1
|
Silva-Carvalho AÉ, Bispo ECI, da Silva IGM, Correa JR, Carvalho JL, Gelfuso GM, Saldanha-Araujo F. Characterization of ibrutinib's effects on the morphology, proliferation, phenotype, viability, and anti-inflammatory potential of adipose-derived mesenchymal stromal cells. Sci Rep 2024; 14:19906. [PMID: 39191849 DOI: 10.1038/s41598-024-71054-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024] Open
Abstract
Ibrutinib (IB) is a tyrosine kinase inhibitor (TKI) that has immunomodulatory action and can be used as second-line therapy for steroid-refractory or steroid-resistant chronic Graft versus Host Disease (cGVHD). Mesenchymal stromal cells (MSCs) are distributed throughout the body and their infusion has also been explored as a second-line therapeutic alternative for the treatment of cGVHD. Considering the currently unknown effects of IB on endogenous MSCs, as well as the possible combined use of IB and MSCs for cGVHD, we investigated whether adipose tissue-derived MSCs present IB-targets, as well as the consequences of treating MSCs with this drug, regarding cell viability, proliferation, phenotype, and anti-inflammatory potential. Interestingly, we show for the first time that MSCs express several IB target genes. Also of note, the treatment of such cells with this TKI elevated the levels of CD90 and CD105 surface proteins, as well as VCAM-1. Furthermore, IB-treated MSCs presented increased mRNA expression of the anti-inflammatory genes PD-L1, TSG-6, and IL-10. However, continued exposure to IB, even at low doses, compromised the viability of MSCs. These data indicate that the use of IB can stimulate an anti-inflammatory profile in MSCs, but also that a continued exposure to IB can compromise MSC viability over time.
Collapse
Affiliation(s)
- Amandda Évelin Silva-Carvalho
- Laboratório de Hematologia E Células-Tronco, Departamento de Ciências da Saúde, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, DF, Brasil
- Laboratório de Farmacologia Molecular, Universidade de Brasília, Brasília, Brasil
| | - Elizabete Cristina Iseke Bispo
- Laboratório de Hematologia E Células-Tronco, Departamento de Ciências da Saúde, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, DF, Brasil
| | | | - José Raimundo Correa
- Laboratório de Microscopia E Microanálises, Universidade de Brasília, Brasília, Brasil
| | - Juliana Lott Carvalho
- Laboratório Multidisciplinar de Biociências, Universidade de Brasília, Brasília, Brasil
| | | | - Felipe Saldanha-Araujo
- Laboratório de Hematologia E Células-Tronco, Departamento de Ciências da Saúde, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, DF, Brasil.
| |
Collapse
|
2
|
Fu J, Zhang Q, Zhang N, Zhou S, Fang Y, Li Y, Yuan L, Chen L, Xiang C. Human Menstrual Blood-Derived Stem Cells Protect against Tacrolimus-Induced Islet Dysfunction via Cystathionine β-Synthase Mediated IL-6/STAT3 Inactivation. Biomolecules 2024; 14:671. [PMID: 38927074 PMCID: PMC11201965 DOI: 10.3390/biom14060671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Diabetes imposes a huge burden worldwide. Islet transplantation is an alternative therapy for diabetes. However, tacrolimus, a kind of immunosuppressant after organ transplantation, is closely related to post-transplant diabetes mellitus. Mesenchymal stem cells (MSCs) have attracted interest for their potential to alleviate diabetes. In vivo experiments revealed that human menstrual blood-derived stem cells (MenSCs) treatment improved tacrolimus-induced blood glucose, body weight, and glucose tolerance disorders in mice. RNA sequencing was used to analyze the potential therapeutic targets of MenSCs. In this study, we illustrated that cystathionine β-synthase (CBS) contributed to tacrolimus -induced islet dysfunction. Using β-cell lines (MIN6, β-TC-6), we demonstrated that MenSCs ameliorated tacrolimus-induced islet dysfunction in vitro. Moreover, MenSC reduced the tacrolimus-induced elevation of CBS levels and significantly enhanced the viability, anti-apoptotic ability, glucose-stimulated insulin secretion (GSIS), and glycolytic flux of β-cells. We further revealed that MenSCs exerted their therapeutic effects by inhibiting CBS expression to activate the IL6/JAK2/STAT3 pathway. In conclusion, we showed that MenSCs may be a potential strategy to improve tacrolimus-induced islet dysfunction.
Collapse
Affiliation(s)
- Jiamin Fu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (J.F.); (Q.Z.); (N.Z.); (S.Z.); (Y.F.); (Y.L.)
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, China
| | - Qi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (J.F.); (Q.Z.); (N.Z.); (S.Z.); (Y.F.); (Y.L.)
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, China
| | - Ning Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (J.F.); (Q.Z.); (N.Z.); (S.Z.); (Y.F.); (Y.L.)
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, China
| | - Sining Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (J.F.); (Q.Z.); (N.Z.); (S.Z.); (Y.F.); (Y.L.)
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, China
| | - Yangxin Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (J.F.); (Q.Z.); (N.Z.); (S.Z.); (Y.F.); (Y.L.)
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, China
| | - Yifei Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (J.F.); (Q.Z.); (N.Z.); (S.Z.); (Y.F.); (Y.L.)
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, China
| | - Li Yuan
- Innovative Precision Medicine (IPM) Group, Hangzhou 311215, China;
| | - Lijun Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (J.F.); (Q.Z.); (N.Z.); (S.Z.); (Y.F.); (Y.L.)
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, China
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; (J.F.); (Q.Z.); (N.Z.); (S.Z.); (Y.F.); (Y.L.)
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou 310003, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China
| |
Collapse
|
3
|
Park WJ, Han SH, Lee HJ, Kim JH, Song HJ, Park JB. The Influence of Tacrolimus on Cellular Morphology, Cellular Viability, Osteogenic Differentiation, and mRNA Expression within Stem Cell Spheroids. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:702. [PMID: 38792884 PMCID: PMC11123479 DOI: 10.3390/medicina60050702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024]
Abstract
Background and Objectives: Tacrolimus is a macrolide lactone compound derived from the bacterium Streptomyces tsukubensis, widely known as an immunosuppressant. In basic research, the effects of tacrolimus on osteogenic differentiation have been tested using mesenchymal stem cells. In this study, tacrolimus's effects on the cellular survival and osteogenic differentiation of stem cell spheroids were investigated. Materials and Methods: Concave microwells were used to form stem cell spheroids in the presence of tacrolimus at final concentrations of 0 μg/mL, 0.1 μg/mL, 1 μg/mL, 10 μg/mL, and 100 μg/mL. A microscope was used to test cellular vitality qualitatively, and an assay kit based on water-soluble tetrazolium salt was used to measure cellular viability quantitatively. Alkaline phosphatase activity and an anthraquinone dye test for measuring calcium deposits were used to assess osteogenic differentiation. To assess the expression of osteogenic differentiation, a quantitative polymerase chain reaction, Western blot, and RNA sequencing were performed. Results: Spheroids across all concentrations maintained a relatively uniform and spherical shape. Cell viability assay indicated that tacrolimus, up to a concentration of 100 μg/mL, did not significantly impair cell viability within spheroids cultured in osteogenic media. The increase in calcium deposition, particularly at lower concentrations of tacrolimus, points toward an enhancement in osteogenic differentiation. There was an increase in COL1A1 expression across all tacrolimus concentrations, as evidenced by the elevated mean and median values, which may indicate enhanced osteogenic activity. Conclusions: This study showed that tacrolimus does not significantly impact the viability of stem cell spheroids in osteogenic media, even at high concentrations. It also suggests that tacrolimus may enhance osteogenic differentiation, as indicated by increased calcium deposition and COL1A1 expression. These findings advance our understanding of tacrolimus's potential roles in tissue repair, regeneration, and stem cell-based therapeutic applications.
Collapse
Affiliation(s)
- Won-Jong Park
- Department of Oral and Maxillofacial Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Sung-Hoon Han
- Department of Orthodontics, Seoul Saint Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Hyun-Jin Lee
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (H.-J.L.); (J.-H.K.)
| | - Ju-Hwan Kim
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (H.-J.L.); (J.-H.K.)
| | - Hye-Jung Song
- Graduate School of Clinical Dental Science, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Jun-Beom Park
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (H.-J.L.); (J.-H.K.)
- Dental Implantology, Graduate School of Clinical Dental Science, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Medicine, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
4
|
Cheng HY, Anggelia MR, Lin CH, Wei FC. Toward transplantation tolerance with adipose tissue-derived therapeutics. Front Immunol 2023; 14:1111813. [PMID: 37187733 PMCID: PMC10175575 DOI: 10.3389/fimmu.2023.1111813] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Solid organ and composite tissue allotransplanation have been widely applied to treat end-stage organ failure and massive tissue defects, respectively. Currently there are a lot of research endeavors focusing on induction of transplantation tolerance, to relieve the burden derived from long-term immunosuppressant uptake. The mesenchymal stromal cells (MSCs) have been demonstrated with potent immunomodulatory capacities and applied as promising cellular therapeutics to promote allograft survival and induce tolerance. As a rich source of adult MSCs, adipose tissue provides additional advantages of easy accessibility and good safety profile. In recent years, the stromal vascular fraction (SVF) isolated from adipose tissues following enzymatic or mechanical processing without in vitro culture and expansion has demonstrated immunomodulatory and proangiogenic properties. Furthermore, the secretome of AD-MSCs has been utilized in transplantation field as a potential "cell-free" therapeutics. This article reviews recent studies that employ these adipose-derived therapeutics, including AD-MSCs, SVF, and secretome, in various aspects of organ and tissue allotransplantation. Most reports validate their efficacies in prolonging allograft survival. Specifically, the SVF and secretome have performed well for graft preservation and pretreatment, potentially through their proangiogenic and antioxidative capacities. In contrast, AD-MSCs were suitable for peri-transplantation immunosuppression. The proper combination of AD-MSCs, lymphodepletion and conventional immunosuppressants could consistently induce donor-specific tolerance to vascularized composite allotransplants (VCA). For each type of transplantation, optimizing the choice of therapeutics, timing, dose, and frequency of administration may be required. Future progress in the application of adipose-derived therapeutics to induce transplantation tolerance will be further benefited by continued research into their mechanisms of action and the development of standardized protocols for isolation methodologies, cell culture, and efficacy evaluation.
Collapse
Affiliation(s)
- Hui-Yun Cheng
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- *Correspondence: Hui-Yun Cheng,
| | - Madonna Rica Anggelia
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Cheng-Hung Lin
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Fu-Chan Wei
- Center for Vascularized Composite Allotransplantation, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
5
|
Vandermeulen M, Erpicum P, Bletard N, Poma L, Jouret F, Detry O. Effect of the Combination of Everolimus and Mesenchymal Stromal Cells on Regulatory T Cells Levels and in a Liver Transplant Rejection Model in Rats. Front Immunol 2022; 13:877953. [PMID: 35757737 PMCID: PMC9226583 DOI: 10.3389/fimmu.2022.877953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/09/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction Mesenchymal stromal cells (MSCs) have particular properties that are of interest in organ transplantation, including the expansion of regulatory T cells (Tregs), a key factor in transplant tolerance induction. However, the most effective immunosuppressive drug to associate with MSCs has yet to be defined. Additionally, the impact of the association of everolimus with MSCs on Treg expansion, and on the induction of liver graft tolerance, has never been studied. The aim of this study was to evaluate the effects of MSCs in combination, or not, with everolimus on Treg expansion and in a model of rejection after liver transplantation (LT) in the rat. Methods Firstly, 24 Lewis rats were assigned to 4 groups (n=6 in each group) receiving intravenous MSCs or saline injection at day (D)9 with/without subcutaneous everolimus from D0 to D14. Analysis of circulating Tregs was performed at D0, D14 and D28. In a second set of experiment, 30 Lewis rats were randomized in 3 groups 48hours after LT with a Dark Agouti rat liver: everolimus (subcutaneous for 14 days), MSCs (intravenous injection at post-operative day 2 and 9), or both everolimus and MSCs. Rejection of the liver graft was assessed by liver tests, histology and survival. Results Individually, MSC infusion and everolimus promoted Treg expansion in rats, and everolimus had no negative impact on Treg expansion in combination with MSCs. However, in the LT model, injections of MSCs two and nine days following LT were not effective at preventing acute rejection, and the combination of MSCs with everolimus failed to show any synergistic effect when compared to everolimus alone. Conclusion Everolimus may be used in association with MSCs. However, in our model of LT in the rat, post-transplant MSC injections did not prevent acute rejection, and the association of MSCs with everolimus did not show any synergistic effect.
