1
|
Ajima K, Tsuda N, Takaki T, Furusako S, Matsumoto S, Shinohara K, Yamashita Y, Amano S, Oyama C, Shimoda M. A porcine islet-encapsulation device that enables long-term discordant xenotransplantation in immunocompetent diabetic mice. CELL REPORTS METHODS 2023; 3:100370. [PMID: 36814843 PMCID: PMC9939365 DOI: 10.1016/j.crmeth.2022.100370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/29/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
Islet transplantation is an effective treatment for type 1 diabetes (T1D). However, a shortage of donors and the need for immunosuppressants are major issues. The ideal solution is to develop a source of insulin-secreting cells and an immunoprotective method. No bioartificial pancreas (BAP) devices currently meet all of the functions of long-term glycemic control, islet survival, immunoprotection, discordant xenotransplantation feasibility, and biocompatibility. We developed a device in which porcine islets were encapsulated in a highly stable and permeable hydrogel and a biocompatible immunoisolation membrane. Discordant xenotransplantation of the device into diabetic mice improved glycemic control for more than 200 days. Glycemic control was also improved in new diabetic mice "relay-transplanted" with the device after its retrieval. The easily retrieved devices exhibited almost no adhesion or fibrosis and showed sustained insulin secretion even after the two xenotransplantations. This device has the potential to be a useful BAP for T1D.
Collapse
Affiliation(s)
- Kumiko Ajima
- Pancreatic Islet Cell Transplantation Project, Research Institute National Center for Global Health and Medicine, 1-21-1 Toyama Shinjuku-ku, Tokyo 162-8655, Japan
| | - Naoto Tsuda
- Biomaterials Business Division, Mochida Pharmaceutical Co., Ltd., 722 Uenohara, Jimba, Gotemba, Shizuoka 412-8524, Japan
| | - Tadashi Takaki
- Pancreatic Islet Cell Transplantation Project, Research Institute National Center for Global Health and Medicine, 1-21-1 Toyama Shinjuku-ku, Tokyo 162-8655, Japan
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
- Takeda-CiRA Joint Program (T-CiRA), 2-26-1 Muraoka-higashi, Fujisawa-shi, Kanagawa 251-8555, Japan
| | - Shoji Furusako
- Biomaterials Business Division, Mochida Pharmaceutical Co., Ltd., 1-7 Yotsuya, Shinjuku-ku, Tokyo 160-8515, Japan
| | - Shigeki Matsumoto
- Biomaterials Business Division, Mochida Pharmaceutical Co., Ltd., 722 Uenohara, Jimba, Gotemba, Shizuoka 412-8524, Japan
| | - Koya Shinohara
- Pancreatic Islet Cell Transplantation Project, Research Institute National Center for Global Health and Medicine, 1-21-1 Toyama Shinjuku-ku, Tokyo 162-8655, Japan
| | - Yzumi Yamashita
- Pancreatic Islet Cell Transplantation Project, Research Institute National Center for Global Health and Medicine, 1-21-1 Toyama Shinjuku-ku, Tokyo 162-8655, Japan
| | - Sayaka Amano
- Pancreatic Islet Cell Transplantation Project, Research Institute National Center for Global Health and Medicine, 1-21-1 Toyama Shinjuku-ku, Tokyo 162-8655, Japan
| | - Chinatsu Oyama
- Communal Laboratory, Research Institute National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Masayuki Shimoda
- Pancreatic Islet Cell Transplantation Project, Research Institute National Center for Global Health and Medicine, 1-21-1 Toyama Shinjuku-ku, Tokyo 162-8655, Japan
| |
Collapse
|
2
|
Affiliation(s)
- Se Young Kim
- Department of Pediatrics, Division of Pediatric Endocrinology, Bundang Jesaeng General Hospital, Dajin Medical Center, Seongnam, Korea
| |
Collapse
|
3
|
van Krieken PP, Dicker A, Eriksson M, Herrera PL, Ahlgren U, Berggren PO, Ilegems E. Kinetics of functional beta cell mass decay in a diphtheria toxin receptor mouse model of diabetes. Sci Rep 2017; 7:12440. [PMID: 28963457 PMCID: PMC5622115 DOI: 10.1038/s41598-017-12124-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/04/2017] [Indexed: 11/26/2022] Open
Abstract
Functional beta cell mass is an essential biomarker for the diagnosis and staging of diabetes. It has however proven technically challenging to study this parameter during diabetes progression. Here we have detailed the kinetics of the rapid decline in functional beta cell mass in the RIP-DTR mouse, a model of hyperglycemia resulting from diphtheria toxin induced beta cell ablation. A novel combination of imaging modalities was employed to study the pattern of beta cell destruction. Optical projection tomography of the pancreas and longitudinal in vivo confocal microscopy of islets transplanted into the anterior chamber of the eye allowed to investigate kinetics and tomographic location of beta cell mass decay in individual islets as well as at the entire islet population level. The correlation between beta cell mass and function was determined by complementary in vivo and ex vivo characterizations, demonstrating that beta cell function and glucose tolerance were impaired within the first two days following treatment when more than 50% of beta cell mass was remaining. Our results illustrate the importance of acquiring quantitative functional and morphological parameters to assess the functional status of the endocrine pancreas.
