1
|
Lakat T, Fekete A, Demeter K, Toth AR, Varga ZK, Patonai A, Kelemen H, Budai A, Szabo M, Szabo AJ, Kaila K, Denes A, Mikics E, Hosszu A. Perinatal asphyxia leads to acute kidney damage and increased renal susceptibility in adulthood. Am J Physiol Renal Physiol 2024; 327:F314-F326. [PMID: 38932694 DOI: 10.1152/ajprenal.00039.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/23/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Perinatal asphyxia (PA) poses a significant threat to multiple organs, particularly the kidneys. Diagnosing PA-associated kidney injury remains challenging, and treatment options are inadequate. Furthermore, there is a lack of long-term follow-up data regarding the renal implications of PA. In this study, 7-day-old male Wistar rats were exposed to PA using a gas mixture (4% O2; 20% CO2 in N2 for 15 min) to investigate molecular pathways linked to renal tubular damage, hypoxia, angiogenesis, heat shock response, inflammation, and fibrosis in the kidney. In a second experiment, adult rats with a history of PA were subjected to moderate renal ischemia-reperfusion (IR) injury to test the hypothesis that PA exacerbates renal susceptibility. Our results revealed an increased gene expression of renal injury markers (kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin), hypoxic and heat shock factors (hypoxia-inducible factor-1α, heat shock factor-1, and heat shock protein-27), proinflammatory cytokines (interleukin-1β, interleukin-6, tumor necrosis factor-α, and monocyte chemoattractant protein-1), and fibrotic markers (transforming growth factor-β, connective tissue growth factor, and fibronectin) promptly after PA. Moreover, a machine learning model was identified through random forest analysis, demonstrating an impressive classification accuracy (95.5%) for PA. Post-PA rats showed exacerbated functional decline and tubular injury and more intense hypoxic, heat shock, proinflammatory, and profibrotic response after renal IR injury compared with controls. In conclusion, PA leads to subclinical kidney injury, which may increase the susceptibility to subsequent renal damage later in life. In addition, the parameters identified through random forest analysis provide a robust foundation for future biomarker research in the context of PA.NEW & NOTEWORTHY This article demonstrates that perinatal asphyxia leads to subclinical kidney injury that permanently increases renal susceptibility to subsequent ischemic injury. We identified major molecular pathways involved in perinatal asphyxia-induced renal complications, highlighting potential targets of therapeutic approaches. In addition, random forest analysis revealed a model that classifies perinatal asphyxia with 95.5% accuracy that may provide a strong foundation for further biomarker research. These findings underscore the importance of multiorgan follow-up for perinatal asphyxia-affected patients.
Collapse
Affiliation(s)
- Tamas Lakat
- MTA-SE Lendület "Momentum" Diabetes Research Group, Budapest, Hungary
- Pediatric Center, Semmelweis University, Budapest, Hungary
| | - Andrea Fekete
- MTA-SE Lendület "Momentum" Diabetes Research Group, Budapest, Hungary
- Pediatric Center, Semmelweis University, Budapest, Hungary
| | - Kornel Demeter
- Behavioral Studies Unit, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Akos R Toth
- MTA-SE Lendület "Momentum" Diabetes Research Group, Budapest, Hungary
- Pediatric Center, Semmelweis University, Budapest, Hungary
| | - Zoltan K Varga
- Translational Behavioral Neuroscience Research Group, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Attila Patonai
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, Budapest, Hungary
| | - Hanga Kelemen
- Translational Behavioral Neuroscience Research Group, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Andras Budai
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Miklos Szabo
- Pediatric Center, Semmelweis University, Budapest, Hungary
| | - Attila J Szabo
- Pediatric Center, Semmelweis University, Budapest, Hungary
| | - Kai Kaila
- Molecular and Integrative Biosciences Research Programme, Neuroscience Center (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Adam Denes
- Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Eva Mikics
- Translational Behavioral Neuroscience Research Group, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Adam Hosszu
- MTA-SE Lendület "Momentum" Diabetes Research Group, Budapest, Hungary
- Pediatric Center, Semmelweis University, Budapest, Hungary
| |
Collapse
|
2
|
Tregub PP, Komleva YK, Kulikov VP, Chekulaev PA, Tregub OF, Maltseva LD, Manasova ZS, Popova IA, Andriutsa NS, Samburova NV, Salmina AB, Litvitskiy PF. Relationship between Hypoxia and Hypercapnia Tolerance and Life Expectancy. Int J Mol Sci 2024; 25:6512. [PMID: 38928217 PMCID: PMC11204369 DOI: 10.3390/ijms25126512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
The review discusses the potential relationship between hypoxia resistance and longevity, the influence of carbon dioxide on the mechanisms of aging of the mammalian organism, and intermittent hypercapnic-hypoxic effects on the signaling pathways of aging mechanisms. In the article, we focused on the potential mechanisms of the gero-protective efficacy of carbon dioxide when combined with hypoxia. The review summarizes the possible influence of intermittent hypoxia and hypercapnia on aging processes in the nervous system. We considered the perspective variants of the application of hypercapnic-hypoxic influences for achieving active longevity and the prospects for the possibilities of developing hypercapnic-hypoxic training methods.
Collapse
Affiliation(s)
- Pavel P. Tregub
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Brain Science Institute, Research Center of Neurology, 125367 Moscow, Russia; (Y.K.K.)
- Scientific and Educational Resource Center “Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis”, RUDN University, 117198 Moscow, Russia
| | - Yulia K. Komleva
- Brain Science Institute, Research Center of Neurology, 125367 Moscow, Russia; (Y.K.K.)
| | - Vladimir P. Kulikov
- Department of Ultrasound and Functional Diagnostics, Altay State Medical University, 656040 Barnaul, Russia
| | - Pavel A. Chekulaev
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | | | - Larisa D. Maltseva
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Zaripat Sh. Manasova
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Inga A. Popova
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Natalia S. Andriutsa
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Natalia V. Samburova
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Alla B. Salmina
- Brain Science Institute, Research Center of Neurology, 125367 Moscow, Russia; (Y.K.K.)
| | - Peter F. Litvitskiy
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
3
|
Tregub PP, Kulikov VP, Ibrahimli I, Tregub OF, Volodkin AV, Ignatyuk MA, Kostin AA, Atiakshin DA. Molecular Mechanisms of Neuroprotection after the Intermittent Exposures of Hypercapnic Hypoxia. Int J Mol Sci 2024; 25:3665. [PMID: 38612476 PMCID: PMC11011936 DOI: 10.3390/ijms25073665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
The review introduces the stages of formation and experimental confirmation of the hypothesis regarding the mutual potentiation of neuroprotective effects of hypoxia and hypercapnia during their combined influence (hypercapnic hypoxia). The main focus is on the mechanisms and signaling pathways involved in the formation of ischemic tolerance in the brain during intermittent hypercapnic hypoxia. Importantly, the combined effect of hypoxia and hypercapnia exerts a more pronounced neuroprotective effect compared to their separate application. Some signaling systems are associated with the predominance of the hypoxic stimulus (HIF-1α, A1 receptors), while others (NF-κB, antioxidant activity, inhibition of apoptosis, maintenance of selective blood-brain barrier permeability) are mainly modulated by hypercapnia. Most of the molecular and cellular mechanisms involved in the formation of brain tolerance to ischemia are due to the contribution of both excess carbon dioxide and oxygen deficiency (ATP-dependent potassium channels, chaperones, endoplasmic reticulum stress, mitochondrial metabolism reprogramming). Overall, experimental studies indicate the dominance of hypercapnia in the neuroprotective effect of its combined action with hypoxia. Recent clinical studies have demonstrated the effectiveness of hypercapnic-hypoxic training in the treatment of childhood cerebral palsy and diabetic polyneuropathy in children. Combining hypercapnic hypoxia with pharmacological modulators of neuro/cardio/cytoprotection signaling pathways is likely to be promising for translating experimental research into clinical medicine.
