1
|
Beatty AE, Barnes-Tompkins TM, Long KM, Tobiansky DJ. Comparative analysis of meningeal transcriptomes in birds: Potential pathways of resilience to repeated impacts. Anat Rec (Hoboken) 2024. [PMID: 39376204 DOI: 10.1002/ar.25583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/18/2024] [Accepted: 09/09/2024] [Indexed: 10/09/2024]
Abstract
The meninges and associated vasculature (MAV) play a crucial role in maintaining cerebral integrity and homeostasis. Recent advances in transcriptomic analysis have illuminated the significance of the MAV in understanding the complex physiological interactions at the interface between the skull and the brain after exposure to mechanical stress. To investigate how physiological responses may confer resilience against repetitive mechanical stress, we performed the first transcriptomic analysis of avian MAV tissues using the Downy Woodpecker (Dryobates pubescens) and Tufted Titmouse (Baeolophus bicolor) as the comparison species. Our findings reveal divergences in gene expression profiles related to immune response, cellular stress management, and protein translation machinery. The male woodpeckers exhibit a tailored immune modulation strategy that potentially dampens neuroinflammation while preserving protective immunity. Overrepresented genes involved in cellular stress responses suggest enhanced mechanisms for mitigating damage and promoting repair. Additionally, the enrichment of translation-associated pathways hints at increased capacity for protein turnover and cellular remodeling vital for recovery. Our study not only fills a critical gap in avian neurobiology but also lays the groundwork for research in comparative neuroprotection.
Collapse
Affiliation(s)
- Abby E Beatty
- Department of Biology, St. Mary's College of Maryland, St. Mary's City, Maryland, USA
| | | | - Kira M Long
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois Urbana-Champaign, Urbana-Champaign, Illinois, USA
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, Idaho, USA
| | - Daniel J Tobiansky
- Department of Biology, St. Mary's College of Maryland, St. Mary's City, Maryland, USA
- Program in Neuroscience, St. Mary's College of Maryland, St. Mary's City, Maryland, USA
| |
Collapse
|
2
|
Poling HM, Sundaram N, Fisher GW, Singh A, Shiley JR, Nattamai K, Govindarajah V, Cortez AR, Krutko MO, Ménoret S, Anegon I, Kasendra M, Wells JM, Mayhew CN, Takebe T, Mahe MM, Helmrath MA. Human pluripotent stem cell-derived organoids repair damaged bowel in vivo. Cell Stem Cell 2024; 31:1513-1523.e7. [PMID: 39270642 PMCID: PMC11824906 DOI: 10.1016/j.stem.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 06/20/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024]
Abstract
The fundamental goal of tissue engineering is to functionally restore or improve damaged tissues or organs. Here we address this in the small bowel using an in vivo xenograft preclinical acute damage model. We investigated the therapeutic capacity of human intestinal organoids (HIOs), which are generated from human pluripotent stem cells (hPSCs), to repair damaged small bowel. We hypothesized that the HIO's cellular complexity would allow it to sustain transmural engraftment. To test this, we developed a rodent injury model where, through luminal delivery, we demonstrated that fragmented HIOs engraft, proliferate, and persist throughout the bowel following repair. Not only was restitution of the mucosal layer observed, but significant incorporation was also observed in the muscularis and vascular endothelium. Further analysis characterized sustained cell type presence within the regenerated regions, retention of proximal regionalization, and the neo-epithelia's function. These findings demonstrate the therapeutic importance of mesenchyme for intestinal injury repair.
Collapse
Affiliation(s)
- Holly M Poling
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Nambirajan Sundaram
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA
| | - Garrett W Fisher
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA
| | - Akaljot Singh
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA
| | - Joseph R Shiley
- Pluripotent Stem Cell Core, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA
| | - Kalpana Nattamai
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA
| | - Vinothini Govindarajah
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA
| | - Alexander R Cortez
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA
| | - Maksym O Krutko
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Séverine Ménoret
- Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016 CNRS UMS 3556, Nantes 44035, France; INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes 44035, France
| | - Ignacio Anegon
- Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016 CNRS UMS 3556, Nantes 44035, France
| | - Magdalena Kasendra
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA
| | - James M Wells
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA
| | - Christopher N Mayhew
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Pluripotent Stem Cell Core, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA
| | - Takanori Takebe
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Division of Gastroenterology, Hepatology & Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA
| | - Maxime M Mahe
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA; Nantes Université, Inserm, TENS UMR1235, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Nantes 44035, France
| | - Michael A Helmrath
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45219, USA.
| |
Collapse
|
3
|
Ménoret S, Renart-Depontieu F, Martin G, Thiam K, Anegon I. Efficient generation of human immune system rats using human CD34 + cells. Stem Cell Reports 2024; 19:1255-1263. [PMID: 39151431 PMCID: PMC11411320 DOI: 10.1016/j.stemcr.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 08/19/2024] Open
Abstract
Human immune system (HIS) mice generated using human CD34+ hematopoietic stem cells serve as a pivotal model for the in vivo evaluation of immunotherapies for humans. Yet, HIS mice possess certain limitations. Rats, due to their size and comprehensive immune system, hold promise for translational experiments. Here, we describe an efficacious method for long-term immune humanization, through intrahepatic injection of hCD34+ cells in newborn immunodeficient rats expressing human SIRPα. In contrast to HIS mice and similar to humans, HIS rats showed in blood a predominance of T cells, followed by B cells. Immune humanization was also high in central and secondary lymphoid organs. HIS rats treated with the anti-human CD3 antibody were depleted of human T cells, and human cytokines were detected in sera. We describe for the first time a method to efficiently generate HIS rats. HIS rats have the potential to be a useful model for translational immunology.
Collapse
Affiliation(s)
- Séverine Ménoret
- Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, F-44000 Nantes, France; INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France.
| | | | | | | | - Ignacio Anegon
- INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Nantes Université, Nantes, France.
| |
Collapse
|
4
|
Sun C, Serra C, Kalicharan BH, Harding J, Rao M. Challenges and Considerations of Preclinical Development for iPSC-Based Myogenic Cell Therapy. Cells 2024; 13:596. [PMID: 38607035 PMCID: PMC11011706 DOI: 10.3390/cells13070596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024] Open
Abstract
Cell therapies derived from induced pluripotent stem cells (iPSCs) offer a promising avenue in the field of regenerative medicine due to iPSCs' expandability, immune compatibility, and pluripotent potential. An increasing number of preclinical and clinical trials have been carried out, exploring the application of iPSC-based therapies for challenging diseases, such as muscular dystrophies. The unique syncytial nature of skeletal muscle allows stem/progenitor cells to integrate, forming new myonuclei and restoring the expression of genes affected by myopathies. This characteristic makes genome-editing techniques especially attractive in these therapies. With genetic modification and iPSC lineage specification methodologies, immune-compatible healthy iPSC-derived muscle cells can be manufactured to reverse the progression of muscle diseases or facilitate tissue regeneration. Despite this exciting advancement, much of the development of iPSC-based therapies for muscle diseases and tissue regeneration is limited to academic settings, with no successful clinical translation reported. The unknown differentiation process in vivo, potential tumorigenicity, and epigenetic abnormality of transplanted cells are preventing their clinical application. In this review, we give an overview on preclinical development of iPSC-derived myogenic cell transplantation therapies including processes related to iPSC-derived myogenic cells such as differentiation, scaling-up, delivery, and cGMP compliance. And we discuss the potential challenges of each step of clinical translation. Additionally, preclinical model systems for testing myogenic cells intended for clinical applications are described.