Collapse
Affiliation(s)
- Pim P van Krieken
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Andrea Dicker
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Maria Eriksson
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Pedro L Herrera
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Ulf Ahlgren
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden. .,Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, USA. .,Lee Kong Chian School of Medicine, Nanyang Technological University, Imperial College London, Novena Campus, Singapore, Singapore.
| | - Erwin Ilegems
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Jin SM, Kim KW. Is islet transplantation a realistic approach to curing diabetes? Korean J Intern Med 2017; 32:62-66. [PMID: 28049286 PMCID: PMC5214734 DOI: 10.3904/kjim.2016.224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/19/2016] [Indexed: 12/27/2022] Open
Abstract
Since the report of type 1 diabetes reversal in seven consecutive patients by the Edmonton protocol in 2000, pancreatic islet transplantation has been reappraised based on accumulated clinical evidence. Although initially expected to therapeutically target long-term insulin independence, islet transplantation is now indicated for more specific clinical benefits. With the long-awaited report of the first phase 3 clinical trial in 2016, allogeneic islet transplantation is now transitioning from an experimental to a proven therapy for type 1 diabetes with problematic hypoglycemia. Islet autotransplantation has already been therapeutically proven in chronic pancreatitis with severe abdominal pain refractory to conventional treatments, and it holds promise for preventing diabetes after partial pancreatectomy due to benign pancreatic tumors. Based on current evidence, this review focuses on islet transplantation as a realistic approach to treating diabetes.
Collapse
Affiliation(s)
- Sang-Man Jin
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kwang-Won Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Korea
- Correspondence to Kwang-Won Kim, M.D. Division of Endocrinology and Metabolism, Department of Internal Medicine, Gachon University Gil Medical Center, 21 Namdong-daero 774beon-gil, Namdong-gu, Incheon 21565, Korea Tel: +82-32-460-8309 Fax: +82-32-469-4320 E-mail:
| |
Collapse
|
5
|
Co-culture with mature islet cells augments the differentiation of insulin-producing cells from pluripotent stem cells. Stem Cell Rev Rep 2015; 11:62-74. [PMID: 25173880 DOI: 10.1007/s12015-014-9554-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Islet transplantation has been hampered by the shortage of islet donors available for diabetes therapy. However, pluripotent stem cells (PSCs) can be an alternative source of insulin-producing cells (IPCs) because of their capacity for self-renewal and differentiation. We described a method to efficiently differentiate PSCs into IPCs by co-culturing mature islets with directed-differentiated pancreatic endoderm (PE) cells from mouse and human PSCs. PE cells co-cultured with islet cells or islet cell-derived conditioned medium (CM) showed increased expression levels of β-cell markers; significantly higher levels of proinsulin- and Newport Green (NG)-positive cells, which revealed the characteristics of insulin producing cells; and increased insulin secretion upon glucose stimulation. Co-culturing human PE cells with islet cells was also effective to differentiate PE cells into IPCs. Diabetic nude mice transplanted with co-cultured cells exhibited restored euglycemia, human C-peptide release, and improved glucose tolerance. Immunohistochemistry revealed that insulin+/C-peptide + cells existed in the grafted tissues. These results suggest that mature islet cells can increase the differentiation efficiency of PE cells into mature IPCs via paracrine effects.