Collapse
Affiliation(s)
- Pavel P. Tregub
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Brain Science Institute, Research Center of Neurology, 125367 Moscow, Russia
- Scientific and Educational Resource Center “Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis”, RUDN University, 117198 Moscow, Russia; (A.V.V.); (M.A.I.); (A.A.K.); (D.A.A.)
| | - Vladimir P. Kulikov
- Department of Ultrasound and Functional Diagnostics, Altay State Medical University, 656040 Barnaul, Russia;
| | - Irada Ibrahimli
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | | | - Artem V. Volodkin
- Scientific and Educational Resource Center “Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis”, RUDN University, 117198 Moscow, Russia; (A.V.V.); (M.A.I.); (A.A.K.); (D.A.A.)
| | - Michael A. Ignatyuk
- Scientific and Educational Resource Center “Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis”, RUDN University, 117198 Moscow, Russia; (A.V.V.); (M.A.I.); (A.A.K.); (D.A.A.)
| | - Andrey A. Kostin
- Scientific and Educational Resource Center “Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis”, RUDN University, 117198 Moscow, Russia; (A.V.V.); (M.A.I.); (A.A.K.); (D.A.A.)
| | - Dmitrii A. Atiakshin
- Scientific and Educational Resource Center “Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis”, RUDN University, 117198 Moscow, Russia; (A.V.V.); (M.A.I.); (A.A.K.); (D.A.A.)
| |
Collapse
|
4
|
Zhu X, Dingkao R, Sun N, Han L, Yu Q. The potential mediation of hypoxia-inducible factor-1α in heat shock protein 27 translocations, caspase-3 and calpain activities and yak meat tenderness during postmortem aging. Meat Sci 2023; 204:109264. [PMID: 37515863 DOI: 10.1016/j.meatsci.2023.109264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 05/12/2023] [Accepted: 06/19/2023] [Indexed: 07/31/2023]
Abstract
The present study aimed to characterize the influence of hypoxia-inducible factor-1α on heat shock protein 27 and cytochrome c translocation, yak meat microstructure destruction, and endogenous enzymes activities, refining the understanding of the tenderization process after slaughter. Postmortem yak longissimus thoracis et lumborum muscles were incubated with 0.9% saline or hypoxia-inducible factor-1α stabilizer dimethyloxaloylglycine at 4 °C for 6, 12, 24, 72, and 120 h. Results showed that hypoxia-inducible factor-1α activation promoted heat shock protein 27 migration and cytochrome c release, facilitating (P < 0.05) caspase-3 activity by mediating the heat shock protein 27/caspase-3 interaction but did not exert (P > 0.05) significant effects on the calpain-1 activity. Additionally, hypoxia-inducible factor-1α activation contributed to the mitochondrial apoptosis cascade, leading to a higher (P < 0.01) apoptosis rate. Therefore, these observations indicate that hypoxia-inducible factor-1α affects caspase-3 activity and tenderness of postmortem muscle through distinct regulatory mechanisms, possibly, in part, with heat shock protein 27 and cytochrome c mediation.
Collapse
Affiliation(s)
- Xijin Zhu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu 730070, PR China
| | - Renqing Dingkao
- Animal Science and Veterinary Institute of Gannan Prefecture, Gannan Tibetan Autonomous Prefecture, Gansu 747000, PR China
| | - Nan Sun
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu 730070, PR China
| | - Ling Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu 730070, PR China.
| | - Qunli Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu 730070, PR China.
| |
Collapse
|
5
|
Späth MR, Hoyer-Allo KJR, Seufert L, Höhne M, Lucas C, Bock T, Isermann L, Brodesser S, Lackmann JW, Kiefer K, Koehler FC, Bohl K, Ignarski M, Schiller P, Johnsen M, Kubacki T, Grundmann F, Benzing T, Trifunovic A, Krüger M, Schermer B, Burst V, Müller RU. Organ Protection by Caloric Restriction Depends on Activation of the De Novo NAD+ Synthesis Pathway. J Am Soc Nephrol 2023; 34:772-792. [PMID: 36758124 PMCID: PMC10125653 DOI: 10.1681/asn.0000000000000087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 01/10/2023] [Indexed: 02/11/2023] Open
Abstract
SIGNIFICANCE STATEMENT AKI is a major clinical complication leading to high mortality, but intensive research over the past decades has not led to targeted preventive or therapeutic measures. In rodent models, caloric restriction (CR) and transient hypoxia significantly prevent AKI and a recent comparative transcriptome analysis of murine kidneys identified kynureninase (KYNU) as a shared downstream target. The present work shows that KYNU strongly contributes to CR-mediated protection as a key player in the de novo nicotinamide adenine dinucleotide biosynthesis pathway. Importantly, the link between CR and NAD+ biosynthesis could be recapitulated in a human cohort. BACKGROUND Clinical practice lacks strategies to treat AKI. Interestingly, preconditioning by hypoxia and caloric restriction (CR) is highly protective in rodent AKI models. However, the underlying molecular mechanisms of this process are unknown. METHODS Kynureninase (KYNU) knockout mice were generated by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and comparative transcriptome, proteome and metabolite analyses of murine kidneys pre- and post-ischemia-reperfusion injury in the context of CR or ad libitum diet were performed. In addition, acetyl-lysin enrichment and mass spectrometry were used to assess protein acetylation. RESULTS We identified KYNU as a downstream target of CR and show that KYNU strongly contributes to the protective effect of CR. The KYNU-dependent de novo nicotinamide adenine dinucleotide (NAD+) biosynthesis pathway is necessary for CR-associated maintenance of NAD+ levels. This finding is associated with reduced protein acetylation in CR-treated animals, specifically affecting enzymes in energy metabolism. Importantly, the effect of CR on de novo NAD+ biosynthesis pathway metabolites can be recapitulated in humans. CONCLUSIONS CR induces the de novo NAD+ synthesis pathway in the context of IRI and is essential for its full nephroprotective potential. Differential protein acetylation may be the molecular mechanism underlying the relationship of NAD+, CR, and nephroprotection.
Collapse
Affiliation(s)
- Martin R. Späth
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - K. Johanna R. Hoyer-Allo
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lisa Seufert
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Martin Höhne
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christina Lucas
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Theresa Bock
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Genetics, University of Cologne, Cologne, Germany
| | - Lea Isermann
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Medical Faculty, Institute for Mitochondrial Diseases and Aging, University of Cologne, Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Susanne Brodesser
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jan-Wilm Lackmann
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Katharina Kiefer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Felix C. Koehler
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Katrin Bohl
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Michael Ignarski
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Petra Schiller
- Institute of Medical Statistics and Computational Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Marc Johnsen
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Torsten Kubacki
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Franziska Grundmann
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Aleksandra Trifunovic
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Medical Faculty, Institute for Mitochondrial Diseases and Aging, University of Cologne, Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Marcus Krüger
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Genetics, University of Cologne, Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Volker Burst
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Emergency Department, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
6
|
Gao Z, Wang D, Yang J, Li M, Ling C, Lv D, Cao Y, Chen Z, Shi C, Shen H, Tang Y. Iron deficiency in hepatocellular carcinoma cells induced sorafenib resistance by upregulating HIF-1α to inhibit apoptosis. Biomed Pharmacother 2023; 163:114750. [PMID: 37087978 DOI: 10.1016/j.biopha.2023.114750] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/12/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023] Open
Abstract
Sorafenib is the first-line therapeutic agent for hepatocellular carcinoma (HCC), but the drug resistance has become a major impediment. Previously we found that the abnormal iron metabolism in HCC led to iron deficiency, whether it induces sorafenib resistance during the treatment of HCC is not yet disclosed. In this study, we observed the effects of iron deficiency on sorafenib resistance and explored the underlying mechanisms. The results revealed that the killing effects of sorafenib on HCC cells were weakened by iron deficiency but effectively restored by iron re-supplementation. The ferroptosis indicators, including the contents of lipid hydroperoxide (LPO) and malondialdehyde (MDA), the level of intracellular reactive oxygen species (ROS), and the expression of glutathione peroxidase 4 (GPX4), were not significantly changed by iron deficiency in sorafenib-treated HCC cells. However, the sorafenib-induced apoptosis of HCC cells was inhibited by iron deficiency. Notably, the expression of anti-apoptotic protein B-cell lymphoma-2 (BCL-2) was elevated, and the expressions of other apoptotic proteins, BCL2-associated X (Bax), caspase-3, and caspase-9, were inhibited by iron deficiency. Mechanistically, iron deficiency upregulated hypoxia-inducible factor 1 alpha (HIF-1α) to increase BCL-2. Inhibition of HIF-1α suppressed the iron deficiency-induced BCL-2 and sorafenib resistance. In summary, iron deficiency in HCC cells generated sorafenib resistance by increasing HIF-1α and BCL-2, which therefore inhibited the sorafenib-induced apoptosis of HCC cells. These results identified iron deficiency as a new factor of sorafenib resistance in HCC cells, which would be an effective target to alleviate sorafenib resistance.
