1
|
Jiang Y, Chen S, Hsiao S, Zhang H, Xie D, Wang ZJ, Ren W, Liu M, Liao J, Wu Y. Efficient and safe in vivo treatment of primary hyperoxaluria type 1 via LNP-CRISPR-Cas9-mediated glycolate oxidase disruption. Mol Ther 2025; 33:104-118. [PMID: 39385468 PMCID: PMC11764414 DOI: 10.1016/j.ymthe.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/13/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
Primary hyperoxaluria type 1 (PH1) is a severe genetic metabolic disorder caused by mutations in the AGXT gene, leading to defects in enzymes crucial for glyoxylate metabolism. PH1 is characterized by severe, potentially life-threatening manifestations due to excessive oxalate accumulation, which leads to calcium oxalate crystal deposits in the kidneys and, ultimately, renal failure and systemic oxalosis. Existing substrate reduction therapies, such as inhibition of liver-specific glycolate oxidase (GO) encoded by HAO1 using siRNA or CRISPR-Cas9 delivered by adeno-associated virus, either require repeated dosing or have raised safety concerns. To address these limitations, our study employed lipid nanoparticles (LNPs) for CRISPR-Cas9 delivery to rapidly generate a PH1 mouse model and validate the therapeutic efficacy of LNP-CRISPR-Cas9 targeting the Hao1 gene. The LNP-CRISPR-Cas9 system exhibited efficient editing of the Hao1 gene, significantly reducing GO expression and lowering urinary oxalate levels in treated PH1 mice. Notably, these effects persisted for 12 months with no significant off-target effects, liver-induced toxicity, or substantial immune responses, highlighting the approach's safety and specificity. Furthermore, the developed humanized mouse model validated the efficacy of our therapeutic strategy. These findings support LNP-CRISPR-Cas9 targeting HAO1 as a promising and safer alternative for PH1 treatment with a single administration.
Collapse
Affiliation(s)
- Yanhong Jiang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai 200241, China; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Shuanghong Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai 200241, China; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Shenlin Hsiao
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai 200241, China; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | | | - Da Xie
- YolTech Therapeutics, Shanghai 201109, China
| | - Zi Jun Wang
- YolTech Therapeutics, Shanghai 201109, China
| | - Wendan Ren
- YolTech Therapeutics, Shanghai 201109, China
| | - Mingyao Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai 200241, China; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| | - Jiaoyang Liao
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai 200241, China; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| | - Yuxuan Wu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai 200241, China; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China; YolTech Therapeutics, Shanghai 201109, China.
| |
Collapse
|
2
|
Vonada A, Grompe M. In vivo selection of hepatocytes. Hepatology 2024:01515467-990000000-01066. [PMID: 39787488 DOI: 10.1097/hep.0000000000001143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/13/2024] [Indexed: 01/12/2025]
Abstract
The liver is a highly regenerative organ capable of significant proliferation and remodeling during homeostasis and injury responses. Experiments of nature in rare genetic diseases have illustrated that healthy hepatocytes may have a selective advantage, outcompete diseased cells, and result in extensive liver replacement. This observation has given rise to the concept of therapeutic liver repopulation by providing an engineered selective advantage to a subpopulation of beneficial hepatocytes. In vivo selection can greatly enhance the efficiency of both gene and cell transplantation therapies for hepatic diseases. In vivo hepatocyte selection has also enabled the expansion of human hepatocytes in animals, creating novel models of human liver disease and biology. Finally, recent work has shown that somatic mutations produce clonal expansion of injury-resistant hepatocytes in most chronic liver diseases. In this review, we will address the role of hepatocyte selection in disease pathophysiology and therapeutic strategies.
Collapse
Affiliation(s)
- Anne Vonada
- Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, USA
| | | |
Collapse
|
3
|
Zhu X, Cheung WW, Zhang A, Ding G. Mutation Characteristics of Primary Hyperoxaluria in the Chinese Population and Current International Diagnosis and Treatment Status. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:313-326. [PMID: 39131880 PMCID: PMC11309763 DOI: 10.1159/000539516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/16/2024] [Indexed: 08/13/2024]
Abstract
Background Primary hyperoxaluria (PH) is a rare autosomal recessive disorder, mainly due to the increase in endogenous oxalate production, causing a series of clinical features such as kidney stones, nephrocalcinosis, progressive impairment of renal function, and systemic oxalosis. There are three common genetic causes of glycolate metabolism anomalies. Among them, PH type 1 is the most prevalent and severe type, and early end-stage renal failure often occurs. Summary This review summarizes PH through pathophysiology, genotype, clinical manifestation, diagnosis, and treatment options. And explore the characteristics of Chinese PH patients. Key Messages Diagnosis of this rare disease is based on clinical symptoms, urinary or blood oxalate concentrations, liver biopsy, and genetic testing. Currently, the main treatment is massive hydration, citrate inhibition of crystallization, dialysis, liver and kidney transplantation, and pyridoxine. Recently, RNA interference drugs have also been used. In addition, technologies such as gene editing and autologous liver cell transplantation are also being developed. C.815_816insGA and c.33_34insC mutation in the AGXT gene could be a common variant in Chinese PH1 population. Mutations at the end of exon 6 account for approximately 50% of all Chinese HOGA1 mutations. Currently, the treatment of PH in China still relies mainly on symptomatic and high-throughput dialysis, with poor prognosis (especially for PH1 patients).
Collapse
Affiliation(s)
- Xingying Zhu
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Wai W. Cheung
- Division of Pediatric Nephrology, Rady Children’s Hospital, University of California, San Diego, CA, USA
| | - Aihua Zhang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Guixia Ding
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Huang Y, Zhu W, Zhou J, Huang Q, Zeng G. Navigating the Evolving Landscape of Primary Hyperoxaluria: Traditional Management Defied by the Rise of Novel Molecular Drugs. Biomolecules 2024; 14:511. [PMID: 38785918 PMCID: PMC11117870 DOI: 10.3390/biom14050511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 05/25/2024] Open
Abstract
Primary hyperoxalurias (PHs) are inherited metabolic disorders marked by enzymatic cascade disruption, leading to excessive oxalate production that is subsequently excreted in the urine. Calcium oxalate deposition in the renal tubules and interstitium triggers renal injury, precipitating systemic oxalate build-up and subsequent secondary organ impairment. Recent explorations of novel therapeutic strategies have challenged and necessitated the reassessment of established management frameworks. The execution of diverse clinical trials across various medication classes has provided new insights and knowledge. With the evolution of PH treatments reaching a new milestone, prompt and accurate diagnosis is increasingly critical. Developing early, effective management and treatment plans is essential to improve the long-term quality of life for PH patients.
Collapse
Affiliation(s)
- Yueqi Huang
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; (Y.H.); (J.Z.)
| | - Wei Zhu
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China;
| | - Jia Zhou
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; (Y.H.); (J.Z.)
| | - Qiulin Huang
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; (Y.H.); (J.Z.)
| | - Guohua Zeng
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China; (Y.H.); (J.Z.)
- Department of Urology and Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510230, China;
| |
Collapse
|
5
|
Nieto-Romero V, García-Torralba A, Molinos-Vicente A, Moya FJ, Rodríguez-Perales S, García-Escudero R, Salido E, Segovia JC, García-Bravo M. Restored glyoxylate metabolism after AGXT gene correction and direct reprogramming of primary hyperoxaluria type 1 fibroblasts. iScience 2024; 27:109530. [PMID: 38577102 PMCID: PMC10993186 DOI: 10.1016/j.isci.2024.109530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 01/18/2024] [Accepted: 03/16/2024] [Indexed: 04/06/2024] Open
Abstract
Primary hyperoxaluria type 1 (PH1) is a rare inherited metabolic disorder characterized by oxalate overproduction in the liver, resulting in renal damage. It is caused by mutations in the AGXT gene. Combined liver and kidney transplantation is currently the only permanent curative treatment. We combined locus-specific gene correction and hepatic direct cell reprogramming to generate autologous healthy induced hepatocytes (iHeps) from PH1 patient-derived fibroblasts. First, site-specific AGXT corrected cells were obtained by homology directed repair (HDR) assisted by CRISPR-Cas9, following two different strategies: accurate point mutation (c.731T>C) correction or knockin of an enhanced version of AGXT cDNA. Then, iHeps were generated, by overexpression of hepatic transcription factors. Generated AGXT-corrected iHeps showed hepatic gene expression profile and exhibited in vitro reversion of oxalate accumulation compared to non-edited PH1-derived iHeps. This strategy set up a potential alternative cellular source for liver cell replacement therapy and a personalized PH1 in vitro disease model.
