unit, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Deirdre F Gilpin
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Robin Vos
- Leuven Lung Transplant Unit, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Michael M Tunney
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Stijn E Verleden
- Leuven Lung Transplant Unit, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium.
| |
Collapse
|
41
|
Functional Microbiomics in Liver Transplantation: Identifying Novel Targets for Improving Allograft Outcomes. Transplantation 2019; 103:668-678. [PMID: 30507741 DOI: 10.1097/tp.0000000000002568] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gut dysbiosis, defined as a maladaptive gut microbial imbalance, has been demonstrated in patients with end-stage liver disease, defined as a contributor to disease progression, and associated clinically with severity of disease and liver-related morbidity and mortality. Despite this well-recognized phenomena in patients with end-stage liver disease, the impact of gut dysbiosis and its rate of recovery following liver transplantation (LT) remains incompletely understood. The mechanisms by which alterations in the gut microbiota impact allograft metabolism and immunity, both directly and indirectly, are multifactorial and reflect the complexity of the gut-liver axis. Importantly, while research has largely focused on quantitative and qualitative changes in gut microbial composition, changes in microbial functionality (in the presence or absence of compositional changes) are of critical importance. Therefore, to translate functional microbiomics into clinical practice, one must understand not only the compositional but also the functional changes associated with gut dysbiosis and its resolution post-LT. In this review, we will summarize critical advances in functional microbiomics in LT recipients as they apply to immune-mediated allograft injury, posttransplant complications, and disease recurrence, while highlighting potential areas for microbial-based therapeutics in LT recipients.
Collapse
|
42
|
Nakamura K, Kageyama S, Ito T, Hirao H, Kadono K, Aziz A, Dery KJ, Everly MJ, Taura K, Uemoto S, Farmer DG, Kaldas FM, Busuttil RW, Kupiec-Weglinski JW. Antibiotic pretreatment alleviates liver transplant damage in mice and humans. J Clin Invest 2019; 129:3420-3434. [PMID: 31329160 PMCID: PMC6668671 DOI: 10.1172/jci127550] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 05/21/2019] [Indexed: 12/13/2022] Open
Abstract
Although modifications of gut microbiota with antibiotics (Abx) influence mouse skin and cardiac allografts, its role in orthotopic liver transplantation (OLT) remains unknown. We aimed to determine whether and how recipient Abx pretreatment may affect hepatic ischemia-reperfusion injury (IRI) and OLT outcomes. Mice (C57BL/6) with or without Abx treatment (10 days) were transplanted with allogeneic (BALB/c) cold-stored (18 hours) livers, followed by liver and blood sampling (6 hours). We divided 264 human OLT recipients on the basis of duration of pre-OLT Abx treatment into control (Abx-free/Abx <10 days; n = 108) and Abx treatment (Abx ≥10days; n = 156) groups; OLT biopsy (Bx) samples were collected 2 hours after OLT (n = 52). Abx in mice mitigated IRI-stressed OLT (IRI-OLT), decreased CCAAT/enhancer-binding protein homologous protein (CHOP) (endoplasmic reticulum [ER] stress), enhanced LC3B (autophagy), and inhibited inflammation, whereas it increased serum prostaglandin E2 (PGE2) and hepatic PGE2 receptor 4 (EP4) expression. PGE2 increased EP4, suppressed CHOP, and induced autophagosome formation in hepatocyte cultures in an EP4-dependent manner. An EP4 antagonist restored CHOP, suppressed LC3B, and recreated IRI-OLT. Remarkably, human recipients of Abx treatment plus OLT (Abx-OLT), despite severe pretransplantation clinical acuity, had higher EP4 and LC3B levels but lower CHOP levels, which coincided with improved hepatocellular function (serum aspartate aminotransferase/serum aspartate aminotransferase [sALT/sAST]) and a decreased incidence of early allograft dysfunction (EAD). Multivariate analysis identified "Abx-free/Abx <10 days" as a predictive factor of EAD. This study documents the benefits of Abx pretreatment in liver transplant recipients, identifies ER stress and autophagy regulation by the PGE2/EP4 axis as a homeostatic underpinning, and points to the microbiome as a therapeutic target in OLT.