Collapse
Affiliation(s)
- Congshan Sun
- Vita Therapeutics, Baltimore, MD 21043, USA (M.R.)
| | - Carlo Serra
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | - Mahendra Rao
- Vita Therapeutics, Baltimore, MD 21043, USA (M.R.)
| |
Collapse
|
5
|
Zheng X, Huang C, Lin Y, Han B, Chen Y, Li C, Li J, Ding Y, Song X, Wang W, Liang W, Wu J, Wu J, Gao J, Wei C, Zhang X, Tu Z, Yan S. Generation of inactivated IL2RG and RAG1 monkeys with severe combined immunodeficiency using base editing. Signal Transduct Target Ther 2023; 8:327. [PMID: 37661226 PMCID: PMC10475462 DOI: 10.1038/s41392-023-01544-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/03/2023] [Accepted: 06/16/2023] [Indexed: 09/05/2023] Open
Abstract
Severe combined immunodeficiency (SCID) encompasses a range of inherited disorders that lead to a profound deterioration of the immune system. Among the pivotal genes associated with SCID, RAG1 and IL2RG play crucial roles. IL2RG is essential for the development, differentiation, and functioning of T, B, and NK cells, while RAG1 critically contributes to adaptive immunity by facilitating V(D)J recombination during the maturation of lymphocytes. Animal models carrying mutations in these genes exhibit notable deficiencies in their immune systems. Non-human primates (NHPs) are exceptionally well-suited models for biomedical research due to their genetic and physiological similarities to humans. Cytosine base editors (CBEs) serve as powerful tools for precisely and effectively modifying single-base mutations in the genome. Their successful implementation has been demonstrated in human cells, mice, and crop species. This study outlines the creation of an immunodeficient monkey model by deactivating both the IL2RG and RAG1 genes using the CBE4max system. The base-edited monkeys exhibited a severely compromised immune system characterized by lymphopenia, atrophy of lymphoid organs, and a deficiency of mature T cells. Furthermore, these base-edited monkeys were capable of hosting and supporting the growth of human breast cancer cells, leading to tumor formation. In summary, we have successfully developed an immunodeficient monkey model with the ability to foster tumor growth using the CBE4max system. These immunodeficiency monkeys show tremendous potential as valuable tools for advancing biomedical and translational research.
Collapse
Affiliation(s)
- Xiao Zheng
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, 510632, Guangzhou, China
- Department of Pathophysiology, School of Medicine, Jinan University, 510632, Guangzhou, China
| | - Chunhui Huang
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, 510632, Guangzhou, China
- Department of Pathophysiology, School of Medicine, Jinan University, 510632, Guangzhou, China
| | - Yingqi Lin
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, 510632, Guangzhou, China
- Department of Pathophysiology, School of Medicine, Jinan University, 510632, Guangzhou, China
| | - Bofeng Han
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, 510632, Guangzhou, China
| | - Yizhi Chen
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, 510632, Guangzhou, China
| | - Caijuan Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, 510632, Guangzhou, China
- Department of Pathophysiology, School of Medicine, Jinan University, 510632, Guangzhou, China
| | - Jiawei Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, 510632, Guangzhou, China
- Department of Pathophysiology, School of Medicine, Jinan University, 510632, Guangzhou, China
| | - Yongyan Ding
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, 510632, Guangzhou, China
| | - Xichen Song
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, 510632, Guangzhou, China
| | - Wei Wang
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, 510632, Guangzhou, China
| | - Weien Liang
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, 510632, Guangzhou, China
| | - Jianhao Wu
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, 510632, Guangzhou, China
| | - Jiaxi Wu
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, 510632, Guangzhou, China
| | - Jiale Gao
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, 510632, Guangzhou, China
| | - Chengxi Wei
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, 510632, Guangzhou, China
| | - Xudong Zhang
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, 510632, Guangzhou, China
| | - Zhuchi Tu
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, 510632, Guangzhou, China.
| | - Sen Yan
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, 510632, Guangzhou, China.
- Department of Pathophysiology, School of Medicine, Jinan University, 510632, Guangzhou, China.
| |
Collapse
|
6
|
Miyasaka Y, Wang J, Hattori K, Yamauchi Y, Hoshi M, Yoshimi K, Ishida S, Mashimo T. A high-quality severe combined immunodeficiency (SCID) rat bioresource. PLoS One 2022; 17:e0272950. [PMID: 35960733 PMCID: PMC9374221 DOI: 10.1371/journal.pone.0272950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 05/13/2022] [Indexed: 11/29/2022] Open
Abstract
Immunodeficient animals are valuable models for the engraftment of exogenous tissues; they are widely used in many fields, including the creation of humanized animal models, as well as regenerative medicine and oncology. Compared with mice, laboratory rats have a larger body size and can more easily undergo transplantation of various tissues and organs. Considering the absence of high-quality resources of immunodeficient rats, we used the CRISPR/Cas9 genome editing system to knock out the interleukin-2 receptor gamma chain gene (Il2rg) in F344/Jcl rats—alone or together with recombination activating gene 2 (Rag2)—to create a high-quality bioresource that researchers can freely use: severe combined immunodeficiency (SCID) rats. We selected one founder rat with frame-shift mutations in both Il2rg (5-bp del) and Rag2 ([1-bp del+2-bp ins]/[7-bp del+2-bp ins]), then conducted mating to establish a line of immunodeficient rats. The immunodeficiency phenotype was preliminarily confirmed by the presence of severe thymic hypoplasia in Il2rg-single knockout (sKO) and Il2rg/Rag2-double knockout (dKO) rats. Assessment of blood cell counts in peripheral blood showed that the white blood cell count was significantly decreased in sKO and dKO rats, while the red blood cell count was unaffected. The decrease in white blood cell count was mainly caused by a decrease in lymphocytes. Furthermore, analyses of lymphocyte populations via flow cytometry showed that the numbers of B cells (CD3- CD45+) and natural killer cells (CD3- CD161+) were markedly reduced in both knockout rats. In contrast, T cells were markedly reduced but showed slightly different results between sKO and dKO rats. Notably, our immunodeficient rats do not exhibit growth retardation or gametogenesis defects. This high-quality SCID rat resource is now managed by the National BioResource Project in Japan. Our SCID rat model has been used in various research fields, demonstrating its importance as a bioresource.