Collapse
Affiliation(s)
- Zelong Gao
- Department of Nutrition, Second Military Medical University, Shanghai, China
| | - Dongyao Wang
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jianxin Yang
- Department of Nutrition, Second Military Medical University, Shanghai, China
| | - Min Li
- Department of Nutrition, Second Military Medical University, Shanghai, China
| | - Changquan Ling
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Diya Lv
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yan Cao
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Zhenyu Chen
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Ce Shi
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Hui Shen
- Department of Nutrition, Second Military Medical University, Shanghai, China.
| | - Yuxiao Tang
- Department of Nutrition, Second Military Medical University, Shanghai, China.
| |
Collapse
|
7
|
Permissive hypercapnia and hypercapnic hypoxia inhibit signaling pathways of neuronal apoptosis in ischemic/hypoxic rats. Mol Biol Rep 2023; 50:2317-2333. [PMID: 36575322 DOI: 10.1007/s11033-022-08212-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022]
Abstract
INTRODUCTION In the present study, we aimed to test the hypothesis that hypercapnia, independently and/or in combination with hypoxia, can activate signaling pathways related to the inhibition of proapoptotic (caspase-dependent and caspase-independent) factors and the induction of antiapoptotic factors in facilitating adaptation to hypoxia/ischemia. MATERIALS AND METHODS Following exposure to permissive hypercapnia and/or normobaric hypoxia, the degree of apoptosis was evaluated in experimental ischemia models in vivo and in vitro. The percentages of caspase-3, apoptosis-inducing factor (AIF), Bax, and Bcl-2 in astrocytes and neurons derived from male Wistar rats were also calculated. In vitro, cells were subjected to various types of respiratory exposure (hypoxia and/or hypercapnia for 24 or 12 h) as well as further sublethal chemical hypoxia. The percentages of these molecules in nerve cells in the ischemic penumbra of the brain after photothrombotic injury were also calculated. RESULTS The degree of apoptosis was found to decrease in ischemic penumbra, mostly due to the hypercapnic component. It was also discovered that the levels of caspase-3, AIF, and Bax decreased in this region, whereas the Bcl-2 levels increased following exposure to hypercapnia and hypercapnic hypoxia. CONCLUSIONS This integrative assessment of the rate of apoptosis/necrosis in astrocyte and neuron cultures shows that the combination of hypercapnia and hypoxia resulted in the maximum neuroprotective effect. The levels of apoptosis mediators in astrocyte and neuron cultures were calculated after modeling chemical hypoxia in vitro. These results show that the exposure models where permissive hypercapnia and normobaric hypoxia were combined also had the most pronounced inhibitory effects on apoptotic signaling pathways.
Collapse
|
8
|
Caloric restriction reduces the pro-inflammatory eicosanoid 20- hydroxyeicosatetraenoic acid to protect from acute kidney injury. Kidney Int 2022; 102:560-576. [PMID: 35654224 DOI: 10.1016/j.kint.2022.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 11/22/2022]
Abstract
Acute kidney injury is a frequent complication in the clinical setting and associated with significant morbidity and mortality. Preconditioning with short-term caloric restriction is highly protective against kidney injury in rodent ischemia reperfusion injury models. However, the underlying mechanisms are unknown hampering clinical translation. Here, we examined the molecular basis of caloric restriction-mediated protection to elucidate the principles of kidney stress resistance. Analysis of an RNAseq dataset after caloric restriction identified Cyp4a12a, a cytochrome exclusively expressed in male mice, to be strongly downregulated after caloric restriction. Kidney ischemia reperfusion injury robustly induced acute kidney injury in male mice and this damage could be markedly attenuated by pretreatment with caloric restriction. In females, damage was significantly less pronounced and preconditioning with caloric restriction had only little effect. Tissue concentrations of the metabolic product of Cyp4a12a, 20-hydroxyeicosatetraenoic acid (20-HETE), were found to be significantly reduced by caloric restriction. Conversely, intraperitoneal supplementation of 20-HETE in preconditioned males partly abrogated the protective potential of caloric restriction. Interestingly, this effect was accompanied by a partial reversal of caloric restriction-induced changes in protein but not RNA expression pointing towards inflammation, endoplasmic reticulum stress and lipid metabolism. Thus, our findings provide an insight into the mechanisms underlying kidney protection by caloric restriction. Hence, understanding the mediators of preconditioning is an important pre-requisite for moving towards translation to the clinical setting.
Collapse
|
9
|
Hypoxic preconditioning in renal ischaemia-reperfusion injury: a review in pre-clinical models. Clin Sci (Lond) 2021; 135:2607-2618. [PMID: 34878507 DOI: 10.1042/cs20210615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/14/2021] [Accepted: 10/29/2021] [Indexed: 12/17/2022]
Abstract
Ischaemia-reperfusion injury (IRI) is a major cause of acute kidney injury (AKI) and chronic kidney disease, which consists of cellular damage and renal dysfunction. AKI is a major complication that is of particular concern after cardiac surgery and to a lesser degree following organ transplantation in the immediate post-transplantation period, leading to delayed graft function. Because effective therapies are still unavailable, several recent studies have explored the potential benefit of hypoxic preconditioning (HPC) on IRI. HPC refers to the acquisition of increased organ tolerance to subsequent ischaemic or severe hypoxic injury, and experimental evidences suggest a potential benefit of HPC. There are three experimental forms of HPC, and, for better clarity, we named them as follows: physical HPC, HPC via treated-cell administration and stabilised hypoxia-inducible factor (HIF)-1α HPC, or mimicked HPC. The purpose of this review is to present the latest developments in the literature on HPC in the context of renal IRI in pre-clinical models. The data we compiled suggest that preconditional activation of hypoxia pathways protects against renal IRI, suggesting that HPC could be used in the treatment of renal IRI in transplantation.
Collapse
|
10
|
Hypercapnia Modulates the Activity of Adenosine A1 Receptors and mitoK +ATP-Channels in Rat Brain When Exposed to Intermittent Hypoxia. Neuromolecular Med 2021; 24:155-168. [PMID: 34115290 DOI: 10.1007/s12017-021-08672-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 06/05/2021] [Indexed: 10/21/2022]
Abstract
The mechanisms and signaling pathways of the neuroprotective effects of hypercapnia and its combination with hypoxia are not studied sufficiently. The study aims to test the hypothesis of the potentiating effect of hypercapnia on the systems of adaptation to hypoxia, directly associated with A1-adenosine receptors and mitochondrial ATP-dependent K+ -channels (mitoK+ATP-channels). We evaluated the relative number of A1-adenosine receptors and mitoK+ATP-channels in astrocytes obtained from male Wistar rats exposed to various respiratory conditions (15 times of hypoxia and/or hypercapnia). In addition, the relative number of these molecules in astrocytes was evaluated on an in vitro model of chemical hypoxia, as well as in the cerebral cortex after photothrombotic damage. This study indicates an increase in the relative number of A1-adenosine receptors in astrocytes and in cells next to the stroke region of the cerebral cortex in rats exposed to hypoxia and hypercapnic hypoxia, but not hypercapnia alone. Hypercapnia and hypoxia increase the relative number of mitoK+ATP-channels in astrocytes and in cells of the peri-infarct region of the cerebral cortex in rats. In an in vitro study, hypercapnia mitigates the effects of acute chemical hypoxia observed in astrocytes for A1-adenosine receptors and mitoK+ATP-channels. Hypercapnia, unlike hypoxia, does not affect the relative number of A1 receptors to adenosine. At the same time, both hypercapnia and hypoxia increase the relative number of mitoK+ATP-channels, which can potentiate their protective effects with combined exposure.