Collapse
|
6
|
Lee S, Youn H, Chung T, Hwang DW, Oh SW, Kang KW, Chung JK, Lee DS. In vivo bioluminescence imaging of transplanted mesenchymal stem cells as a potential source for pancreatic regeneration. Mol Imaging 2015; 13. [PMID: 25249435 DOI: 10.2310/7290.2014.00023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Stem cell therapy has been studied intensively as a promising therapeutic strategy toward a cure for diabetes. To study the effect of mesenchymal stem cell (MSC) transplantation for pancreatic regeneration, we monitored the localization and distribution of transplanted MSCs by bioluminescence imaging in a mouse model. Bone marrow MSCs were isolated and transfected with a highly sensitive firefly luciferase reporter gene. To assess the efficiency of MSC transplantation, a partially pancreatectomized (PPx) mouse model was used. Transplanted MSCs were monitored by confocal microscopy and in vivo bioluminescence imaging. Daily blood glucose levels and glucose tolerance were measured. Insulin-secreting beta cells were immunostained, and insulin levels were measured via enzyme-linked immunosorbent assay. Bioluminescence signals were clearly detected from the transplanted MSCs in the pancreatic region regardless of injection route. However, locally injected MSCs exhibited more rapid proliferation than ductally injected MSCs. PPx mice harboring transplanted MSCs gradually recovered from impaired glucose tolerance. Although insulin secretion was not observed in MSCs, transplanted MSCs facilitate the injured pancreas to recover its function. In vivo optical imaging of transplanted MSCs using a highly sensitive luciferase reporter enables the assessment of MSC transplantation efficiency in a PPx mouse model.
Collapse
|
7
|
Jung HS, Kim MJ, Hong SH, Lee YJ, Kang S, Lee H, Chung SS, Park JS, Park KS. The potential of endothelial colony-forming cells to improve early graft loss after intraportal islet transplantation. Cell Transplant 2013; 23:273-83. [PMID: 23294520 DOI: 10.3727/096368912x661364] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Early graft loss in islet transplantation means that a large amount of donor islets is required. Endothelial cells and endothelial colony-forming cells (ECFCs) have been reported to improve instant blood-mediated inflammatory reaction (IBMIR) in vitro. In this study, we examined if ECFC-coated porcine islets would prevent early graft loss in vivo. Human ECFCs were prepared from cord blood and cocultured with islets to make composite grafts. Diabetic nude mice underwent intraportal transplantation. Blood glucose levels were monitored, and morphological examination of the grafts along with analysis of the components of IBMIR and inflammatory reaction were performed with the liver tissues. The ECFC-coated islets significantly decreased blood glucose levels immediately after transplantation compared to the uncoated islets. Composite ECFC islet grafts were observed in the liver sections, associated with a more insulin(+) area compared to that of the uncoated group within 48 h after transplantation. Deposition of CD41a, C5b-9, and CD11b(+) cells was also decreased in the ECFC-coated group. Expression of porcine HMGB1 and mouse TNF-α was increased in the transplantated groups compared to the sham operation group, with a trend of a decreasing trend across the uncoated group, the ECFC-coated group, and the sham group. We demonstrated that the composite ECFC porcine islets transplanted into the portal vein of nude mice improved early graft loss and IBMIR in vivo.
