1
|
Pre-transplant donor-reactive IL-21 producing T cells as a tool to identify an increased risk for acute rejection. Sci Rep 2021; 11:12445. [PMID: 34127739 PMCID: PMC8203783 DOI: 10.1038/s41598-021-91967-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/26/2021] [Indexed: 12/16/2022] Open
Abstract
Pre-transplant screening focuses on the detection of anti-HLA alloantibodies. Previous studies have shown that IFN-γ and IL-21 producing T cells are associated with the development of acute rejection (AR). The aim of this study, was to assess whether pre-transplant donor-reactive T cells and/or B cells are associated with increased rejection risk. Samples from 114 kidney transplant recipients (transplanted between 2010 and 2013) were obtained pre-transplantation. The number of donor-reactive IFN-γ and IL-21 producing cells was analyzed by ELISPOT assay. The presence of donor specific antibodies (DSA) was also determined before transplantation. Numbers of donor-reactive IFN-γ producing cells were similar in patients with or without AR whereas those of IL-21 producing cells were higher in patients with AR (p = 0.03). Significantly more patients with AR [6/30(20%)] had detectable DSA compared to patients without AR [5/84(5.9%), p = 0.03]. Multivariate logistic regression showed that donor age (OR 1.06), pre-transplant DSA (OR 5.61) and positive IL-21 ELISPOT assay (OR 2.77) were independent predictors of an increased risk for the development of AR. Aside from an advanced donor-age and pre-transplant DSA, also pre-transplant donor-reactive IL-21 producing cells are associated with the development of AR after transplantation.
Collapse
|
2
|
Measuring Alloreactive B Cell Responses in Transplant Recipients. CURRENT TRANSPLANTATION REPORTS 2019. [DOI: 10.1007/s40472-019-00234-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Becker LE, Morath C, Suesal C. Immune mechanisms of acute and chronic rejection. Clin Biochem 2016; 49:320-3. [PMID: 26851348 DOI: 10.1016/j.clinbiochem.2016.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 01/25/2016] [Accepted: 02/02/2016] [Indexed: 11/15/2022]
Abstract
With the currently available immunosuppression, severe T-cell mediated rejection has become a rare event. With the introduction of modern antibody-detection techniques, such as the L-SAB technology, acute or hyperacute antibody-mediated rejection of the kidney are also seen infrequently. In contrast, chronic antibody-mediated rejection is considered to be a major contributor to graft loss in the late posttransplant phase. Problems in the management of chronic antibody-mediated rejection are effective prevention of the development of alloantibodies against donor HLA and the early identification of patients at risk for this entity. Finally, today there is still noeffective strategy to treat this indolent and slowly progressing form of antibody-mediated rejection. Herein, we review the pathomechanisms of the different forms of rejection and the clinical significance of these entities in human kidney transplantation.
Collapse
Affiliation(s)
- Luis Eduardo Becker
- Division of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, 69120 Heidelberg, Germany.
| | - Christian Morath
- Division of Nephrology, University of Heidelberg, Im Neuenheimer Feld 162, 69120 Heidelberg, Germany.
| | - Caner Suesal
- Department of Transplantation Immunology, University of Heidelberg, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany.