Collapse
Affiliation(s)
- Kojiro Nakamura
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Shoichi Kageyama
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Takahiro Ito
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Hirofumi Hirao
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Kentaro Kadono
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Antony Aziz
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Kenneth J. Dery
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | | | - Kojiro Taura
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinji Uemoto
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Douglas G. Farmer
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Fady M. Kaldas
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Ronald W. Busuttil
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jerzy W. Kupiec-Weglinski
- Dumont-UCLA Transplantation Center, Department of Surgery, Division of Liver and Pancreas Transplantation, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
43
|
Lu HF, Ren ZG, Li A, Zhang H, Xu SY, Jiang JW, Zhou L, Ling Q, Wang BH, Cui GY, Chen XH, Zheng SS, Li LJ. Fecal Microbiome Data Distinguish Liver Recipients With Normal and Abnormal Liver Function From Healthy Controls. Front Microbiol 2019; 10:1518. [PMID: 31333622 PMCID: PMC6619441 DOI: 10.3389/fmicb.2019.01518] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 06/18/2019] [Indexed: 12/27/2022] Open
Abstract
Emerging evidence suggests that altered intestinal microbiota plays an important role in the pathogenesis of many liver diseases, mainly by promoting inflammation via the "intestinal microbiota-immunity-liver" axis. We aimed to investigate the fecal microbiome of liver recipients with abnormal/normal liver function using 16S rRNA gene sequencing. Fecal samples were collected from 90 liver recipients [42 with abnormal liver function (Group LT_A) and 48 with normal liver function (Group LT_N)] and 61 age- and gender-matched healthy controls (HCs). Fecal microbiomes were analyzed for comparative composition, diversity, and richness of microbial communities. Principal coordinates analysis successfully distinguished the fecal microbiomes of recipients in Group LT_A from healthy subjects, with the significant decrease of fecal microbiome diversity in recipients in Group LT_A. Other than a higher relative abundance of opportunistic pathogens such as Klebsiella and Escherichia/Shigella in all liver recipients, the main difference in gut microbiome composition between liver recipients and HC was the lower relative abundance of beneficial butyrate-producing bacteria in the recipients. Importantly, we established a fecal microbiome index (specific alterations in Staphylococcus and Prevotella) that could be used to distinguish Group LT_A from Group LT_N, with an area under the receiver operating characteristic curve value of 0.801 and sensitivity and specificity values of 0.771 and 0.786, respectively. These findings revealed unique gut microbial characteristics of liver recipients with abnormal and normal liver functions, and identified fecal microbial risk indicators of abnormal liver function in liver recipients.