Collapse
|
11
|
Hoyer-Allo KJR, Späth MR, Hanssen R, Johnsen M, Brodesser S, Kaufmann K, Kiefer K, Koehler FC, Göbel H, Kubacki T, Grundmann F, Schermer B, Brüning J, Benzing T, Burst V, Müller RU. Modulation of Endocannabinoids by Caloric Restriction Is Conserved in Mice but Is Not Required for Protection from Acute Kidney Injury. Int J Mol Sci 2021; 22:ijms22115485. [PMID: 34067475 PMCID: PMC8196977 DOI: 10.3390/ijms22115485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 12/20/2022] Open
Abstract
Acute kidney injury (AKI) is a frequent and critical complication in the clinical setting. In rodents, AKI can be effectively prevented through caloric restriction (CR), which has also been shown to increase lifespan in many species. In Caenorhabditis elegans (C. elegans), longevity studies revealed that a marked CR-induced reduction of endocannabinoids may be a key mechanism. Thus, we hypothesized that regulation of endocannabinoids, particularly arachidonoyl ethanolamide (AEA), might also play a role in CR-mediated protection from renal ischemia-reperfusion injury (IRI) in mammals including humans. In male C57Bl6J mice, CR significantly reduced renal IRI and led to a significant decrease of AEA. Supplementation of AEA to near-normal serum concentrations by repetitive intraperitoneal administration in CR mice, however, did not abrogate the protective effect of CR. We also analyzed serum samples taken before and after CR from patients of three different pilot trials of dietary interventions. In contrast to mice and C. elegans, we detected an increase of AEA. We conclude that endocannabinoid levels in mice are modulated by CR, but CR-mediated renal protection does not depend on this effect. Moreover, our results indicate that modulation of endocannabinoids by CR in humans may differ fundamentally from the effects in animal models.
Collapse
Affiliation(s)
- Karla Johanna Ruth Hoyer-Allo
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 37, 50937 Cologne, Germany; (K.J.R.H.-A.); (M.R.S.); (M.J.); (F.C.K.); (T.K.); (F.G.); (B.S.); (T.B.)
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany; (S.B.); (K.K.); (K.K.); (J.B.)
| | - Martin Richard Späth
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 37, 50937 Cologne, Germany; (K.J.R.H.-A.); (M.R.S.); (M.J.); (F.C.K.); (T.K.); (F.G.); (B.S.); (T.B.)
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany; (S.B.); (K.K.); (K.K.); (J.B.)
| | - Ruth Hanssen
- Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931 Cologne, Germany;
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEPD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Marc Johnsen
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 37, 50937 Cologne, Germany; (K.J.R.H.-A.); (M.R.S.); (M.J.); (F.C.K.); (T.K.); (F.G.); (B.S.); (T.B.)
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany; (S.B.); (K.K.); (K.K.); (J.B.)
| | - Susanne Brodesser
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany; (S.B.); (K.K.); (K.K.); (J.B.)
| | - Kathrin Kaufmann
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany; (S.B.); (K.K.); (K.K.); (J.B.)
| | - Katharina Kiefer
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany; (S.B.); (K.K.); (K.K.); (J.B.)
| | - Felix Carlo Koehler
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 37, 50937 Cologne, Germany; (K.J.R.H.-A.); (M.R.S.); (M.J.); (F.C.K.); (T.K.); (F.G.); (B.S.); (T.B.)
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany; (S.B.); (K.K.); (K.K.); (J.B.)
| | - Heike Göbel
- Institute of Pathology, University Hospital of Cologne, Kerpener Str. 37, 50937 Cologne, Germany;
| | - Torsten Kubacki
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 37, 50937 Cologne, Germany; (K.J.R.H.-A.); (M.R.S.); (M.J.); (F.C.K.); (T.K.); (F.G.); (B.S.); (T.B.)
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany; (S.B.); (K.K.); (K.K.); (J.B.)
| | - Franziska Grundmann
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 37, 50937 Cologne, Germany; (K.J.R.H.-A.); (M.R.S.); (M.J.); (F.C.K.); (T.K.); (F.G.); (B.S.); (T.B.)
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 37, 50937 Cologne, Germany; (K.J.R.H.-A.); (M.R.S.); (M.J.); (F.C.K.); (T.K.); (F.G.); (B.S.); (T.B.)
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany; (S.B.); (K.K.); (K.K.); (J.B.)
| | - Jens Brüning
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany; (S.B.); (K.K.); (K.K.); (J.B.)
- Max Planck Institute for Metabolism Research, Gleueler Str. 50, 50931 Cologne, Germany;
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEPD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 37, 50937 Cologne, Germany; (K.J.R.H.-A.); (M.R.S.); (M.J.); (F.C.K.); (T.K.); (F.G.); (B.S.); (T.B.)
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany; (S.B.); (K.K.); (K.K.); (J.B.)
| | - Volker Burst
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 37, 50937 Cologne, Germany; (K.J.R.H.-A.); (M.R.S.); (M.J.); (F.C.K.); (T.K.); (F.G.); (B.S.); (T.B.)
- Correspondence: (V.B.); (R.-U.M.)
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 37, 50937 Cologne, Germany; (K.J.R.H.-A.); (M.R.S.); (M.J.); (F.C.K.); (T.K.); (F.G.); (B.S.); (T.B.)
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Faculty of Medicine and University Hospital Cologne, Joseph-Stelzmann-Straße 26, 50931 Cologne, Germany; (S.B.); (K.K.); (K.K.); (J.B.)
- Correspondence: (V.B.); (R.-U.M.)
| |
Collapse
|
12
|
Alderdice R, Suggett DJ, Cárdenas A, Hughes DJ, Kühl M, Pernice M, Voolstra CR. Divergent expression of hypoxia response systems under deoxygenation in reef-forming corals aligns with bleaching susceptibility. GLOBAL CHANGE BIOLOGY 2021; 27:312-326. [PMID: 33197302 DOI: 10.1111/gcb.15436] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Exposure of marine life to low oxygen is accelerating worldwide via climate change and localized pollution. Mass coral bleaching and mortality have recently occurred where reefs have experienced chronic low oxygen events. However, the mechanistic basis of tolerance to oxygen levels inadequate to sustain normal functioning (i.e. hypoxia) and whether it contributes to bleaching susceptibility, remain unknown. We therefore experimentally exposed colonies of the environmentally resilient Acropora tenuis, a common reef-building coral from the Great Barrier Reef, to deoxygenation-reoxygenation stress that was aligned to their natural night-day light cycle. Specifically, the treatment involved removing the 'night-time O2 buffer' to challenge the inherent hypoxia thresholds. RNA-Seq analysis revealed that coral possess a complete and active hypoxia-inducible factor (HIF)-mediated hypoxia response system (HRS) homologous to other metazoans. As expected, A. tenuis exhibited bleaching resistance and showed a strong inducibility of HIF target genes in response to deoxygenation stress. We applied this same approach in parallel to a colony of Acropora selago, known to be environmnetally susceptible, which conversely exhibited a bleaching phenotype response. This phenotypic divergence of A. selago was accompanied by contrasting gene expression profiles indicative of varied effectiveness of their HIF-HRS. Based on our RNA-Seq analysis, we propose (a) that the HIF-HRS is central for corals to manage deoxygenation stress and (b) that key genes of this system (and the wider gene network) may contribute to variation in coral bleaching susceptibility. Our analysis suggests that heat shock protein (hsp) 70 and 90 are important for low oxygen stress tolerance and further highlights how hsp90 expression might also affect the inducibility of coral HIF-HRS in overcoming a metabolic crisis under deoxygenation stress. We propose that differences in coral HIF-HRS could be central in regulating sensitivity to other climate change stressors-notably thermal stress-that commonly drive bleaching.