| |
Collapse
|
4
|
Sivanathan KN, Gronthos S, Rojas-Canales D, Thierry B, Coates PT. Interferon-gamma modification of mesenchymal stem cells: implications of autologous and allogeneic mesenchymal stem cell therapy in allotransplantation. Stem Cell Rev Rep 2014; 10:351-75. [PMID: 24510581 DOI: 10.1007/s12015-014-9495-2] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (MSC) have unique immunomodulatory and reparative properties beneficial for allotransplantation cellular therapy. The clinical administration of autologous or allogeneic MSC with immunosuppressive drugs is able to prevent and treat allograft rejection in kidney transplant recipients, thus supporting the immunomodulatory role of MSC. Interferon-gamma (IFN-γ) is known to enhance the immunosuppressive properties of MSC. IFN-γ preactivated MSC (MSC-γ) directly or indirectly modulates T cell responses by enhancing or inducing MSC inhibitory factors. These factors are known to downregulate T cell activation, enhance T cell negative signalling, alter T cells from a proinflammatory to an anti-inflammatory phenotype, interact with antigen-presenting cells and increase or induce regulatory cells. Highly immunosuppressive MSC-γ with increased migratory and reparative capacities may aid tissue repair, prolong allograft survival and induce allotransplant tolerance in experimental models. Nevertheless, there are contradictory in vivo observations related to allogeneic MSC-γ therapy. Many studies report that allogeneic MSC are immunogenic due to their inherent expression of major histocompatibility (MHC) molecules. Enhanced expression of MHC in allogeneic MSC-γ may increase their immunogenicity and this can negatively impact allograft survival. Therefore, strategies to reduce MSC-γ immunogenicity would facilitate "off-the-shelf" MSC therapy to efficiently inhibit alloimmune rejection and promote tissue repair in allotransplantation. In this review, we examine the potential benefits of MSC therapy in the context of allotransplantation. We also discuss the use of autologous and allogeneic MSC and the issues associated with their immunogenicity in vivo, with particular focus on the use of enhanced MSC-γ cellular therapy.
Collapse
Affiliation(s)
- Kisha Nandini Sivanathan
- School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, 5005, South Australia, Australia,
| | | | | | | | | |
Collapse
|
5
|
Abstract
Rejection is the major barrier to successful transplantation and usually results from the integration of multiple mechanisms. Activation of elements of the innate immune system, triggered as a consequence of tissue injury sustained during cell isolation or organ retrieval as well as ischemia-reperfusion, will initiate and amplify the adaptive response. For cell mediated rejection, T cells require multiple signals for activation, the minimum being two signals; antigen recognition and costimulation. The majority of B cells require help from T cells to initiate alloantibody production. Antibodies reactive to donor HLA molecules, minor histocompatibility antigens, endothelial cells, red blood cells, or autoantigens can trigger or contribute to rejection early as well as late after transplantation.
Collapse
Affiliation(s)
- Kathryn J Wood
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
6
|
Griffin MD, Ryan AE, Alagesan S, Lohan P, Treacy O, Ritter T. Anti-donor immune responses elicited by allogeneic mesenchymal stem cells: what have we learned so far? Immunol Cell Biol 2012. [PMID: 23207278 DOI: 10.1038/icb.2012.67] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem (stromal) cells (MSCs) have potent anti-inflammatory/immunosuppressive properties which underlie much of their therapeutic potential. This fact has led to the widely accepted belief that MSCs from genetically unrelated individuals (allogeneic (allo)-MSCs) can be used therapeutically with equal efficacy to autologous MSCs and without triggering the donor-specific immune responses that are typically associated with allo-transplants. In this article, we critically review available experimental data to determine whether good in vivo evidence exists in support of the 'immune privileged' status of allo-MSCs. We also examine published studies regarding the immunogenicity of allo-MSCs following activation ('licensing') by inflammatory stimuli or following differentiation. Among the identified studies which have addressed in vivo immunogenicity of allo-MSCs, there was substantial variability as regards experimental species, disease model, route of MSC administration, cell dose and stringency of the immunological assays employed. Nonetheless, the majority of these studies has documented specific cellular (T-cell) and humoral (B-cell/antibody) immune responses against donor antigens following administration of non-manipulated, interferon-γ-activated and differentiated allo-MSCs. The consequences of such anti-donor immune responses were also variable and ranged from reduced in vivo survival of allo-MSCs with accelerated rejection of subsequent allogeneic transplants to apparent promotion of donor-specific tolerance. On the basis of these findings and on existing knowledge of allo-antigen recognition from the field of transplant immunology, we propose that the concept of the immune privileged nature of allo-MSCs should be reconsidered and that the range and clinical implications of anti-donor immune responses elicited by allo-MSCs be more precisely studied in human and animal recipients.
Collapse
Affiliation(s)
- Matthew D Griffin
- Regenerative Medicine Institute (REMEDI), NCBES, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland.