Collapse
Affiliation(s)
- Yoshiki Miyasaka
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Suita City, Osaka, Japan
| | - Jinxi Wang
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Suita City, Osaka, Japan
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Kosuke Hattori
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Suita City, Osaka, Japan
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Yuko Yamauchi
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Suita City, Osaka, Japan
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Miho Hoshi
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Kazuto Yoshimi
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Suita City, Osaka, Japan
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Saeko Ishida
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Tomoji Mashimo
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Suita City, Osaka, Japan
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
7
|
Freuchet A, Salama A, Bézie S, Tesson L, Rémy S, Humeau R, Règue H, Sérazin C, Flippe L, Peterson P, Vimond N, Usal C, Ménoret S, Heslan JM, Duteille F, Blanchard F, Giral M, Colonna M, Anegon I, Guillonneau C. IL-34 deficiency impairs FOXP3 + Treg function in a model of autoimmune colitis and decreases immune tolerance homeostasis. Clin Transl Med 2022; 12:e988. [PMID: 36030499 PMCID: PMC9420423 DOI: 10.1002/ctm2.988] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 12/19/2022] Open
Abstract
Background Immune homeostasis requires fully functional Tregs with a stable phenotype to control autoimmunity. Although IL‐34 is a cytokine first described as mainly involved in monocyte cell survival and differentiation, we recently described its expression by CD8+ Tregs in a rat model of transplantation tolerance and by activated FOXP3+ CD4+ and CD8+ Tregs in human healthy individuals. However, its role in autoimmunity and potential in human diseases remains to be determined. Methods We generated Il34−/− rats and using both Il34−/− rats and mice, we investigated their phenotype under inflammatory conditions. Using Il34−/− rats, we further analyzed the impact of the absence of expression of IL‐34 for CD4+ Tregs suppressive function. We investigated the potential of IL‐34 in human disease to prevent xenogeneic GVHD and human skin allograft rejection in immune humanized immunodeficient NSG mice. Finally, taking advantage of a biocollection, we investigated the correlation between presence of IL‐34 in the serum and kidney transplant rejection. Results Here we report that the absence of expression of IL‐34 in Il34−/− rats and mice leads to an unstable immune phenotype, with production of multiple auto‐antibodies, exacerbated under inflammatory conditions with increased susceptibility to DSS‐ and TNBS‐colitis in Il34−/− animals. Moreover, we revealed the striking inability of Il34−/− CD4+ Tregs to protect Il2rg−/− rats from a wasting disease induced by transfer of pathogenic cells, in contrast to Il34+/+ CD4+ Tregs. We also showed that IL‐34 treatment delayed EAE in mice as well as GVHD and human skin allograft rejection in immune humanized immunodeficient NSG mice. Finally, we show that presence of IL‐34 in the serum is associated with a longer rejection‐free period in kidney transplanted patients. Conclusion Altogether, our data emphasize on the crucial necessity of IL‐34 for immune homeostasis and for CD4+ Tregs suppressive function. Our data also shows the therapeutic potential of IL‐34 in human transplantation and auto‐immunity. Highlights Absence of expression of IL‐34 in Il34−/− rats and mice leads to an unstable immune phenotype, with a production of multiple auto‐antibodies and exacerbated immune pathology under inflammatory conditions. Il34−/− CD4+ Tregs are unable to protect Il2rg−/− rats from colitis induced by transfer of pathogenic cells. IL‐34 treatment delayed EAE in mice, as well as acute GVHD and human skin allograft rejection in immune‐humanized immunodeficient NSG mice.
Collapse
Affiliation(s)
- Antoine Freuchet
- Nantes Université, CHU Nantes, CNRS, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN5, Nantes, F-44000, France
| | - Apolline Salama
- Nantes Université, CHU Nantes, CNRS, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN5, Nantes, F-44000, France
| | - Séverine Bézie
- Nantes Université, CHU Nantes, CNRS, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN5, Nantes, F-44000, France
| | - Laurent Tesson
- Nantes Université, CHU Nantes, CNRS, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN5, Nantes, F-44000, France
| | - Séverine Rémy
- Nantes Université, CHU Nantes, CNRS, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN5, Nantes, F-44000, France
| | - Romain Humeau
- Nantes Université, CHU Nantes, CNRS, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN5, Nantes, F-44000, France
| | - Hadrien Règue
- Nantes Université, CHU Nantes, CNRS, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN5, Nantes, F-44000, France
| | - Céline Sérazin
- Nantes Université, CHU Nantes, CNRS, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN5, Nantes, F-44000, France
| | - Léa Flippe
- Nantes Université, CHU Nantes, CNRS, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN5, Nantes, F-44000, France
| | - Pärt Peterson
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Nadège Vimond
- Nantes Université, CHU Nantes, CNRS, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN5, Nantes, F-44000, France
| | - Claire Usal
- Nantes Université, CHU Nantes, CNRS, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN5, Nantes, F-44000, France
| | - Séverine Ménoret
- Nantes Université, CHU Nantes, CNRS, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN5, Nantes, F-44000, France.,CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes Université, Nantes, France
| | - Jean-Marie Heslan
- Nantes Université, CHU Nantes, CNRS, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN5, Nantes, F-44000, France
| | - Franck Duteille
- Chirurgie Plastique Reconstructrice et Esthétique, CHU Nantes, Nantes, France
| | - Frédéric Blanchard
- INSERM UMR1238, Bone Sarcoma and remodeling of calcified tissues, Nantes University, Nantes, France
| | - Magali Giral
- Nantes Université, CHU Nantes, CNRS, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN5, Nantes, F-44000, France
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ignacio Anegon
- Nantes Université, CHU Nantes, CNRS, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN5, Nantes, F-44000, France
| | - Carole Guillonneau
- Nantes Université, CHU Nantes, CNRS, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN5, Nantes, F-44000, France
| |
Collapse
|
8
|
Sato M, Nakamura S, Inada E, Takabayashi S. Recent Advances in the Production of Genome-Edited Rats. Int J Mol Sci 2022; 23:ijms23052548. [PMID: 35269691 PMCID: PMC8910656 DOI: 10.3390/ijms23052548] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
The rat is an important animal model for understanding gene function and developing human disease models. Knocking out a gene function in rats was difficult until recently, when a series of genome editing (GE) technologies, including zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the type II bacterial clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated Cas9 (CRISPR/Cas9) systems were successfully applied for gene modification (as exemplified by gene-specific knockout and knock-in) in the endogenous target genes of various organisms including rats. Owing to its simple application for gene modification and its ease of use, the CRISPR/Cas9 system is now commonly used worldwide. The most important aspect of this process is the selection of the method used to deliver GE components to rat embryos. In earlier stages, the microinjection (MI) of GE components into the cytoplasm and/or nuclei of a zygote was frequently employed. However, this method is associated with the use of an expensive manipulator system, the skills required to operate it, and the egg transfer (ET) of MI-treated embryos to recipient females for further development. In vitro electroporation (EP) of zygotes is next recognized as a simple and rapid method to introduce GE components to produce GE animals. Furthermore, in vitro transduction of rat embryos with adeno-associated viruses is potentially effective for obtaining GE rats. However, these two approaches also require ET. The use of gene-engineered embryonic stem cells or spermatogonial stem cells appears to be of interest to obtain GE rats; however, the procedure itself is difficult and laborious. Genome-editing via oviductal nucleic acids delivery (GONAD) (or improved GONAD (i-GONAD)) is a novel method allowing for the in situ production of GE zygotes existing within the oviductal lumen. This can be performed by the simple intraoviductal injection of GE components and subsequent in vivo EP toward the injected oviducts and does not require ET. In this review, we describe the development of various approaches for producing GE rats together with an assessment of their technical advantages and limitations, and present new GE-related technologies and current achievements using those rats in relation to human diseases.