Collapse
Affiliation(s)
- Morgan Vandermeulen
- Department of Abdominal Surgery and Transplantation, University of Liege Hospital [Centre Hospitalier Universitaire (CHU) ULiege], Liege, Belgium.,Centre de Recherche et de Développement du Département de Chirurgie (CREDEC), Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liege (ULiege), Liege, Belgium.,Laboratory of Translational Research in Nephrology (LTRN), Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liege (ULiege), Liege, Belgium
| | - Pauline Erpicum
- Laboratory of Translational Research in Nephrology (LTRN), Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liege (ULiege), Liege, Belgium.,Division of Nephrology, University of Liege Hospital [Centre Hospitalier Universitaire (CHU) ULiege], Liege, Belgium
| | - Noella Bletard
- Department of Pathology, University of Liege Hospital [Centre Hospitalier Universitaire (CHU) ULiege], Liege, Belgium
| | - Laurence Poma
- Laboratory of Translational Research in Nephrology (LTRN), Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liege (ULiege), Liege, Belgium
| | - François Jouret
- Laboratory of Translational Research in Nephrology (LTRN), Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liege (ULiege), Liege, Belgium.,Division of Nephrology, University of Liege Hospital [Centre Hospitalier Universitaire (CHU) ULiege], Liege, Belgium
| | - Olivier Detry
- Department of Abdominal Surgery and Transplantation, University of Liege Hospital [Centre Hospitalier Universitaire (CHU) ULiege], Liege, Belgium.,Centre de Recherche et de Développement du Département de Chirurgie (CREDEC), Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular Sciences, University of Liege (ULiege), Liege, Belgium
| |
Collapse
|
6
|
Preconditioned Mesenchymal Stromal Cells to Improve Allotransplantation Outcome. Cells 2021; 10:cells10092325. [PMID: 34571974 PMCID: PMC8469056 DOI: 10.3390/cells10092325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are tissue-derived progenitor cells with immunomodulatory as well as multilineage differentiation capacities, and have been widely applied as cellular therapeutics in different disease systems in both preclinical models and clinical studies. Although many studies have applied MSCs in different types of allotransplantation, the efficacy varies. It has been demonstrated that preconditioning MSCs prior to in vivo administration may enhance their efficacy. In the field of organ/tissue allotransplantation, many recent studies have shown that preconditioning of MSCs with (1) pretreatment with bioactive factors or reagents such as cytokines, or (2) specific gene transfection, could prolong allotransplant survival and improve allotransplant function. Herein, we review these preconditioning strategies and discuss potential directions for further improvement.
Collapse
|
7
|
Kuca-Warnawin E, Janicka I, Szczęsny P, Olesińska M, Bonek K, Głuszko P, Kontny E. Modulation of T-Cell Activation Markers Expression by the Adipose Tissue-Derived Mesenchymal Stem Cells of Patients with Rheumatic Diseases. Cell Transplant 2021; 29:963689720945682. [PMID: 32878464 PMCID: PMC7784571 DOI: 10.1177/0963689720945682] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background: Activated T lymphocytes play an important role in the pathogenesis of rheumatic diseases (RD). Mesenchymal stem cells (MSCs) possess immunoregulatory activities but such functions of MSCs from bone marrow of systemic lupus erythematosus (SLE), systemic sclerosis (SSc), and ankylosing spondylitis (AS) patients are impaired. Adipose tissue–derived MSCs (ASCs) are an optional pool of therapeutically useful MSCs, but biology of these cells in RD is poorly known. This study aimed at investigating the effect of ASCs from RD patients and healthy donors (HD) on the expression of the key T-cell activation markers. Methods: ASCs were isolated from subcutaneous abdominal fat from SLE (n = 16), SSc (n = 18), and AS (n = 16) patients, while five human ASCs lines from HD were used as a control. Untreated and cytokine (tumor necrosis factor α + interferon γ)-treated ASCs were co-cultured with allogenic, mitogen (phytohemagglutinin)-stimulated peripheral blood mononuclear cells (PBMCs) or purified anti-CD3/CD28-activated CD4+ T lymphocytes. Contacting and noncontacting ASCs-PBMCs co-cultures were performed. RD/ASCs were analyzed in co-cultures with both allogeneic and autologous PBMCs. Flow cytometry analysis was used to evaluate expression of CD25, HLA-DR, and CD69 molecules on CD4+ and CD8+ cells. Results: In co-cultures with allogeneic, activated CD4+ T cells and PBMCs, HD/ASCs and RD/ASCs downregulated CD25 and HLA-DR, while upregulated CD69 molecules expression on both CD4+ and CD8+ cells with comparable potency. This modulatory effect was similar in contacting and noncontacting co-cultures. RD/ASCs exerted weaker inhibitory effect on CD25 expression on autologous than allogeneic CD4+ and CD8+ T cells. Conclusion: RD/ASCs retain normal capability to regulate expression of activation markers on allogeneic T cells. Both HD/ASCs and RD/ASCs exert this effect independently of their activation status, mostly through the indirect pathway and soluble factors. However, autologous CD4+ and CD8+ T cells are partially resistant to RD/ASCs inhibition of CD25 expression, suggesting weaker control of T-cell activation in vivo.
Collapse
Affiliation(s)
- Ewa Kuca-Warnawin
- Department of Pathophysiology and Immunology, 49552National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Iwona Janicka
- Department of Pathophysiology and Immunology, 49552National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Piotr Szczęsny
- Clinic of Connective Tissue Diseases, 49552National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Marzena Olesińska
- Clinic of Connective Tissue Diseases, 49552National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Krzysztof Bonek
- Department of Rheumatology, 49552National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Piotr Głuszko
- Department of Rheumatology, 49552National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Ewa Kontny
- Department of Pathophysiology and Immunology, 49552National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| |
Collapse
|
8
|
Qin YF, Kong DJ, Qin H, Zhu YL, Li GM, Sun CL, Zhao YM, Wang HD, Hao JP, Wang H. Melatonin Synergizes With Mesenchymal Stromal Cells Attenuates Chronic Allograft Vasculopathy. Front Immunol 2021; 12:672849. [PMID: 33995416 PMCID: PMC8116651 DOI: 10.3389/fimmu.2021.672849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/12/2021] [Indexed: 12/24/2022] Open
Abstract
Background Chronic rejection characterized by chronic allograft vasculopathy (CAV) remains a major obstacle to long-term graft survival. Due to multiple complicated mechanisms involved, a novel therapy for CAV remains exploration. Although mesenchymal stromal cells (MSCs) have been ubiquitously applied to various refractory immune-related diseases, rare research makes a thorough inquiry in CAV. Meanwhile, melatonin (MT), a wide spectrum of immunomodulator, plays a non-negligible role in transplantation immunity. Here, we have investigated the synergistic effects of MT in combination with MSCs in attenuation of CAV. Methods C57BL/6 (B6) mouse recipients receiving BALB/c mouse donor aorta transplantation have been treated with MT and/or adipose-derived MSCs. Graft pathological changes, intragraft immunocyte infiltration, splenic immune cell populations, circulating donor-specific antibodies levels, cytokine profiles were detected on post-operative day 40. The proliferation capacity of CD4+ and CD8+ T cells, populations of Th1, Th17, and Tregs were also assessed in vitro. Results Grafts in untreated recipients developed a typical pathological feature of CAV characterized by intimal thickening 40 days after transplantation. Compared to untreated and monotherapy groups, MT in combination with MSCs effectively ameliorated pathological changes of aorta grafts indicated by markedly decreased levels of intimal hyperplasia and the infiltration of CD4+ cells, CD8+ cells, and macrophages, but elevated infiltration of Foxp3+ cells. MT either alone or in combination with MSCs effectively inhibited the proliferation of T cells, decreased populations of Th1 and Th17 cells, but increased the proportion of Tregs in vitro. MT synergized with MSCs displayed much fewer splenic populations of CD4+ and CD8+ T cells, Th1 cells, Th17 cells, CD4+ central memory T cells (Tcm), as well as effector memory T cells (Tem) in aorta transplant recipients. In addition, the percentage of splenic Tregs was substantially increased in the combination therapy group. Furthermore, MT combined with MSCs markedly reduced serum levels of circulating allospecific IgG and IgM, as well as decreased the levels of pro-inflammatory IFN-γ, TNF-α, IL-1β, IL-6, IL-17A, and MCP-1, but increased the level of IL-10 in the recipients. Conclusions These data suggest that MT has synergy with MSCs to markedly attenuate CAV and provide a novel therapeutic strategy to improve the long-term allograft acceptance in transplant recipients.
Collapse
Affiliation(s)
- Ya-fei Qin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - De-jun Kong
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hong Qin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yang-lin Zhu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Guang-ming Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Cheng-lu Sun
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yi-ming Zhao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hong-da Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing-peng Hao
- Department of Anorectal Surgery, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
9
|
de la Torre P, Fernández-de la Torre M, Flores AI. Premature senescence of placental decidua cells as a possible cause of miscarriage produced by mycophenolic acid. J Biomed Sci 2021; 28:3. [PMID: 33397374 PMCID: PMC7780668 DOI: 10.1186/s12929-020-00704-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/23/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Successful pregnancy is supported by a healthy maternal-fetal interface (i.e., the decidual tissues) which holds the conceptus and safeguards it against stressors from the beginning of pregnancy. Any disturbance of this interface can presumably lead to the loss of pregnancy. The use of the immunosuppressive drug mycophenolic acid (MPA) should be discontinued in pregnancy given its abortive and embryotoxic effects. Direct teratogenic effects have been observed in mammalian embryos cultured in MPA, but the underlying mechanisms of abortion by MPA are less understood. METHODS Decidual stromal cells isolated from human placentas are cultured in the presence of clinically relevant doses of MPA. Data regarding the effects of MPA on the proliferation and viability of decidua cultures are first analysed and then, molecular pathways contributing to these effects are unravelled. RESULTS MPA treatment of decidual stromal cells results in loss of proliferation capacity and a decrease in the viability of decidua cultures. The molecular pathways involved in the effects of MPA on decidual stromal cells are a reduction in pre-rRNA synthesis and subsequent disruption of the nucleolus. The nucleolar stress stabilizes p53, which in turn, leads to a p21-mediated cell cycle arrest in late S and G2 phases, preventing the progression of the decidua cells into the mitosis. Furthermore, MPA does not induce apoptosis but activate mechanisms of autophagy and senescence in decidual stromal cells. CONCLUSION The irreversible growth arrest of decidua cells, whose role in the maintenance of the pregnancy microenvironment is known, may be one cause of miscarriage in MPA treated pregnant women.
Collapse
Affiliation(s)
- Paz de la Torre
- Grupo de Medicina Regenerativa, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Avda. Cordoba s/n 28041, Madrid, Spain
| | - Miguel Fernández-de la Torre
- Grupo de Enfermedades Raras, Mitocondriales y Neuromusculares, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Avda. Cordoba s/n 28041, Madrid, Spain
| | - Ana I Flores
- Grupo de Medicina Regenerativa, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Avda. Cordoba s/n 28041, Madrid, Spain.
| |
Collapse
|
10
|
Wang Y, Wang S, Gu C, Xiong Y, Shen H, Liu F, Yang J. Ex-vivo treatment of allografts using adipose-derived stem cells induced prolonged rejection-free survival in an allogenic hind-limb transplantation model. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:867. [PMID: 32793711 DOI: 10.21037/atm-19-4730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Vascularized composite tissue allotransplantation (VCA) has increasingly been adopted for the reconstruction of tissues following severe injury. However, the side effects of the post-operative use of immunosuppressants may outweigh the benefits of VCA. In order to overcome this obstacle, ex-vivo pretreatment of allografts combined with mesenchymal stem cell-based therapy may help induce immunotolerance in composite tissue allotransplantation. Methods A hind-limb allotransplantation model of Brown-Norway to Lewis rats was established, and the allografts were infused with adipose-derived stem cells (ADSCs) and hypoxia primed ADSCs, which were injected through the vascular system along with short-term immunosuppressant treatment. The rejection-free survival of the allografts was monitored, and the histopathological examination of allografts was performed. The peripheral T lymphocytes and cytokines were analyzed using flow cytometry and ELISA, while Tregs infiltration in allotissue was detected using immunohistochemical staining (IHC). Results This study found that the ex-vivo treatment of allografts using ADSCs prolonged the survival of the allografts, compared with the medium control, suppressed the proliferation and infiltration of T lymphocytes and improved the secretion of immunomodulatory cytokines, such as IL-10, as well as induced regulatory T cells (Tregs) expression in the allografts. Conclusions The ex-vivo pretreatment of allografts using ADSCs may function as an important adjunctive therapy for the induction of immunotolerance in VCA.