Collapse
Affiliation(s)
- Hye Seung Jung
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Animal models of diabetes mellitus for islet transplantation. EXPERIMENTAL DIABETES RESEARCH 2012; 2012:256707. [PMID: 23346100 PMCID: PMC3546491 DOI: 10.1155/2012/256707] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 12/12/2012] [Indexed: 01/09/2023]
Abstract
Due to current improvements in techniques for islet isolation and transplantation and protocols for immunosuppressants, islet transplantation has become an effective treatment for severe diabetes patients. Many diabetic animal models have contributed to such improvements. In this paper, we focus on 3 types of models with different mechanisms for inducing diabetes mellitus (DM): models induced by drugs including streptozotocin (STZ), pancreatomized models, and spontaneous models due to autoimmunity. STZ-induced diabetes is one of the most commonly used experimental diabetic models and is employed using many specimens including rodents, pigs or monkeys. The management of STZ models is well established for islet studies. Pancreatomized models reveal different aspects compared to STZ-induced models in terms of loss of function in the increase and decrease of blood glucose and therefore are useful for evaluating the condition in total pancreatomized patients. Spontaneous models are useful for preclinical studies including the assessment of immunosuppressants because such models involve the same mechanisms as type 1 DM in the clinical setting. In conclusion, islet researchers should select suitable diabetic animal models according to the aim of the study.
Collapse
|
9
|
Stanekzai J, Isenovic ER, Mousa SA. Treatment options for diabetes: potential role of stem cells. Diabetes Res Clin Pract 2012; 98:361-8. [PMID: 23020931 DOI: 10.1016/j.diabres.2012.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 06/27/2012] [Accepted: 09/04/2012] [Indexed: 01/09/2023]
Abstract
There are diseases and injuries in which a patient's cells or tissues are destroyed that can only be adequately corrected by tissue or organ transplants. Stem cells may be able to generate new tissue and even cure diseases for which there is no adequate therapy. Type 1 diabetes (T1DM), an insulin-dependent diabetes, is a chronic disease affecting genetically predisposed individuals, in which insulin-secreting beta (β)-cells within pancreatic islets of Langerhans are selectively and irreversibly destroyed by autoimmune assault. Type 2 diabetes (T2DM) is characterized by a gradual decrease in insulin sensitivity in peripheral tissues and the liver (insulin resistance), followed by a gradual decline in β-cell function and insulin secretion. Successful replacing of damaged β-cells has shown considerable potential in treating T1DM, but lack of adequate donors is a barrier. The literature suggests that embryonic and adult stem cells are promising alternatives in long-term treatment of diabetes. However, any successful strategy should address both the need for β-cell replacement and controlling the autoimmune response to cells that express insulin. This review summarizes the current knowledge of options and the potential of stem cell transplantation in diabetes treatment.
Collapse
Affiliation(s)
- Jamil Stanekzai
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive, Rensselaer, NY 12144, USA
| | | | | |
Collapse
|
10
|
Wang Y, Liu Y, Wang H, Li C, Qi P, Bao J. Agaricus bisporus lectins mediates islet β-cell proliferation through regulation of cell cycle proteins. Exp Biol Med (Maywood) 2012; 237:287-96. [DOI: 10.1258/ebm.2011.011251] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study was designed to determine the therapeutic effect of Agaricus bisporus lectins (ABL) by the regeneration of β-cells in mice following 70% partial pancreatectomy (PPx), and to explore the mechanisms of ABL-induced β-cell proliferation. Adult C57BL/6J mice were subjected to a 70% PPx operation or a sham operation, and mice received 10 mg/kg body weight of ABL or saline immediately after surgery. Blood glucose concentrations and insulin secretion levels were measured. To determine the growth rates of β-cells and duct cells, immunohistological analysis of pancreatic tissues was performed. Key cell cycle proteins and β-cell specific genes were measured by realtime polymerase chain reaction, Western blotting and immunohistological staining. In this study, a significant decrease in blood glucose concentrations, increase in glucose tolerance and expanded β-cell mass were observed in the ABL-treated mice. At the same time, after ABL treatment, increased β-cell proliferation rates were observed. Further studies on the expression of cyclin D1, cyclin D2 and Cdk4 demonstrated that these genes were significantly up-regulated in the ABL-treated mice. Meanwhile, Cdk4 activity was also enhanced. Moreover, the expression of PDX-1 (pancreatic and duodenal homeobox 1), Ngn3 (neurogenin 3), insulin, GLUT-1 (glucose transporter 1) and glucokinase was also increased in the ABL-treated mice. These findings demonstrate that ABL administration could partially reverse the impaired β-cell growth potential by regulating cell cycle proteins. Induction of islet β-cell proliferation by ABL suggests the therapeutic potential in preventing and/or treating diabetes.