Collapse
Affiliation(s)
- Virginia Nieto-Romero
- Cell Technology Division, Biomedical Innovation Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-ISCIII, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Aida García-Torralba
- Cell Technology Division, Biomedical Innovation Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-ISCIII, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Andrea Molinos-Vicente
- Cell Technology Division, Biomedical Innovation Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-ISCIII, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Francisco José Moya
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Sandra Rodríguez-Perales
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Ramón García-Escudero
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)-ISCIII, Research Institute Hospital 12 de Octubre (imas12)-University Hospital 12 de Octubre, 28040 Madrid, Spain
| | - Eduardo Salido
- Pathology Department, Hospital Universitario de Canarias, Universidad La Laguna, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-ISCIII, 38320 Tenerife, Spain
| | - José-Carlos Segovia
- Cell Technology Division, Biomedical Innovation Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-ISCIII, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain
| | - María García-Bravo
- Cell Technology Division, Biomedical Innovation Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER)-ISCIII, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain
| |
Collapse
|
6
|
Abstract
The primary hyperoxalurias are three rare inborn errors of the glyoxylate metabolism in the liver, which lead to massively increased endogenous oxalate production, thus elevating urinary oxalate excretion and, based on that, recurrent urolithiasis and/or progressive nephrocalcinosis. Frequently, especially in type 1 primary hyperoxaluria, early end-stage renal failure occurs. Treatment possibilities are scare, namely, hyperhydration and alkaline citrate medication. In type 1 primary hyperoxaluria, vitamin B6, though, is helpful in patients with specific missense or mistargeting mutations. In those vitamin B6 responsive, urinary oxalate excretion and concomitantly urinary glycolate is significantly decreased, or even normalized. In patients non-responsive to vitamin B6, RNA interference medication is now available. Lumasiran® is already available on prescription and targets the messenger RNA of glycolate oxidase, thus blocking the conversion of glycolate into glyoxylate, hence decreasing oxalate, but increasing glycolate production. Nedosiran blocks liver-specific lactate dehydrogenase A and thus the final step of oxalate production. Similar to vitamin B6 treatment, where both RNA interference urinary oxalate excretion can be (near) normalized and plasma oxalate decreases, however, urinary and plasma glycolate increases with lumasiran treatment. Future treatment possibilities are on the horizon, for example, substrate reduction therapy with small molecules or gene editing, induced pluripotent stem cell-derived autologous hepatocyte-like cell transplantation, or gene therapy with newly developed vector technologies. This review provides an overview of current and especially new and future treatment options.
Collapse
Affiliation(s)
| | - Cristina Martin-Higueras
- German Hyperoxaluria Center, Bonn, Germany.
- Institute of Biomedical Technologies, CIBERER, Campus de Ofra s/n 38200, University of La Laguna, Tenerife, Spain.
| |
Collapse
|
7
|
In vivo CRISPR-Cas9 inhibition of hepatic LDH as treatment of primary hyperoxaluria. Mol Ther Methods Clin Dev 2022; 25:137-146. [PMID: 35402636 PMCID: PMC8971349 DOI: 10.1016/j.omtm.2022.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/14/2022] [Indexed: 12/26/2022]
Abstract
Genome-editing strategies, especially CRISPR-Cas9 systems, have substantially increased the efficiency of innovative therapeutic approaches for monogenic diseases such as primary hyperoxalurias (PHs). We have previously demonstrated that inhibition of glycolate oxidase using CRISPR-Cas9 systems represents a promising therapeutic option for PH type I (PH1). Here, we extended our work evaluating the efficacy of liver-specific inhibition of lactate dehydrogenase (LDH), a key enzyme responsible for converting glyoxylate to oxalate; this strategy would not be limited to PH1, being applicable to other PH subtypes. In this work, we demonstrate a liver-specific inhibition of LDH that resulted in a drastic reduction of LDH levels in the liver of PH1 and PH3 mice after a single-dose delivery of AAV8 vectors expressing the CRISPR-Cas9 system, resulting in reduced urine oxalate levels and kidney damage without signs of toxicity. Deep sequencing analysis revealed that this approach was safe and specific, with no off-targets detected in the liver of treated animals and no on-target/off-tissue events. Altogether, our data provide evidence that in vivo genome editing using CRISPR-Cas9 systems would represent a valuable tool for improved therapeutic approaches for PH.
Collapse
|
8
|
Shee K, Stoller ML. Perspectives in primary hyperoxaluria - historical, current and future clinical interventions. Nat Rev Urol 2021; 19:137-146. [PMID: 34880452 PMCID: PMC8652378 DOI: 10.1038/s41585-021-00543-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 12/19/2022]
Abstract
Primary hyperoxalurias are a devastating family of diseases leading to multisystem oxalate deposition, nephrolithiasis, nephrocalcinosis and end-stage renal disease. Traditional treatment paradigms are limited to conservative management, dialysis and combined transplantation of the kidney and liver, of which the liver is the primary source of oxalate production. However, transplantation is associated with many potential complications, including operative risks, graft rejection, post-transplant organ failure, as well as lifelong immunosuppressive medications and their adverse effects. New therapeutics being developed for primary hyperoxalurias take advantage of biochemical knowledge about oxalate synthesis and metabolism, and seek to specifically target these pathways with the goal of decreasing the accumulation and deposition of oxalate in the body. Primary hyperoxalurias are a devastating family of diseases that eventually lead to end-stage renal disease. In this Review, Shee and Stoller discuss current treatment paradigms for primary hyperoxalurias, new therapeutics and their mechanisms of action, and future directions for novel research in the field. Primary hyperoxalurias (PHs) are a devastating family of rare, autosomal-recessive genetic disorders that lead to multisystem oxalate deposition, nephrolithiasis, nephrocalcinosis and end-stage renal disease. Traditional treatment paradigms are limited to conservative management, dialysis and inevitably transplantation of the kidney and liver, which is associated with high morbidity and the need for lifelong immunosuppression. New therapeutics being developed for PHs take advantage of biochemical knowledge about oxalate synthesis and metabolism to specifically target these pathways, with the goal of decreasing the accumulation and deposition of plasma oxalate in the body. New therapeutics can be divided into classes, and include substrate reduction therapy, intestinal oxalate degradation, chaperone therapy, enzyme restoration therapy and targeting of the inflammasome. Lumasiran, a mRNA therapeutic targeting glycolate oxidase, was the first primary hyperoxaluria-specific therapeutic approved by the European Medicines Agency and the FDA in 2020. Future work includes further clinical trials for promising therapeutics in the pipeline, identification of biomarkers of response to PH-directed therapy, optimization of drug development and delivery of new therapeutics.
Collapse
Affiliation(s)
- Kevin Shee
- Department of Urology, UCSF, San Francisco, CA, USA.
| | | |
Collapse
|
9
|
Belostotsky R, Frishberg Y. Novel therapeutic approaches for the primary hyperoxalurias. Pediatr Nephrol 2021; 36:2593-2606. [PMID: 33156410 DOI: 10.1007/s00467-020-04817-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 08/04/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
Loss-of-function mutations in three genes, involved in the metabolic pathway of glyoxylate, result in increased oxalate production and its crystallization in the form of calcium oxalate. This leads to three forms of primary hyperoxaluria-an early-onset inherited kidney disease with wide phenotypic variability ranging from isolated kidney stone events to stage 5 chronic kidney disease in infancy. This review provides a description of metabolic processes resulting in oxalate overproduction and summarizes basic therapeutic approaches. Unfortunately, current treatment of primary hyperoxaluria does not allow the prevention of loss of kidney function or to substantially diminish other symptoms in most patients. However, latest breakthroughs in biotechnology provide new promising directions for drug development. Some of them have already progressed to the level of clinical trials; others are just at the stage of proof of concept. Here we review the most advanced technologies including those that have been harnessed as possible therapeutic modalities.
Collapse
Affiliation(s)
- Ruth Belostotsky
- Division of Pediatric Nephrology, Shaare Zedek Medical Center, 12 Bait Street, 9103102, Jerusalem, Israel
| | - Yaacov Frishberg
- Division of Pediatric Nephrology, Shaare Zedek Medical Center, 12 Bait Street, 9103102, Jerusalem, Israel. .,Hebrew University School of Medicine, Jerusalem, Israel.
| |
Collapse
|
10
|
Tandoi F, Cussa D, Peruzzi L, Catalano S, Camilla R, Mandrile G, Calvo PL, Pinon M, Dell'Olio D, Salizzoni M, Amoroso A, Romagnoli R. Combined liver kidney transplantation for primary hyperoxaluria type 1: Will there still be a future? Current transplantation strategies and monocentric experience. Pediatr Transplant 2021; 25:e14003. [PMID: 33742750 DOI: 10.1111/petr.14003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
Combined liver-kidney transplantation is a therapeutic option for children affected by type 1 primary hyperoxaluria. Persistently high plasma oxalate levels may lead to kidney graft failure. It is debated whether pre-emptive liver transplantation, followed by kidney transplantation, might be a better strategy to reduce kidney graft loss. Our experience of 6 pediatric combined liver-kidney transplants for primary hyperoxaluria type 1 in pediatric recipients was retrospectively analyzed. Plasma oxalate levels were monitored before and after transplantation. All the recipients were on hemodialysis at transplantation. Median [IQR] recipient's age at transplantation was 11 [1-14] years; in all cases, a compatible graft from a pediatric brain-dead donor aged 8 [2-16] years was used. In a median follow-up of 7 [2-19] years after combined liver-kidney transplantation, no child died and no liver graft failure was observed; three kidney grafts were lost, due to chronic rejection, primary non-function, and early renal oxalate accumulation. Liver and kidney graft survival remained stable at 1, 3, and 5 years, at 100% and 85%, respectively. Kidney graft loss was the major complication in our series. Risk is higher with very young, low-weight donors. The impact of treatment with glyoxalate pathway enzyme inhibitors treatment in children with advanced disease as well as of donor kidney preservation by ex vivo machine perfusion needs to be evaluated. At present, a case-by-case discussion is needed to establish an optimal treatment strategy.