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
The field of heart transplantation has seen significant progress in the past 40 years. However, the breakthroughs in long-term outcome have seen stagnation in the past decade. Through advances in genomics and transcriptomics, there is hope that an era of personalized transplant therapy lies in the future. To see where heart transplantation truly fits into the long term, searching for and understanding the alternative approaches for heart failure therapy is both important and inevitable. The application of mechanical circulatory support has contributed to the largest advancement in treatment of end stage heart failure. It has already been approved for destination therapy of heart failure, and greater portability and ease of use of the device will be the future trend. Although it is still not prime time for stem cell therapy, clinical experiences have already suggested its potential therapeutic effects. And finally, whole organ engineering is on the horizon as new techniques have opened the way for this to proceed. In the end, progress on alternative therapies largely depends on our deeper understanding of the mechanisms of heart failure and how to prevent it.
Collapse
|
8
|
Sicard A, Phares TW, Yu H, Fan R, Baldwin WM, Fairchild RL, Valujskikh A. The spleen is the major source of antidonor antibody-secreting cells in murine heart allograft recipients. Am J Transplant 2012; 12:1708-19. [PMID: 22420367 PMCID: PMC3381891 DOI: 10.1111/j.1600-6143.2012.04009.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Antibody-mediated allograft rejection is an increasingly recognized problem in clinical transplantation. However, the primary location of donor-specific alloantibody (DSA)-producing cells after transplantation have not been identified. The purpose of this study was to test the contribution of allospecific antibody-secreting cells (ASCs) from different anatomical compartments in a mouse transplantation model. Fully MHC-mismatched heart allografts were transplanted into three groups of recipients: nonsensitized wild type, alloantigen-sensitized wild-type and CCR5(-/-) mice that have exaggerated alloantibody responses. We found that previous sensitization to donor alloantigens resulted in the development of antidonor alloantibody (alloAb) with accelerated kinetics. Nevertheless, the numbers of alloantibody-secreting cells and the serum titers of antidonor IgG alloantibody were equivalent in sensitized and nonsensitized recipients 6 weeks after transplantation. Regardless of recipient sensitization status, the spleen contained higher numbers of donor-reactive ASCs than bone marrow at days 7-21 after transplantation. Furthermore, individual spleen ASCs produced more antidonor IgG alloantibody than bone marrow ASCs. Taken together, our results indicate that the spleen rather than bone marrow is the major source of donor-reactive alloAb early after transplantation in both sensitized and nonsensitized recipients.
Collapse
Affiliation(s)
- Antoine Sicard
- Department of Immunology and the Glickman Urological and Kidney Disease Institute, The Cleveland Clinic, Cleveland, OH
- Université Paris V, Service de Transplantation Rénale, Hôpital Necker, Paris, France
| | | | - Hong Yu
- Department of Immunology and the Glickman Urological and Kidney Disease Institute, The Cleveland Clinic, Cleveland, OH
| | - Ran Fan
- Department of Immunology and the Glickman Urological and Kidney Disease Institute, The Cleveland Clinic, Cleveland, OH
| | - William M. Baldwin
- Department of Immunology and the Glickman Urological and Kidney Disease Institute, The Cleveland Clinic, Cleveland, OH
| | - Robert L. Fairchild
- Department of Immunology and the Glickman Urological and Kidney Disease Institute, The Cleveland Clinic, Cleveland, OH
| | - Anna Valujskikh
- Department of Immunology and the Glickman Urological and Kidney Disease Institute, The Cleveland Clinic, Cleveland, OH
| |
Collapse
|
9
|
Abstract
Rejection is the major barrier to successful transplantation. The immune response to an allograft is an ongoing dialogue between the innate and adaptive immune system that if left unchecked will lead to the rejection of transplanted cells, tissues, or organs. Activation of elements of the innate immune system, triggered as a consequence of tissue injury sustained during cell isolation or organ retrieval and ischemia reperfusion, will initiate and amplify the adaptive response. T cells require a minimum of two signals for activation, antigen recognition, and costimulation. The activation requirements of naive T cells are more stringent than those of memory T cells. Memory T cells are present in the majority of transplant recipients as a result of heterologous immunity. The majority of B cells require help from T cells to initiate antibody production. Antibodies reactive to donor human leukocyte antigen molecules, minor histocompatibility antigens, endothelial cells, RBCs, or autoantigens can trigger or contribute to rejection early and late after transplantation. Antibody-mediated rejection triggered by alloantibody binding and complement activation is recognized increasingly as a significant contribution to graft loss. Even though one component of the immune system may dominate and lead to rejection being described in short hand as T cell or antibody mediated, it is usually multifactorial resulting from the integration of multiple mechanisms. Identifying the molecular pathways that trigger tissue injury, signal transduction and rejection facilitates the identification of targets for the development of immunosuppressive drugs.