Collapse
Affiliation(s)
- Masahiro Sato
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo 157-8535, Japan
- Correspondence: (M.S.); (S.T.); Tel.: +81-3-3416-0181 (M.S.); +81-53-435-2001 (S.T.)
| | - Shingo Nakamura
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan;
| | - Emi Inada
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan;
| | - Shuji Takabayashi
- Laboratory Animal Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
- Correspondence: (M.S.); (S.T.); Tel.: +81-3-3416-0181 (M.S.); +81-53-435-2001 (S.T.)
| |
Collapse
|
9
|
Zbinden A, Canté-Barrett K, Pike-Overzet K, Staal FJT. Stem Cell-Based Disease Models for Inborn Errors of Immunity. Cells 2021; 11:cells11010108. [PMID: 35011669 PMCID: PMC8750661 DOI: 10.3390/cells11010108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 11/24/2022] Open
Abstract
The intrinsic capacity of human hematopoietic stem cells (hHSCs) to reconstitute myeloid and lymphoid lineages combined with their self-renewal capacity hold enormous promises for gene therapy as a viable treatment option for a number of immune-mediated diseases, most prominently for inborn errors of immunity (IEI). The current development of such therapies relies on disease models, both in vitro and in vivo, which allow the study of human pathophysiology in great detail. Here, we discuss the current challenges with regards to developmental origin, heterogeneity and the subsequent implications for disease modeling. We review models based on induced pluripotent stem cell technology and those relaying on use of adult hHSCs. We critically review the advantages and limitations of current models for IEI both in vitro and in vivo. We conclude that existing and future stem cell-based models are necessary tools for developing next generation therapies for IEI.
Collapse
|
10
|
Zhang L, Ge J, Zheng Y, Sun Z, Wang C, Peng Z, Wu B, Fang M, Furuya K, Ma X, Shao Y, Ohkohchi N, Oda T, Fan J, Pan G, Li D, Hui L. Survival-Assured Liver Injury Preconditioning (SALIC) Enables Robust Expansion of Human Hepatocytes in Fah -/- Rag2 -/- IL2rg -/- Rats. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101188. [PMID: 34382351 PMCID: PMC8498896 DOI: 10.1002/advs.202101188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Although liver-humanized animals are desirable tools for drug development and expansion of human hepatocytes in large quantities, their development is restricted to mice. In animals larger than mice, a precondition for efficient liver humanization remains preliminary because of different xeno-repopulation kinetics in livers of larger sizes. Since rats are ten times larger than mice and widely used in pharmacological studies, liver-humanized rats are more preferable. Here, Fah-/- Rag2-/- IL2rg-/- (FRG) rats are generated by CRISPR/Cas9, showing accelerated liver failure and lagged liver xeno-repopulation compared to FRG mice. A survival-assured liver injury preconditioning (SALIC) protocol, which consists of retrorsine pretreatment and cycling 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC) administration by defined concentrations and time intervals, is developed to reduce the mortality of FRG rats and induce a regenerative microenvironment for xeno-repopulation. Human hepatocyte repopulation is boosted to 31 ± 4% in rat livers at 7 months after transplantation, equivalent to approximately a 1200-fold expansion. Human liver features of transcriptome and zonation are reproduced in humanized rats. Remarkably, they provide sufficient samples for the pharmacokinetic profiling of human-specific metabolites. This model is thus preferred for pharmacological studies and human hepatocyte production. SALIC may also be informative to hepatocyte transplantation in other large-sized species.
Collapse
Affiliation(s)
- Ludi Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of ScienceShanghai200031China
| | - Jian‐Yun Ge
- Department of Gastrointestinal and Hepato‐Biliary‐Pancreatic Surgery, Faculty of MedicineUniversity of TsukubaTsukubaIbaraki305‐8575Japan
- Guangdong Provincial Key Laboratory of Large Animal Models for BiomedicineSchool of Biotechnology and Heath SciencesWuyi UniversityJiangmenGuangdong529020China
| | - Yun‐Wen Zheng
- Department of Gastrointestinal and Hepato‐Biliary‐Pancreatic Surgery, Faculty of MedicineUniversity of TsukubaTsukubaIbaraki305‐8575Japan
- Guangdong Provincial Key Laboratory of Large Animal Models for BiomedicineSchool of Biotechnology and Heath SciencesWuyi UniversityJiangmenGuangdong529020China
- Institute of Regenerative MedicineAffiliated Hospital of Jiangsu UniversityJiangsu UniversityZhenjiangJiangsu212001China
- Yokohama City University School of MedicineYokohamaKanagawa234‐0006Japan
| | - Zhen Sun
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Chenhua Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of ScienceShanghai200031China
| | - Zhaoliang Peng
- Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Baihua Wu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of ScienceShanghai200031China
| | - Mei Fang
- Institute of Regenerative MedicineAffiliated Hospital of Jiangsu UniversityJiangsu UniversityZhenjiangJiangsu212001China
| | - Kinji Furuya
- Department of Gastrointestinal and Hepato‐Biliary‐Pancreatic Surgery, Faculty of MedicineUniversity of TsukubaTsukubaIbaraki305‐8575Japan
| | - Xiaolong Ma
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of ScienceShanghai200031China
| | - Yanjiao Shao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Nobuhiro Ohkohchi
- Department of Gastrointestinal and Hepato‐Biliary‐Pancreatic Surgery, Faculty of MedicineUniversity of TsukubaTsukubaIbaraki305‐8575Japan
| | - Tatsuya Oda
- Department of Gastrointestinal and Hepato‐Biliary‐Pancreatic Surgery, Faculty of MedicineUniversity of TsukubaTsukubaIbaraki305‐8575Japan
| | - Jianglin Fan
- Guangdong Provincial Key Laboratory of Large Animal Models for BiomedicineSchool of Biotechnology and Heath SciencesWuyi UniversityJiangmenGuangdong529020China
- Department of Molecular Pathology, Faculty of MedicineInterdisciplinary Graduate School of MedicineUniversity of YamanashiShimokatoYamanashi409‐3898Japan
| | - Guoyu Pan
- Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Lijian Hui
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of ScienceShanghai200031China
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
- School of Life Science, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
- Institute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
- Bio‐Research Innovation CenterShanghai Institute of Biochemistry and Cell BiologySuzhouJiangsu215121China
| |
Collapse
|
11
|
Chenouard V, Remy S, Tesson L, Ménoret S, Ouisse LH, Cherifi Y, Anegon I. Advances in Genome Editing and Application to the Generation of Genetically Modified Rat Models. Front Genet 2021; 12:615491. [PMID: 33959146 PMCID: PMC8093876 DOI: 10.3389/fgene.2021.615491] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
The rat has been extensively used as a small animal model. Many genetically engineered rat models have emerged in the last two decades, and the advent of gene-specific nucleases has accelerated their generation in recent years. This review covers the techniques and advances used to generate genetically engineered rat lines and their application to the development of rat models more broadly, such as conditional knockouts and reporter gene strains. In addition, genome-editing techniques that remain to be explored in the rat are discussed. The review also focuses more particularly on two areas in which extensive work has been done: human genetic diseases and immune system analysis. Models are thoroughly described in these two areas and highlight the competitive advantages of rat models over available corresponding mouse versions. The objective of this review is to provide a comprehensive description of the advantages and potential of rat models for addressing specific scientific questions and to characterize the best genome-engineering tools for developing new projects.