Collapse
Affiliation(s)
- Francesco Tandoi
- General Surgery 2U and Liver Transplant Unit, Department of Surgical Sciences, A.O.U. Città della Salute e della Scienza, Molinette Hospital, University of Torino, Torino, Italy
| | - Davide Cussa
- General Surgery 2U and Liver Transplant Unit, Department of Surgical Sciences, A.O.U. Città della Salute e della Scienza, Molinette Hospital, University of Torino, Torino, Italy
| | - Licia Peruzzi
- Pediatric Nephrology Unit, Department of Pediatrics, A.O.U. Città della Salute e della Scienza, Regina Margherita Children's Hospital, University of Torino, Torino, Italy
| | - Silvia Catalano
- General Surgery 2U and Liver Transplant Unit, Department of Surgical Sciences, A.O.U. Città della Salute e della Scienza, Molinette Hospital, University of Torino, Torino, Italy
| | - Roberta Camilla
- Pediatric Nephrology Unit, Department of Pediatrics, A.O.U. Città della Salute e della Scienza, Regina Margherita Children's Hospital, University of Torino, Torino, Italy
| | - Giorgia Mandrile
- Medical Genetics Unit, Thalassemia Centre, A.O.U. San Luigi, Orbassano, Italy
| | - Pier Luigi Calvo
- Pediatric Gastroenterology Unit, Department of Pediatrics, A.O.U. Città della Salute e della Scienza, Regina Margherita Children's Hospital, University of Torino, Torino, Italy
| | - Michele Pinon
- Pediatric Gastroenterology Unit, Department of Pediatrics, A.O.U. Città della Salute e della Scienza, Regina Margherita Children's Hospital, University of Torino, Torino, Italy
| | - Dominic Dell'Olio
- Regional Transplant Centre, A.O.U. Città della Salute e della Scienza, University of Torino, Torino, Italy
| | - Mauro Salizzoni
- General Surgery 2U and Liver Transplant Unit, Department of Surgical Sciences, A.O.U. Città della Salute e della Scienza, Molinette Hospital, University of Torino, Torino, Italy
| | - Antonio Amoroso
- Regional Transplant Centre, A.O.U. Città della Salute e della Scienza, University of Torino, Torino, Italy
| | - Renato Romagnoli
- General Surgery 2U and Liver Transplant Unit, Department of Surgical Sciences, A.O.U. Città della Salute e della Scienza, Molinette Hospital, University of Torino, Torino, Italy
| |
Collapse
|
11
|
Small Molecule-Based Enzyme Inhibitors in the Treatment of Primary Hyperoxalurias. J Pers Med 2021; 11:jpm11020074. [PMID: 33513899 PMCID: PMC7912158 DOI: 10.3390/jpm11020074] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Primary hyperoxalurias (PHs) are a group of inherited alterations of the hepatic glyoxylate metabolism. PHs classification based on gene mutations parallel a variety of enzymatic defects, and all involve the harmful accumulation of calcium oxalate crystals that produce systemic damage. These geographically widespread rare diseases have a deep impact in the life quality of the patients. Until recently, treatments were limited to palliative measures and kidney/liver transplants in the most severe forms. Efforts made to develop pharmacological treatments succeeded with the biotechnological agent lumasiran, a siRNA product against glycolate oxidase, which has become the first effective therapy to treat PH1. However, small molecule drugs have classically been preferred since they benefit from experience and have better pharmacological properties. The development of small molecule inhibitors designed against key enzymes of glyoxylate metabolism is on the focus of research. Enzyme inhibitors are successful and widely used in several diseases and their pharmacokinetic advantages are well known. In PHs, effective enzymatic targets have been determined and characterized for drug design and interesting inhibitory activities have been achieved both in vitro and in vivo. This review describes the most recent advances towards the development of small molecule enzyme inhibitors in the treatment of PHs, introducing the multi-target approach as a more effective and safe therapeutic option.
Collapse
|
12
|
Kletzmayr A, Ivarsson ME, Leroux JC. Investigational Therapies for Primary Hyperoxaluria. Bioconjug Chem 2020; 31:1696-1707. [PMID: 32539351 DOI: 10.1021/acs.bioconjchem.0c00268] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent years have brought exciting new insights in the field of primary hyperoxaluria (PH), both on a basic research level as well as through the progress of novel therapeutics in clinical development. To date, very few supportive measures are available for patients suffering from PH, which, together with the severity of the disorder, make disease management challenging. Basic and clinical research and development efforts range from correcting the underlying gene mutations, preventing calcium oxalate crystal-induced kidney damage, to the administration of probiotics favoring the intestinal secretion of excess oxalate. In this review, current advances in the development of those strategies are presented and discussed.
Collapse
Affiliation(s)
- Anna Kletzmayr
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
13
|
Barahman M, Zhang W, Harris HY, Aiyer A, Kabarriti R, Kinkhabwala M, Roy-Chowdhury N, Beck AP, Scanlan TS, Roy-Chowdhury J, Asp P, Guha C. Radiation-primed hepatocyte transplantation in murine monogeneic dyslipidemia normalizes cholesterol and prevents atherosclerosis. J Hepatol 2019; 70:1170-1179. [PMID: 30654068 PMCID: PMC6986679 DOI: 10.1016/j.jhep.2019.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 01/03/2019] [Accepted: 01/08/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Inherited abnormalities in apolipoprotein E (ApoE) or low-density lipoprotein receptor (LDLR) function result in early onset cardiovascular disease and death. Currently, the only curative therapy available is liver transplantation. Hepatocyte transplantation is a potential alternative; however, physiological levels of hepatocyte engraftment and repopulation require transplanted cells to have a competitive proliferative advantage of over host hepatocytes. Herein, we aimed to test the efficacy and safety of a novel preparative regimen for hepatocyte transplantation. METHODS Herein, we used an ApoE-deficient mouse model to test the efficacy of a new regimen for hepatocyte transplantation. We used image-guided external-beam hepatic irradiation targeting the median and right lobes of the liver to enhance cell transplant engraftment. This was combined with administration of the hepatic mitogen GC-1, a thyroid hormone receptor-β agonist mimetic, which was used to promote repopulation. RESULTS The non-invasive preparative regimen of hepatic irradiation and GC-1 was well-tolerated in ApoE-/- mice. This regimen led to robust liver repopulation by transplanted hepatocytes, which was associated with significant reductions in serum cholesterol levels after transplantation. Additionally, in mice receiving this regimen, ApoE was detected in the circulation 4 weeks after treatment and did not induce an immunological response. Importantly, the normalization of serum cholesterol prevented the formation of atherosclerotic plaques in this model. CONCLUSIONS Significant hepatic repopulation and the cure of dyslipidemia in this model, using a novel and well-tolerated preparative regimen, demonstrate the clinical potential of applying this method to the treatment of inherited metabolic diseases of the liver. LAY SUMMARY Hepatocyte transplantation is a promising alternative to liver transplantation for the treatment of liver diseases. However, it is inefficient, as restricted growth of transplanted cells in the liver limits its therapeutic benefits. Preparative treatments improve the efficiency of this procedure, but no clinically-feasible options are currently available. In this study we develop a novel well-tolerated preparative treatment to improve growth of cells in the liver and then demonstrate that this treatment completely cures an inherited lipid disorder in a mouse model.
Collapse
Affiliation(s)
- Mark Barahman
- Department of Pathology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Wei Zhang
- Department of Pathology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Hillary Yaffe Harris
- Department of Surgery, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Anita Aiyer
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Rafi Kabarriti
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Milan Kinkhabwala
- Department of Surgery, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Namita Roy-Chowdhury
- Department of Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States,Department of Genetics, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States,The Marion Bessin Liver Research Center, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Amanda P. Beck
- Department of Pathology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Thomas S. Scanlan
- Departments of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, United States
| | - Jayanta Roy-Chowdhury
- Department of Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States,Department of Genetics, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States,The Marion Bessin Liver Research Center, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Patrik Asp
- Department of Surgery, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Chandan Guha
- Department of Pathology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States; Department of Surgery, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States; Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States; Department of Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States; The Marion Bessin Liver Research Center, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States; Department of Urology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
14
|
Estève J, Blouin JM, Lalanne M, Azzi-Martin L, Dubus P, Bidet A, Harambat J, Llanas B, Moranvillier I, Bedel A, Moreau-Gaudry F, Richard E. Generation of induced pluripotent stem cells-derived hepatocyte-like cells for ex vivo gene therapy of primary hyperoxaluria type 1. Stem Cell Res 2019; 38:101467. [PMID: 31151050 DOI: 10.1016/j.scr.2019.101467] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 03/30/2019] [Accepted: 05/19/2019] [Indexed: 12/17/2022] Open
Abstract
Primary hyperoxaluria type 1 (PH1) is a rare autosomal recessive disorder of the liver metabolism due to functional deficiency of the peroxisomal enzyme alanine:glyoxylate aminotransferase (AGT). AGT deficiency results in overproduction of oxalate which complexes with calcium to form insoluble calcium-oxalate salts in urinary tracts, ultimately leading to end-stage renal disease. Currently, the only curative treatment for PH1 is combined liver-kidney transplantation, which is limited by donor organ shortage and lifelong requirement for immunosuppression. Transplantation of genetically modified autologous hepatocytes is an attractive therapeutic option for PH1. However, the use of fresh primary hepatocytes suffers from limitations such as organ availability, insufficient cell proliferation, loss of function, and the risk of immune rejection. We developed patient-specific induced pluripotent stem cells (PH1-iPSCs) free of reprogramming factors as a source of renewable and genetically defined autologous PH1-hepatocytes. We then investigated additive gene therapy using a lentiviral vector encoding wild-type AGT under the control of the liver-specific transthyretin promoter. Genetically modified PH1-iPSCs successfully provided hepatocyte-like cells (HLCs) that exhibited significant AGT expression at both RNA and protein levels after liver-specific differentiation process. These results pave the way for cell-based therapy of PH1 by transplantation of genetically modified autologous HLCs derived from patient-specific iPSCs.