Collapse
Affiliation(s)
- Hai-Feng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhi-Gang Ren
- Department of Infectious Diseases, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ang Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Infectious Diseases, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hua Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shao-Yan Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jian-Wen Jiang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
- Health Management Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Qi Ling
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Bao-Hong Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guang-Ying Cui
- Department of Infectious Diseases, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin-Hua Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Shu-Sen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Lan-Juan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
44
|
Ren Z, Li A, Jiang J, Zhou L, Yu Z, Lu H, Xie H, Chen X, Shao L, Zhang R, Xu S, Zhang H, Cui G, Chen X, Sun R, Wen H, Lerut JP, Kan Q, Li L, Zheng S. Gut microbiome analysis as a tool towards targeted non-invasive biomarkers for early hepatocellular carcinoma. Gut 2019; 68:1014-1023. [PMID: 30045880 PMCID: PMC6580753 DOI: 10.1136/gutjnl-2017-315084] [Citation(s) in RCA: 490] [Impact Index Per Article: 81.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 06/05/2018] [Accepted: 06/07/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To characterise gut microbiome in patients with hepatocellular carcinoma (HCC) and evaluate the potential of microbiome as non-invasive biomarkers for HCC. DESIGN We collected 486 faecal samples from East China, Central China and Northwest China prospectively and finally 419 samples completed Miseq sequencing. We characterised gut microbiome, identified microbial markers and constructed HCC classifier in 75 early HCC, 40 cirrhosis and 75 healthy controls. We validated the results in 56 controls, 30 early HCC and 45 advanced HCC. We further verified diagnosis potential in 18 HCC from Xinjiang and 80 HCC from Zhengzhou. RESULTS Faecal microbial diversity was increased from cirrhosis to early HCC with cirrhosis. Phylum Actinobacteria was increased in early HCC versus cirrhosis. Correspondingly, 13 genera including Gemmiger and Parabacteroides were enriched in early HCC versus cirrhosis. Butyrate-producing genera were decreased, while genera producing-lipopolysaccharide were increased in early HCC versus controls. The optimal 30 microbial markers were identified through a fivefold cross-validation on a random forest model and achieved an area under the curve of 80.64% between 75 early HCC and 105 non-HCC samples. Notably, gut microbial markers validated strong diagnosis potential for early HCC and even advanced HCC. Importantly, microbial markers successfully achieved a cross-region validation of HCC from Northwest China and Central China. CONCLUSIONS This study is the first to characterise gut microbiome in patients with HCC and to report the successful diagnosis model establishment and cross-region validation of microbial markers for HCC. Gut microbiota-targeted biomarkers represent potential non-invasive tools for early diagnosis of HCC.
Collapse
Affiliation(s)
- Zhigang Ren
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, China
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ang Li
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Jianwen Jiang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
- Health Management Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Zujiang Yu
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haifeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Haiyang Xie
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Xiaolong Chen
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Shao
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Ruiqing Zhang
- Hepatobiliary and Hydatid Department, Digestive and Vascular Surgery Centre, Xinjiang Key Laboratory of Echinococcosis, the First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Xinjiang, China
| | - Shaoyan Xu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Hua Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Guangying Cui
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinhua Chen
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Ranran Sun
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hao Wen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Xinjiang, China
| | - Jan P Lerut
- Starzl Unit Abdominal Transplantation, University Hospitals Saint Luc, Université catholique Louvain, UCL Brussels, Brussels, Belgium
| | - Quancheng Kan
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Shusen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, China
| |
Collapse
|
45
|
Guirong YE, Minjie Z, Lixin YU, Junsheng YE, Lin Y, Lisha S. [Gut microbiota in renal transplant recipients, patients with chronic kidney disease and healthy subjects]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 38:1401-1408. [PMID: 30613005 DOI: 10.12122/j.issn.1673-4254.2018.12.01] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Recent studies have shown that gut microbiota is associated with immunomodulation in transplant recipients, but the composition and function of gut microbiota in renal transplant recipients have not been understood. METHODS We analyzed the composition and function of gut microbiota in the fecal samples from 16 renal transplant (RT) recipients by deep sequencing of the 16S rRNA V3 variable region. The gut microbiota of RT recipients was compared to that of 84 patients with chronic kidney disease (CKD) and 53 healthy subjects. RESULTS The overall microbial structure of RT recipients was similar to that of CKD. The abundance of Firmicutes, Lachnospiraceae, Ruminococcaceae and Faecalibacterium was decreased and that of Bacteroidetes, Proteobacteria, Clostridiales, and Enterobacteriaceae was increased significantly in RT recipients and CKD patients compared with the healthy control subjects. Functional comparison revealed significantly enhanced carbohydrate metabolism and decreased metabolism of cofactors, vitamins, cell motility and genetic information processing in RT recipients and CKD patients. RT recipients and CKD patients also showed slight differences in that the abundance of Proteobacteria and Enterobacteriaceae and the pathways involving transport system members and carbohydrate metabolism were much greater in the former. We found that several beneficial genera in the Lachnospiraceae and Veillonellaceae were negatively correlated with such clinical markers as serum creatinine and blood urea nitrogen. CONCLUSIONS Our results suggested that alterations in the composition and function of gut microbiota are significantly correlated with the clinical conditions of in RT recipients, and future prospective studies of these correlations may provide evidence for predicting the clinical outcomes of RT recipients.