Collapse
Affiliation(s)
- Yi Wang
- School of Life Science, Sichuan University, Chengdu, Sichuan 610064
- Institute of Organ Transplantation, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072
| | - Yuande Liu
- 91388 Military Hospital, Guangdong, Zhanjiang 524022, China
| | - Hailian Wang
- Institute of Organ Transplantation, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072
| | - Chunyang Li
- School of Life Science, Sichuan University, Chengdu, Sichuan 610064
| | - Ping Qi
- Institute of Organ Transplantation, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072
| | - Jinku Bao
- School of Life Science, Sichuan University, Chengdu, Sichuan 610064
| |
Collapse
|
11
|
Lee SH, Hao E, Levine F, Itkin-Ansari P. Id3 upregulates BrdU incorporation associated with a DNA damage response, not replication, in human pancreatic β-cells. Islets 2011; 3:358-66. [PMID: 21964314 PMCID: PMC3329516 DOI: 10.4161/isl.3.6.17923] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Elucidating mechanisms of cell cycle control in normally quiescent human pancreatic β-cells has the potential to impact regeneration strategies for diabetes. Previously we demonstrated that Id3, a repressor of basic Helix-Loop-Helix (bHLH) proteins, was sufficient to induce cell cycle entry in pancreatic duct cells, which are closely related to β-cells developmentally. We hypothesized that Id3 might similarly induce cell cycle entry in primary human β-cells. To test this directly, adult human β-cells were transduced with adenovirus expressing Id3. Consistent with a replicative response, β-cells exhibited BrdU incorporation. Further, Id3 potently repressed expression of the cyclin dependent kinase inhibitor p57 (Kip2 ) , a gene which is also silenced in a rare β-cell hyperproliferative disorder in infants. Surprisingly however, BrdU positive β-cells did not express the proliferation markers Ki67 and pHH3. Instead, BrdU uptake reflected a DNA damage response, as manifested by hydroxyurea incorporation, γH2AX expression, and 53BP1 subcellular relocalization. The uncoupling of BrdU uptake from replication raises a cautionary note about interpreting studies relying solely upon BrdU incorporation as evidence of β-cell proliferation. The data also establish that loss of p57 (Kip2) is not sufficient to induce cell cycle entry in adult β-cells. Moreover, the differential responses to Id3 between duct and β-cells reveal that β-cells possess intrinsic resistance to cell cycle entry not common to all quiescent epithelial cells in the adult human pancreas. The data provide a much needed comparative model for investigating the molecular basis for this resistance in order to develop a strategy for improving replication competence in β-cells.
Collapse
Affiliation(s)
- Seung-Hee Lee
- Sanford Children’s Health Research Center; La Jolla, CA USA
| | - Ergeng Hao
- Sanford Children’s Health Research Center; La Jolla, CA USA
- Department of Pediatrics; University of California San Diego; La Jolla, CA USA
| | - Fred Levine
- Sanford Children’s Health Research Center; La Jolla, CA USA
| | - Pamela Itkin-Ansari
- Department of Pediatrics; University of California San Diego; La Jolla, CA USA
- Development and Aging Program; Sanford-Burnham Institute for Medical Research; La Jolla, CA USA
- Correspondence to: Pamela Itkin-Ansari,
| |
Collapse
|
12
|
Improved outcome of islet transplantation in partially pancreatectomized diabetic mice by inhibition of dipeptidyl peptidase-4 with sitagliptin. Pancreas 2011; 40:855-60. [PMID: 21747318 DOI: 10.1097/mpa.0b013e318214832d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Glucagon-like peptide-1 (GLP-1) is known to promote beta cell proliferation, and dipeptidyl peptidase-4 (DPP-4) inhibitor increases GLP-1 levels by preventing its degradation. This study was designed to evaluate the effects of sitagliptin (sita), a DPP-4 inhibitor, on the outcome of islet transplantation (ITx) in diabetic mice after partial pancreatectomy (Px). METHODS A diabetic mouse model was prepared by performing 70% Px in C57BL/6 mice. The diabetic mice were treated with sita, subjected to ITx, or both treated with sita and subjected to ITx. After 12 days of sita treatment, the pancreatic remnants and transplanted islets were histologically examined. RESULTS Dipeptidyl peptidase-4 inhibitor increased the concentration of plasma active GLP-1 regardless of ITx and improved glycemic control in the ITx group. The beta cell mass of the pancreatic remnants increased in the ITx group, and mice that received combined treatment with ITx and sita showed a greater increase in the beta cell mass. Dipeptidyl peptidase-4 inhibitor seems to induce proliferation and inhibit apoptosis of beta cells in pancreatic remnants. CONCLUSIONS The DPP-4 inhibitor favorably affects ITx in partially pancreatectomized diabetic mice by increasing the beta cell mass through cell proliferation and inhibition of beta cell apoptosis.