Collapse
Affiliation(s)
- Rachel Alderdice
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - David J Suggett
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Anny Cárdenas
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - David J Hughes
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Michael Kühl
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
- Marine Biology Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Mathieu Pernice
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | | |
Collapse
|
13
|
Tregub PP, Malinovskaya NA, Morgun AV, Osipova ED, Kulikov VP, Kuzovkov DA, Kovzelev PD. Hypercapnia potentiates HIF-1α activation in the brain of rats exposed to intermittent hypoxia. Respir Physiol Neurobiol 2020; 278:103442. [DOI: 10.1016/j.resp.2020.103442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/19/2020] [Accepted: 04/06/2020] [Indexed: 12/30/2022]
|
14
|
Corona D, Ekser B, Gioco R, Caruso M, Schipa C, Veroux P, Giaquinta A, Granata A, Veroux M. Heme-Oxygenase and Kidney Transplantation: A Potential for Target Therapy? Biomolecules 2020; 10:E840. [PMID: 32486245 PMCID: PMC7355572 DOI: 10.3390/biom10060840] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/24/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022] Open
Abstract
Kidney transplantation is a well-established therapy for patients with end-stage renal disease. While a significant improvement of short-term results has been achieved in the short-term, similar results were not reported in the long-term. Heme-oxygenase (HO) is the rate-limiting enzyme in heme catabolism, converting heme to iron, carbon monoxide, and biliverdin. Heme-oxygenase overexpression may be observed in all phases of transplant processes, including brain death, recipient management, and acute and chronic rejection. HO induction has been proved to provide a significant reduction of inflammatory response and a reduction of ischemia and reperfusion injury in organ transplantation, as well as providing a reduction of incidence of acute rejection. In this review, we will summarize data on HO and kidney transplantation, suggesting possible clinical applications in the near future to improve the long-term outcomes.
Collapse
Affiliation(s)
- Daniela Corona
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (D.C.); (M.C.)
- Organ Transplant Unit, University Hospital of Catania, 95123 Catania, Italy; (P.V.); (A.G.)
| | - Burcin Ekser
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46077, USA;
| | - Rossella Gioco
- General Surgery Unit, University Hospital of Catania, 95123 Catania, Italy; (R.G.); (C.S.)
| | - Massimo Caruso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (D.C.); (M.C.)
| | - Chiara Schipa
- General Surgery Unit, University Hospital of Catania, 95123 Catania, Italy; (R.G.); (C.S.)
| | - Pierfrancesco Veroux
- Organ Transplant Unit, University Hospital of Catania, 95123 Catania, Italy; (P.V.); (A.G.)
| | - Alessia Giaquinta
- Organ Transplant Unit, University Hospital of Catania, 95123 Catania, Italy; (P.V.); (A.G.)
| | | | - Massimiliano Veroux
- Organ Transplant Unit, University Hospital of Catania, 95123 Catania, Italy; (P.V.); (A.G.)
- General Surgery Unit, University Hospital of Catania, 95123 Catania, Italy; (R.G.); (C.S.)
| |
Collapse
|
15
|
Cilastatin Preconditioning Attenuates Renal Ischemia-Reperfusion Injury via Hypoxia Inducible Factor-1α Activation. Int J Mol Sci 2020; 21:ijms21103583. [PMID: 32438631 PMCID: PMC7279043 DOI: 10.3390/ijms21103583] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/13/2020] [Accepted: 05/16/2020] [Indexed: 12/16/2022] Open
Abstract
Cilastatin is a specific inhibitor of renal dehydrodipeptidase-1. We investigated whether cilastatin preconditioning attenuates renal ischemia-reperfusion (IR) injury via hypoxia inducible factor-1α (HIF-1α) activation. Human proximal tubular cell line (HK-2) was exposed to ischemia, and male C57BL/6 mice were subjected to bilateral kidney ischemia and reperfusion. The effects of cilastatin preconditioning were investigated both in vitro and in vivo. In HK-2 cells, cilastatin upregulated HIF-1α expression in a time- and dose-dependent manner. Cilastatin enhanced HIF-1α translation via the phosphorylation of Akt and mTOR was followed by the upregulation of erythropoietin (EPO) and vascular endothelial growth factor (VEGF). Cilastatin did not affect the expressions of PHD and VHL. However, HIF-1α ubiquitination was significantly decreased after cilastatin treatment. Cilastatin prevented the IR-induced cell death. These cilastatin effects were reversed by co-treatment of HIF-1α inhibitor or HIF-1α small interfering RNA. Similarly, HIF-1α expression and its upstream and downstream signaling were significantly enhanced in cilastatin-treated kidney. In mouse kidney with IR injury, cilastatin treatment decreased HIF-1α ubiquitination independent of PHD and VHL expression. Serum creatinine level and tubular necrosis, and apoptosis were reduced in cilastatin-treated kidney with IR injury, and co-treatment of cilastatin with an HIF-1α inhibitor reversed these effects. Thus, cilastatin preconditioning attenuated renal IR injury via HIF-1α activation.
Collapse
|
16
|
Chou PL, Chen KH, Chang TC, Chien CT. Repetitively hypoxic preconditioning attenuates ischemia/reperfusion-induced liver dysfunction through upregulation of hypoxia-induced factor-1 alpha-dependent mitochondrial Bcl-xl in rat. CHINESE J PHYSIOL 2020; 63:68-76. [PMID: 32341232 DOI: 10.4103/cjp.cjp_74_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Repetitive hypoxic preconditioning (HP) enforces protective effects to subsequently severe hypoxic/ischemic stress. We hypothesized that HP may provide protection against ischemia/reperfusion (I/R) injury in rat livers via hypoxia-induced factor-1 alpha (HIF-1α)/reactive oxygen species (ROS)-dependent defensive mechanisms. Female Wistar rats were exposed to hypoxia (15 h/day) in a hypobaric hypoxic chamber (5500 m) for HP induction, whereas the others were kept in sea level. These rats were subjected to 45 min of hepatic ischemia by portal vein occlusion followed by 6 h of reperfusion. We evaluated HIF-1α in nuclear extracts, MnSOD, CuZnSOD, catalase, Bad/Bcl-xL/caspase 3/poly-(ADP-ribose)-polymerase (PARP), mitochondrial Bcl-xL, and cytosolic cytochrome C expression with Western blot and nitroblue tetrazolium/3-nitrotyrosine stain. Kupffer cell infiltration and terminal deoxynucleotidyl transferase-mediated nick-end labeling method apoptosis were determined by immunocytochemistry. The ROS value from liver surface and bile was detected by an ultrasensitive chemiluminescence-amplification method. Hepatic function was assessed with plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. HP increased nuclear translocation of HIF-1α and enhanced Bcl-xL, MnSOD, CuZnSOD, and catalase protein expression in a time-dependent manner. The response of HP enhanced hepatic HIF-1α, and Bcl-xL expression was abrogated by a HIF-1α inhibitor YC-1. Hepatic I/R increased ROS levels, myeloperoxidase activity, Kupffer cell infiltration, ALT and AST levels associated with the enhancement of cytosolic Bad translocation to mitochondria, release of cytochrome C to cytosol, and activation of caspase 3/PARP-mediated apoptosis. HP significantly ameliorated hepatic I/R-enhanced oxidative stress, apoptosis, and mitochondrial and hepatic dysfunction. In summary, HP enhances HIF-1α/ROS-dependent cascades to upregulate mitochondrial Bcl-xL protein expression and to confer protection against I/R injury in the livers.
Collapse
Affiliation(s)
- Pei-Lei Chou
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Kuo-Hsin Chen
- Department of Surgery, Division of General Surgery, Far-Eastern Memorial Hospital; Department of Electrical Engineering, Yuan Ze University, Taoyuan City, Taiwan
| | - Tzu-Ching Chang
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chiang-Ting Chien
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
17
|
Nasr AM, Rezq S, Shaheen A, Elshazly SM. Renal protective effect of nebivolol in rat models of acute renal injury: role of sodium glucose co-transporter 2. Pharmacol Rep 2020; 72:956-968. [PMID: 32128711 DOI: 10.1007/s43440-020-00059-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/17/2019] [Accepted: 01/22/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Upregulation of the sodium glucose co-transporter (SGLT2) is implicated in acute renal injury (ARI) progression and is regulated by extracellular signal-regulated kinase (ERK), hypoxia-inducible factor 1 alpha (HIF1α) or prostaglandin E2 (PGE2). This study aimed to assess the possible protective effect of nebivolol on renal ischemia/reperfusion (IR) and glycerol-induced ARI targeting SGLT2 via modulating the ERK-HIF1α pathway. METHODS Rats were divided into control, sham, IR or nebivolol-treated group, in which rats were treated with nebivolol (10 mg/kg) for 3 days prior to the induction of IR. The rats were subjected to renal ischemia by bilateral clamping of the pedicles for 45 min, followed by 24 h reperfusion. Another group of rats received the vehicle or nebivolol (10 mg/kg) for 3 days followed by injection of 50% glycerol (8 ml/kg, IM) or saline. Kidney function tests, systolic blood pressure (SBP), oxidative stress markers [malondialdehyde (MDA) and NADPH oxidase] and kidney levels of nitric oxide (NO), inducible nitric oxide synthase (iNOS), HIF1α, ERK phosphorylation and PGE2 were determined. Additionally, renal sections were used for histological grading of renal injury and immunological expression of SGLT2. RESULTS ARI rats showed significantly increased SBP, poor kidney function tests, increased oxidative stress, iNOS, NO, HIF1α levels, decreased PGE2 and ERK phosphorylation and upregulation of SGLT2 expression. Nebivolol treatment protected against the kidney damage both on the biochemical and histological levels. CONCLUSION Nebivolol has a direct renoprotective effect, at least in part, by down-regulating SGLT2 possibly via modulating HIF1α, ERK activity and PGE2 production.