Collapse
Affiliation(s)
- Y E Guirong
- Department of Organ Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhou Minjie
- Department of Organ Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Y U Lixin
- Department of Organ Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Y E Junsheng
- Department of Organ Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yao Lin
- Department of Organ Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Shi Lisha
- Department of Organ Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
46
|
Ma JE, Jiang HY, Li LM, Zhang XJ, Li GY, Li HM, Jin XJ, Chen JP. The Fecal Metagenomics of Malayan Pangolins Identifies an Extensive Adaptation to Myrmecophagy. Front Microbiol 2018; 9:2793. [PMID: 30532742 PMCID: PMC6265309 DOI: 10.3389/fmicb.2018.02793] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/30/2018] [Indexed: 01/31/2023] Open
Abstract
The characteristics of flora in the intestine of an animal, including the number and abundance of different microbial species and their functions, are closely related to the diets of the animal and affect the physical condition of the host. The Malayan pangolin (Manis javanica) is an endangered species that specializes in myrmecophagy. Analyzing the microbiome in the intestine of the pangolin is imperative to protect this species. By sequencing the metagenomes of the feces of four pangolins, we constructed a non-redundant catalog of 211,868 genes representing 1,811 metagenomic species. Taxonomic annotation revealed that Bacteroidetes (49.9%), Proteobacteria (32.2%), and Firmicutes (12.6%) are the three main phyla. The annotation of gene functions identified 5,044 genes from 88 different glycoside hydrolase (GH) families in the Carbohydrate-Active enZYmes database and 114 gene modules related to chitin-degrading enzymes, corresponding to the catalytic domains of GH18 family enzymes, containing chitinase genes of classes III and V in the dataset. Fourteen gene modules corresponded to the catalytic domains of GH19 family enzymes, containing chitinase genes of classes I, II, and IV. These genes were found in 37 species belonging to four phyla: Bacteroidetes, Cyanobacteria, Firmicutes, and Proteobacteria. Moreover, when the metabolic pathways of these genes were summarized, 41,711 genes were associated with 147 unique KEGG metabolic pathways, and these genes were assigned to two Gene Ontology terms: metabolic process and catalytic activity. We also found several species that likely play roles in the digestion of cellulose and may be able to degrade chitin, including Enterobacter cloacae, Lactococcus lactis, Chitinimonas koreensis, and Chitinophaga pinensis. In addition, we identified some intestinal microflora and genes related to diseases in pangolins. Twenty-seven species were identified by STAMP analysis as differentially abundant in healthy and diseased animals: 20 species, including Cellulosilyticum lentocellum and Lactobacillus reuteri, were more abundant in healthy pangolins, while seven species, including Odoribacter splanchnicus, Marinilabilia salmonicolor, Xanthomonas citri, Xanthomonas vasicola, Oxalobacter formigenes, Prolixibacter bellariivorans, and Clostridium bolteae, were more abundant in diseased pangolins. These results will support the efforts to conserve pangolins.