Collapse
Affiliation(s)
- Yinmin Wang
- Department of Plastic and Reconstructive Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.,Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Shoubao Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Chuan Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yao Xiong
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Hua Shen
- Department of Plastic and Reconstructive Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Fei Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jun Yang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Owen A, Newsome PN. Mesenchymal Stromal Cells, a New Player in Reducing Complications From Liver Transplantation? Front Immunol 2020; 11:1306. [PMID: 32636850 PMCID: PMC7318292 DOI: 10.3389/fimmu.2020.01306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
In response to the global burden of liver disease there has been a commensurate increase in the demand for liver transplantation. However, due to a paucity of donor organs many centers have moved toward the routine use of marginal allografts, which can be associated with a greater risk of complications and poorer clinical outcomes. Mesenchymal stromal cells (MSC) are a multi-potent progenitor cell population that have been utilized to modulate aberrant immune responses in acute and chronic inflammatory conditions. MSC exert an immunomodulatory effect on innate and adaptive immune systems through the release of both paracrine soluble factors and extracellular vesicles. Through these routes MSC can switch the regulatory function of the immune system through effects on macrophages and T regulatory cells enabling a switch of phenotype from injury to restoration. A key benefit seems to be their ability to tailor their response to the inflammatory environment without compromising the host ability to fight infection. With over 200 clinical trials registered to examine MSC therapy in liver disease and an increasing number of trials of MSC therapy in solid organ transplant recipients, there is increasing consideration for their use in liver transplantation. In this review we critically appraise the potential role of MSC therapy in the context of liver transplantation, including their ability to modulate reperfusion injury, their role in the reduction of medium term complications in the biliary tree and their potential to enhance tolerance in transplanted organs.
Collapse
Affiliation(s)
- Andrew Owen
- National Institute for Health Research Birmingham, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, United Kingdom.,Department of Anesthesia and Critical Care, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Philip N Newsome
- National Institute for Health Research Birmingham, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, United Kingdom.,Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|
12
|
Cyclosporine A promotes the therapeutic effect of mesenchymal stem cells on transplantation reaction. Clin Sci (Lond) 2020; 133:2143-2157. [PMID: 31654074 DOI: 10.1042/cs20190294] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 12/15/2022]
Abstract
The successful application of mesenchymal stem cells (MSCs) remains a major challenge in stem cell therapy. Currently, several in vitro studies have indicated potentially beneficial interactions of MSCs with immunosuppressive drugs. These interactions can be even more complex in vivo, and it is in this setting that we investigate the effect of MSCs in combination with Cyclosporine A (CsA) on transplantation reaction and allogeneic cell survival. Using an in vivo mouse model, we found that CsA significantly promoted the survival of MSCs in various organs and tissues of the recipients. In addition, compared to treatment with CsA or MSCs alone, the survival of transplanted allogeneic cells was significantly improved after the combined application of MSCs with CsA. We further observed that the combinatory treatment suppressed immune response to the alloantigen challenge and modulated the immune balance by harnessing proinflammatory CD4+T-bet+ and CD4+RORγt+ cell subsets. These changes were accompanied by a significant decrease in IL-17 production along with an elevated level of IL-10. Co-cultivation of purified naive CD4+ cells with peritoneal macrophages isolated from mice treated with MSCs and CsA revealed that MSC-educated macrophages play an important role in the immunomodulatory effect observed on distinct T-cell subpopulations. Taken together, our findings suggest that CsA promotes MSC survival in vivo and that the therapeutic efficacy of the combination of MSCs with CsA is superior to each monotherapy. This combinatory treatment thus represents a promising approach to reducing immunosuppressant dosage while maintaining or even improving the outcome of therapy.
Collapse
|
13
|
Schweizer R, Waldner M, Oksuz S, Zhang W, Komatsu C, Plock JA, Gorantla VS, Solari MG, Kokai L, Marra KG, Rubin JP. Evaluation of Porcine Versus Human Mesenchymal Stromal Cells From Three Distinct Donor Locations for Cytotherapy. Front Immunol 2020; 11:826. [PMID: 32435248 PMCID: PMC7218165 DOI: 10.3389/fimmu.2020.00826] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Mesenchymal stromal cell (MSC)-based cytotherapies fuel the hope for reduction of chronic systemic immunosuppression in allotransplantation, and our group has previously shown this capability for both swine and human cells. MSCs harvested from distinct anatomical locations may have different behavior and lead to different outcomes in both preclinical research and human trials. To provide an effective reference for cell therapy studies, we compared human and porcine MSCs from omental fat (O-ASC), subcutaneous fat (SC-ASC) and bone marrow (BM-MSC) under rapid culture expansion with endothelial growth medium (EGM). Methods: MSCs isolated from pigs and deceased human organ donors were compared for yield, viability, cell size, population doubling times (PDT), surface marker expression and differentiation potential after rapid expansion with EGM. Immunosuppressant toxicity on MSCs was investigated in vitro for four different standard immunosuppressive drugs. Immunomodulatory function was compared in mixed lymphocyte reaction assays (MLR) with/without immunosuppressive drug influence. Results: Human and porcine omental fat yielded significantly higher cell numbers than subcutaneous fat. Initial PDT was significantly shorter in ASCs than BM-MSCs and similar thereafter. Viability was reduced in BM-MSCs. Porcine MSCs were positive for CD29, CD44, CD90, while human MSCs expressed CD73, CD90 and CD105. All demonstrated confirmed adipogenic differentiation capacity. Cell sizes were comparable between groups and were slightly larger in human cells. Rapamycin revealed slight, mycophenolic acid strong and significant dose-dependent toxicity on viability/proliferation of almost all MSCs at therapeutic concentrations. No relevant toxicity was found for Tacrolimus and Cyclosporin A. Immunomodulatory function was dose-dependent and similar between groups. Immunosuppressants had no significant adverse effect on MSC immunomodulatory function. Discussion: MSCs from different harvest locations and donor species differ in terms of isolation yields, viability, PDT, and size. We did not detect relevant differences in immunomodulatory function with or without the presence of immunosuppressants. Human and pig O-ASC, SC-ASC and BM-MSC share similar immunomodulatory function in vitro and warrant confirmation in large animal studies. These findings should be considered in preclinical and clinical MSC applications.
Collapse
Affiliation(s)
- Riccardo Schweizer
- Department of Plastic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Matthias Waldner
- Department of Plastic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Sinan Oksuz
- Department of Plastic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Plastic, Reconstructive and Aesthetic Surgery, Gulhane Military Medical Academy, Ankara, Turkey
| | - Wensheng Zhang
- Department of Plastic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Chiaki Komatsu
- Department of Plastic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jan A Plock
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Vijay S Gorantla
- Department of Plastic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Mario G Solari
- Department of Plastic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Lauren Kokai
- Department of Plastic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kacey G Marra
- Department of Plastic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - J Peter Rubin
- Department of Plastic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
14
|
Silva-Carvalho AÉ, Rodrigues LP, Schiavinato JL, Alborghetti MR, Bettarello G, Simões BP, Neves FDAR, Panepucci RA, de Carvalho JL, Saldanha-Araujo F. GVHD-derived plasma as a priming strategy of mesenchymal stem cells. Stem Cell Res Ther 2020; 11:156. [PMID: 32299501 PMCID: PMC7164240 DOI: 10.1186/s13287-020-01659-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/21/2020] [Accepted: 03/20/2020] [Indexed: 02/06/2023] Open
Abstract
Background Mesenchymal stem cell (MSC) therapy is an important alternative for GVHD treatment, but a third of patients fail to respond to such therapy. Therefore, strategies to enhance the immunosuppressive potential of MSCs constitute an active area of investigation. Here, we proposed an innovative priming strategy based on the plasma obtained from GVHD patients and tested whether this approach could enhance the immunosuppressive capacity of MSCs. Methods We obtained the plasma from healthy as well as acute (aGVHD) and chronic (cGVHD) GVHD donors. Plasma samples were characterized according to the TNF-α, IFN-γ, IL-10, IL-1β, IL-12p40, and IL-15 cytokine levels. The MSCs primed with such plasmas were investigated according to surface markers, morphology, proliferation, mRNA expression, and the capacity to control T cell proliferation and Treg generation. Results Interestingly, 57% of aGVHD and 33% of cGVHD plasmas significantly enhanced the immunosuppressive potential of MSCs. The most suppressive MSCs presented altered morphology, and those primed with cGHVD displayed a pronounced overexpression of ICAM-1 on their surface. Furthermore, we observed that the ratio of IFN-γ to IL-10 cytokine levels in the plasma used for MSC priming was significantly correlated with higher suppressive potential and Treg generation induction by primed MSCs, regardless of the clinical status of the donor. Conclusions This work constitutes an important proof of concept which demonstrates that it is possible to prime MSCs with biological material and also that the cytokine levels in the plasma may affect the MSC immunosuppressive potential, serving as the basis for the development of new therapeutic approaches for the treatment of immune diseases.
Collapse
Affiliation(s)
- Amandda Évelin Silva-Carvalho
- Laboratório de Farmacologia Molecular, Departamento de Ciências da Saúde, Universidade de Brasília, Brasilia, DF, Brazil.,Laboratório de Hematologia e Células-Tronco, Departamento de Ciências da Saúde, Universidade de Brasília, Brasilia, DF, Brazil
| | - Leane Perim Rodrigues
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasilia, DF, Brazil
| | - Josiane Lilian Schiavinato
- Laboratório de Hematologia, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto, SP, Brazil
| | - Marcos Rodrigo Alborghetti
- Laboratório de Bioquímica e Química de Proteínas, Departamento de Biologia Celular, Universidade de Brasília, Brasilia, DF, Brazil
| | - Gustavo Bettarello
- Unidade de Transplante de Medula Óssea, Instituto de Cardiologia do Distrito Federal, Brasilia, DF, Brazil
| | - Belinda Pinto Simões
- Laboratório de Hematologia, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirao Preto, SP, Brazil
| | - Francisco de Assis Rocha Neves
- Laboratório de Farmacologia Molecular, Departamento de Ciências da Saúde, Universidade de Brasília, Brasilia, DF, Brazil
| | - Rodrigo Alexandre Panepucci
- Laboratório de Biologia Funcional (LFBio), Centro de Terapia Celular (CTC), Hemocentro de Ribeirão Preto, Rua Tenente Catão Roxo, Ribeirão Preto, SP, 2501, Brazil
| | - Juliana Lott de Carvalho
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasilia, DF, Brazil.,Programa de Pós-graduação em Ciências Médicas, Faculdade de Medicina, Universidade de Brasília, Brasilia, DF, Brazil
| | - Felipe Saldanha-Araujo
- Laboratório de Farmacologia Molecular, Departamento de Ciências da Saúde, Universidade de Brasília, Brasilia, DF, Brazil. .,Laboratório de Hematologia e Células-Tronco, Departamento de Ciências da Saúde, Universidade de Brasília, Brasilia, DF, Brazil.
| |
Collapse
|
15
|
Hoogduijn MJ, Montserrat N, van der Laan LJW, Dazzi F, Perico N, Kastrup J, Gilbo N, Ploeg RJ, Roobrouck V, Casiraghi F, Johnson CL, Franquesa M, Dahlke MH, Massey E, Hosgood S, Reinders MEJ. The emergence of regenerative medicine in organ transplantation: 1st European Cell Therapy and Organ Regeneration Section meeting. Transpl Int 2020; 33:833-840. [PMID: 32237237 PMCID: PMC7497223 DOI: 10.1111/tri.13608] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/06/2020] [Accepted: 03/20/2020] [Indexed: 12/19/2022]
Abstract
Regenerative medicine is emerging as a novel field in organ transplantation. In September 2019, the European Cell Therapy and Organ Regeneration Section (ECTORS) of the European Society for Organ Transplantation (ESOT) held its first meeting to discuss the state‐of‐the‐art of regenerative medicine in organ transplantation. The present article highlights the key areas of interest and major advances in this multidisciplinary field in organ regeneration and discusses its implications for the future of organ transplantation.