Collapse
Affiliation(s)
- Julie Estève
- Univ.Bordeaux, INSERM, BMGIC, U1035, CHU Bordeaux, 33076 Bordeaux, France
| | - Jean-Marc Blouin
- Univ.Bordeaux, INSERM, BMGIC, U1035, CHU Bordeaux, 33076 Bordeaux, France
| | - Magalie Lalanne
- Univ.Bordeaux, INSERM, BMGIC, U1035, CHU Bordeaux, 33076 Bordeaux, France
| | | | - Pierre Dubus
- Univ.Bordeaux, INSERM, BARITON, U1053, CHU Bordeaux, 33076, France
| | - Audrey Bidet
- Laboratoire d'hématologie, CHU Bordeaux, Bordeaux, France
| | - Jérôme Harambat
- Service de Néphrologie pédiatrique, Centre de Référence Maladies Rénales Rares du Sud-Ouest, CHU Bordeaux, 33000 Bordeaux, France
| | - Brigitte Llanas
- Service de Néphrologie pédiatrique, Centre de Référence Maladies Rénales Rares du Sud-Ouest, CHU Bordeaux, 33000 Bordeaux, France
| | | | - Aurélie Bedel
- Univ.Bordeaux, INSERM, BMGIC, U1035, CHU Bordeaux, 33076 Bordeaux, France
| | | | - Emmanuel Richard
- Univ.Bordeaux, INSERM, BMGIC, U1035, CHU Bordeaux, 33076 Bordeaux, France.
| |
Collapse
|
15
|
Kukreja A, Lasaro M, Cobaugh C, Forbes C, Tang JP, Gao X, Martin-Higueras C, Pey AL, Salido E, Sobolov S, Subramanian RR. Systemic Alanine Glyoxylate Aminotransferase mRNA Improves Glyoxylate Metabolism in a Mouse Model of Primary Hyperoxaluria Type 1. Nucleic Acid Ther 2019; 29:104-113. [PMID: 30676254 DOI: 10.1089/nat.2018.0740] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Primary Hyperoxaluria Type 1 (PH1) is an autosomal recessive disorder of glyoxylate metabolism. Loss of alanine glyoxylate aminotransferase (AGT) function to convert intermediate metabolite glyoxylate to glycine causes the accumulation and reduction of glyoxylate to glycolate, which eventually is oxidized to oxalate. Excess oxalate in PH1 patients leads to the formation and deposition of calcium oxalate crystals in the kidney and urinary tract. Oxalate crystal deposition causes a decline in renal function, systemic oxalosis, and eventually end-stage renal disease and premature death. mRNA-based therapies are a new class of drugs that work by replacing the missing enzyme. mRNA encoding AGT has the potential to restore normal glyoxylate to glycine metabolism, thus preventing the buildup of calcium oxalate in various organs. Panels of codon-optimized AGT mRNA constructs were screened in vitro and in wild-type mice for the production of a functional AGT enzyme. Two human constructs, wild-type and engineered AGT (RHEAM), were tested in Agxt-/- mice. Repeat dosing in Agxt-/- mice resulted in a 40% reduction in urinary oxalate, suggesting therapeutic benefit. These studies suggest that mRNA encoding AGT led to increased expression and activity of the AGT enzyme in liver that translated into decrease in urinary oxalate levels. Taken together, our data indicate that AGT mRNA may have the potential to be developed into a therapeutic for PH1.
Collapse
Affiliation(s)
- Anjli Kukreja
- 1 Research, Alexion Pharmaceuticals, Inc., New Haven, Connecticut
| | - Melissa Lasaro
- 1 Research, Alexion Pharmaceuticals, Inc., New Haven, Connecticut
| | | | - Chris Forbes
- 1 Research, Alexion Pharmaceuticals, Inc., New Haven, Connecticut
| | - Jian-Ping Tang
- 2 Clinical Pharmacology, Alexion Pharmaceuticals, Inc., New Haven, Connecticut
| | - Xiang Gao
- 3 Pharmacometrics and Physiologically Based PKPD Modeling and Simulation Clinical Development, Alexion Pharmaceuticals, Inc., Boston, Massachusetts
| | - Cristina Martin-Higueras
- 4 Center for Rare Diseases (CIBERER), Hospital Universitario de Canarias, Universidad de La Laguna, Tenerife, Spain
| | - Angel L Pey
- 5 Department of Physical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
| | - Eduardo Salido
- 4 Center for Rare Diseases (CIBERER), Hospital Universitario de Canarias, Universidad de La Laguna, Tenerife, Spain
| | - Susan Sobolov
- 1 Research, Alexion Pharmaceuticals, Inc., New Haven, Connecticut
| | | |
Collapse
|
16
|
CRISPR/Cas9-mediated glycolate oxidase disruption is an efficacious and safe treatment for primary hyperoxaluria type I. Nat Commun 2018; 9:5454. [PMID: 30575740 PMCID: PMC6303323 DOI: 10.1038/s41467-018-07827-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 11/27/2018] [Indexed: 12/26/2022] Open
Abstract
CRISPR/Cas9 technology offers novel approaches for the development of new therapies for many unmet clinical needs, including a significant number of inherited monogenic diseases. However, in vivo correction of disease-causing genes is still inefficient, especially for those diseases without selective advantage for corrected cells. We reasoned that substrate reduction therapies (SRT) targeting non-essential enzymes could provide an attractive alternative. Here we evaluate the therapeutic efficacy of an in vivo CRISPR/Cas9-mediated SRT to treat primary hyperoxaluria type I (PH1), a rare inborn dysfunction in glyoxylate metabolism that results in excessive hepatic oxalate production causing end-stage renal disease. A single systemic administration of an AAV8-CRISPR/Cas9 vector targeting glycolate oxidase, prevents oxalate overproduction and kidney damage, with no signs of toxicity in Agxt1−/− mice. Our results reveal that CRISPR/Cas9-mediated SRT represents a promising therapeutic option for PH1 that can be potentially applied to other metabolic diseases caused by the accumulation of toxic metabolites. Substrate reduction therapies (SRT) are a promising therapeutic approach for monogenic inherited metabolic diseases. Here the authors evaluate the therapeutic potential of an in vivo CRISPR/Cas9-mediated SRT to treat primary hyperoxaluria type I and demonstrate its safety and efficacy.
Collapse
|
17
|
Martin-Higueras C, Torres A, Salido E. Molecular therapy of primary hyperoxaluria. J Inherit Metab Dis 2017; 40:481-489. [PMID: 28425073 DOI: 10.1007/s10545-017-0045-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/20/2017] [Accepted: 04/03/2017] [Indexed: 12/19/2022]
Abstract
During the last few decades, the molecular understanding of the mechanisms involved in primary hyperoxalurias (PHs) has set the stage for novel therapeutic approaches. The availability of PH mouse models has facilitated preclinical studies testing innovative treatments. PHs are autosomal recessive diseases where the enzymatic deficit plays a central pathogenic role. Thus, molecular therapies aimed at restoring such deficit or limiting the consequences of the metabolic derangement could be envisioned, keeping in mind the specific challenges posed by the cell-autonomous nature of the deficiency. Various molecular approaches like enzyme replacement, substrate reduction, pharmacologic chaperones, and gene and cell therapies have been explored in cells and mouse models of disease. Some of these proof-of-concept studies have paved the way to current clinical trials on PH type 1, raising hopes that much needed treatments will become available for this severe inborn error of metabolism.
Collapse
Affiliation(s)
- Cristina Martin-Higueras
- Department of Pathology & Nephrology, Centre for Biomedical Research on Rare Diseases (CIBERER) Hospital Universitario Canarias, Universidad La Laguna, Tenerife, Spain
| | - Armando Torres
- Department of Pathology & Nephrology, Centre for Biomedical Research on Rare Diseases (CIBERER) Hospital Universitario Canarias, Universidad La Laguna, Tenerife, Spain
| | - Eduardo Salido
- Department of Pathology & Nephrology, Centre for Biomedical Research on Rare Diseases (CIBERER) Hospital Universitario Canarias, Universidad La Laguna, Tenerife, Spain.