Collapse
|
10
|
Thaunat O. Humoral immunity in chronic allograft rejection: Puzzle pieces come together. Transpl Immunol 2012; 26:101-6. [PMID: 22108536 DOI: 10.1016/j.trim.2011.11.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 11/05/2011] [Accepted: 11/07/2011] [Indexed: 01/07/2023]
|
11
|
Bozzacco L, Yu H, Zebroski HA, Dengjel J, Deng H, Mojsov S, Steinman RM. Mass spectrometry analysis and quantitation of peptides presented on the MHC II molecules of mouse spleen dendritic cells. J Proteome Res 2011; 10:5016-30. [PMID: 21913724 PMCID: PMC3270889 DOI: 10.1021/pr200503g] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Major histocompatibility complex class II (MHC II) molecules are expressed on the surface of antigen-presenting cells and display short bound peptide fragments derived from self- and nonself antigens. These peptide-MHC complexes function to maintain immunological tolerance in the case of self-antigens and initiate the CD4(+) T cell response in the case of foreign proteins. Here we report the application of LC-MS/MS analysis to identify MHC II peptides derived from endogenous proteins expressed in freshly isolated murine splenic DCs. The cell number was enriched in vivo upon treatment with Flt3L-B16 melanoma cells. In a typical experiment, starting with about 5 × 10(8) splenic DCs, we were able to reliably identify a repertoire of over 100 MHC II peptides originating from about 55 proteins localized in membrane (23%), intracellular (26%), endolysosomal (12%), nuclear (14%), and extracellular (25%) compartments. Using synthetic isotopically labeled peptides corresponding to the sequences of representative bound MHC II peptides, we quantified by LC-MS relative peptide abundance. In a single experiment, peptides were detected in a wide concentration range spanning from 2.5 fmol/μL to 12 pmol/μL or from approximately 13 to 2 × 10(5) copies per DC. These peptides were found in similar amounts on B cells where we detected about 80 peptides originating from 55 proteins distributed homogenously within the same cellular compartments as in DCs. About 90 different binding motifs predicted by the epitope prediction algorithm were found within the sequences of the identified MHC II peptides. These results set a foundation for future studies to quantitatively investigate the MHC II repertoire on DCs generated under different immunization conditions.
Collapse
|
12
|
|
13
|
Willicombe M, Brookes P, Santos-Nunez E, Galliford J, Ballow A, Mclean A, Roufosse C, Cook HT, Dorling A, Warrens AN, Cairns T, Taube D. Outcome of patients with preformed donor-specific antibodies following alemtuzumab induction and tacrolimus monotherapy. Am J Transplant 2011; 11:470-7. [PMID: 21299828 DOI: 10.1111/j.1600-6143.2010.03421.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
It has been shown that low-level preformed donor-specific antibodies (DSAbs) detected by luminex beads in the setting of a negative CDC and flow cytometry crossmatch (CDC/FCXM) are associated with inferior allograft outcomes. The relevance of preformed DSAbs in patients receiving alemtuzumab induction and tacrolimus monotherapy has not been studied. Four hundred and eighty renal transplant recipients with a negative CDC/FCXM had their pretransplant sera retrospectively screened for DSAbs. 45/480 (9.4%) of patients were found to have preformed DSAbs. Females and patients receiving regrafts were more likely to have a DSAb (p = 0.008 and p < 0.0001, respectively). Patients with DSAbs had inferior allograft survival (p = 0.047), increased incidence of antibody-mediated rejection (p < 0.0001) and inferior allograft function at 6 months posttransplant (p = 0.017). Patients with HLA class I DSAb (alone or in combination with a Class II DSAb) with high mean fluorescence intensities (MFIs) were at highest risk. We conclude that patients with preformed DSAb are at high risk of adverse outcomes when receiving a minimal immunosuppressive regime incorporating alemtuzumab induction. Patients found to have a preformed DSAb despite a negative crossmatch might benefit from augmented immunosuppression.