Collapse
|
13
|
Desgraz R, Bonal C, Herrera PL. β-cell regeneration: the pancreatic intrinsic faculty. Trends Endocrinol Metab 2011; 22:34-43. [PMID: 21067943 DOI: 10.1016/j.tem.2010.09.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 09/27/2010] [Accepted: 09/27/2010] [Indexed: 01/08/2023]
Abstract
Type I diabetes (T1D) patients rely on cumbersome chronic injections of insulin, making the development of alternate durable treatments a priority. The ability of the pancreas to generate new β-cells has been described in experimental diabetes models and, importantly, in infants with T1D. Here we discuss recent advances in identifying the origin of new β-cells after pancreatic injury, with and without inflammation, revealing a surprising degree of cell plasticity in the mature pancreas. In particular, the inducible selective near-total destruction of β-cells in healthy adult mice uncovers the intrinsic capacity of differentiated pancreatic cells to spontaneously reprogram to produce insulin. This opens new therapeutic possibilities because it implies that β-cells can differentiate endogenously, in depleted adults, from heterologous origins.
Collapse
Affiliation(s)
- Renaud Desgraz
- Department of Cell Physiology and Metabolism, University of Geneva Faculty of Medicine, 1 rue Michel-Servet, 1211 Geneva 4, Switzerland
| | | | | |
Collapse
|
14
|
Jung HS, Choi SH, Kim SJ, Choi DW, Heo JS, Lee KT, Lee JK, Jang KT, Lee BW, Jee JH, Noh JH, Jeong IK, Yang TY, Oh SH, Ahn YR, Kim YS, No H, Lee MK, Kim KW. Delayed improvement of insulin secretion after autologous islet transplantation in partially pancreatectomized patients. Metabolism 2009; 58:1629-1635. [PMID: 19604519 DOI: 10.1016/j.metabol.2009.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 05/06/2009] [Accepted: 05/19/2009] [Indexed: 11/18/2022]
Abstract
The purpose of this study was to evaluate the effects of autologous islet transplantation (ITx) on glucose homeostasis and insulin secretory function after partial pancreatectomy (Px). Fourteen nondiabetic patients who underwent distal Px and autologous ITx for benign pancreatic tumors were enrolled in the study (Px + ITx group). Fourteen normal glucose-tolerant controls and 6 Px without ITx controls were recruited, and all groups were followed over a 24-month period. They performed the 75-g oral glucose tolerance test and the 1-mg glucagon stimulation test. Hemoglobin A(1c) was measured, and indices of insulin secretion were calculated. In the Px + ITx group, insulin secretion increased after a nadir at 6 months. Glucose tolerance, which had been abruptly impaired immediately after Px, recovered until 6 months and stabilized thereafter. As a result, differences in glucose intolerance emerged between the subjects in the Px group and those in the Px + ITx group at 24 months after Px. Characteristic variables in the better insulin secretory subjects in the Px + ITx group included younger age, less extensive pancreas resection, and a greater number of total islets. In summary, delayed amelioration of glucose intolerance was induced by autologous ITx after partial Px, even with a small number of islets.
Collapse
Affiliation(s)
- Hye Seung Jung
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|