Collapse
Affiliation(s)
- Jing-E Ma
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Hai-Ying Jiang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Lin-Miao Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Xiu-Juan Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Guan-Yu Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Hui-Ming Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Xue-Jun Jin
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Jin-Ping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| |
Collapse
|
47
|
Xiao J, Peng Z, Liao Y, Sun H, Chen W, Chen X, Wei Z, Yang C, Nüssler AK, Liu J, Yang W. Organ transplantation and gut microbiota: current reviews and future challenges. Am J Transl Res 2018; 10:3330-3344. [PMID: 30662590 PMCID: PMC6291689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 10/21/2018] [Indexed: 06/09/2023]
Abstract
Organ transplantation is often the only effective treatment for patients with end-stage diseases, such as heart, liver, kidney and small bowel failure and is carried out frequently worldwide. Still the post-transplantation complications remain health- and life-threatening outcome that needed to be resolved. With the rapid development of molecular technologies in recent years, more and more researchers realize that the gut microbiota may play a critical role in human diseases. The intestinal microbiome has been proved to provide a lot of functions to the host, such as digesting food, modulating metabolism, promoting angiogenesis and regulating the immune system. Several studies have investigated the alteration of intestinal microbiota in post-transplantation patients and observed significant changes in the intestinal microbiome compared to the pre-transplant condition. Due to the abovementioned features that the gut microbiota may be used in the prognosis of clinical outcome of organ transplantation. In addition, the FMT (fecal microbiota transplantation), probiotics and prebiotics as the newest therapy methods, effectiveness of which has been verified in some diseases, such as Clostridium difficile infection, inflammatory bowel disease and other chronic disorders, might be used as the prognosis tool in organ transplantation as well. The purpose of this present review is to elucidate the relationship between gut microbiota and organ transplantation as well as the potential use of new therapies like fecal microbiota transplantation, probiotic and prebiotic administration after the transplantation, and provide some ideas for future researches in field of organ transplantation.
Collapse
Affiliation(s)
- Jie Xiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
- Department of Cardio-Thoracic Surgery, Ganzhou People’s HospitalGanzhou 341000, Jiangxi, China
| | - Zhao Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology13 Hangkong Road, Wuhan 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology13 Hangkong Road, Wuhan 430030, China
| | - Yuxiao Liao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology13 Hangkong Road, Wuhan 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology13 Hangkong Road, Wuhan 430030, China
| | - Hui Sun
- Department of Cardio-Thoracic Surgery, Ganzhou People’s HospitalGanzhou 341000, Jiangxi, China
| | - Weiqiang Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
| | - Xing Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
| | - Zhanjie Wei
- Department of Thyroid Surgery, Central Hospital of WuhanWuhan 430022, Hubei, China
| | - Chuanlei Yang
- Department of Cardiovascular Surgery, Central Hospital of WuhanWuhan 430022, Hubei, China
| | - Andreas K Nüssler
- Department of Traumatology, BG Trauma Center, University of TübingenSchnarrenbergstr. 95, Tübingen 72076, Germany
| | - Jinping Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology13 Hangkong Road, Wuhan 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology13 Hangkong Road, Wuhan 430030, China
| |
Collapse
|
48
|
Palleja A, Mikkelsen KH, Forslund SK, Kashani A, Allin KH, Nielsen T, Hansen TH, Liang S, Feng Q, Zhang C, Pyl PT, Coelho LP, Yang H, Wang J, Typas A, Nielsen MF, Nielsen HB, Bork P, Wang J, Vilsbøll T, Hansen T, Knop FK, Arumugam M, Pedersen O. Recovery of gut microbiota of healthy adults following antibiotic exposure. Nat Microbiol 2018; 3:1255-1265. [PMID: 30349083 DOI: 10.1038/s41564-018-0257-9] [Citation(s) in RCA: 480] [Impact Index Per Article: 68.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/28/2018] [Indexed: 12/18/2022]
Abstract
To minimize the impact of antibiotics, gut microorganisms harbour and exchange antibiotics resistance genes, collectively called their resistome. Using shotgun sequencing-based metagenomics, we analysed the partial eradication and subsequent regrowth of the gut microbiota in 12 healthy men over a 6-month period following a 4-day intervention with a cocktail of 3 last-resort antibiotics: meropenem, gentamicin and vancomycin. Initial changes included blooms of enterobacteria and other pathobionts, such as Enterococcus faecalis and Fusobacterium nucleatum, and the depletion of Bifidobacterium species and butyrate producers. The gut microbiota of the subjects recovered to near-baseline composition within 1.5 months, although 9 common species, which were present in all subjects before the treatment, remained undetectable in most of the subjects after 180 days. Species that harbour β-lactam resistance genes were positively selected for during and after the intervention. Harbouring glycopeptide or aminoglycoside resistance genes increased the odds of de novo colonization, however, the former also decreased the odds of survival. Compositional changes under antibiotic intervention in vivo matched results from in vitro susceptibility tests. Despite a mild yet long-lasting imprint following antibiotics exposure, the gut microbiota of healthy young adults are resilient to a short-term broad-spectrum antibiotics intervention and their antibiotics resistance gene carriage modulates their recovery processes.