Collapse
Affiliation(s)
- Martin J Hoogduijn
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Nuria Montserrat
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Francesco Dazzi
- School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Norberto Perico
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Jens Kastrup
- Cardiology Stem Cell Center, Rigshospitalet University Hospital Copenhagen, Copenhagen, Denmark
| | - Nicholas Gilbo
- Lab of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.,Department of Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Rutger J Ploeg
- Nuffield Department of Surgical Sciences and Oxford Transplant Centre, University of Oxford and Oxford University Hospitals NHS Trust, Oxford, UK
| | | | | | - Christian L Johnson
- Institute for Clinical Chemistry and Laboratory Medicine, Transfusion Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Marcella Franquesa
- REMAR-IVECAT Group, Germans Trias i Pujol Health Science Research Institute, Badalona, Spain
| | - Marc H Dahlke
- Department of Surgery, Robert-Bosch-Health-Campus, Stuttgart, Germany
| | - Emma Massey
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Sarah Hosgood
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Marlies E J Reinders
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
16
|
Paracrine Proangiogenic Function of Human Bone Marrow-Derived Mesenchymal Stem Cells Is Not Affected by Chronic Kidney Disease. Stem Cells Int 2019; 2019:1232810. [PMID: 31933648 PMCID: PMC6942892 DOI: 10.1155/2019/1232810] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/20/2019] [Accepted: 11/26/2019] [Indexed: 12/18/2022] Open
Abstract
Background Cell-based therapies are being developed to meet the need for curative therapy in chronic kidney disease (CKD). Bone marrow- (BM-) derived mesenchymal stromal cells (MSCs) enhance tissue repair and induce neoangiogenesis through paracrine action of secreted proteins and extracellular vesicles (EVs). Administration of allogeneic BM MSCs is less desirable in a patient population likely to require a kidney transplant, but potency of autologous MSCs should be confirmed, given previous indications that CKD-induced dysfunction is present. While the immunomodulatory capacity of CKD BM MSCs has been established, it is unknown whether CKD affects wound healing and angiogenic potential of MSC-derived CM and EVs. Methods MSCs were cultured from BM obtained from kidney transplant recipients (N = 15) or kidney donors (N = 17). Passage 3 BM MSCs and BM MSC-conditioned medium (CM) were used for experiments. EVs were isolated from CM by differential ultracentrifugation. BM MSC differentiation capacity, proliferation, and senescence-associated β-galactosidase activity was assessed. In vitro promigratory and proangiogenic capacity of BM MSC-derived CM and EVs was assessed using an in vitro scratch wound assay and Matrigel angiogenesis assay. Results Healthy and CKD BM MSCs exhibited similar differentiation capacity, proliferation, and senescence-associated β-galactosidase activity. Scratch wound migration was not significantly different between healthy and CKD MSCs (P = 0.18). Healthy and CKD BM MSC-derived CM induced similar tubule formation (P = 0.21). There was also no difference in paracrine regenerative function of EVs (scratch wound: P = 0.6; tubulogenesis: P = 0.46). Conclusions Our results indicate that MSCs have an intrinsic capacity to produce proangiogenic paracrine factors, including EVs, which is not affected by donor health status regarding CKD. This suggests that autologous MSC-based therapy is a viable option in CKD.
Collapse
|
17
|
You Y, Wen DG, Gong JP, Liu ZJ. Research Status of Mesenchymal Stem Cells in Liver Transplantation. Cell Transplant 2019; 28:1490-1506. [PMID: 31512503 PMCID: PMC6923564 DOI: 10.1177/0963689719874786] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Liver transplantation has been deemed the best choice for end-stage liver disease
patients but immune rejection after surgery is still a serious problem. Patients have to
take immunosuppressive drugs for a long time after liver transplantation, and this often
leads to many side effects. Mesenchymal stem cells (MSCs) gradually became of interest to
researchers because of their powerful immunomodulatory effects. In the past, a large
number of in vitro and in vivo studies have demonstrated the great potential of MSCs for
participation in posttransplant immunomodulation. In addition, MSCs also have properties
that may potentially benefit patients undergoing liver transplantation. This article aims
to provide an overview of the current understanding of the immunomodulation achieved by
the application of MSCs in liver transplantation, to discuss the problems that may be
encountered when using MSCs in clinical practice, and to describe some of the underlying
capabilities of MSCs in liver transplantation. Cell–cell contact, soluble molecules, and
exosomes have been suggested to be critical approaches to MSCs’ immunoregulation in vitro;
however, the exact mechanism, especially in vivo, is still unclear. In recent years, the
clinical safety of MSCs has been proven by a series of clinical trials. The obstacles to
the clinical application of MSCs are decreasing, but large sample clinical trials
involving MSCs are still needed to further study their clinical effects.
Collapse
Affiliation(s)
- Yu You
- Hepatobiliary Surgery Department, Second Affiliated Hospital of Chongqing Medical University, China.,Yu You and Di-guang Wen are equal contributors and co-first authors of this article
| | - Di-Guang Wen
- Hepatobiliary Surgery Department, Second Affiliated Hospital of Chongqing Medical University, China.,Yu You and Di-guang Wen are equal contributors and co-first authors of this article
| | - Jian-Ping Gong
- Hepatobiliary Surgery Department, Second Affiliated Hospital of Chongqing Medical University, China
| | - Zuo-Jin Liu
- Hepatobiliary Surgery Department, Second Affiliated Hospital of Chongqing Medical University, China
| |
Collapse
|
18
|
Abstract
Current management of aortic aneurysms relies exclusively on prophylactic operative repair of larger aneurysms. Great potential exists for successful medical therapy that halts or reduces aneurysm progression and hence alleviates or postpones the need for surgical repair. Preclinical studies in the context of abdominal aortic aneurysm identified hundreds of candidate strategies for stabilization, and data from preoperative clinical intervention studies show that interventions in the pathways of the activated inflammatory and proteolytic cascades in enlarging abdominal aortic aneurysm are feasible. Similarly, the concept of pharmaceutical aorta stabilization in Marfan syndrome is supported by a wealth of promising studies in the murine models of Marfan syndrome-related aortapathy. Although some clinical studies report successful medical stabilization of growing aortic aneurysms and aortic root stabilization in Marfan syndrome, these claims are not consistently confirmed in larger and controlled studies. Consequently, no medical therapy can be recommended for the stabilization of aortic aneurysms. The discrepancy between preclinical successes and clinical trial failures implies shortcomings in the available models of aneurysm disease and perhaps incomplete understanding of the pathological processes involved in later stages of aortic aneurysm progression. Preclinical models more reflective of human pathophysiology, identification of biomarkers to predict severity of disease progression, and improved design of clinical trials may more rapidly advance the opportunities in this important field.
Collapse
Affiliation(s)
- Jan H. Lindeman
- Dept. Vascular Surgery, Leiden University Medical Center, The Netherlands
| | - Jon S. Matsumura
- Division of Vascular Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
19
|
Poggi A, Zocchi MR. Immunomodulatory Properties of Mesenchymal Stromal Cells: Still Unresolved "Yin and Yang". Curr Stem Cell Res Ther 2019; 14:344-350. [PMID: 30516112 DOI: 10.2174/1574888x14666181205115452] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/18/2022]
Abstract
Mesenchymal stromal cells (MSC) are mesodermal elements characterized by the ability to differentiate into several types of cells present mainly in connective tissues. They play a key function in tissue homeostasis and repair. Furthermore, they exert a strong effect on both innate and adaptive immune response. The main current of thought considers MSC as strong inhibitors of the immune system. Indeed, the first description of MSC immunomodulation pointed out their inability to induce alloimmune responses and their veto effects on mixed lymphocyte reactions. This inhibition appears to be mediated both by direct MSC interaction with immune cells and by soluble factors. Unfortunately, evidence to support this notion comes almost exclusively from in vitro experiments. In complex experimental systems, it has been shown that MSC can exert immunosuppressive effects also in vivo, either in murine models or in transplanted patients to avoid the graft versus host disease. However, it is still debated how the small number of administered MSC can regulate efficiently a large number of host effector lymphocytes. In addition, some reports in the literature indicate that MSC can trigger rather than inhibit lymphocyte activation when a very low number of MSC are co-cultured with lymphocytes. This would imply that the ratio between the number of MSC and immune cells is a key point to forecast whether MSC will inhibit or activate the immune system. Herein, we discuss the conflicting results reported on the immunomodulatory effects of MSC to define which features are relevant to understand their behavior and cross-talk with immune cells.
Collapse
Affiliation(s)
- Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, Ospedale Policlinico San Martino, Genoa, Italy
| | - Maria R Zocchi
- Division of Immunology, Transplants and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
20
|
Wang D, Sun YQ, Gao WX, Fan XL, Shi JB, Fu QL. An in Vitro and in Vivo Study of the Effect of Dexamethasone on Immunoinhibitory Function of Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells. Cell Transplant 2018; 27:1340-1351. [PMID: 30056763 PMCID: PMC6168992 DOI: 10.1177/0963689718780194] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Induced pluripotent stem cell-derived mesenchymal stem cells (iPSC-MSCs) represent a promising cell source for patient-specific cell therapy. We previously demonstrated that they display an immunomodulatory effect on allergic airway inflammation. Glucocorticoids are powerful anti-inflammatory compounds and widely used in the therapy of allergic diseases. However, the effect of glucocorticoids on the immunomodulatory function of iPSC-MSCs remains unknown. This study aimed to determine the effect of dexamethasone (Dex) on the immunomodulatory function of iPSC-MSCs in vitro and in vivo. A total of three human iPSC-MSC clones were generated from amniocyte-derived iPSCs. Anti-CD3/CD28-induced peripheral blood mononuclear cell (PBMC) proliferation was used to assess the effect of Dex on the immunoinhibitory function of iPSC-MSCs in vitro. Mouse models of contact hypersensitivity (CHS) and allergic airway inflammation were induced, and the levels of inflammation in mice were analyzed with the treatments of iPSC-MSCs and Dex, alone and combined. The results showed that Dex did not interfere with the immunoinhibitory effect of iPSC-MSCs on PBMC proliferation. In CHS mice, simultaneous treatment with Dex did not affect the effect of iPSC-MSCs on the inflammation, both in regional draining lymph nodes and in inflamed ear tissue. In addition, co-administration of iPSC-MSCs with Dex decreased the local expression of interferon (IFN)-γ and tumor necrosis factor (TNF)-α in the ears of CHS mice. In the mouse model of allergic airway inflammation, iPSC-MSC treatment combined with Dex resulted in a similar extent of reduction in pulmonary inflammation as iPSC-MSCs or Dex treatment alone. In conclusion, Dex does not significantly affect the immunomodulatory function of iPSC-MSCs both in vitro and in vivo. These findings may have implications when iPSC-MSCs and glucocorticoids are co-administered.
Collapse
Affiliation(s)
- Dan Wang
- 1 Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yue-Qi Sun
- 1 Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wen-Xiang Gao
- 1 Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xing-Liang Fan
- 1 Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jian-Bo Shi
- 1 Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qing-Ling Fu
- 1 Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
21
|
Effect of a Combination of Prednisone or Mycophenolate Mofetil and Mesenchymal Stem Cells on Lupus Symptoms in MRL. Faslpr Mice. Stem Cells Int 2018; 2018:4273107. [PMID: 30057623 PMCID: PMC6051060 DOI: 10.1155/2018/4273107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/10/2018] [Accepted: 06/03/2018] [Indexed: 01/27/2023] Open
Abstract
The combination of immunosuppressants and mesenchymal stem cells (MSCs) is a promising therapeutic strategy for systemic lupus erythematosus, since this approach reduces doses of immunosuppressants while maintaining the same therapeutic outcome. However, it is unavoidable for MSCs to be exposed to immunosuppressants. Here, we examined the combination effect of prednisone (PD) or mycophenolate mofetil (MMF) and MSCs. We showed that PD or MMF in combination with MSCs showed better therapeutic effect than single therapy in lupus-prone MRL.Faslpr mice, as assessed by using the following readouts: prolongation of survival, decrease in anti-dsDNA and total IgG levels in serum, decrease in cytokine gene expression in spleen cells, and decrease in inflammatory cell infiltration into the kidney. In vitro, immunosuppressants and MSCs inhibited T cell proliferation in a synergistic manner. However, immunosuppressants did not affect MSC viability and functions such as TGF-β1 and PGE2 production, migration, and immunosuppressive capacity. In summary, our study demonstrates that a combination of immunosuppressants and MSCs is a good strategy to reduce the side effects of PD and MMF without the loss of therapeutic outcome.