- Department of Pathology, ULL School Medicine, 38320, Tenerife, Spain.
| |
Collapse
|
18
|
Polgar Z, Li Y, Li Wang X, Guha C, Roy-Chowdhury N, Roy-Chowdhury J. Gunn Rats as a Surrogate Model for Evaluation of Hepatocyte Transplantation-Based Therapies of Crigler-Najjar Syndrome Type 1. Methods Mol Biol 2017; 1506:131-147. [PMID: 27830550 DOI: 10.1007/978-1-4939-6506-9_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Liver transplantation has been established as a curative therapy for acute and chronic liver failure, as well as liver-based inherited metabolic diseases. Because of the complexity of organ transplantation and the worldwide shortage of donor organs, hepatocyte transplantation is being developed as a bridging therapy until donor organs become available, or for amelioration of inherited liver-based diseases. The Gunn rat is a molecular and metabolic model of Crigler-Najjar syndrome type 1, which is characterized by lifelong unconjugated hyperbilirubinemia due to the lack of uridinediphosphoglucuronate glucuronosyltransferase-1 (UGT1A1)-mediated bilirubin glucuronidation. Gunn rats are convenient for evaluating the effect of hepatocyte transplantation or gene therapy, because the extent of UGT1A1 replacement can be assessed by serial determination of serum bilirubin levels, and excretion of bilirubin glucuronides in bile provide definitive evidence of the function of the transplanted hepatocytes or the effect of gene therapy. The core techniques involved in hepatocyte transplantation in Gunn rats are discussed in this chapter.
Collapse
Affiliation(s)
- Zsuzsanna Polgar
- Division of Gastroenterology and Liver Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yanfeng Li
- Division of Gastroenterology and Liver Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xia Li Wang
- Division of Gastroenterology and Liver Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Chandan Guha
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Departments of Radiation Oncology and Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Namita Roy-Chowdhury
- Division of Gastroenterology and Liver Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Genetics, Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Ullmann Building, Bronx, NY, USA.
| | - Jayanta Roy-Chowdhury
- Division of Gastroenterology and Liver Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Genetics, Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, 1300 Morris Park Avenue, Ullmann Building, Bronx, NY, USA.
| |
Collapse
|
19
|
Effects of alanine:glyoxylate aminotransferase variants and pyridoxine sensitivity on oxalate metabolism in a cell-based cytotoxicity assay. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1055-62. [PMID: 26854734 DOI: 10.1016/j.bbadis.2016.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 12/20/2022]
Abstract
The hereditary kidney stone disease primary hyperoxaluria type 1 (PH1) is caused by a functional deficiency of the liver-specific, peroxisomal, pyridoxal-phosphate-dependent enzyme, alanine:glyoxylate aminotransferase (AGT). One third of PH1 patients, particularly those expressing the p.[(Pro11Leu; Gly170Arg; Ile340Met)] mutant allele, respond clinically to pharmacological doses of pyridoxine. To gain further insight into the metabolic effects of AGT dysfunction in PH1 and the effect of pyridoxine, we established an "indirect" glycolate cytotoxicity assay using CHO cells expressing glycolate oxidase (GO) and various normal and mutant forms of AGT. In cells expressing GO the great majority of glycolate was converted to oxalate and glyoxylate, with the latter causing the greater decrease in cell survival. Co-expression of normal AGTs and some, but not all, mutant AGT variants partially counteracted this cytotoxicity and led to decreased synthesis of oxalate and glyoxylate. Increasing the extracellular pyridoxine up to 0.3μM led to an increased metabolic effectiveness of normal AGTs and the AGT-Gly170Arg variant. The increased survival seen with AGT-Gly170Arg was paralleled by a 40% decrease in oxalate and glyoxylate levels. These data support the suggestion that the effectiveness of pharmacological doses of pyridoxine results from an improved metabolic effectiveness of AGT; that is the increased rate of transamination of glyoxylate to glycine. The indirect glycolate toxicity assay used in the present study has potential to be used in cell-based drug screening protocols to identify chemotherapeutics that might enhance or decrease the activity and metabolic effectiveness of AGT and GO, respectively, and be useful in the treatment of PH1.
Collapse
|
20
|
Helper-dependent adenoviral vectors for liver-directed gene therapy of primary hyperoxaluria type 1. Gene Ther 2015; 23:129-34. [PMID: 26609667 PMCID: PMC4746739 DOI: 10.1038/gt.2015.107] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/27/2015] [Accepted: 11/03/2015] [Indexed: 12/15/2022]
Abstract
Primary hyperoxaluria type 1 (PH1) is an inborn error of liver metabolism due to deficiency of the peroxisomal enzyme alanine:glyoxylate aminotransferase (AGT) which catalyzes conversion of glyoxylate into glycine. AGT deficiency results in overproduction of oxalate which ultimately leads to end-stage renal disease and death. Organ transplantation as either preemptive liver transplantation or combined liver/kidney transplantation is the only available therapy to prevent disease progression. Gene therapy is an attractive option to provide an alternative treatment for PH1. Towards this goal, we investigated helper-dependent adenoviral (HDAd) vectors for liver-directed gene therapy of PH1. Compared to saline controls, AGT-deficient mice injected with an HDAd encoding the AGT under the control of a liver-specific promoter showed a significant reduction of hyperoxaluria and less increase of urinary oxalate following challenge with Ethylene Glycol (EG), a precursor of glyoxylate. These studies may thus pave the way to clinical application of HDAd for PH1 gene therapy.
Collapse
|
21
|
|
22
|
Landis CS, Zhou H, Liu L, Hetherington HP, Guha C. Liver regeneration and energetic changes in rats following hepatic radiation therapy and hepatocyte transplantation by ³¹P MRSI. Liver Int 2015; 35:1145-51. [PMID: 25775097 PMCID: PMC4363097 DOI: 10.1111/liv.12507] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 02/14/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Radiation-induced liver damage (RILD) is a poorly understood and potentially devastating complication of hepatic radiation therapy (RT) for liver cancers. Previous work has demonstrated that hepatocyte transplantation (HT) can ameliorate RILD in rats. We hypothesized that RT inhibits generation of cellular ATP and suppresses hepatic regeneration. METHODS To study the metabolic changes that occur in RILD with and without HT, (31)P MRSI data were acquired in rats treated with partial hepatectomy (PH) alone, PH with hepatic irradiation (PHRT) or PHRT with HT (PHRT+HT). RESULTS Both [γ -ATP] and ATP/Pi (31)P MRSI signal ratio initially decreased and subsequently returned to baseline levels within 2 weeks after PH, which is consistent with other published data. Persistently reduced [γ-ATP] and ATP/Pi (31)P MRSI signal ratio were observed in rats up to 20 weeks after PHRT. However, progressive increases in [γ -ATP] were observed over time in the group of rats receiving PHRT+HT. Normal [γ -ATP] was observed 20 weeks after PHRT+HT (vs. PH alone), although, ATP/Pi levels did not return to normal after PHRT +HT. Ex vivo histological studies were performed to confirm liver repopulation with transplanted hepatocytes and the amelioration of pathologic changes of RILD. CONCLUSIONS These findings suggest that (31)P MRSI can be used to monitor the progress of RILD and its amelioration using transplanted hepatocytes to simultaneously restore metabolic function while replacing host hepatocytes damaged by RT.
Collapse
Affiliation(s)
- Charles S. Landis
- Department of Radiation Oncology, Division of Gastroenterology and Hepatology, Department of Medicine, University of Washington, Seattle, WA
| | - Hongchao Zhou
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
| | - Laibin Liu
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
| | | | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
23
|
Vainshtein JM, Kabarriti R, Mehta KJ, Roy-Chowdhury J, Guha C. Bone marrow-derived stromal cell therapy in cirrhosis: clinical evidence, cellular mechanisms, and implications for the treatment of hepatocellular carcinoma. Int J Radiat Oncol Biol Phys 2014; 89:786-803. [PMID: 24969793 DOI: 10.1016/j.ijrobp.2014.02.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/09/2014] [Accepted: 02/12/2014] [Indexed: 01/18/2023]
Abstract
Current treatment options for hepatocellular carcinoma (HCC) are often limited by the presence of underlying liver disease. In patients with liver cirrhosis, surgery, chemotherapy, and radiation therapy all carry a high risk of hepatic complications, ranging from ascites to fulminant liver failure. For patients receiving radiation therapy, cirrhosis dramatically reduces the already limited radiation tolerance of the liver and represents the most important clinical risk factor for the development of radiation-induced liver disease. Although improvements in conformal radiation delivery techniques have improved our ability to safely irradiate confined areas of the liver to increasingly higher doses with excellent local disease control, patients with moderate-to-severe liver cirrhosis continue to face a shortage of treatment options for HCC. In recent years, evidence has emerged supporting the use of bone marrow-derived stromal cells (BMSCs) as a promising treatment for liver cirrhosis, with several clinical studies demonstrating sustained improvement in clinical parameters of liver function after autologous BMSC infusion. Three predominant populations of BMSCs, namely hematopoietic stem cells, mesenchymal stem cells, and endothelial progenitor cells, seem to have therapeutic potential in liver injury and cirrhosis. Preclinical studies of BMSC transplantation have identified a range of mechanisms through which these cells mediate their therapeutic effects, including hepatocyte transdifferentiation and fusion, paracrine stimulation of hepatocyte proliferation, inhibition of activated hepatic stellate cells, enhancement of fibrolytic matrix metalloproteinase activity, and neovascularization of regenerating liver. By bolstering liver function in patients with underlying Child's B or C cirrhosis, autologous BMSC infusion holds great promise as a therapy to improve the safety, efficacy, and utility of surgery, chemotherapy, and hepatic radiation therapy in the treatment of HCC.