Collapse
Affiliation(s)
- Vanessa Chenouard
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
- genOway, Lyon, France
| | - Séverine Remy
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | - Laurent Tesson
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | - Séverine Ménoret
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
- CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes Université, Nantes, France
| | - Laure-Hélène Ouisse
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | | | - Ignacio Anegon
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| |
Collapse
|
12
|
Humanization of Immunodeficient Animals for the Modeling of Transplantation, Graft Versus Host Disease, and Regenerative Medicine. Transplantation 2021; 104:2290-2306. [PMID: 32068660 PMCID: PMC7590965 DOI: 10.1097/tp.0000000000003177] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The humanization of animals is a powerful tool for the exploration of human disease pathogenesis in biomedical research, as well as for the development of therapeutic interventions with enhanced translational potential. Humanized models enable us to overcome biologic differences that exist between humans and other species, while giving us a platform to study human processes in vivo. To become humanized, an immune-deficient recipient is engrafted with cells, tissues, or organoids. The mouse is the most well studied of these hosts, with a variety of immunodeficient strains available for various specific uses. More recently, efforts have turned to the humanization of other animal species such as the rat, which offers some technical and immunologic advantages over mice. These advances, together with ongoing developments in the incorporation of human transgenes and additional mutations in humanized mouse models, have expanded our opportunities to replicate aspects of human allotransplantation and to assist in the development of immunotherapies. In this review, the immune and tissue humanization of various species is presented with an emphasis on their potential for use as models for allotransplantation, graft versus host disease, and regenerative medicine.
Collapse
|
13
|
Noto FK, Sangodkar J, Adedeji BT, Moody S, McClain CB, Tong M, Ostertag E, Crawford J, Gao X, Hurst L, O’Connor CM, Hanson EN, Izadmehr S, Tohmé R, Narla J, LeSueur K, Bhattacharya K, Rupani A, Tayeh MK, Innis JW, Galsky MD, Evers BM, DiFeo A, Narla G, Jamling TY. The SRG rat, a Sprague-Dawley Rag2/Il2rg double-knockout validated for human tumor oncology studies. PLoS One 2020; 15:e0240169. [PMID: 33027304 PMCID: PMC7540894 DOI: 10.1371/journal.pone.0240169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/22/2020] [Indexed: 12/22/2022] Open
Abstract
We have created the immunodeficient SRG rat, a Sprague-Dawley Rag2/Il2rg double knockout that lacks mature B cells, T cells, and circulating NK cells. This model has been tested and validated for use in oncology (SRG OncoRat®). The SRG rat demonstrates efficient tumor take rates and growth kinetics with different human cancer cell lines and PDXs. Although multiple immunodeficient rodent strains are available, some important human cancer cell lines exhibit poor tumor growth and high variability in those models. The VCaP prostate cancer model is one such cell line that engrafts unreliably and grows irregularly in existing models but displays over 90% engraftment rate in the SRG rat with uniform growth kinetics. Since rats can support much larger tumors than mice, the SRG rat is an attractive host for PDX establishment. Surgically resected NSCLC tissue from nine patients were implanted in SRG rats, seven of which engrafted and grew for an overall success rate of 78%. These developed into a large tumor volume, over 20,000 mm3 in the first passage, which would provide an ample source of tissue for characterization and/or subsequent passage into NSG mice for drug efficacy studies. Molecular characterization and histological analyses were performed for three PDX lines and showed high concordance between passages 1, 2 and 3 (P1, P2, P3), and the original patient sample. Our data suggest the SRG OncoRat is a valuable tool for establishing PDX banks and thus serves as an alternative to current PDX mouse models hindered by low engraftment rates, slow tumor growth kinetics, and multiple passages to develop adequate tissue banks.
Collapse
Affiliation(s)
- Fallon K. Noto
- Hera BioLabs Inc., Lexington, Kentucky, United States of America
- * E-mail:
| | - Jaya Sangodkar
- Division of Genetic Medicine, Department of Medicine, The University of Michigan, Ann Arbor, Michigan, United States of America
| | | | - Sam Moody
- Hera BioLabs Inc., Lexington, Kentucky, United States of America
| | | | - Ming Tong
- Poseida Therapeutics Inc., San Diego, California, United States of America
| | - Eric Ostertag
- Poseida Therapeutics Inc., San Diego, California, United States of America
| | - Jack Crawford
- Hera BioLabs Inc., Lexington, Kentucky, United States of America
| | - Xiaohua Gao
- Division of Genetic Medicine, Department of Medicine, The University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lauren Hurst
- Division of Genetic Medicine, Department of Medicine, The University of Michigan, Ann Arbor, Michigan, United States of America
| | - Caitlin M. O’Connor
- Division of Genetic Medicine, Department of Medicine, The University of Michigan, Ann Arbor, Michigan, United States of America
| | - Erika N. Hanson
- Division of Genetic Medicine, Department of Medicine, The University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sudeh Izadmehr
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Rita Tohmé
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
- Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Jyothsna Narla
- Regional Medical Center, San Jose, California, United States of America
| | - Kristin LeSueur
- Department of Pediatrics, The University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kajari Bhattacharya
- Department of Pediatrics, The University of Michigan, Ann Arbor, Michigan, United States of America
| | - Amit Rupani
- Department of Pediatrics, The University of Michigan, Ann Arbor, Michigan, United States of America
| | - Marwan K. Tayeh
- Department of Pediatrics, The University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jeffrey W. Innis
- Department of Pediatrics, The University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, The University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Internal Medicine, The University of Michigan, Ann Arbor, Michigan, United States of America
| | - Matthew D. Galsky
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - B. Mark Evers
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Analisa DiFeo
- Department of Obstetrics and Gynecology, The University of Michigan, Ann Arbor, Michigan, United States of America
| | - Goutham Narla
- Hera BioLabs Inc., Lexington, Kentucky, United States of America
- Division of Genetic Medicine, Department of Medicine, The University of Michigan, Ann Arbor, Michigan, United States of America
| | | |
Collapse
|
14
|
Abstract
Supplemental Digital Content is available in the text. Background. Humanized immune system immunodeficient mice have been extremely useful for the in vivo analyses of immune responses in a variety of models, including organ transplantation and graft versus host disease (GVHD) but they have limitations. Rat models are interesting complementary alternatives presenting advantages over mice, such as their size and their active complement compartment. Immunodeficient rats have been generated but human immune responses have not yet been described. Methods. We generated immunodeficient Rat Rag−/− Gamma chain−/− human signal regulatory protein alpha-positive (RRGS) rats combining Rag1 and Il2rg deficiency with the expression of human signal regulatory protein alpha, a negative regulator of macrophage phagocytosis allowing repression of rat macrophages by human CD47-positive cells. We then immune humanized RRGS animals with human peripheral blood mononuclear cells (hPBMCs) to set up a human acute GVHD model. Treatment of GVHD was done with a new porcine antihuman lymphocyte serum active through complement-dependent cytotoxicity. We also established a tumor xenograft rejection model in these hPBMCs immune system RRGS animals by subcutaneous implantation of a human tumor cell line. Results. RRGS animals receiving hPBMCs showed robust and reproducible reconstitution, mainly by T and B cells. A dose-dependent acute GVHD process was observed with progressive weight loss, tissue damage, and death censoring. Antihuman lymphocyte serum (L1S1) antibody completely prevented acute GVHD. In the human tumor xenograft model, detectable tumors were rejected upon hPBMCs injection. Conclusions. hPBMC can be implanted in RRGS animals and elicit acute GVHD or rejection of human tumor cells and these are useful models to test new immunotherapies.