Collapse
Affiliation(s)
- Albert Palleja
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Clinical-Microbiomics A/S, Copenhagen, Denmark
| | - Kristian H Mikkelsen
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Sofia K Forslund
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine, Berlin, Germany.,Max Delbruck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Charité-Universitätsmedizin Berlin , Freie Universität Berlin Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Alireza Kashani
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Danish Diabetes Academy, Odense, Denmark
| | - Kristine H Allin
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Epidemiology, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Trine Nielsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tue H Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Suisha Liang
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Qiang Feng
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Chenchen Zhang
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Paul Theodor Pyl
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Luis Pedro Coelho
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Athanasios Typas
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Morten F Nielsen
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | | | - Peer Bork
- Max Delbruck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany.,Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jun Wang
- iCarbonX, Shenzhen, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Department of Biology, University of Copenhagen, Copenhagen, Denmark.,State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa Macau, China
| | - Tina Vilsbøll
- Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Filip K Knop
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. .,Center for Diabetes Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark. .,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Manimozhiyan Arumugam
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Oluf Pedersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
49
|
Jiang JW, Ren ZG, Lu HF, Zhang H, Li A, Cui GY, Jia JJ, Xie HY, Chen XH, He Y, Jiang L, Li LJ. Optimal immunosuppressor induces stable gut microbiota after liver transplantation. World J Gastroenterol 2018; 24:3871-3883. [PMID: 30228781 PMCID: PMC6141331 DOI: 10.3748/wjg.v24.i34.3871] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/24/2018] [Accepted: 08/01/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To study the influence of different doses of tacrolimus (FK506) on gut microbiota after liver transplantation (LT) in rats. METHODS Specific pathogen-free Brown Norway (BN) rats and Lewis rats were separated into five groups: (1) Tolerance group (BN-BN LT, n = 8); (2) rejection group (Lewis-BN LT, n = 8); (3) high dosage FK506 (FK506-H) group (Lewis-BN LT, n = 8); (4) middle dosage FK506 (FK506-M) group (Lewis-BN LT, n = 8); and (5) low dosage FK506 (FK506-L) group (Lewis-BN LT, n = 8). FK506 was administered to recipients at a dose of 1.0 mg/kg, 0.5 mg/kg, and 0.1 mg/kg body weight for 29 d after LT to the FK506-H, FK506-M, and FK506-L groups, respectively. On the 30th day after LT, all rats were sampled and euthanized. Blood samples were harvested for liver function and plasma endotoxin testing. Hepatic graft and ileocecal tissues were collected for histopathology observation. Ileocecal contents were used for DNA extraction, Real-time quantitative polymerase chain reaction (RT-PCR) and digital processing of denaturing gradient gel electrophoresis (DGGE) profiles and analysis. RESULTS Compared to the FK506-H and FK506-L groups, FK506-M was optimal for maintaining immunosuppression and inducing normal graft function; the FK506-M maintained gut barrier integrity and low plasma endotoxin levels; furthermore, DGGE results showed that FK506-M induced stable gut microbiota. Diversity analysis indicated that FK506-M increased species richness and rare species abundance, and cluster analysis confirmed the stable gut microbiota induced by FK506-M. Phylogenetic tree analysis identified crucial bacteria associated with FK506-M; seven of the nine bacteria that were decreased corresponded to Bacteroidetes, while increased bacteria were of the Bifidobacterium species. FK506-M increased Faecalibacterium prausnitzii and Bifidobacterium spp. and decreased Bacteroides-Prevotella and Enterobacteriaceae, as assessed by RT-PCR, which confirmed the crucial bacterial alterations identified through DGGE. CONCLUSION Compared to the low or high dosage of FK506, an optimal dosage of FK506 induced immunosuppression, normal graft function and stable gut microbiota following LT in rats. The stable gut microbiota presented increased probiotics and decreased potential pathogenic endotoxin-producing bacteria. These findings provide a novel strategy based on gut microbiota for immunosuppressive dosage assessment for recipients following LT.