Collapse
|
22
|
Seifert M, Lubitz A, Trommer J, Könnig D, Korus G, Marx U, Volk HD, Duda G, Kasper G, Lehmann K, Stolk M, Giese C. Crosstalk between Immune Cells and Mesenchymal Stromal Cells in a 3D Bioreactor System. Int J Artif Organs 2018. [DOI: 10.1177/039139881203501104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Martina Seifert
- Institute of Medical Immunology, Charité-Medical University Berlin, Berlin - Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin - Germany
| | | | - Jeanne Trommer
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin - Germany
| | - Darja Könnig
- Julius Wolff Institute and Center of Musculoskeletal Surgery, Charité-Medical University Berlin, Berlin - Germany
| | - Gabriela Korus
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin - Germany
- Julius Wolff Institute and Center of Musculoskeletal Surgery, Charité-Medical University Berlin, Berlin - Germany
| | - Uwe Marx
- Technical University Berlin, Berlin - Germany
| | - Hans-Dieter Volk
- Institute of Medical Immunology, Charité-Medical University Berlin, Berlin - Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin - Germany
| | - Georg Duda
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin - Germany
- Julius Wolff Institute and Center of Musculoskeletal Surgery, Charité-Medical University Berlin, Berlin - Germany
| | - Grit Kasper
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin - Germany
- Julius Wolff Institute and Center of Musculoskeletal Surgery, Charité-Medical University Berlin, Berlin - Germany
| | - Kerstin Lehmann
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin - Germany
- Julius Wolff Institute and Center of Musculoskeletal Surgery, Charité-Medical University Berlin, Berlin - Germany
- Intendis GmbH, Berlin - Germany
| | - Meaghan Stolk
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin - Germany
| | | |
Collapse
|
23
|
|
24
|
Casiraghi F, Perico N, Remuzzi G. Mesenchymal stromal cells for tolerance induction in organ transplantation. Hum Immunol 2017; 79:304-313. [PMID: 29288697 DOI: 10.1016/j.humimm.2017.12.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/06/2017] [Accepted: 12/18/2017] [Indexed: 12/20/2022]
Abstract
The primary challenge in organ transplantation continues to be the need to suppress the host immune system long-term to ensure prolonged allograft survival. Long-term non-specific immunosuppression can, however, result in life-threatening complications. Thus, efforts have been pursued to explore novel strategies that would allow minimization of maintenance immunosuppression, eventually leading to transplant tolerance. In this scenario, bone marrow-derived mesenchymal stromal cells (MSC), given their unique immunomodulatory properties to skew the balance between regulatory and memory T cells, have emerged as potential candidates for cell-based therapy to promote immune tolerance. Here, we review our initial clinical experience with bone marrow-derived MSC in living-donor kidney transplant recipients and provide an overview of the available results of other clinical programs with MSC in kidney and liver transplantation, highlighting hurdles and success of this innovative cell-based therapy.
Collapse
Affiliation(s)
| | - Norberto Perico
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Giuseppe Remuzzi
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy; Unit of Nephrology and Dialysis, Azienda Socio Sanitaria Territoriale (ASST), Papa Giovanni XXIII, Bergamo, Italy; L. Sacco Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
25
|
Pan GH, Chen Z, Xu L, Zhu JH, Xiang P, Ma JJ, Peng YW, Li GH, Chen XY, Fang JL, Guo YH, Zhang L, Liu LS. Low-dose tacrolimus combined with donor-derived mesenchymal stem cells after renal transplantation: a prospective, non-randomized study. Oncotarget 2017; 7:12089-101. [PMID: 26933811 PMCID: PMC4914271 DOI: 10.18632/oncotarget.7725] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 01/29/2016] [Indexed: 12/22/2022] Open
Abstract
Calcineurin inhibitors, including tacrolimus, are largely responsible for advances in allotransplantation. However, the nephrotoxicity associated with these immunosuppressants impairs patients' long-term survival after renal allograft. Therefore, novel regimens that minimize or even eliminate calcineurin inhibitors could improve transplantation outcomes. In this pilot study, we investigated the use of low-dose tacrolimus in combination with mesenchymal stem cells (MSCs), which are immunosuppressive and prolong allograft survival in experimental organ transplant models. Donor-derived, bone marrow MSCs combined with a sparing dose of tacrolimus (0.04-0.05 mg/kg/day) were administered to 16 de novo living-related kidney transplant recipients; 16 other patients received a standard dose of tacrolimus (0.07-0.08 mg/kg/day). The safety of MSC infusion, acute rejection, graft function, graft survival, and patient survival were evaluated over ≥24 months following kidney transplantation. All patients survived and had stable renal function at the 24 month follow-up. The combination of low-dose tacrolimus and MSCs was as effective as standard dose tacrolimus in maintaining graft survival at least 2 years after transplantation. In addition, both groups had similar urea, urine protein, urinary RBC, urinary WBC, 24-h urine protein, and creatinine clearance rates from 7 days to 24 months after transplantation. Furthermore, no differences in the proportion of lymphocytes, CD19, CD3, CD34, CD38, and natural killer cells were detected between the control and experimental groups. None of the MSC recipients experienced immediate or long-term toxicity from the treatment. This preliminary data suggests that the addition of MSCs permits the use of lower dosages of nephrotoxic calcineurin inhibitors following renal transplantation.
Collapse
Affiliation(s)
- Guang-Hui Pan
- The Transplantation Centre, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zheng Chen
- The Transplantation Centre, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lu Xu
- The Transplantation Centre, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jing-Hui Zhu
- The Transplantation Centre, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, SunYat-sen University, Guangzhou, Guangdong, China
| | - Jun-Jie Ma
- The Transplantation Centre, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yan-Wen Peng
- Center for Stem Cell Biology and Tissue Engineering, SunYat-sen University, Guangzhou, Guangdong, China
| | - Guang-Hui Li
- The Transplantation Centre, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiao-Yong Chen
- Center for Stem Cell Biology and Tissue Engineering, SunYat-sen University, Guangzhou, Guangdong, China
| | - Jia-Li Fang
- The Transplantation Centre, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yu-He Guo
- The Transplantation Centre, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lei Zhang
- The Transplantation Centre, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Long-Shan Liu
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
26
|
Javorkova E, Vackova J, Hajkova M, Hermankova B, Zajicova A, Holan V, Krulova M. The effect of clinically relevant doses of immunosuppressive drugs on human mesenchymal stem cells. Biomed Pharmacother 2017; 97:402-411. [PMID: 29091890 DOI: 10.1016/j.biopha.2017.10.114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/17/2017] [Accepted: 10/21/2017] [Indexed: 12/15/2022] Open
Abstract
Immunosuppressive drugs are used to suppress graft rejection after transplantation and for the treatment of various diseases. The main limitations of their use in clinical settings are severe side effects, therefore alternative approaches are desirable. In this respect, mesenchymal stem cells (MSCs) possess a regenerative and immunomodulatory capacity that has generated considerable interest for their use in cell-based therapy. Currently, MSCs are tested in many clinical trials, including the treatment of diseases which require simultaneous immunosuppressive treatment. Since the molecular targets of immunosuppressive drugs are also present in MSCs, we investigated whether immunosuppressive drugs interact with the activity of MSCs. Human MSCs isolated from the bone marrow (BM) or adipose tissue (AT) were cultured in the presence of clinical doses of five widely used immunosuppressive drugs (cyclosporine A, mycophenolate mofetil, rapamycin, prednisone and dexamethasone), and the influence of these drugs on several factors related to the immunosuppressive properties of MSCs, including the expression of immunomodulatory enzymes, various growth factors, cytokines, chemokines, adhesion molecules and proapoptotic ligands, was assessed. Glucocorticoids, especially dexamethasone, showed the most prominent effects on both types of MSCs and suppressed the expression of the majority of the factors that were tested. A significant increase of hepatocyte growth factor production in AT-MSCs and of indoleamine 2,3-dioxygenase expression in both types of MSCs were the only exceptions. In conclusion, clinically relevant doses of inhibitors of calcineurin, mTOR and IMPDH and glucocorticoids interfere with MSC functions, but do not restrain their immunosuppressive properties. These findings should be taken into account before preparing immunosuppressive strategies combining the use of immunosuppressive drugs and MSCs.
Collapse
Affiliation(s)
- Eliska Javorkova
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague 2, 128 44, Czech Republic; Department of Transplantation Immunology, The Czech Academy of Sciences, Institute of Experimental Medicine, Videnska 1083, Prague 4, 142 20, Czech Republic.
| | - Julie Vackova
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague 2, 128 44, Czech Republic.
| | - Michaela Hajkova
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague 2, 128 44, Czech Republic; Department of Transplantation Immunology, The Czech Academy of Sciences, Institute of Experimental Medicine, Videnska 1083, Prague 4, 142 20, Czech Republic.
| | - Barbora Hermankova
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague 2, 128 44, Czech Republic; Department of Transplantation Immunology, The Czech Academy of Sciences, Institute of Experimental Medicine, Videnska 1083, Prague 4, 142 20, Czech Republic.
| | - Alena Zajicova
- Department of Transplantation Immunology, The Czech Academy of Sciences, Institute of Experimental Medicine, Videnska 1083, Prague 4, 142 20, Czech Republic.
| | - Vladimir Holan
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague 2, 128 44, Czech Republic; Department of Transplantation Immunology, The Czech Academy of Sciences, Institute of Experimental Medicine, Videnska 1083, Prague 4, 142 20, Czech Republic.
| | - Magdalena Krulova
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague 2, 128 44, Czech Republic; Department of Transplantation Immunology, The Czech Academy of Sciences, Institute of Experimental Medicine, Videnska 1083, Prague 4, 142 20, Czech Republic.
| |
Collapse
|
27
|
Huselstein C, Rahouadj R, de Isla N, Bensoussan D, Stoltz JF, Li YP. Mechanobiology of mesenchymal stem cells: Which interest for cell-based treatment? Biomed Mater Eng 2017; 28:S47-S56. [PMID: 28372277 DOI: 10.3233/bme-171623] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Thanks to their immune properties, the mesenchymal stem cells (MSC) are a promising source for cell therapy. Current clinical trials show that MSC administrated to patients can treat different diseases (graft-versus-host disease (GVHD), liver cirrhosis, systemic lupus, erythematosus, rheumatoid arthritis, type I diabetes…). In this case, the most common mode of cell administration is the intravenous injection, and the hemodynamic environment of cells induced by blood circulation could interfere on their behavior during the migration and homing towards the injured site. After a brief review of the mechanobiology concept, this paper will help in understanding how the mechanical environment could interact with MSC behavior once they are injected to patient in cell-based treatment.