Collapse
Affiliation(s)
- M Willicombe
- Imperial College Kidney and Transplant Institute, Hammersmith Hospital, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Parsons RF, Vivek K, Redfield RR, Migone TS, Cancro MP, Naji A, Noorchashm H. B-lymphocyte homeostasis and BLyS-directed immunotherapy in transplantation. Transplant Rev (Orlando) 2010; 24:207-21. [PMID: 20655723 DOI: 10.1016/j.trre.2010.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 04/15/2010] [Accepted: 05/28/2010] [Indexed: 01/18/2023]
Abstract
Current strategies for immunotherapy after transplantation are primarily T-lymphocyte directed and effectively abrogate acute rejection. However, the reality of chronic allograft rejection attests to the fact that transplantation tolerance remains an elusive goal. Donor-specific antibodies are considered the primary cause of chronic rejection. When naive, alloreactive B-cells encounter alloantigen and are activated, a resilient "sensitized" state, characterized by the presence of high-affinity antibody, is established. Here, we will delineate findings that support transient B-lymphocyte depletion therapy at the time of transplantation to preempt sensitization by eliminating alloreactive specificities from the recipient B-cell pool (ie, "repertoire remodeling"). Recent advances in our understanding of B-lymphocyte homeostasis provide novel targets for immunomodulation in transplantation. Specifically, the tumor necrosis factor-related cytokine BLyS is the dominant survival factor for "tolerance-susceptible" transitional and "preimmune" mature follicular B-cells. The transitional phenotype is the intermediate through which all newly formed B-cells pass before maturing into the follicular subset, which is responsible for mounting an alloantigen-specific antibody response. Systemic BLyS levels dictate the stringency of negative selection during peripheral B-cell repertoire development. Thus, targeting BLyS will likely provide an opportunity for repertoire-directed therapy to eliminate alloreactive B-cell specificities in transplant recipients, a requirement for the achievement of humoral tolerance and prevention of chronic rejection. In this review, the fundamentals of preimmune B-cell selection, homeostasis, and activation will be described. Furthermore, new and current B-lymphocyte-directed therapy for antibody-mediated rejection and the highly sensitized state will be discussed. Overall, our objective is to propose a rational approach for induction of humoral transplantation tolerance by remodeling the primary B-cell repertoire of the allograft recipient.