Collapse
Affiliation(s)
| | - Rafi Kabarriti
- Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Keyur J Mehta
- Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Jayanta Roy-Chowdhury
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York; Department of Genetics, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Chandan Guha
- Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York; Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
24
|
Abstract
Despite the tremendous hurdles presented by the complexity of the liver's structure and function, advances in liver physiology, stem cell biology and reprogramming, and the engineering of tissues and devices are accelerating the development of cell-based therapies for treating liver disease and liver failure. This State of the Art Review discusses both the near- and long-term prospects for such cell-based therapies and the unique challenges for clinical translation.
Collapse
Affiliation(s)
- Sangeeta N Bhatia
- Institute for Medical Engineering & Science at MIT, Department of Electrical Engineering and Computer Science, David H. Koch Institute at MIT, and the Howard Hughes Medical Institute, Cambridge, MA 02139, USA. Division of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Gregory H Underhill
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ira J Fox
- Department of Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, and McGowan Institute for Regenerative Medicine, Pittsburgh, PA 15224, USA
| |
Collapse
|
25
|
Benderitter M, Caviggioli F, Chapel A, Coppes RP, Guha C, Klinger M, Malard O, Stewart F, Tamarat R, van Luijk P, Limoli CL. Stem cell therapies for the treatment of radiation-induced normal tissue side effects. Antioxid Redox Signal 2014; 21:338-55. [PMID: 24147585 PMCID: PMC4060814 DOI: 10.1089/ars.2013.5652] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Targeted irradiation is an effective cancer therapy but damage inflicted to normal tissues surrounding the tumor may cause severe complications. While certain pharmacologic strategies can temper the adverse effects of irradiation, stem cell therapies provide unique opportunities for restoring functionality to the irradiated tissue bed. RECENT ADVANCES Preclinical studies presented in this review provide encouraging proof of concept regarding the therapeutic potential of stem cells for treating the adverse side effects associated with radiotherapy in different organs. Early-stage clinical data for radiation-induced lung, bone, and skin complications are promising and highlight the importance of selecting the appropriate stem cell type to stimulate tissue regeneration. CRITICAL ISSUES While therapeutic efficacy has been demonstrated in a variety of animal models and human trials, a range of additional concerns regarding stem cell transplantation for ameliorating radiation-induced normal tissue sequelae remain. Safety issues regarding teratoma formation, disease progression, and genomic stability along with technical issues impacting disease targeting, immunorejection, and clinical scale-up are factors bearing on the eventual translation of stem cell therapies into routine clinical practice. FUTURE DIRECTIONS Follow-up studies will need to identify the best possible stem cell types for the treatment of early and late radiation-induced normal tissue injury. Additional work should seek to optimize cellular dosing regimes, identify the best routes of administration, elucidate optimal transplantation windows for introducing cells into more receptive host tissues, and improve immune tolerance for longer-term engrafted cell survival into the irradiated microenvironment.
Collapse
Affiliation(s)
- Marc Benderitter
- 1 Laboratory of Radiopathology and Experimental Therapies, IRSN , PRP-HOM, SRBE, Fontenay-aux-Roses, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Vogel KR, Kennedy AA, Whitehouse LA, Gibson KM. Therapeutic hepatocyte transplant for inherited metabolic disorders: functional considerations, recent outcomes and future prospects. J Inherit Metab Dis 2014; 37:165-76. [PMID: 24085555 PMCID: PMC3975709 DOI: 10.1007/s10545-013-9656-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/12/2013] [Accepted: 09/13/2013] [Indexed: 12/18/2022]
Abstract
The applications, outcomes and future strategies of hepatocyte transplantation (HTx) as a corrective intervention for inherited metabolic disease (IMD) are described. An overview of HTx in IMDs, as well as preclinical evaluations in rodent and other mammalian models, is summarized. Current treatments for IMDs are highlighted, along with short- and long-term outcomes and the potential for HTx to supplement or supplant these treatments. Finally, the advantages and disadvantages of HTx are presented, highlighted by long-term challenges with interorgan engraftment and expansion of transplanted cells, in addition to the future prospects of stem cell transplants. At present, the utility of HTx is represented by the potential to bridge patients with life-threatening liver disease to organ transplantation, especially as an adjuvant intervention where severe organ shortages continue to pose challenges.
Collapse
Affiliation(s)
- Kara R Vogel
- Section of Clinical Pharmacology, College of Pharmacy, Washington State University, SAC 525M, P.O. Box 1495, Spokane, WA, 99210-1495, USA
| | | | | | | |
Collapse
|
27
|
Cochat P, Groothoff J. Primary hyperoxaluria type 1: practical and ethical issues. Pediatr Nephrol 2013; 28:2273-81. [PMID: 23494551 DOI: 10.1007/s00467-013-2444-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 02/04/2013] [Accepted: 02/05/2013] [Indexed: 02/06/2023]
Abstract
Primary hyperoxaluria type 1 (PH1) is a rare inborn error of glyoxylate metabolism of autosomal recessive inheritance, leading to progressive systemic oxalate storage (named 'oxalosis') with a high rate of morbidity and mortality, as well as an unacceptable quality of life for most patients. The adverse outcome, however, is partly due to issues that can be overcome. First, the diagnosis of PH is often delayed due to a general lack of knowledge of the disease among physicians. This accounts specifically for patients with pyridoxine sensitive PH, a group that is paradoxically most easy to treat. Second, lack of adherence to a strict conduction of conservative treatment and optimal urological management may enhance an adverse outcome of the disease. Third, specific techniques to establish PH1 and specific therapies are currently often not available in several low-resources countries with a high prevalence of PH. The management of patients with advanced disease is extremely difficult and warrants a tailor-made approach in most cases. Comprehensive programs for education of local physicians, installation of national centers of expertise, European support of low-resources countries for the management of PH patients and intensified international collaboration on the management of current patients, as well as on conduction of clinical studies, may further improve outcome of PH.
Collapse
Affiliation(s)
- Pierre Cochat
- Centre de référence des maladies rénales rares & EPICIME, Hospices Civils de Lyon & Université Claude-Bernard Lyon 1, Lyon, France,
| | | |
Collapse
|
28
|
Affiliation(s)
- Pierre Cochat
- Centre de Référence des Maladies Rénales Rares Néphrogones, Lyon, France.
| | | |
Collapse
|
29
|
Zhou H, Dong X, Kabarriti R, Chen Y, Avsar Y, Wang X, Ding J, Liu L, Fox IJ, Roy-Chowdhury J, Roy-Chowdhury N, Guha C. Single liver lobe repopulation with wildtype hepatocytes using regional hepatic irradiation cures jaundice in Gunn rats. PLoS One 2012; 7:e46775. [PMID: 23091601 PMCID: PMC3473037 DOI: 10.1371/journal.pone.0046775] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 09/05/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND AIMS Preparative hepatic irradiation (HIR), together with mitotic stimulation of hepatocytes, permits extensive hepatic repopulation by transplanted hepatocytes in rats and mice. However, whole liver HIR is associated with radiation-induced liver disease (RILD), which limits its potential therapeutic application. In clinical experience, restricting HIR to a fraction of the liver reduces the susceptibility to RILD. Here we test the hypothesis that repopulation of selected liver lobes by regional HIR should be sufficient to correct some inherited metabolic disorders. METHODS Hepatocytes (10(7)) isolated from wildtype F344 rats or Wistar-RHA rats were engrafted into the livers of congeneic dipeptidylpeptidase IV deficient (DPPIV(-)) rats or uridinediphosphoglucuronateglucuronosyltransferase-1A1-deficient jaundiced Gunn rats respectively by intrasplenic injection 24 hr after HIR (50 Gy) targeted to the median lobe, or median plus left liver lobes. An adenovector expressing hepatocyte growth factor (10(11) particles) was injected intravenously 24 hr after transplantation. RESULTS Three months after hepatocyte transplantation in DPPIV(-) rats, 30-60% of the recipient hepatocytes were replaced by donor cells in the irradiated lobe, but not in the nonirradiated lobes. In Gunn rats receiving median lobe HIR, serum bilirubin declined from pretreatment levels of 5.17 ± 0.78 mg/dl to 0.96 ± 0.30 mg/dl in 8 weeks and remained at this level throughout the 16 week observation period. A similar effect was observed in the group, receiving median plus left lobe irradiation. CONCLUSIONS As little as 20% repopulation of 30% of the liver volume was sufficient to correct hyperbilirubinemia in Gunn rats, highlighting the potential of regiospecific HIR in hepatocyte transplantation-based therapy of inherited metabolic liver diseases.