Collapse
Affiliation(s)
- Ahmed M Nasr
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, Badr City, Egypt
| | - Samar Rezq
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt. .,Department of Cell and Molecular Biology, UMMC, 2500 N State St., Jackson, MS, 39216, USA.
| | - Aya Shaheen
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, Badr City, Egypt
| | - Shimaa M Elshazly
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
18
|
Güney Ş, Dinçer S, Göktaş G, Take-Kaplanoğlu G. Neuroprotective role of delta opioid receptors in hypoxic preconditioning. Turk J Med Sci 2019; 49:1568-1576. [PMID: 31652039 PMCID: PMC7018290 DOI: 10.3906/sag-1810-51] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 08/04/2019] [Indexed: 12/15/2022] Open
Abstract
Background/aim The purpose of the present study was to explore the neuroprotective role of delta opioid receptors (DOR) in the rat cortex in hypoxic preconditioning. Materials and methods Rats were randomly divided into 8 groups: control (C), sham (S), hypoxic preconditioning (PC), severe hypoxia (SH), PC + SH, PC + SH + Saline (PS), PC + SH + DPDPE (DPDPE, selective DOR agonist), PC + SH + NT (NT, Naltrindole, selective DOR antagonist). Drugs were administered intracerebroventrically. Twenty four h after the end of 3 consecutive days of PC (10% O2, 2 h/day), the rats were subjected to severe hypoxia (7% O2 for 3 h). Bcl-2 and cyt-c were measured by western blot, and caspase-3 was observed immunohistochemically. Results Bcl-2 expressions in the PC group were higher than in control, SH, and PC + SH groups. Even though there were no significant differences between the groups in terms of cyt-c levels, caspase-3 immunoreactivity of cortical neurons and glial cells in the severe hypoxia and NT groups were higher than in the control, sham, and hypoxic preconditioning groups. DPDPE administration diminished caspase-3 immunoreactivity compared with all of the severe hypoxia groups. Conclusions These results suggest that cortical cells are resistant to apoptosis via increased expression of Bcl-2 and decreased immunoreactivity of caspase-3 in the cortex, and that DOR is involved in neuroprotection induced by hypoxic preconditioning via the caspase-3 pathway in cortical neurons.
Collapse
Affiliation(s)
- Şevin Güney
- Department of Physiology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Sibel Dinçer
- Department of Physiology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Güleser Göktaş
- Department of Histology and Embryology, Faculty of Medicine, Lokman Hekim University, Ankara, Turkey
| | - Gülnur Take-Kaplanoğlu
- Department of Histology and Embryology, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
19
|
Hypercapnic hypoxia as a potential means to extend life expectancy and improve physiological activity in mice. Biogerontology 2019; 20:677-686. [DOI: 10.1007/s10522-019-09821-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/10/2019] [Indexed: 01/09/2023]
|
20
|
Lee JW, Ko J, Ju C, Eltzschig HK. Hypoxia signaling in human diseases and therapeutic targets. Exp Mol Med 2019; 51:1-13. [PMID: 31221962 PMCID: PMC6586801 DOI: 10.1038/s12276-019-0235-1] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 12/17/2018] [Indexed: 02/07/2023] Open
Abstract
Since the discovery of hypoxia-inducible factor (HIF), numerous studies on the hypoxia signaling pathway have been performed. The role of HIF stabilization during hypoxia has been extended from the induction of a single gene erythropoietin to the upregulation of a couple of hundred downstream targets, which demonstrates the complexity and importance of the HIF signaling pathway. Accordingly, HIF and its downstream targets are emerging as novel therapeutic options to treat various organ injuries. In this review, we discuss the current understanding of HIF signaling in four different organ systems, including the heart, lung, liver, and kidney. We also discuss the divergent roles of HIF in acute and chronic disease conditions and their revealed functions. Finally, we introduce some of the efforts that are being performed to translate our current knowledge in hypoxia signaling to clinical medicine.
Collapse
Affiliation(s)
- Jae W Lee
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Junsuk Ko
- Department of Biochemistry and Molecular Biology, MD Anderson UT Health Graduate School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Cynthia Ju
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Holger K Eltzschig
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
21
|
Cheng WJ, Liu X, Zhang L, Guo XQ, Wang FW, Zhang Y, Tian YM. Chronic intermittent hypobaric hypoxia attenuates skeletal muscle ischemia-reperfusion injury in mice. Life Sci 2019; 231:116533. [PMID: 31173783 DOI: 10.1016/j.lfs.2019.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/25/2019] [Accepted: 06/03/2019] [Indexed: 10/26/2022]
Abstract
AIM The aim of this study was to investigate the protective effect of chronic intermittent hypobaric hypoxia (CIHH) against skeletal muscle ischemia-reperfusion (IR) injury and to determine the underlying mechanism. MAIN METHODS C57BL/6 mice were randomly divided into 3 groups: skeletal muscle IR injury group (IR), CIHH pretreatment following IR group (IR + CIHH), and sham operation group (Sham). The skeletal muscle IR injury model was induced by the unilateral application of a tourniquet on a hind limb for 3 h and then releasing it for 24 h. CIHH pretreatment simulating a 5000-m altitude was applied 6 h per day for 28 days. The functional and morphological performance of IR-injured gastrocnemius muscle was evaluated using contraction force, H&E staining, and transmission electron microscopy. IR injury-induced CD68+ macrophage infiltration was assessed by immunofluorescence. TNFα levels in serum and muscle were measured by ELISA and western blotting, respectively. Apoptosis was examined by TUNEL staining and Cleaved Caspase-3 protein expression. KEY FINDINGS Acute IR injury resulted in reduced contraction tension, morphological destruction, macrophage infiltration, increased TNFα levels, and apoptosis in gastrocnemius muscle. CIHH pretreatment significantly ameliorated contraction function and morphological performance in IR-injured skeletal muscle. In addition, CIHH pretreatment resulted in marked decreases in CD68+ macrophage infiltration, TNFα levels, and apoptosis. SIGNIFICANCE These data demonstrated that CIHH has a protective effect against acute IR injury in skeletal muscle via inhibition of inflammation and apoptosis.
Collapse
Affiliation(s)
- Wen-Jie Cheng
- Department of Anesthesiology, Tianjin Hospital, Tianjin 300000, China; Graduate school, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Xin Liu
- Department of Neurology, Second Hospital of Xi'an Medical University, Xi'an, Shanxi 710038, China
| | - Li Zhang
- Department of Orthopedics, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China
| | - Xin-Qi Guo
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Fu-Wei Wang
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Yi Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Yan-Ming Tian
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei 050017, China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei 050000, China.