Collapse
Affiliation(s)
- Céline Huselstein
- UMR 7365 CNRS-Université de Lorraine, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Biopôle, 54500 Vandœuvre-lès-Nancy, France.,Université de Lorraine, 54000 Nancy, France.,FR3209 CNRS BMCT - Bio-Ingénierie Moléculaire Cellulaire et Thérapeutique, Faculté de Médecine, F-54505 Vandœuvre-lès-Nancy, France
| | - R Rahouadj
- Université de Lorraine, 54000 Nancy, France.,UMR 7563 CNRS-Université de Lorraine, LEMTA, Vandœuvre-lès-Nancy, France
| | - N de Isla
- UMR 7365 CNRS-Université de Lorraine, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Biopôle, 54500 Vandœuvre-lès-Nancy, France.,Université de Lorraine, 54000 Nancy, France.,FR3209 CNRS BMCT - Bio-Ingénierie Moléculaire Cellulaire et Thérapeutique, Faculté de Médecine, F-54505 Vandœuvre-lès-Nancy, France
| | - D Bensoussan
- UMR 7365 CNRS-Université de Lorraine, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Biopôle, 54500 Vandœuvre-lès-Nancy, France.,Université de Lorraine, 54000 Nancy, France.,FR3209 CNRS BMCT - Bio-Ingénierie Moléculaire Cellulaire et Thérapeutique, Faculté de Médecine, F-54505 Vandœuvre-lès-Nancy, France.,CHU de Nancy, Unité de Thérapie Cellulaire, banque de Tissus, 54500 Vandœuvre-lès-Nancy, France
| | - J F Stoltz
- UMR 7365 CNRS-Université de Lorraine, Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), Biopôle, 54500 Vandœuvre-lès-Nancy, France.,Université de Lorraine, 54000 Nancy, France.,FR3209 CNRS BMCT - Bio-Ingénierie Moléculaire Cellulaire et Thérapeutique, Faculté de Médecine, F-54505 Vandœuvre-lès-Nancy, France
| | - Y P Li
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
28
|
Colmenero J, Sancho-Bru P. Mesenchymal stromal cells for immunomodulatory cell therapy in liver transplantation: One step at a time. J Hepatol 2017; 67:7-9. [PMID: 28435042 DOI: 10.1016/j.jhep.2017.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 01/31/2023]
Affiliation(s)
- Jordi Colmenero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Liver Unit, Hospital Clínic, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Pau Sancho-Bru
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Liver Unit, Hospital Clínic, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain.
| |
Collapse
|
29
|
Infusion of mesenchymal stromal cells after deceased liver transplantation: A phase I-II, open-label, clinical study. J Hepatol 2017; 67:47-55. [PMID: 28284916 DOI: 10.1016/j.jhep.2017.03.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 02/24/2017] [Accepted: 03/01/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Mesenchymal stromal cell (MSC) infusion could be a means to establish tolerance in solid organ recipients. The aim of this prospective, controlled, phase I study was to evaluate the feasibility, safety and tolerability of a single infusion of MSCs in liver transplant recipients. METHODS Ten liver transplant recipients under standard immunosuppression received 1.5-3×106/kg third-party unrelated MSCs on postoperative day 3±2, and were prospectively compared to a control group of ten liver transplant recipients. As primary endpoints, MSC infusion toxicity was evaluated, and infectious and cancerous complications were prospectively recorded until month 12 in both groups. As secondary endpoints, rejection rate, month-6 graft biopsies, and peripheral blood lymphocyte phenotyping were compared. Progressive immunosuppression weaning was attempted from month 6 to 12 in MSC recipients. RESULTS No variation in vital parameters or cytokine release syndrome could be detected during and after MSC infusion. No patient developed impairment of organ functions (including liver graft function) following MSC infusion. No increased rate of opportunistic infection or de novo cancer was detected. As secondary endpoints, there was no difference in overall rates of rejection or graft survival. Month-6 biopsies did not demonstrate a difference between groups in the evaluation of rejection according to the Banff criteria, in the fibrosis score or in immunohistochemistry (including Tregs). No difference in peripheral blood lymphocyte typing could be detected. The immunosuppression weaning in MSC recipients was not successful. CONCLUSIONS No side effect of MSC infusion at day 3 after liver transplant could be detected, but this infusion did not promote tolerance. This study opens the way for further MSC or Treg-based trials in liver transplant recipients. LAY SUMMARY Therapy with mesenchymal stromal cells (MSCs) has been proposed as a means to improve results of solid organ transplantation. One of the potential MSC role could be to induce tolerance after liver transplantation, i.e. allowing the cessation of several medications with severe side effects. This study is the first-in-man use of MSC therapy in ten liver transplant recipients. This study did not show toxicity after a single MSC infusion but it was not sufficient to allow withdrawal of immunosuppression. CLINICAL TRIAL REGISTRATION NUMBER Eudract: # 2011-001822-81, ClinicalTrials.gov: # NCT 01429038.
Collapse
|
30
|
Safety and Tolerance of Donor-Derived Mesenchymal Stem Cells in Pediatric Living-Donor Liver Transplantation: The MYSTEP1 Study. Stem Cells Int 2017; 2017:2352954. [PMID: 28740511 PMCID: PMC5504958 DOI: 10.1155/2017/2352954] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/08/2017] [Indexed: 12/14/2022] Open
Abstract
Background Calcineurin inhibitors (CNI) have significantly improved patient and graft survival in pediatric liver transplantation (pLT). However, CNI toxicity leads to significant morbidity. Moreover, CNIs cannot prevent long-term allograft injury. Mesenchymal stem (stromal) cells (MSC) have potent immunomodulatory properties, which may promote allograft tolerance and ameliorate toxicity of high-dose CNI. The MYSTEP1 trial aims to investigate safety and feasibility of donor-derived MSCs in pLT. Methods/Design 7 to 10 children undergoing living-donor pLT will be included in this open-label, prospective pilot trial. A dose of 1 × 106 MSCs/kg body weight will be given at two time points: first by intraportal infusion intraoperatively and second by intravenous infusion on postoperative day 2. In addition, participants will receive standard immunosuppressive treatment. Our primary objective is to assess the safety of intraportal and intravenous MSC infusion in pLT recipients. Our secondary objective is to evaluate efficacy of MSC treatment as measured by the individual need for immunosuppression and the incidence of biopsy-proven acute rejection. We will perform detailed immune monitoring to investigate immunomodulatory effects. Discussion Our study will provide information on the safety of donor-derived MSCs in pediatric living-donor liver transplantation and their effect on immunomodulation and graft survival.
Collapse
|
31
|
The Influence of Timing and Frequency of Adipose-Derived Mesenchymal Stem Cell Therapy on Immunomodulation Outcomes After Vascularized Composite Allotransplantation. Transplantation 2017; 101:e1-e11. [PMID: 27893612 DOI: 10.1097/tp.0000000000001498] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Cellular therapies for immunomodulation in vascularized composite allotransplantation (VCA) have gained importance due to their potential for minimization of immunosuppression. Adipose-derived (AD) mesenchymal stem cells (MSCs) especially have shown encouraging potential. We investigated the influence of timing and frequency of AD-MSC treatment on immunologic and graft survival as well as graft vasculopathy outcomes after VCA. METHODS Lewis rats received full-mismatched Brown Norway rat hindlimb transplants. Recipient animals were assigned to groups receiving donor-derived AD-MSCs (10 cells/animal) either on postoperative day (POD) 1, POD 4, or repeatedly on POD 4, 8, and 15, and compared to untreated controls. RESULTS Although AD-MSC administration on POD 1 or POD 4, 8, and 15 resulted in 50% long-term graft acceptance, recipients treated on POD 4, and controls rejected before POD 50. All treated animals revealed peripheral blood chimerism (4 weeks), most pronounced after repetitive cell administration (12.92% vs 5.03% [POD 1] vs 6.31% [POD 4]; P < 0.05; all P < 0.01 vs control 1.45%). Chimerism was associated with the generation of regulatory T cells (CD4CD25FoxP3). In vitro mixed lymphocyte reactions revealed modulation of the recipient immune response after AD-MSC treatment. Graft arteries at end point revealed significant differences of arterial intimal thickness between rejecting and AD-MSC-treated animals (P < 0.01). CONCLUSIONS Taken together, our results point to the potential for repetitive AD-MSC administration in improving outcomes after VCA. Future studies are warranted into optimization of the dosing and frequency of AD-MSC therapy, either alone or used in, combination with other cell therapies (such as hematopoietic stem cells or bone marrow-derived MSC or dendritic cells) for optimization of appropriate conditioning or maintenance regimens.
Collapse
|
32
|
LL-37 boosts immunosuppressive function of placenta-derived mesenchymal stromal cells. Stem Cell Res Ther 2016; 7:189. [PMID: 28038684 PMCID: PMC5203704 DOI: 10.1186/s13287-016-0448-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/16/2016] [Accepted: 11/23/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Although promising for graft-versus-host disease (GvHD) treatment, MSC therapy still faces important challenges. For instance, increasing MSC migratory capacity as well as potentializing immune response suppression are of interest. For GvHD management, preventing opportunistic infections is also a valuable strategy, since immunocompromised patients are easy targets for infections. LL-37 is a host defense peptide (HDP) that has been deeply investigated due to its immunomodulatory function. In this scenario, the combination of MSC and LL-37 may result in a robust combination to be clinically used. METHODS In the present study, the effects of LL-37 upon the proliferation and migratory capacity of human placenta-derived MSCs (pMSCs) were assessed by MTT and wound scratch assays. The influence of LL-37 over the immunosuppressive function of pMSCs was then investigated using CFSE cell division kit. Flow cytometry and real-time PCR were used to investigate the molecular mechanisms involved in the effects observed. RESULTS LL-37 had no detrimental effects over MSC proliferation and viability, as assessed by MTT assay. Moreover, the peptide promoted increased migratory behavior of pMSCs and enhanced their immunomodulatory function over activated human PBMCs. Strikingly, our data shows that LL-37 treatment leads to increased TLR3 levels, as shown by flow cytometry, and to an increased expression of factors classically related to immunosuppression, namely IDO, IL-10, TGF-β, IL-6, and IL-1β. CONCLUSIONS Taken together, our observations may serve as groundwork for the development of new therapeutic strategies based on the combined use of LL-37 and MSCs, which may provide patients not only with an enhanced immunosuppression regime, but also with an agent to prevent opportunistic infections.
Collapse
|
33
|
Girdlestone J. Mesenchymal stromal cells with enhanced therapeutic properties. Immunotherapy 2016; 8:1405-1416. [DOI: 10.2217/imt-2016-0098] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
34
|
Hajkova M, Hermankova B, Javorkova E, Bohacova P, Zajicova A, Holan V, Krulova M. Mesenchymal Stem Cells Attenuate the Adverse Effects of Immunosuppressive Drugs on Distinct T Cell Subopulations. Stem Cell Rev Rep 2016; 13:104-115. [DOI: 10.1007/s12015-016-9703-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
HA DONGHO, YONG CHULSOON, KIM JONGOH, JEONG JEEHEON, PARK JUNBEOM. Effects of tacrolimus on morphology, proliferation and differentiation of mesenchymal stem cells derived from gingiva tissue. Mol Med Rep 2016; 14:69-76. [PMID: 27177273 PMCID: PMC4918528 DOI: 10.3892/mmr.2016.5217] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 02/18/2016] [Indexed: 12/26/2022] Open
Abstract
Tacrolimus is a 23-membered macrolide lactone with potent immunosuppressive activity that is effective in the prophylaxis of organ rejection following kidney, heart and liver transplantation. Tacrolimus also exerts a variety of actions on bone metabolism. The aim of the present study was to evaluate the effects of different concentrations of tacrolimus on the morphology and viability of human stem cells derived from the gingiva. Gingival‑derived stem cells were grown in the presence of tacrolimus at final concentrations ranging from 0.001 to 100 µg/ml. The morphology of the cells was viewed under an inverted microscope and the cell viability was analyzed using Cell Counting kit‑8 (CCK‑8) on days 1, 3, 5 and 7. Alizarin Red S staining was used to assess mineralization of treated cells. The control group showed spindle‑shaped, fibroblast‑like morphology and the shapes of the cells in 0.001, 0.01, 0.1, 1 and 10 µg/ml tacrolimus were similar to those of the control group. All groups except the 100 µg/ml group showed increased cell proliferation over time. Cultures grown in the presence of tacrolimus at 0.001, 0.01, 0.1, 1 and 10 µg/ml were not identified to be significantly different compared with the control at days 1, 3 and 5 using the CCK‑8 assays. Increased mineralized deposits were noted with increased incubation time. Treatment with tacrolimus from 0.001 to 1 µg/ml led to an increase in mineralization compared with the control group. Within the limits of this study, tacrolimus at the tested concentrations (ranging from 0.001 to 10 µg/ml) did not result in differences in the viability of stem cells derived from gingiva; however it did enhance osteogenic differentiation of the stem cells.