Collapse
Affiliation(s)
- Hongchao Zhou
- Departments of Radiation Oncology and Pathology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
| | - Xinyuan Dong
- Departments of Radiation Oncology and Pathology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
| | - Rafi Kabarriti
- Departments of Radiation Oncology and Pathology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
| | - Yong Chen
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Yesim Avsar
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Xia Wang
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jianqiang Ding
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Laibin Liu
- Departments of Radiation Oncology and Pathology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
| | - Ira J. Fox
- Department of Surgery, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC and McGowan Institute of Regenerative Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jayanta Roy-Chowdhury
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Namita Roy-Chowdhury
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail: ; (CG); (NR-C)
| | - Chandan Guha
- Departments of Radiation Oncology and Pathology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
- * E-mail: ; (CG); (NR-C)
| |
Collapse
|
30
|
Jorns C, Ellis EC, Nowak G, Fischler B, Nemeth A, Strom SC, Ericzon BG. Hepatocyte transplantation for inherited metabolic diseases of the liver. J Intern Med 2012; 272:201-23. [PMID: 22789058 DOI: 10.1111/j.1365-2796.2012.02574.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Inherited metabolic diseases of the liver are characterized by deficiency of a hepatic enzyme or protein often resulting in life-threatening disease. The remaining liver function is usually normal. For most patients, treatment consists of supportive therapy, and the only curative option is liver transplantation. Hepatocyte transplantation is a promising therapy for patients with inherited metabolic liver diseases, which offers a less invasive and fully reversible approach. Procedure-related complications are rare. Here, we review the experience of hepatocyte transplantation for metabolic liver diseases and discuss the major obstacles that need to be overcome to establish hepatocyte transplantation as a reliable treatment option in the clinic.
Collapse
Affiliation(s)
- C Jorns
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska University Hospital Huddinge, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
31
|
Salido E, Pey AL, Rodriguez R, Lorenzo V. Primary hyperoxalurias: disorders of glyoxylate detoxification. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1453-64. [PMID: 22446032 DOI: 10.1016/j.bbadis.2012.03.004] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/17/2012] [Accepted: 03/06/2012] [Indexed: 12/15/2022]
Abstract
Glyoxylate detoxification is an important function of human peroxisomes. Glyoxylate is a highly reactive molecule, generated in the intermediary metabolism of glycine, hydroxyproline and glycolate mainly. Glyoxylate accumulation in the cytosol is readily transformed by lactate dehydrogenase into oxalate, a dicarboxylic acid that cannot be metabolized by mammals and forms tissue-damaging calcium oxalate crystals. Alanine-glyoxylate aminotransferase, a peroxisomal enzyme in humans, converts glyoxylate into glycine, playing a central role in glyoxylate detoxification. Cytosolic and mitochondrial glyoxylate reductase also contributes to limit oxalate production from glyoxylate. Mitochondrial hydroxyoxoglutarate aldolase is an important enzyme of hydroxyproline metabolism. Genetic defect of any of these enzymes of glyoxylate metabolism results in primary hyperoxalurias, severe human diseases in which toxic levels of oxalate are produced by the liver, resulting in progressive renal damage. Significant advances in the pathophysiology of primary hyperoxalurias have led to better diagnosis and treatment of these patients, but current treatment relies mainly on organ transplantation. It is reasonable to expect that recent advances in the understanding of the molecular mechanisms of disease will result into better targeted therapeutic options in the future.
Collapse
Affiliation(s)
- Eduardo Salido
- Hospital Universitario de Canarias, Universidad La Laguna, Tenerife, Spain.
| | | | | | | |
Collapse
|
32
|
Beck BB, Habbig S, Dittrich K, Stippel D, Kaul I, Koerber F, Goebel H, Salido EC, Kemper M, Meyburg J, Hoppe B. Liver cell transplantation in severe infantile oxalosis--a potential bridging procedure to orthotopic liver transplantation? Nephrol Dial Transplant 2012; 27:2984-9. [PMID: 22287658 DOI: 10.1093/ndt/gfr776] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The infantile form of primary hyperoxaluria type I (PHI) is the most devastating PH subtype leading to early end-stage renal failure and severe systemic oxalosis. Combined or sequential liver-kidney transplantation (LKTx) is the only curative option but it involves substantial risks, especially in critically ill infants. The procedure also requires resources that are simply not available to many children suffering from PHI worldwide. Less invasive and less complex therapeutic interventions allowing a better timing are clearly needed. Liver cell transplantation (LCT) may expand the narrow spectrum of auxiliary measures to buy time until LKTx for infants can be performed more safely. METHODS We performed LCT (male neonate donor) in a 15-month-old female in reduced general condition suffering from systemic oxalosis. Renal replacement therapy, initiated at the age of 3 months, was complicated by continuous haemodialysis access problems. Living donor liver transplantation was not available for this patient. Plasma oxalate (Pox) was used as the primary outcome measure. RESULTS Pox decreased from 104.3±8.4 prior to 70.0±15.0 μmol/L from Day 14 to Day 56 after LCT. A significant persistent Pox reduction (P<0.001) comparing mean levels prior to (103.8 μmol/L) and after Day 14 of LCT until LKTx (77.3 μmol/L) was seen, although a secondary increase and wider range of Pox was also observed. In parallel, the patient's clinical situation markedly improved and the girl received a cadaveric LKTx 12 months after LCT. However, biopsy specimens taken from the explanted liver did not show male donor cells by amelogenin polymerase chain reaction. CONCLUSIONS With due caution, our pilot data indicate that LCT in infantile oxalosis warrants further investigation. Improvement of protocol and methodology is clearly needed in order to develop a procedure that could assist in the cure of PHI.
Collapse
Affiliation(s)
- Bodo B Beck
- Institute of Human Genetics, Department of General, Visceral and Cancer Surgery, University of Cologne, and Division of Pediatric Nephrology, Department of Pediatric and Adolescent Medicine, University Hospital Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Harambat J, Fargue S, Bacchetta J, Acquaviva C, Cochat P. Primary hyperoxaluria. Int J Nephrol 2011; 2011:864580. [PMID: 21748001 PMCID: PMC3124893 DOI: 10.4061/2011/864580] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 03/22/2011] [Indexed: 12/12/2022] Open
Abstract
Primary hyperoxalurias (PH) are inborn errors in the metabolism of glyoxylate and oxalate. PH type 1, the most common form, is an autosomal recessive disorder caused by a deficiency of the liver-specific enzyme alanine, glyoxylate aminotransferase (AGT) resulting in overproduction and excessive urinary excretion of oxalate. Recurrent urolithiasis and nephrocalcinosis are the hallmarks of the disease. As glomerular filtration rate decreases due to progressive renal damage, oxalate accumulates leading to systemic oxalosis. Diagnosis is often delayed and is based on clinical and sonographic findings, urinary oxalate assessment, DNA analysis, and, if necessary, direct AGT activity measurement in liver biopsy tissue. Early initiation of conservative treatment, including high fluid intake, inhibitors of calcium oxalate crystallization, and pyridoxine in responsive cases, can help to maintain renal function in compliant subjects. In end-stage renal disease patients, the best outcomes have been achieved with combined liver-kidney transplantation which corrects the enzyme defect.
Collapse
Affiliation(s)
- Jérôme Harambat
- Service de Pédiatrie, Centre de référence Maladies Rénales Rares du Sud-Ouest, Centre Hospitalier Universitaire de Bordeaux, 33076 Bordeaux, France
| | | | | | | | | |
Collapse
|
34
|
Mayordomo-Colunga J, Riverol D, Salido E, Santos F. Primary hyperoxaluria in a compound heterozygote infant. World J Pediatr 2011; 7:173-5. [PMID: 20549407 DOI: 10.1007/s12519-010-0214-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 08/28/2009] [Indexed: 12/01/2022]
Abstract
BACKGROUND Primary hyperoxaluria type 1 is a rare disorder caused by a defect in the hepatic metabolism of glyoxylate. Cases presenting in infancy are very uncommon and often have a severe course leading to early end-stage renal failure. METHODS We treated a case of early presentation of primary hyperoxaluria type 1 and reviewed the relevant literature. RESULTS A 4-month-old female infant was admitted to our hospital because of acute renal failure and nephrocalcinosis. Mutational analysis of alanine-glyoxylate aminotransferase gene revealed compound heterozygosity in the infant, confirming the development of primary hyperoxaluria type 1. A few weeks later, the condition of the infant worsened during an interdialytic period and died. CONCLUSIONS Interest of this case is based on the coexistence of two mutations of alanine-glyoxylate aminotransferase gene recently reported, and it confirms the severe course of the disease when it presents in infancy. It also highlights the importance of the association of nephrocalcinosis and urolithiasis as key diagnostic manifestations of primary hyperoxaluria type 1.
Collapse
Affiliation(s)
- Juan Mayordomo-Colunga
- Pediatric Nephrology, Department of Pediatrics, Hospital Universitario Central de Asturias & University of Oviedo, Oviedo, Spain.
| | | | | | | |
Collapse
|
35
|
Ding J, Yannam GR, Roy-Chowdhury N, Hidvegi T, Basma H, Rennard SI, Wong RJ, Avsar Y, Guha C, Perlmutter DH, Fox IJ, Roy-Chowdhury J. Spontaneous hepatic repopulation in transgenic mice expressing mutant human α1-antitrypsin by wild-type donor hepatocytes. J Clin Invest 2011; 121:1930-4. [PMID: 21505264 DOI: 10.1172/jci45260] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 02/23/2011] [Indexed: 01/07/2023] Open
Abstract
α1-Antitrypsin deficiency is an inherited condition that causes liver disease and emphysema. The normal function of this protein, which is synthesized by the liver, is to inhibit neutrophil elastase, a protease that degrades connective tissue of the lung. In the classical form of the disease, inefficient secretion of a mutant α1-antitrypsin protein (AAT-Z) results in its accumulation within hepatocytes and reduced protease inhibitor activity, resulting in liver injury and pulmonary emphysema. Because mutant protein accumulation increases hepatocyte cell stress, we investigated whether transplanted hepatocytes expressing wild-type AAT might have a competitive advantage relative to AAT-Z-expressing hepatocytes, using transgenic mice expressing human AAT-Z. Wild-type donor hepatocytes replaced 20%-98% of mutant host hepatocytes, and repopulation was accelerated by injection of an adenovector expressing hepatocyte growth factor. Spontaneous hepatic repopulation with engrafted hepatocytes occurred in the AAT-Z-expressing mice even in the absence of severe liver injury. Donor cells replaced both globule-containing and globule-devoid cells, indicating that both types of host hepatocytes display impaired proliferation relative to wild-type hepatocytes. These results suggest that wild-type hepatocyte transplantation may be therapeutic for AAT-Z liver disease and may provide an alternative to protein replacement for treating emphysema in AAT-ZZ individuals.