Collapse
|
15
|
Rannou A, Toumaniantz G, Larcher T, Leroux I, Ledevin M, Hivonnait A, Babarit C, Fleurisson R, Dubreil L, Ménoret S, Anegon I, Charpentier F, Rouger K, Guével L. Human MuStem Cell Grafting into Infarcted Rat Heart Attenuates Adverse Tissue Remodeling and Preserves Cardiac Function. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:446-463. [PMID: 32695846 DOI: 10.1016/j.omtm.2020.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/11/2020] [Indexed: 12/09/2022]
Abstract
Myocardial infarction is one of the leading causes of mortality and morbidity worldwide. Whereas transplantation of several cell types into the infarcted heart has produced promising preclinical results, clinical studies using analogous human cells have shown limited structural and functional benefits. In dogs and humans, we have described a type of muscle-derived stem cells termed MuStem cells that efficiently promoted repair of injured skeletal muscle. Enhanced survival rate, long-term engraftment, and participation in muscle fiber formation were reported, leading to persistent tissue remodeling and clinical benefits. With the consideration of these features that are restricted or absent in cells tested so far for myocardial infarction, we wanted to investigate the capacity of human MuStem cells to repair infarcted hearts. Their local administration in immunodeficient rats 1 week after induced infarction resulted in reduced fibrosis and increased angiogenesis 3 weeks post-transplantation. Importantly, foci of human fibers were detected in the infarct site. Treated rats also showed attenuated left-ventricle dilation and preservation of contractile function. Interestingly, no spontaneous arrhythmias were observed. Our findings support the potential of MuStem cells, which have already been proposed as therapeutic candidates for dystrophic patients, to treat myocardial infarction and position them as an attractive tool for muscle-regenerative medicine.
Collapse
Affiliation(s)
- Alice Rannou
- PAnTher, INRA, École Nationale Vétérinaire, Agro-Alimentaire et de l'Alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), 44307 Nantes, France.,l'Institut du Thorax, INSERM, CNRS, UNIV Nantes, Nantes, France.,Université de Nantes, Nantes, France
| | - Gilles Toumaniantz
- l'Institut du Thorax, INSERM, CNRS, UNIV Nantes, Nantes, France.,Université de Nantes, Nantes, France
| | - Thibaut Larcher
- PAnTher, INRA, École Nationale Vétérinaire, Agro-Alimentaire et de l'Alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), 44307 Nantes, France
| | - Isabelle Leroux
- PAnTher, INRA, École Nationale Vétérinaire, Agro-Alimentaire et de l'Alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), 44307 Nantes, France
| | - Mireille Ledevin
- PAnTher, INRA, École Nationale Vétérinaire, Agro-Alimentaire et de l'Alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), 44307 Nantes, France
| | - Agnès Hivonnait
- l'Institut du Thorax, INSERM, CNRS, UNIV Nantes, Nantes, France
| | - Candice Babarit
- PAnTher, INRA, École Nationale Vétérinaire, Agro-Alimentaire et de l'Alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), 44307 Nantes, France
| | - Romain Fleurisson
- PAnTher, INRA, École Nationale Vétérinaire, Agro-Alimentaire et de l'Alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), 44307 Nantes, France
| | - Laurence Dubreil
- PAnTher, INRA, École Nationale Vétérinaire, Agro-Alimentaire et de l'Alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), 44307 Nantes, France
| | - Séverine Ménoret
- UMR 1064/Core Facility TRIP/Nantes Université, CHU Nantes, INSERM, CNRS, SFR Santé, INSERM UMS 016, CNRS UMS 3556, 44000 Nantes, France
| | - Ignacio Anegon
- UMR 1064/Core Facility TRIP/Nantes Université, CHU Nantes, INSERM, CNRS, SFR Santé, INSERM UMS 016, CNRS UMS 3556, 44000 Nantes, France
| | - Flavien Charpentier
- l'Institut du Thorax, INSERM, CNRS, UNIV Nantes, Nantes, France.,l'Institut du Thorax, CHU Nantes, Nantes, France
| | - Karl Rouger
- PAnTher, INRA, École Nationale Vétérinaire, Agro-Alimentaire et de l'Alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), 44307 Nantes, France
| | - Laetitia Guével
- PAnTher, INRA, École Nationale Vétérinaire, Agro-Alimentaire et de l'Alimentation Nantes-Atlantique (Oniris), Université Bretagne Loire (UBL), 44307 Nantes, France.,Université de Nantes, Nantes, France
| |
Collapse
|
16
|
Human CD8+ Tregs expressing a MHC-specific CAR display enhanced suppression of human skin rejection and GVHD in NSG mice. Blood Adv 2020; 3:3522-3538. [PMID: 31730699 DOI: 10.1182/bloodadvances.2019000411] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/09/2019] [Indexed: 01/05/2023] Open
Abstract
Polyclonal CD8+CD45RClow/- Tregs are potent regulatory cells able to control solid organ transplantation rejection and even induce tolerance. However, donor major histocompatibility complex (MHC)-specific Tregs are more potent than polyclonal Tregs in suppressing T-cell responses and preventing acute as well as chronic rejection in rodent models. The difficulty of identifying disease-relevant antigens able to stimulate Tregs has reduced the possibility of obtaining antigen-specific Tregs. To bypass this requirement and gain the advantage of antigen specificity, and thus improve the therapeutic potential of CD8+ Tregs, we stably introduced a chimeric antigen receptor (CAR) derived from a HLA-A*02 antigen-specific antibody (A2-CAR) in human CD8+ Tregs and developed a clinically compatible protocol of transduction and expansion. We demonstrated that A2-CAR CD8+ Tregs were not phenotypically altered by the process, were specifically activated, and did not exhibit cytotoxic activity toward HLA-A*02+ kidney endothelial cells (ECs). We showed that A2-CAR CD8+ Tregs were more potent suppressors of immune responses induced by HLA-A*02 mismatch than control-CAR CD8+ Tregs, both in vitro and in vivo, in models of human skin graft rejection and graft-versus-host disease (GVHD) in NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice. We showed that integrity of human skin graft was preserved with A2-CAR CD8+ Tregs at least 100 days in vivo after administration, and that interaction between the A2-CAR CD8+ Tregs and HLA-A*02+ kidney ECs resulted in a fine-tuned and protolerogenic activation of the ECs without cytotoxicity. Together, our results demonstrated the relevance of the CAR engineering approach to develop antigen-specific CAR-CD8+ Tregs for clinical trials in transplantation, and potentially in other diseases.