Collapse
Affiliation(s)
- DONG-HO HA
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea
| | - CHUL SOON YONG
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea
| | - JONG OH KIM
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea
| | - JEE-HEON JEONG
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea
| | - JUN-BEOM PARK
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
36
|
[Mesenchymal stromal cells in the treatment of graft-versus-host disease: where do we stand?]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2016; 58:1265-73. [PMID: 26369762 DOI: 10.1007/s00103-015-2244-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Medicinal products based on mesenchymal stromal cells (MSC) are expected to have a therapeutic benefit in a variety of conditions and, accordingly, are being tested in many clinical studies. The treatment and prevention of graft-versus-host disease (GVHD) is one of the world's most widely studied MSC therapy concepts. So far, one MSC medicinal product has been approved for the treatment of GvHD. This article gives an overview of the particular features related to the production of MSC-based medicinal products, the state of non-clinical research, and the clinical development status of MSCs and the associated challenges, especially in the context of GvHD.
Collapse
|
37
|
Enhancement of the immunoregulatory potency of mesenchymal stromal cells by treatment with immunosuppressive drugs. Cytotherapy 2016; 17:1188-99. [PMID: 26276002 DOI: 10.1016/j.jcyt.2015.05.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/29/2015] [Accepted: 05/26/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND AIMS Multipotent mesenchymal stromal cells (MSCs) are distinguished by their ability to differentiate into a number of stromal derivatives of interest for regenerative medicine, but they also have immunoregulatory properties that are being tested in a number of clinical settings. METHODS We show that brief incubations with rapamycin, everolimus, FK506 or cyclosporine A increase the immunosuppressive potency of MSCs and other cell types. RESULTS The treated MSCs are up to 5-fold more potent at inhibiting the induced proliferation of T lymphocytes in vitro. We show that this effect probably is due to adsorption of the drug by the MSCs during pre-treatment, with subsequent diffusion into co-cultures at concentrations sufficient to inhibit T-cell proliferation. MSCs contain measurable amounts of rapamycin after a 15-min exposure, and the potentiating effect is blocked by a neutralizing antibody to the drug. With the use of a pre-clinical model of acute graft-versus-host disease, we demonstrate that a low dose of rapamycin-treated but not untreated umbilical cord-derived MSCs significantly inhibit the onset of disease. CONCLUSIONS The use of treated MSCs may achieve clinical end points not reached with untreated MSCs and allow for infusion of fewer cells to reduce costs and minimize potential side effects.
Collapse
|
38
|
Wu Z, Mu J, Wang Q, Chen X, Jensen L, Yi C, Li MJ. Hydroxyl and amino functionalized cyclometalated Ir(III) complexes: Synthesis, characterization and cytotoxicity studies. J Organomet Chem 2015. [DOI: 10.1016/j.jorganchem.2015.05.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
39
|
Abstract
Adoptive cell transfer is an intervention in which autologous immune cells that have been expanded ex vivo are re-introduced to mitigate a pathological process. Tregs, mesenchymal stromal cells, dendritic cells, macrophages and myeloid-derived suppressor cells have been transferred in diverse immune-mediated diseases, and Tregs have been the focus of investigations in autoimmune hepatitis. Transferred Tregs have improved histological findings in animal models of autoimmune hepatitis and autoimmune cholangitis. Key challenges relate to discrepant findings among studies, phenotypic instability of the transferred population, uncertain side effects and possible need for staged therapy involving anti-inflammatory drugs. Future investigations must resolve issues about the purification, durability and safety of these cells and consider alternative populations if necessary.
Collapse
Affiliation(s)
- Albert J Czaja
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, 200 First Street S.W, Rochester, MN 55905, USA
| |
Collapse
|
40
|
Tsuji W, Schnider JT, McLaughlin MM, Schweizer R, Zhang W, Solari MG, Rubin JP, Marra KG, Plock JA, Gorantla VS. Effects of immunosuppressive drugs on viability and susceptibility of adipose- and bone marrow-derived mesenchymal stem cells. Front Immunol 2015; 6:131. [PMID: 25932028 PMCID: PMC4399413 DOI: 10.3389/fimmu.2015.00131] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 03/10/2015] [Indexed: 01/22/2023] Open
Abstract
The immunomodulatory potential of cell therapies using adipose-derived stem cells (ASCs) and bone marrow-derived mesenchymal stem cells (BM-MSCs) has been studied in vascularized composite allotransplantation (VCA). Most cell therapy-based experimental and clinical protocols integrate some degree of recipient conditioning/induction with antibodies or other immunosuppressive agents. We investigated the susceptibility of ASCs and BM-MSCs to anti-lymphocyte serum (ALS) and tacrolimus. Rat ASCs and BM-MSCs were exposed to varying concentrations of tacrolimus and ALS in vitro. Serum from ALS-treated animals was added to cell cultures. Viability, susceptibility, and cytotoxicity parameters were evaluated. ALS inhibited ASC and BM-MSC viability and susceptibility in vitro in a dose-dependent manner. ASCs were more susceptible to both ALS and tacrolimus than BM-MSCs. Trypsinized and adherent ASCs were significantly smaller than BM-MSCs. This is the first report on the viability and susceptibility characteristics of BM-MSCs or ASCs to collateral effects of ALS and tacrolimus. These in vitro insights may impact choice of cell type as well as concomitant conditioning agents and the logistical coordination of the timing, dosing, and frequency of drug or cell therapy in solid organ transplantation or VCA protocols.
Collapse
Affiliation(s)
- Wakako Tsuji
- Department of Plastic Surgery, University of Pittsburgh , Pittsburgh, PA , USA ; Department of Surgery, Shiga Medical Center for Adults , Moriyama , Japan
| | - Jonas T Schnider
- Department of Plastic Surgery, University of Pittsburgh , Pittsburgh, PA , USA
| | - Meghan M McLaughlin
- Department of Plastic Surgery, University of Pittsburgh , Pittsburgh, PA , USA
| | - Riccardo Schweizer
- Department of Plastic Surgery, University of Pittsburgh , Pittsburgh, PA , USA ; Department of Plastic Surgery and Hand Surgery, University Hospital Zurich , Zurich , Switzerland
| | - Wensheng Zhang
- Department of Plastic Surgery, University of Pittsburgh , Pittsburgh, PA , USA
| | - Mario G Solari
- Department of Plastic Surgery, University of Pittsburgh , Pittsburgh, PA , USA
| | - J Peter Rubin
- Department of Plastic Surgery, University of Pittsburgh , Pittsburgh, PA , USA ; McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, PA , USA ; Department of Bioengineering, University of Pittsburgh , Pittsburgh, PA , USA
| | - Kacey G Marra
- Department of Plastic Surgery, University of Pittsburgh , Pittsburgh, PA , USA ; McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, PA , USA ; Department of Bioengineering, University of Pittsburgh , Pittsburgh, PA , USA
| | - Jan A Plock
- Department of Plastic Surgery, University of Pittsburgh , Pittsburgh, PA , USA ; Department of Plastic Surgery and Hand Surgery, University Hospital Zurich , Zurich , Switzerland
| | - Vijay S Gorantla
- Department of Plastic Surgery, University of Pittsburgh , Pittsburgh, PA , USA ; McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, PA , USA
| |
Collapse
|
41
|
Schneider N, Gonçalves FDC, Pinto FO, Lopez PLDC, Araújo AB, Pfaffenseller B, Passos EP, Cirne-Lima EO, Meurer L, Lamers ML, Paz AH. Dexamethasone and azathioprine promote cytoskeletal changes and affect mesenchymal stem cell migratory behavior. PLoS One 2015; 10:e0120538. [PMID: 25756665 PMCID: PMC4355407 DOI: 10.1371/journal.pone.0120538] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 01/23/2015] [Indexed: 12/13/2022] Open
Abstract
Glucocorticoids and immunosuppressive drugs are commonly used to treat inflammatory disorders, such as inflammatory bowel disease (IBD), and despite a few improvements, the remission of IBD is still difficult to maintain. Due to their immunomodulatory properties, mesenchymal stem cells (MSCs) have emerged as regulators of the immune response, and their viability and activation of their migratory properties are essential for successful cell therapy. However, little is known about the effects of immunosuppressant drugs used in IBD treatment on MSC behavior. The aim of this study was to evaluate MSC viability, nuclear morphometry, cell polarity, F-actin and focal adhesion kinase (FAK) distribution, and cell migratory properties in the presence of the immunosuppressive drugs azathioprine (AZA) and dexamethasone (DEX). After an initial characterization, MSCs were treated with DEX (10 μM) or AZA (1 μM) for 24 hrs or 7 days. Neither drug had an effect on cell viability or nuclear morphometry. However, AZA treatment induced a more elongated cell shape, while DEX was associated with a more rounded cell shape (P < 0.05) with a higher presence of ventral actin stress fibers (P < 0.05) and a decrease in protrusion stability. After 7 days of treatment, AZA improved the cell spatial trajectory (ST) and increased the migration speed (24.35%, P < 0.05, n = 4), while DEX impaired ST and migration speed after 24 hrs and 7 days of treatment (-28.69% and -25.37%, respectively; P < 0.05, n = 4). In conclusion, our data suggest that these immunosuppressive drugs each affect MSC morphology and migratory capacity differently, possibly impacting the success of cell therapy.
Collapse
Affiliation(s)
- Natália Schneider
- Embryology and Cell Differentiation Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, CEP 90035-903, Porto Alegre, RS, Brazil
- Graduate Program in Gastroenterology and Hepatology Sciences, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2400, CEP 90035-903, Porto Alegre, RS, Brazil
| | - Fabiany da Costa Gonçalves
- Embryology and Cell Differentiation Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, CEP 90035-903, Porto Alegre, RS, Brazil
- Graduate Program in Gastroenterology and Hepatology Sciences, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2400, CEP 90035-903, Porto Alegre, RS, Brazil
| | - Fernanda Otesbelgue Pinto
- Embryology and Cell Differentiation Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, CEP 90035-903, Porto Alegre, RS, Brazil
| | - Patrícia Luciana da Costa Lopez
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, CEP 90035-903, Porto Alegre, RS, Brazil
| | - Anelise Bergmann Araújo
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, CEP 90035-903, Porto Alegre, RS, Brazil
| | - Bianca Pfaffenseller
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, CEP 90035-903, Porto Alegre, RS, Brazil
| | - Eduardo Pandolfi Passos
- Embryology and Cell Differentiation Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, CEP 90035-903, Porto Alegre, RS, Brazil
| | - Elizabeth Obino Cirne-Lima
- Embryology and Cell Differentiation Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, CEP 90035-903, Porto Alegre, RS, Brazil
| | - Luíse Meurer
- Graduate Program in Gastroenterology and Hepatology Sciences, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2400, CEP 90035-903, Porto Alegre, RS, Brazil
| | - Marcelo Lazzaron Lamers
- Morphological Sciences Department, Health Basic Sciences Institute, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, CEP 90050-170, Porto Alegre, RS, Brazil
| | - Ana Helena Paz
- Embryology and Cell Differentiation Laboratory, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, CEP 90035-903, Porto Alegre, RS, Brazil
- Graduate Program in Gastroenterology and Hepatology Sciences, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2400, CEP 90035-903, Porto Alegre, RS, Brazil
- Morphological Sciences Department, Health Basic Sciences Institute, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, CEP 90050-170, Porto Alegre, RS, Brazil
- * E-mail:
| |
Collapse
|
42
|
Vandermeulen M, Grégoire C, Briquet A, Lechanteur C, Beguin Y, Detry O. Rationale for the potential use of mesenchymal stromal cells in liver transplantation. World J Gastroenterol 2014; 20:16418-16432. [PMID: 25469010 PMCID: PMC4248185 DOI: 10.3748/wjg.v20.i44.16418] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 08/28/2014] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are multipotent and self-renewing cells that reside essentially in the bone marrow as a non-hematopoietic cell population, but may also be isolated from the connective tissues of most organs. MSCs represent a heterogeneous population of adult, fibroblast-like cells characterized by their ability to differentiate into tissues of mesodermal lineages including adipocytes, chondrocytes and osteocytes. For several years now, MSCs have been evaluated for their in vivo and in vitro immunomodulatory and ‘tissue reconstruction’ properties, which could make them interesting in various clinical settings, and particularly in organ transplantation. This paper aims to review current knowledge on the properties of MSCs and their use in pre-clinical and clinical studies in solid organ transplantation, and particularly in the field of liver transplantation. The first available clinical data seem to show that MSCs are safe to use, at least in the medium-term, but more time is needed to evaluate the potential adverse effects of long-term use. Many issues must be resolved on the correct use of MSCs. Intensive in vitro and pre-clinical research are the keys to a better understanding of the way that MSCs act, and to eventually lead to clinical success.