Collapse
Affiliation(s)
- Ronald F Parsons
- Harrison Department of Surgical Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Ouchida R, Kurosaki T, Wang JY. A Role for Lysosomal-Associated Protein Transmembrane 5 in the Negative Regulation of Surface B Cell Receptor Levels and B Cell Activation. THE JOURNAL OF IMMUNOLOGY 2010; 185:294-301. [PMID: 20519653 DOI: 10.4049/jimmunol.1000371] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
MESH Headings
- Animals
- Antibody Affinity
- B-Lymphocyte Subsets/enzymology
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/metabolism
- Cell Line, Tumor
- Cells, Cultured
- Chickens
- Down-Regulation/immunology
- Epitopes, B-Lymphocyte/immunology
- Haptens/administration & dosage
- Haptens/immunology
- Haptens/metabolism
- Immediate-Early Proteins/deficiency
- Immediate-Early Proteins/genetics
- Immediate-Early Proteins/physiology
- Immunoglobulin M/biosynthesis
- Immunoglobulin M/metabolism
- Lymphocyte Activation/immunology
- Lysosomes/enzymology
- Membrane Proteins/deficiency
- Membrane Proteins/genetics
- Membrane Proteins/physiology
- Mice
- Mice, Knockout
- Nitrophenols/administration & dosage
- Nitrophenols/immunology
- Nitrophenols/metabolism
- Phenylacetates/administration & dosage
- Phenylacetates/immunology
- Phenylacetates/metabolism
- Receptors, Antigen, B-Cell/antagonists & inhibitors
- Receptors, Antigen, B-Cell/biosynthesis
- Receptors, Antigen, B-Cell/metabolism
- Up-Regulation/immunology
- gamma-Globulins/administration & dosage
- gamma-Globulins/immunology
- gamma-Globulins/metabolism
Collapse
Affiliation(s)
- Rika Ouchida
- Laboratory for Immune Diversity, Research Center for Allergy and Immunology, RIKEN Yokohama Institute, Yokohama, Japan
| | | | | |
Collapse
|
16
|
Mimuro J, Mizuta K, Kawano Y, Hishikawa S, Hamano A, Kashiwakura Y, Ishiwata A, Ohmori T, Madoiwa S, Kawarasaki H, Sakata Y. Impact of acute cellular rejection on coagulation and fibrinolysis biomarkers within the immediate post-operative period in pediatric liver transplantation. Pediatr Transplant 2010; 14:369-76. [PMID: 19793340 DOI: 10.1111/j.1399-3046.2009.01248.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We studied restoration of the coagulation and fibrinolysis system in pediatric patients following liver transplantation and biomarkers of blood coagulation and fibrinolysis for suspecting the occurrence of acute cellular rejection. Coagulation activity recovered rapidly within two days following transplantation, but it took approximately 21-28 days for full recovery of the coagulation and fibrinolysis factors synthesized in the liver. PAI-1 levels were significantly higher in patients at the time of acute cellular rejection compared with levels after control of AR, and levels on days 14 and 28 in patients without AR. Plasma protein C and plasminogen levels at the time of rejection were significantly lower than those on day 14 in patients without AR. Statistical analysis suggested that an increase in plasma PAI-1 at a single time point in the post-operative period is a reliable marker among the coagulation and fibrinolysis factors for suspecting the occurrence of acute cellular rejection. These data suggested that appropriate anticoagulation may be required for 14 days after liver transplantation in order to avoid vascular complications and measurement of plasma PAI-1 levels may be useful for suspecting the occurrence of acute cellular rejection in pediatric patients following liver transplantation.
Collapse
Affiliation(s)
- Jun Mimuro
- Division of Cell and Molecular Medicine, Center for Molecular Medicine, Jichi Medical University, School of Medicine, Shimotsuke, Tochigi-ken, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kelishadi SS, Azimzadeh AM, Zhang T, Stoddard T, Welty E, Avon C, Higuchi M, Laaris A, Cheng XF, McMahon C, Pierson RN. Preemptive CD20+ B cell depletion attenuates cardiac allograft vasculopathy in cyclosporine-treated monkeys. J Clin Invest 2010; 120:1275-84. [PMID: 20335656 DOI: 10.1172/jci41861] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 01/20/2010] [Indexed: 01/10/2023] Open
Abstract
Chronic rejection currently limits the long-term efficacy of clinical transplantation. Although B cells have recently been shown to play a pivotal role in the induction of alloimmunity and are being targeted in other transplant contexts, the efficacy of preemptive B cell depletion to modulate alloimmunity or attenuate cardiac allograft vasculopathy (CAV) (classic chronic rejection lesions found in transplanted hearts) in a translational model has not previously been described. We report here that the CD20-specific antibody (alphaCD20) rituximab depleted CD20+ B cells in peripheral blood, secondary lymphoid organs, and the graft in cynomolgus monkey recipients of heterotopic cardiac allografts. Furthermore, CD20+ B cell depletion therapy combined with the calcineurin inhibitor cyclosporine A (CsA) prolonged median primary graft survival relative to treatment with alphaCD20 or CsA alone. In animals treated with both alphaCD20 and CsA that achieved efficient B cell depletion, alloantibody production was substantially inhibited and the CAV severity score was markedly reduced. We conclude therefore that efficient preemptive depletion of CD20+ B cells is effective in a preclinical model to modulate pathogenic alloimmunity and to attenuate chronic rejection when used in conjunction with a conventional clinical immunosuppressant. This study suggests that use of this treatment combination may improve the efficacy of transplantation in the clinic.