Collapse
|
17
|
Li R, Ying B, Liu Y, Spencer JF, Miao J, Tollefson AE, Brien JD, Wang Y, Wold WSM, Wang Z, Toth K. Generation and characterization of an Il2rg knockout Syrian hamster model for XSCID and HAdV-C6 infection in immunocompromised patients. Dis Model Mech 2020; 13:dmm044602. [PMID: 32651192 PMCID: PMC7473636 DOI: 10.1242/dmm.044602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022] Open
Abstract
Model animals are indispensable for the study of human diseases, and in general, of complex biological processes. The Syrian hamster is an important model animal for infectious diseases, behavioral science and metabolic science, for which more experimental tools are becoming available. Here, we describe the generation and characterization of an interleukin-2 receptor subunit gamma (Il2rg) knockout (KO) Syrian hamster strain. In humans, mutations in IL2RG can result in a total failure of T and natural killer (NK) lymphocyte development and nonfunctional B lymphocytes (X-linked severe combined immunodeficiency; XSCID). Therefore, we sought to develop a non-murine model to study XSCID and the infectious diseases associated with IL2RG deficiency. We demonstrated that the Il2rg KO hamsters have a lymphoid compartment that is greatly reduced in size and diversity, and is impaired in function. As a result of the defective adaptive immune response, Il2rg KO hamsters developed a more severe human adenovirus infection and cleared virus less efficiently than immune competent wild-type hamsters. Because of this enhanced virus replication, Il2rg KO hamsters developed more severe adenovirus-induced liver pathology than wild-type hamsters. This novel hamster strain will provide researchers with a new tool to investigate human XSCID and its related infections.
Collapse
Affiliation(s)
- Rong Li
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | - Baoling Ying
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St Louis, MO 63104, USA
| | - Yanan Liu
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | - Jacqueline F Spencer
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St Louis, MO 63104, USA
| | - Jinxin Miao
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
- National Center for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Ann E Tollefson
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St Louis, MO 63104, USA
| | - James D Brien
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St Louis, MO 63104, USA
| | - Yaohe Wang
- National Center for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
- Centre for Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - William S M Wold
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St Louis, MO 63104, USA
| | - Zhongde Wang
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | - Karoly Toth
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St Louis, MO 63104, USA
| |
Collapse
|
18
|
Szpirer C. Rat models of human diseases and related phenotypes: a systematic inventory of the causative genes. J Biomed Sci 2020; 27:84. [PMID: 32741357 PMCID: PMC7395987 DOI: 10.1186/s12929-020-00673-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
The laboratory rat has been used for a long time as the model of choice in several biomedical disciplines. Numerous inbred strains have been isolated, displaying a wide range of phenotypes and providing many models of human traits and diseases. Rat genome mapping and genomics was considerably developed in the last decades. The availability of these resources has stimulated numerous studies aimed at discovering causal disease genes by positional identification. Numerous rat genes have now been identified that underlie monogenic or complex diseases and remarkably, these results have been translated to the human in a significant proportion of cases, leading to the identification of novel human disease susceptibility genes, helping in studying the mechanisms underlying the pathological abnormalities and also suggesting new therapeutic approaches. In addition, reverse genetic tools have been developed. Several genome-editing methods were introduced to generate targeted mutations in genes the function of which could be clarified in this manner [generally these are knockout mutations]. Furthermore, even when the human gene causing a disease had been identified without resorting to a rat model, mutated rat strains (in particular KO strains) were created to analyze the gene function and the disease pathogenesis. Today, over 350 rat genes have been identified as underlying diseases or playing a key role in critical biological processes that are altered in diseases, thereby providing a rich resource of disease models. This article is an update of the progress made in this research and provides the reader with an inventory of these disease genes, a significant number of which have similar effects in rat and humans.
Collapse
Affiliation(s)
- Claude Szpirer
- Université Libre de Bruxelles, B-6041, Gosselies, Belgium.
- , Waterloo, Belgium.
| |
Collapse
|
19
|
Sarfaty AE, Compton SR, Smith PC, Zeiss CJ. Cutaneous and Pulmonary Mucormycosis in Rag1- and Il2rg-deficient Rats. Comp Med 2020; 70:390-395. [PMID: 32736665 PMCID: PMC7446636 DOI: 10.30802/aalas-cm-20-000015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/01/2020] [Accepted: 05/15/2020] [Indexed: 11/05/2022]
Abstract
Immunodeficient rats are valuable in transplantation studies, but are vulnerable to infection from opportunistic organisms such as fungi. Immunodeficient Rag1- and Il2rg-deficient (RRG) rats housed at our institution presented with dark, proliferative, keratinized dermal growths. Histologic and PCR results indicated that the predominant organism associated with these lesions was fungus from the family Mucoraceae, mostly of the genus Rhizopus. The Mucoraceae family of fungi are environmental saprophytes and are often found in rodent bedding. These fungi can cause invasive opportunistic infections in immunosuppressed humans and animals. We discuss husbandry practices for immunosuppressed rodents with a focus on controlling fungal contaminants.