| |
Collapse
|
22
|
Späth MR, Bartram MP, Palacio-Escat N, Hoyer KJR, Debes C, Demir F, Schroeter CB, Mandel AM, Grundmann F, Ciarimboli G, Beyer A, Kizhakkedathu JN, Brodesser S, Göbel H, Becker JU, Benzing T, Schermer B, Höhne M, Burst V, Saez-Rodriguez J, Huesgen PF, Müller RU, Rinschen MM. The proteome microenvironment determines the protective effect of preconditioning in cisplatin-induced acute kidney injury. Kidney Int 2018; 95:333-349. [PMID: 30522767 DOI: 10.1016/j.kint.2018.08.037] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 07/24/2018] [Accepted: 08/16/2018] [Indexed: 01/18/2023]
Abstract
Acute kidney injury (AKI) leads to significant morbidity and mortality; unfortunately, strategies to prevent or treat AKI are lacking. In recent years, several preconditioning protocols have been shown to be effective in inducing organ protection in rodent models. Here, we characterized two of these interventions-caloric restriction and hypoxic preconditioning-in a mouse model of cisplatin-induced AKI and investigated the underlying mechanisms by acquisition of multi-layered omic data (transcriptome, proteome, N-degradome) and functional parameters in the same animals. Both preconditioning protocols markedly ameliorated cisplatin-induced loss of kidney function, and caloric restriction also induced lipid synthesis. Bioinformatic analysis revealed mRNA-independent proteome alterations affecting the extracellular space, mitochondria, and transporters. Interestingly, our analyses revealed a strong dissociation of protein and RNA expression after cisplatin treatment that showed a strong correlation with the degree of damage. N-degradomic analysis revealed that most posttranscriptional changes were determined by arginine-specific proteolytic processing. This included a characteristic cisplatin-activated complement signature that was prevented by preconditioning. Amyloid and acute-phase proteins within the cortical parenchyma showed a similar response. Extensive analysis of disease-associated molecular patterns suggested that transcription-independent deposition of amyloid P-component serum protein may be a key component in the microenvironmental contribution to kidney damage. This proof-of-principle study provides new insights into the pathogenesis of cisplatin-induced AKI and the molecular mechanisms underlying organ protection by correlating phenotypic and multi-layered omics data.
Collapse
Affiliation(s)
- Martin R Späth
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Malte P Bartram
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Nicolàs Palacio-Escat
- COMBINE-Joint Research Center for Computational Biomedicine RWTH Aachen University, Aachen, Germany
| | - K Johanna R Hoyer
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Cedric Debes
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Fatih Demir
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
| | - Christina B Schroeter
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Amrei M Mandel
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Franziska Grundmann
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Giuliano Ciarimboli
- Department of Experimental Nephrology, University Hospital of Münster, Münster, Germany
| | - Andreas Beyer
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Jayachandran N Kizhakkedathu
- Department of Pathology, Centre for Blood Research, The University of British Columbia, British Columbia, Vancouver, Canada; Laboratory Medicine, Department of Chemistry, The University of British Columbia, British Columbia, Vancouver, Canada
| | - Susanne Brodesser
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Heike Göbel
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Jan U Becker
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Martin Höhne
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Volker Burst
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Julio Saez-Rodriguez
- COMBINE-Joint Research Center for Computational Biomedicine RWTH Aachen University, Aachen, Germany; Faculty of Medicine Bioquant, Institute for Computational Biomedicine, Heidelberg University, Heidelberg, Germany
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
| | - Roman-Ulrich Müller
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany.
| | - Markus M Rinschen
- Department II of Internal Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany.
| |
Collapse
|
23
|
Patinha D, Pijacka W, Paton JFR, Koeners MP. Cooperative Oxygen Sensing by the Kidney and Carotid Body in Blood Pressure Control. Front Physiol 2017; 8:752. [PMID: 29046642 PMCID: PMC5632678 DOI: 10.3389/fphys.2017.00752] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/15/2017] [Indexed: 12/13/2022] Open
Abstract
Oxygen sensing mechanisms are vital for homeostasis and survival. When oxygen levels are too low (hypoxia), blood flow has to be increased, metabolism reduced, or a combination of both, to counteract tissue damage. These adjustments are regulated by local, humoral, or neural reflex mechanisms. The kidney and the carotid body are both directly sensitive to falls in the partial pressure of oxygen and trigger reflex adjustments and thus act as oxygen sensors. We hypothesize a cooperative oxygen sensing function by both the kidney and carotid body to ensure maintenance of whole body blood flow and tissue oxygen homeostasis. Under pathological conditions of severe or prolonged tissue hypoxia, these sensors may become continuously excessively activated and increase perfusion pressure chronically. Consequently, persistence of their activity could become a driver for the development of hypertension and cardiovascular disease. Hypoxia-mediated renal and carotid body afferent signaling triggers unrestrained activation of the renin angiotensin-aldosterone system (RAAS). Renal and carotid body mediated responses in arterial pressure appear to be synergistic as interruption of either afferent source has a summative effect of reducing blood pressure in renovascular hypertension. We discuss that this cooperative oxygen sensing system can activate/sensitize their own afferent transduction mechanisms via interactions between the RAAS, hypoxia inducible factor and erythropoiesis pathways. This joint mechanism supports our view point that the development of cardiovascular disease involves afferent nerve activation.
Collapse
Affiliation(s)
- Daniela Patinha
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, United Kingdom.,Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Wioletta Pijacka
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| | - Julian F R Paton
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| | - Maarten P Koeners
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, United Kingdom.,Institute of Biomedical and Clinical Science, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
24
|
Zhang Z, Yang C, Shen M, Yang M, Jin Z, Ding L, Jiang W, Yang J, Chen H, Cao F, Hu T. Autophagy mediates the beneficial effect of hypoxic preconditioning on bone marrow mesenchymal stem cells for the therapy of myocardial infarction. Stem Cell Res Ther 2017; 8:89. [PMID: 28420436 PMCID: PMC5395756 DOI: 10.1186/s13287-017-0543-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/04/2017] [Accepted: 03/23/2017] [Indexed: 12/12/2022] Open
Abstract
Background Stem cell therapy has emerged as a promising therapeutic strategy for myocardial infarction (MI). However, the poor viability of transplanted stem cells hampers their therapeutic efficacy. Hypoxic preconditioning (HPC) can effectively promote the survival of stem cells. The aim of this study was to investigate whether HPC improved the functional survival of bone marrow mesenchymal stem cells (BM-MSCs) and increased their cardiac protective effect. Methods BM-MSCs, isolated from Tg(Fluc-egfp) mice which constitutively express both firefly luciferase (Fluc) and enhanced green fluorescent protein (eGFP), were preconditioned with HPC (1% O2) for 12 h, 24 h, 36 h, and 48 h, respectively, followed by 24 h of hypoxia and serum deprivation (H/SD) injury. Results HPC dose-dependently increased the autophagy in BM-MSCs. However, the protective effects of HPC for 24 h are most pronounced. Moreover, hypoxic preconditioned BM-MSCs (HPCMSCs) and nonhypoxic preconditioned BM-MSCs (NPCMSCs) were transplanted into infarcted hearts. Longitudinal in vivo bioluminescence imaging (BLI) and immunofluorescent staining revealed that HPC enhanced the survival of engrafted BM-MSCs. Furthermore, HPCMSCs significantly reduced fibrosis, decreased apoptotic cardiomyocytes, and preserved heart function. However, the beneficial effect of HPC was abolished by autophagy inhibition with 3-methyladenine (3-MA) and Atg7siRNA. Conclusion This study demonstrates that HPC may improve the functional survival and the therapeutic efficiencies of engrafted BM-MSCs, at least in part through autophagy regulation. Hypoxic preconditioning may serve as a promising strategy for optimizing cell-based cardiac regenerative therapy. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0543-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Cardiology, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Chao Yang
- Department of Blood Transfusion, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Mingzhi Shen
- Department of Cardiology, Hainan Branch of PLA General Hospital, Sanya, 572013, China
| | - Ming Yang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 201306, China.,School of Basic Medical Sciences, Taishan Medical University, Taian, Shandong, 271000, China
| | - Zhitao Jin
- Department of Cardiology, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Liping Ding
- Department of Cardiology, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Wei Jiang
- Department of Cardiology, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Junke Yang
- Department of Cardiology, The General Hospital of the PLA Rocket Force, Beijing, 100088, China
| | - Haixu Chen
- Core Laboratory of Translational Medicine, Institute of Geriatrics, PLA general Hospital, Beijing, 100853, China
| | - Feng Cao
- Department of Cardiology, The General Hospital of Chinese People's Liberation Army, Beijing, 100853, China.
| | - Taohong Hu
- Department of Cardiology, The General Hospital of the PLA Rocket Force, Beijing, 100088, China.