Collapse
Affiliation(s)
- Jian-Wen Jiang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou 310003, Zhejiang Province, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
- Health Management Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Zhi-Gang Ren
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou 310003, Zhejiang Province, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
- Department of Infectious Diseases, Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Hai-Feng Lu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Hua Zhang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Ang Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
- Department of Infectious Diseases, Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Guang-Ying Cui
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
- Department of Infectious Diseases, Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Jun-Jun Jia
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou 310003, Zhejiang Province, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Hai-Yang Xie
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou 310003, Zhejiang Province, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Xin-Hua Chen
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou 310003, Zhejiang Province, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Yong He
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou 310003, Zhejiang Province, China
| | - Li Jiang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou 310003, Zhejiang Province, China
| | - Lan-Juan Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
50
|
Kriss M, Hazleton KZ, Nusbacher NM, Martin CG, Lozupone CA. Low diversity gut microbiota dysbiosis: drivers, functional implications and recovery. Curr Opin Microbiol 2018; 44:34-40. [PMID: 30036705 DOI: 10.1016/j.mib.2018.07.003] [Citation(s) in RCA: 262] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/07/2018] [Accepted: 07/11/2018] [Indexed: 02/07/2023]
Abstract
Dysbiosis, an imbalance in microbial communities, is linked with disease when this imbalance disturbs microbiota functions essential for maintaining health or introduces processes that promote disease. Dysbiosis in disease is predicted when microbiota differ compositionally from a healthy control population, but only truly defined when these differences are mechanistically related to adverse phenotypes. For the human gut microbiota, dysbiosis varies across diseases. One common manifestation is replacement of the complex community of anaerobes typical of the healthy adult gut microbiome with a community of lower overall microbial diversity and increased facultative anaerobes. Here we review diseases in which low-diversity dysbiosis has been observed and mechanistically linked with disease, with a particular focus on liver disease, inflammatory bowel disease, and Clostridium difficile infection.
Collapse
Affiliation(s)
- Michael Kriss
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado, 12700 East 19th Avenue, Campus Box B146, Aurora, CO 80045, USA
| | - Keith Z Hazleton
- Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, University of Colorado, 13123 East 16th Avenue, Aurora, CO 80045, USA; Digestive Health Institute, Children's Hospital Colorado, 13123 East 16th Avenue, Aurora, CO 80045, USA
| | - Nichole M Nusbacher
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado, 12700 East 19th Avenue, Campus Box 8617, Aurora, CO 80045, USA
| | - Casey G Martin
- Department of Immunology and Microbiology, University of Colorado, 12700 East 19th Avenue,Campus Box 8617, Aurora, CO 80045, USA
| | - Catherine A Lozupone
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado, 12700 East 19th Avenue, Campus Box 8617, Aurora, CO 80045, USA.
| |
Collapse
|