Collapse
Affiliation(s)
- Anna E Sarfaty
- Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut;,
| | - Susan R Compton
- Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Peter C Smith
- Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Caroline J Zeiss
- Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
20
|
Fourrier A, Delbos F, Menoret S, Collet C, Thi Thuy LT, Myara A, Petit F, Tolosa L, Laplanche S, Gómez‐Lechón MJ, Labrune P, Anegon I, Vallier L, Garnier D, Nguyen TH. Regenerative cell therapy for the treatment of hyperbilirubinemic Gunn rats with fresh and frozen human induced pluripotent stem cells‐derived hepatic stem cells. Xenotransplantation 2019; 27:e12544. [DOI: 10.1111/xen.12544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 06/14/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Angélique Fourrier
- INSERM UMRS 1064‐Center for Research in Transplantation and Immunology Nantes France
- CHU Hôtel Dieu Institut de Transplantation Urologie Néphrologie Nantes France
- Université de Nantes Faculté de Médecine Nantes France
- GoLiver Therapeutics Institut de Recherche en Santé de l'Université de Nantes Nantes France
| | - Frédéric Delbos
- INSERM UMRS 1064‐Center for Research in Transplantation and Immunology Nantes France
- CHU Hôtel Dieu Institut de Transplantation Urologie Néphrologie Nantes France
- Université de Nantes Faculté de Médecine Nantes France
| | - Séverine Menoret
- INSERM UMRS 1064‐Center for Research in Transplantation and Immunology Nantes France
- CHU Hôtel Dieu Institut de Transplantation Urologie Néphrologie Nantes France
- Université de Nantes Faculté de Médecine Nantes France
- Transgenesis Rat ImmunoPhenomic platform, INSERM 1064, SFR Francois Bonamy CNRS UMS3556 Nantes France
| | - Camille Collet
- INSERM UMRS 1064‐Center for Research in Transplantation and Immunology Nantes France
- CHU Hôtel Dieu Institut de Transplantation Urologie Néphrologie Nantes France
- Université de Nantes Faculté de Médecine Nantes France
| | - Linh Trinh Thi Thuy
- INSERM UMRS 1064‐Center for Research in Transplantation and Immunology Nantes France
- CHU Hôtel Dieu Institut de Transplantation Urologie Néphrologie Nantes France
- Université de Nantes Faculté de Médecine Nantes France
| | - Anne Myara
- Service de Biologie Groupe Hospitalier Saint Joseph Paris France
| | - François Petit
- Laboratoire de génétique moléculaire Hôpital Antoine Béclère Clamart France
| | - Laia Tolosa
- Unidad de Hepatología Experimental Instituto de Investigación Sanitaria La Fe Valencia Spain
| | - Sophie Laplanche
- Service de Biologie Groupe Hospitalier Saint Joseph Paris France
| | - María José Gómez‐Lechón
- Unidad de Hepatología Experimental Instituto de Investigación Sanitaria La Fe Valencia Spain
| | - Philippe Labrune
- APHP, CRMR Maladies Héréditaires du Métabolisme Hépatique Hôpital Antoine Béclère Clamart France
- UFR Kremlin Bicêtre Université paris Sud Paris Saclay Le Kremlin‐Bicêtre France
- INSERM U1169 Le Kremlin‐Bicêtre France
| | - Ignacio Anegon
- INSERM UMRS 1064‐Center for Research in Transplantation and Immunology Nantes France
- CHU Hôtel Dieu Institut de Transplantation Urologie Néphrologie Nantes France
- Université de Nantes Faculté de Médecine Nantes France
- Transgenesis Rat ImmunoPhenomic platform, INSERM 1064, SFR Francois Bonamy CNRS UMS3556 Nantes France
| | - Ludovic Vallier
- Department of Surgery, Anne McLaren Laboratory for Regenerative Medicine, Wellcome–Medical Research Council Cambridge Stem Cell Institute University of Cambridge Cambridge UK
| | - Delphine Garnier
- INSERM UMRS 1064‐Center for Research in Transplantation and Immunology Nantes France
- CHU Hôtel Dieu Institut de Transplantation Urologie Néphrologie Nantes France
- Université de Nantes Faculté de Médecine Nantes France
- CRCINA INSERM U1232 Institut de Recherche en Santé de l'Université de Nantes Nantes France
| | - Tuan Huy Nguyen
- INSERM UMRS 1064‐Center for Research in Transplantation and Immunology Nantes France
- GoLiver Therapeutics Institut de Recherche en Santé de l'Université de Nantes Nantes France
| |
Collapse
|
21
|
He D, Zhang J, Wu W, Yi N, He W, Lu P, Li B, Yang N, Wang D, Xue Z, Zhang P, Fan G, Zhu X. A novel immunodeficient rat model supports human lung cancer xenografts. FASEB J 2018; 33:140-150. [PMID: 29944447 DOI: 10.1096/fj.201800102rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Patient-derived xenograft (PDX) animal models allow the exogenous growth of human tumors, offering an irreplaceable preclinical tool for oncology research. Mice are the most commonly used host for human PDX models, however their small body size limits the xenograft growth, sample collection, and drug evaluation. Therefore, we sought to develop a novel rat model that could overcome many of these limitations. We knocked out Rag1, Rag2, and Il2rg in Sprague Dawley (SD) rats by clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 technology. The development of lymphoid organs is significantly impaired in Rag1-/-Rag2-/-Il2rg-/Y (designated as SD-RG) rats. Consequently, SD-RG rats are severely immunodeficient with an absence of mature T, B, and NK cells in the immune system. After subcutaneous injection of tumor cell lines of different origin, such as NCI-H460, U-87MG, and MDA-MB-231, the tumors grow significantly faster and larger in SD-RG rats than in nonobese diabetic- Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice. Most important of all, we successfully established a PDX model of lung squamous cell carcinoma in which the grafts recapitulate the histopathologic features of the primary tumor for several passages. In conclusion, the severely immunodeficient SD-RG rats support fast growth of PDX compared with mice, thus holding great potential to serve as a new model for oncology research.-He, D., Zhang, J., Wu, W., Yi, N., He, W., Lu, P., Li, B., Yang, N., Wang, D., Xue, Z., Zhang, P., Fan, G., Zhu, X. A novel immunodeficient rat model supports human lung cancer xenografts.
Collapse
Affiliation(s)
- Di He
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Junhui Zhang
- Department of Regenerative Medicine, Translational Center for Stem Cell Research, Tongji Hospital, Tongji University Suzhou Institute, Tongji University School of Medicine, Shanghai, China
| | - Wanwan Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ning Yi
- Department of Regenerative Medicine, Translational Center for Stem Cell Research, Tongji Hospital, Tongji University Suzhou Institute, Tongji University School of Medicine, Shanghai, China
| | - Wen He
- Department of Regenerative Medicine, Translational Center for Stem Cell Research, Tongji Hospital, Tongji University Suzhou Institute, Tongji University School of Medicine, Shanghai, China
| | - Ping Lu
- Department of Regenerative Medicine, Translational Center for Stem Cell Research, Tongji Hospital, Tongji University Suzhou Institute, Tongji University School of Medicine, Shanghai, China
| | - Bin Li
- Alphacait AL Biotech Company, Hangzhou, China
| | - Nan Yang
- PharmaLegacy Laboratories Company, Shanghai, China; and
| | - Di Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhigang Xue
- Department of Regenerative Medicine, Translational Center for Stem Cell Research, Tongji Hospital, Tongji University Suzhou Institute, Tongji University School of Medicine, Shanghai, China
| | - Peng Zhang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Guoping Fan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Xianmin Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|