Collapse
Affiliation(s)
- Shahrooz S Kelishadi
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Parsons RF, Vivek K, Redfield RR, Migone TS, Cancro MP, Naji A, Noorchashm H. B-cell tolerance in transplantation: is repertoire remodeling the answer? Expert Rev Clin Immunol 2009; 5:703. [PMID: 20161663 PMCID: PMC2819040 DOI: 10.1586/eci.09.63] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
T lymphocytes are the primary targets of immunotherapy in clinical transplantation; however, B lymphocytes and their secreted alloantibodies are also highly detrimental to the allograft. Therefore, the achievement of sustained organ transplant survival will likely require the induction of B-lymphocyte tolerance. During development, acquisition of B-cell tolerance to self-antigens relies on clonal deletion in the early stages of B-cell compartment ontogeny. We contend that this mechanism should be recapitulated in the setting of alloantigens and organ transplantation to eliminate the alloreactive B-cell subset from the recipient. Clinically feasible targets of B-cell-directed immunotherapy, such as CD20 and B-lymphocyte stimulator (BLyS), should drive upcoming clinical trials aimed at remodeling the recipient B-cell repertoire.
Collapse
Affiliation(s)
- Ronald F Parsons
- 329 Stemmler Hall, 36th and Hamilton Walk, University of Pennsylvania School of Medicine, Harrison Department of Surgical Research, Philadelphia, PA 19104, USA, Tel.: +1 215 400 1806, Fax: +1 215 746 3187
| | - Kumar Vivek
- 319 Stemmler Hall, 36th and Hamilton Walk, University of Pennsylvania School of Medicine, Harrison Department of Surgical Research, Philadelphia, PA 19104, USA, Tel.: +1 215 662 2237, Fax: +1 215 746 3187
| | - Robert R Redfield
- 329 Stemmler Hall, 36th and Hamilton Walk, University of Pennsylvania School of Medicine, Harrison Department of Surgical Research, Philadelphia, PA 19104, USA, Tel.: +1 215 906 3219, Fax: +1 215 746 3187
| | - Thi-Sau Migone
- Human Genome Sciences, Inc., 14200 Shady Grove Road, Rockville, MD 20850, USA
| | - Michael P Cancro
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6082, USA, Tel.: +1 215 898 8067, Fax: +1 215 573 2350
| | - Ali Naji
- Department of Surgery, University of Pennsylvania School of Medicine, 3400 Spruce Street, 1 Founders Building, Philadelphia, PA 19104, USA, Tel.: +1 215 662 2037, Fax: +1 215 662 7476
| | - Hooman Noorchashm
- 329 Stemmler Hall, 36th and Hamilton Walk, University of Pennsylvania School of Medicine, Harrison Department of Surgical Research, Philadelphia, PA 19104, USA, Tel.: +1 215 662 2237, Fax: +1 215 746 3187
| |
Collapse
|
19
|
Abstract
Undesired immunological responses to products of therapeutic gene replacement have been obstacles to successful gene therapy. Understanding such responses of the host immune system to achieve immunological tolerance to a transferred gene product is therefore crucial. In this article, we review relevant studies of immunological responses to gene replacement therapy, the role of immunological tolerance mediated by regulatory T cells in down-regulating the unwanted immune responses, and the interrelationship of the two topics.
Collapse
Affiliation(s)
- Saman Eghtesad
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|