Collapse
|
43
|
Jeon HJ, Yang J. Cell Therapy in Kidney Transplantation. KOREAN JOURNAL OF TRANSPLANTATION 2014. [DOI: 10.4285/jkstn.2014.28.3.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Hee Jung Jeon
- Transplantation Center, Seoul National University Hospital, Seoul, Korea
| | - Jaeseok Yang
- Transplantation Center, Seoul National University Hospital, Seoul, Korea
- Transplantation Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
44
|
Mesenchymal Stem Cells in Solid Organ Transplantation (MiSOT) Fourth Meeting: lessons learned from first clinical trials. Transplantation 2014; 96:234-8. [PMID: 23759879 DOI: 10.1097/tp.0b013e318298f9fa] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Fourth Expert Meeting of the Mesenchymal Stem Cells in Solid Organ Transplantation (MiSOT) Consortium took place in Barcelona on October 19 and 20, 2012. This meeting focused on the translation of preclinical data into early clinical settings. This position paper highlights the main topics explored on the safety and efficacy of mesenchymal stem cells as a therapeutic agent in solid organ transplantation and emphasizes the issues (proper timing, concomitant immunossupression, source and immunogenicity of mesenchymal stem cells, and oncogenicity) that have been addressed and will be followed up by the MiSOT Consortium in future studies.
Collapse
|
45
|
Nemeth K. Mesenchymal stem cell therapy for immune-modulation: the donor, the recipient, and the drugs in-between. Exp Dermatol 2014; 23:625-8. [PMID: 24863432 DOI: 10.1111/exd.12459] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2014] [Indexed: 02/06/2023]
Abstract
Adoptive transfer of cultured bone marrow stromal cells (mesenchymal stem cells also known as MSCs) is a promising new way to aid tissue regeneration and treat a wide variety of diseases where regulation of inflammatory responses is derailed. Although significant advances have been made in the field, pinpointing important mechanistic details about how MSCs function in vitro and in vivo, there are still many unanswered questions that need to be addressed before welcoming MSCs in the therapeutic arsenal of immune mediated diseases. In this viewpoint, we highlight and discuss a few factors that we believe are critical in terms of therapeutic success employing cultured MSCs. Selecting the right donor population, choosing the best culture conditions and picking the patient population that is most likely to give a favourable therapeutic response is just as important as considering interactions between MSCs and the combination of drugs in the recipient's body. Given the complexity of MSC-host interactions, it is also imperative to develop screening tools that account for as many variables as possible and predict precisely the in vivo response rates before MSCs enter the body. To achieve this, a multidisciplinary approach is required with comprehensive knowledge of basic MSC biology, immunology, pharmacology and good clinical practice.
Collapse
Affiliation(s)
- Krisztian Nemeth
- Department of Dermatology, Dermatooncology, and Venerology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
46
|
Immunomodulatory effects of mesenchymal stromal cells in solid organ transplantation. Curr Opin Organ Transplant 2014; 15:731-7. [PMID: 20881495 DOI: 10.1097/mot.0b013e328340172c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW Multipotent mesenchymal stromal cells (MSCs) possess powerful immunomodulatory activity highlighting the potential for their clinical translation in solid organ transplantation. In this review, we summarize recent advances in understanding MSC immunomodulatory effect in vitro and in experimental transplant models and discuss topics of crucial importance for the future clinical use of MSCs as immunotherapy in solid organ transplantation. RECENT FINDINGS MSCs strongly inhibited T-cell activity in vitro and exerted similar inhibitory effects on other cells of the immune system. MSC-mediated immune suppression has been attributed mainly to the secretion of soluble factors; however, cell-contact mechanisms cannot be excluded. Available studies in animal transplant models raised variable results, but overall indicate that MSCs could be useful to modulate recipient immune cells. The timing of cell application and the origin of MSCs (autologous or allogeneic) seem to be the most crucial factors impacting the in-vivo efficacy of MSCs. SUMMARY A better understanding of the mechanisms underlying the immunomodulatory effects of MSCs in vitro and in vivo is needed to define the optimal condition for the use of MSCs as immunotherapy in solid organ transplantation.
Collapse
|
47
|
Maluf DG, Dumur CI, Suh JL, Lee JK, Cathro EP, King AL, Gallon L, Brayman KL, Mas VR. Evaluation of molecular profiles in calcineurin inhibitor toxicity post-kidney transplant: input to chronic allograft dysfunction. Am J Transplant 2014; 14:1152-1163. [PMID: 24698514 PMCID: PMC4377109 DOI: 10.1111/ajt.12696] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 01/21/2014] [Accepted: 01/28/2014] [Indexed: 02/05/2023]
Abstract
The molecular basis of calcineurin inhibitor toxicity (CNIT) in kidney transplantation (KT) and its contribution to chronic allograft dysfunction (CAD) with interstitial fibrosis (IF) and tubular atrophy (TA) were evaluated by: (1) identifying specific CNIT molecular pathways that associate with allograft injury (cross-sectional study) and (2) assessing the contribution of the identified CNIT signature in the progression to CAD with IF/TA (longitudinal study). Kidney biopsies from well-selected transplant recipients with histological diagnosis of CNIT (n = 14), acute rejection (n = 13) and CAD with IF/TA (n = 10) were evaluated. Normal allografts (n = 18) were used as controls. To test CNIT contribution to CAD progression, an independent set of biopsies (n = 122) from 61 KT patients collected at 3 and ~12 months post-KT (range = 9-18) were evaluated. Patients were classified based on 2-year post-KT graft function and histological findings as progressors (n = 30) or nonprogressors to CAD (n = 31). Molecular signatures characterizing CNIT samples were identified. Patients classified as progressors showed an overlap of 7% and 22% with the CNIT signature at 3 and at ~12 months post-KT, respectively, while the overlap was <1% and 1% in nonprogressor patients, showing CNIT at the molecular level as a nonimmunological factor involved in the progression to CAD.
Collapse
Affiliation(s)
- DG Maluf
- University of Virginia, Department of Surgery PO Box 800679, Charlottesville, VA 22908-0679
| | - CI Dumur
- University of Virginia, Department of Pathology PO Box 800904, VA 22908-0214
| | - JL Suh
- University of Virginia, Department of Surgery PO Box 800679, Charlottesville, VA 22908-0679
| | - JK Lee
- University of Virginia, Division of Biostatistics PO Box 800717, VA 22298-0717
| | - EP Cathro
- University of Virginia, Department of Pathology PO Box 800904, VA 22908-0214
| | - AL King
- Virginia Commonwealth University, Division of Nephrology PO Box 980662, VA 23298-0662
| | - L Gallon
- Northwestern University, Division of Nephrology, Department of Internal Medicine, Comprehensive Transplant Center Chicago, IL 60611
| | - KL Brayman
- University of Virginia, Department of Surgery PO Box 800679, Charlottesville, VA 22908-0679
| | - VR Mas
- University of Virginia, Department of Surgery PO Box 800679, Charlottesville, VA 22908-0679
| |
Collapse
|
48
|
Pistoia V, Raffaghello L. Unveiling the role of TNF-α in mesenchymal stromal cell-mediated immunosuppression. Eur J Immunol 2014; 44:352-6. [PMID: 24435827 DOI: 10.1002/eji.201344372] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 12/20/2013] [Accepted: 01/14/2014] [Indexed: 01/14/2023]
Abstract
Mesenchymal stromal cells (MSCs) are multipotent progenitors of mesodermal origin that not only differentiate into osteoblasts, chondrocytes, connective stromal cells, and adipocytes, but also exert immunoregulatory activities, usually induced by soluble molecules released during the cross-talk between MSCs and their target immune cell populations. In this issue of the European Journal of Immunology, Dorronsoro et al. [Eur. J. Immunol. 2014. 44: 480-488] demonstrate for the first time that TNF-α released by activated T cells confers immunosuppressive properties upon MSCs by binding to TNF-R1 and activating the NF-kB pathway. Such findings may improve our knowledge of the mechanisms underlying the reported efficacy of human MSCs administered locally or systemically to patients with autoimmune/inflammatory disorders, such as Crohn's disease and graft versus host disease, as discussed in this commentary.
Collapse
Affiliation(s)
- Vito Pistoia
- Department of Experimental and Laboratory Medicine, Istituto Giannina Gaslini, Genova, Italy
| | | |
Collapse
|
49
|
Martínez-Montiel MDP, Gómez-Gómez GJ, Flores AI. Therapy with stem cells in inflammatory bowel disease. World J Gastroenterol 2014; 20:1211-1227. [PMID: 24574796 PMCID: PMC3921504 DOI: 10.3748/wjg.v20.i5.1211] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/23/2013] [Accepted: 01/06/2014] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) affects a part of the young population and has a strong impact upon quality of life. The underlying etiology is not known, and the existing treatments are not curative. Furthermore, a significant percentage of patients are refractory to therapy. In recent years there have been great advances in our knowledge of stem cells and their therapeutic applications. In this context, autologous hematopoietic stem cell transplantation (HSCT) has been used in application to severe refractory Crohn's disease (CD), with encouraging results. Allogenic HSCT would correct the genetic defects of the immune system, but is currently not accepted for the treatment of IBD because of its considerable risks. Mesenchymal stem cells (MSCs) have immune regulatory and regenerative properties, and low immunogenicity (both autologous and allogenic MSCs). Based on these properties, MSCs have been used via the systemic route in IBD with promising results, though it is still too soon to draw firm conclusions. Their local administration in perianal CD is the field where most progress has been made in recent years, with encouraging results. The next few years will be decisive for defining the role of such therapy in the management of IBD.
Collapse
|
50
|
Engela AU, Baan CC, Litjens NHR, Franquesa M, Betjes MGH, Weimar W, Hoogduijn MJ. Mesenchymal stem cells control alloreactive CD8(+) CD28(-) T cells. Clin Exp Immunol 2014; 174:449-58. [PMID: 24028656 DOI: 10.1111/cei.12199] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2013] [Indexed: 12/18/2022] Open
Abstract
CD28/B7 co-stimulation blockade with belatacept prevents alloreactivity in kidney transplant patients. However, cells lacking CD28 are not susceptible to belatacept treatment. As CD8(+) CD28(-) T-cells have cytotoxic and pathogenic properties, we investigated whether mesenchymal stem cells (MSC) are effective in controlling these cells. In mixed lymphocyte reactions (MLR), MSC and belatacept inhibited peripheral blood mononuclear cell (PBMC) proliferation in a dose-dependent manner. MSC at MSC/effector cell ratios of 1:160 and 1:2·5 reduced proliferation by 38·8 and 92·2%, respectively. Belatacept concentrations of 0·1 μg/ml and 10 μg/ml suppressed proliferation by 20·7 and 80·6%, respectively. Both treatments in combination did not inhibit each other's function. Allostimulated CD8(+) CD28(-) T cells were able to proliferate and expressed the cytolytic and cytotoxic effector molecules granzyme B, interferon (IFN)-γ and tumour necrosis factor (TNF)-α. While belatacept did not affect the proliferation of CD8(+) CD28(-) T cells, MSC reduced the percentage of CD28(-) T cells in the proliferating CD8(+) T cell fraction by 45·9% (P = 0·009). CD8(+) CD28(-) T cells as effector cells in MLR in the presence of CD4(+) T cell help gained CD28 expression, an effect independent of MSC. In contrast, allostimulated CD28(+) T cells did not lose CD28 expression in MLR-MSC co-culture, suggesting that MSC control pre-existing CD28(-) T cells and not newly induced CD28(-) T cells. In conclusion, alloreactive CD8(+) CD28(-) T cells that remain unaffected by belatacept treatment are inhibited by MSC. This study indicates the potential of an MSC-belatacept combination therapy to control alloreactivity.
Collapse
Affiliation(s)
- A U Engela
- Department of Internal Medicine, Section Nephrology and Transplantation, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|