Collapse
Affiliation(s)
- Jianqiang Ding
- Department of Medicine and Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Harding CO, Gibson KM. Therapeutic liver repopulation for phenylketonuria. J Inherit Metab Dis 2010; 33:681-7. [PMID: 20495959 DOI: 10.1007/s10545-010-9099-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 03/24/2010] [Accepted: 03/31/2010] [Indexed: 01/22/2023]
Abstract
Problems with long-term dietary compliance in phenylketonuria (PKU) necessitate the development of alternative treatment approaches. Therapeutic liver repopulation with phenylalanine hydroxylase (PAH)-expressing cells following hepatocyte or haematopoietic stem cell transplantation has been investigated as a possible novel treatment approach for PKU. Successful therapeutic liver repopulation requires both a stimulus for liver regeneration at the time of cell transplantation and a selective growth advantage for the PAH+ donor cells. Unfortunately, wild-type PAH+ hepatocytes do not enjoy any growth advantage over PAH- cells. Successful correction of hyperphenylalaninemia following therapeutic liver repopulation has been accomplished only in an animal model that yields a selective advantage for the donor cells. Haematopoietic stem cell (HSC)-mediated therapeutic liver repopulation has not been reported in any hyperphenylalaninemic system, and the success of HSC-mediated liver repopulation for PKU may be limited by the slow kinetics of this approach. If therapeutic liver repopulation is to be employed successfully in humans with PKU, an effective method of providing a selective growth advantage for the donor cells must be developed. If this can be achieved, liver repopulation with 10-20% wild-type hepatocytes will likely completely normalize Phe clearance in individuals with PKU.
Collapse
Affiliation(s)
- Cary O Harding
- Department of Molecular and Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Mail code L103, Portland, OR 97239, USA.
| | | |
Collapse
|
37
|
Abstract
The liver has an extraordinary faculty to regenerate. Hepatocytes are highly differentiated cells that, despite a resting G0 state in the normal quiescent liver, can re-enter the cell cycle to reconstitute the organ after an injury. However, the first cell therapy approaches trying to harness this specific characteristic of the hepatocytes came up against the competition with resident hepatocytes in the ability to proliferate. This review will describe the different rodent models that have been developed in the last 15 years to demonstrate the concept of liver repopulation with transplanted cells harbouring a selective advantage over resident hepatocytes. Examples will then be given to show how these models demonstrated the therapeutic efficiency of cell transplantation in specific disorders. The transplantation of human hepatocytes into some of these mouse models led to the creation of humanized livers. These humanized mice provide a powerful tool to study the physiopathology of human hepatotropic pathogens and to develop drugs against them. Finally, emphasis will be placed on the role of these rodent models in the demonstration of the hepatocytic potential of stem cells.
Collapse
|
38
|
Eytan Mor MD, Weismann I. Current treatment for primary hyperoxaluria type 1: When should liver/kidney transplantation be considered. Pediatr Transplant 2009; 13:805-7. [PMID: 19686442 DOI: 10.1111/j.1399-3046.2009.01230.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Skvorak KJ, Hager EJ, Arning E, Bottiglieri T, Paul HS, Strom SC, Homanics GE, Sun Q, Jansen EEW, Jakobs C, Zinnanti WJ, Gibson KM. Hepatocyte transplantation (HTx) corrects selected neurometabolic abnormalities in murine intermediate maple syrup urine disease (iMSUD). BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1792:1004-10. [PMID: 19699299 PMCID: PMC2753721 DOI: 10.1016/j.bbadis.2009.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 07/14/2009] [Accepted: 08/12/2009] [Indexed: 01/21/2023]
Abstract
Skvorak et al. [1] demonstrated the therapeutic efficacy of HTx in a murine model of iMSUD, confirming significant metabolic improvement and survival. To determine the effect of HTx on extrahepatic organs, we examined the metabolic effects of HTx in brain from iMSUD animals. Amino acid analysis revealed that HTx corrected increased ornithine, partially corrected depleted glutamine, and revealed a trend toward alloisoleucine correction. For amino acid and monoamine neurotransmitters, decreased GABA was partially corrected with HTx, while the l-histidine dipeptide of GABA, homocarnosine, was decreased in iMSUD mice and hypercorrected following HTx. Elevated branched-chain amino acids (BCAA; leucine, isoleucine, and valine) in MSUD can deplete brain tyrosine and tryptophan (the precursors of monoamine neurotransmitters, dopamine (DA) and serotonin (5-hydroxytryptamine; 5-HT)) through competition via the large neutral amino acid transporter. HTx corrected decreased DA levels and the DA metabolite, 3-methoxytyramine, and partially corrected the DA intermediate 3,4-dihydroxyphenylacetate (DOPAC) and 5-HT levels, despite normal tyrosine and tryptophan levels in iMSUD mouse brain. We further observed enhanced intracellular turnover of both DA and 5-HT in iMSUD mouse brain, both of which partially corrected with HTx. Our results suggest new pathomechanisms of neurotransmitter metabolism in this disorder and support the therapeutic relevance of HTx in iMSUD mice, while providing proof-of-principle that HTx has corrective potential in extrahepatic organs.
Collapse
Affiliation(s)
- Kristen J. Skvorak
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA
| | - Elizabeth J. Hager
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA
| | - Erland Arning
- Institute of Metabolic Disease, Baylor University Medical Center, Dallas, TX, USA
| | - Teodoro Bottiglieri
- Institute of Metabolic Disease, Baylor University Medical Center, Dallas, TX, USA
| | | | - Stephen C. Strom
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Gregg E. Homanics
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Qin Sun
- Biochemical Genetics Laboratory, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Erwin EW Jansen
- Department of Human Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Graduate School of Public Health, Pittsburgh, Pennsylvania, USA; VU Medical Center, Metabolic Laboratory, Free University, Amsterdam, the Netherlands
| | - Cornelis Jakobs
- Department of Human Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Graduate School of Public Health, Pittsburgh, Pennsylvania, USA; VU Medical Center, Metabolic Laboratory, Free University, Amsterdam, the Netherlands
| | | | - K. Michael Gibson
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Human Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Graduate School of Public Health, Pittsburgh, Pennsylvania, USA; VU Medical Center, Metabolic Laboratory, Free University, Amsterdam, the Netherlands
| |
Collapse
|
40
|
Skvorak KJ, Paul HS, Dorko K, Marongiu F, Ellis E, Chace D, Ferguson C, Gibson KM, Homanics GE, Strom SC. Hepatocyte transplantation improves phenotype and extends survival in a murine model of intermediate maple syrup urine disease. Mol Ther 2009; 17:1266-73. [PMID: 19436271 DOI: 10.1038/mt.2009.99] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Maple syrup urine disease (MSUD; OMIM 248600) is an inborn error of metabolism of the branched chain alpha-ketoacid dehydrogenase (BCKDH) complex that is treated primarily by dietary manipulation of branched-chain amino acids (BCAA). Dietary restriction is lifelong and compliance is difficult. Liver transplantation significantly improves outcomes; however, alternative therapies are needed. To test novel therapies such as hepatocyte transplantation (HTx), we previously created a murine model of intermediate MSUD (iMSUD), which closely mimics human iMSUD. LacZ-positive murine donor hepatocytes were harvested and directly injected (10(5) cells/50 microl) into liver of iMSUD mice (two injections at 1-10 days of age). Donor hepatocytes engrafted into iMSUD recipient liver, increased liver BCKDH activity, improved blood total BCAA/alanine ratio, increased body weight at weaning, and extended the lifespan of HTx-treated iMSUD mice compared to phosphate-buffered saline (PBS)-treated and untreated iMSUD mice. Based on these data demonstrating partial metabolic correction of iMSUD in a murine model, coupled to the fact that multiple transplants are possible to enhance these results, we suggest that HTx represents a promising therapeutic intervention for MSUD that warrants further investigation.
Collapse
Affiliation(s)
- Kristen J Skvorak
- Department of Human Genetics, University of Pittsburgh, Pennsylvania, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
A Step Toward Liver Gene Therapy: Efficient Correction of the Genetic Defect of Hepatocytes Isolated From a Patient With Crigler-Najjar Syndrome Type 1 With Lentiviral Vectors. Transplantation 2009; 87:1006-12. [DOI: 10.1097/tp.0b013e31819ca245] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|