| |
Collapse
|
25
|
ERK phosphorylation plays an important role in the protection afforded by hypothermia against renal ischemia-reperfusion injury. Surgery 2017; 161:444-452. [DOI: 10.1016/j.surg.2016.07.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/14/2016] [Accepted: 07/29/2016] [Indexed: 12/30/2022]
|
26
|
Xu YM, Ding GH, Huang J, Xiong Y. Tanshinone IIA pretreatment attenuates ischemia/reperfusion-induced renal injury. Exp Ther Med 2016; 12:2741-2746. [PMID: 27698779 DOI: 10.3892/etm.2016.3674] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/05/2016] [Indexed: 12/31/2022] Open
Abstract
Tanshinone IIA is a chemical compound extracted from the root of traditional Chinese herb Salvia miltiorrhiza Bunge. Tanshinone IIA has been suggested to possess anti-inflammatory activity and antioxidizing capability. Recently, accumulating results have indicated the antitumor activity of tanshinone IIA; thus, it has attracted increasing attention. In addition, tanshinone IIA has been indicated to attenuate ischemia/reperfusion induced renal injury (I/RIRI); however, little is known regarding the underlying mechanisms involved in this process. In the present study an I/RIRI rat model was used to analyze the effects of tanshinone IIA on myeloperoxidase (MPO), TNF-α and IL-6 activities using ELISA kits. Furthermore, macrophage migration inhibitory factor (MIF), cleaved caspase-3, B-cell lymphoma 2 (Bcl-2) and p38 mitogen-activated protein kinase (MAPK) protein expression levels were evaluated using western blot analysis. The results indicated that tanshinone IIA protected renal function in I/RIRI rats. ELISA demonstrated that tanshinone IIA significantly reduced MIF, TNF-α and IL-6 activities in I/RIRI rats. Western blot analysis showed that tanshinone IIA significantly suppressed MIF, cleaved caspase-3 and p38 MAPK protein expression levels in I/RIRI rats. The present results suggest that tanshinone IIA pretreatment attenuates I/RIRI via the downregulation of MPO expression, inflammation, MIF, cleaved caspase-3 and p38 MAPK.
Collapse
Affiliation(s)
- Yan-Mei Xu
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Guo-Hua Ding
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jie Huang
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yan Xiong
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
27
|
Sun H, Luo G, Chen D, Xiang Z. A Comprehensive and System Review for the Pharmacological Mechanism of Action of Rhein, an Active Anthraquinone Ingredient. Front Pharmacol 2016; 7:247. [PMID: 27582705 PMCID: PMC4987408 DOI: 10.3389/fphar.2016.00247] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/27/2016] [Indexed: 11/30/2022] Open
Abstract
Rhein is a major medicinal ingredient isolated from several traditional Chinese medicines, including Rheum palmatum L., Aloe barbadensis Miller, Cassia angustifolia Vahl., and Polygonum multiflorum Thunb. Rhein has various pharmacological activities, such as anti-inflammatory, antitumor, antioxidant, antifibrosis, hepatoprotective, and nephroprotective activities. Although more than 100 articles in PubMed are involved in the pharmacological mechanism of action of rhein, only a few focus on the relationship of crosstalk among multiple pharmacological mechanisms. The mechanism of rhein involves multiple pathways which contain close interactions. From the overall perspective, the pathways which are related to the targets of rhein, are initiated by the membrane receptor. Then, MAPK and PI3K-AKT parallel signaling pathways are activated, and several downstream pathways are affected, thereby eventually regulating cell cycle and apoptosis. The therapeutic effect of rhein, as a multitarget molecule, is the synergistic and comprehensive result of the involvement of multiple pathways rather than the blocking or activation of a single signaling pathway. We review the pharmacological mechanisms of action of rhein by consulting literature published in the last 100 years in PubMed. We then summarize these pharmacological mechanisms from a comprehensive, interactive, and crosstalk perspective. In general, the molecular mechanism of action of drug must be understood from a systematic and holistic perspective, which can provide a theoretical basis for precise treatment and rational drug use.
Collapse
Affiliation(s)
- Hao Sun
- School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| | - Guangwen Luo
- School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| | - Dahui Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| | - Zheng Xiang
- School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| |
Collapse
|
28
|
Tian YM, Guan Y, Li N, Ma HJ, Zhang L, Wang S, Zhang Y. Chronic intermittent hypobaric hypoxia ameliorates diabetic nephropathy through enhancing HIF1 signaling in rats. Diabetes Res Clin Pract 2016; 118:90-7. [PMID: 27351799 DOI: 10.1016/j.diabres.2016.06.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/13/2016] [Accepted: 06/05/2016] [Indexed: 12/23/2022]
Abstract
AIM Our previous study demonstrated that chronic intermittent hypobaric hypoxia (CIHH) had anti-diabetes effect. The present study was to explore the renal protective effect of CIHH in diabetic rats. METHODS Sprague-Dawley rats were randomly divided into three groups: diabetes mellitus group (DM, induced by high-fat diet combined with low-dose streptozotocin), diabetes plus CIHH treatment group (DM+CIHH, simulated 5000-m altitude, 6h per day for 28days, after diabetes model confirmed) and control group (CON). Systolic arterial blood pressure (SAP), blood biochemicals, urinary albumin, and histopathology of kidney were determined. The superoxide dismutase (SOD) activity, malondialdehyde (MDA) level, protein levels of hypoxia induced factors (HIFs) and transforming growth factor β1 (TGF-β1) in kidney were assayed. RESULTS The increased SAP, urinary albumin, hyperplasia of glomerular, fibrosis in mesangial and glomerular, and abnormal lipid metabolism in diabetic rats were ameliorated by CIHH treatment. And decreased superoxide dismutase (SOD) activity and increased malondialdehyde (MDA) level in diabetic kidney were reversed in CIHH-treated DM rats. In addition up-regulated TGF-β1 and down-regulated HIF1α in diabetic kidney returned back to normal level in CIHH-treated DM rats. CONCLUSIONS These data demonstrated for the first time that CIHH had protective effects against the early stage damage of diabetic nephropathy through activating HIF1 signaling, improving anti-oxidation and inhibiting TGF-β1 signaling in diabetic rats.
Collapse
Affiliation(s)
- Yan-Ming Tian
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang 050000, PR China
| | - Yue Guan
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang 050000, PR China
| | - Na Li
- Department of Physiology, Medical College, Hebei University, Baoding 071000, PR China
| | - Hui-Jie Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang 050000, PR China
| | - Li Zhang
- Department of Cardiology, Bethune International Peace Hospital, Shijiazhuang 050082, PR China
| | - Sheng Wang
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang 050000, PR China
| | - Yi Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang 050000, PR China.
| |
Collapse
|
29
|
VHL-deficient renal cancer cells gain resistance to mitochondria-activating apoptosis inducers by activating AKT through the IGF1R-PI3K pathway. Tumour Biol 2016; 37:13295-13306. [PMID: 27460078 PMCID: PMC5097090 DOI: 10.1007/s13277-016-5260-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/15/2016] [Indexed: 12/14/2022] Open
Abstract
We previously developed (2-deoxyglucose)-(ABT-263) combination therapy (2DG-ABT), which induces apoptosis by activating Bak in the mitochondria of highly glycolytic cells with varied genetic backgrounds. However, the rates of apoptosis induced by 2DG-ABT were lower in von Hippel-Lindau (VHL)-deficient cancer cells. The re-expression of VHL protein in these cells lowered IGF1R expression in a manner independent of oxygen concentration. Lowering IGF1R expression via small interfering RNA (siRNA) sensitized the cells to 2DG-ABT, suggesting that IGF1R interfered with the activation of apoptosis by the mitochondria. To determine which of the two pathways activated by IGF1R, the Ras-ERK pathway or the PI3K-AKT pathway, was involved in the impairment of mitochondria activation, the cells were treated with a specific inhibitor of either PI3K or ERK, and 2DG-ABT was added to activate the mitochondria. The apoptotic rates resulting from 2DG-ABT treatment were higher in the cells treated with the PI3K inhibitor, while the rates remained approximately the same in the cells treated with the ERK inhibitor. In 2DG-ABT-sensitive cells, a 4-h 2DG treatment caused the dissociation of Mcl-1 from Bak, while ABT treatment alone caused the dissociation of Bcl-xL from Bak without substantially reducing Mcl-1 levels. In 2DG-ABT-resistant cells, Mcl-1 dissociated from Bak only when AKT activity was inhibited during the 4-h 2DG treatment. Thus, in VHL-deficient cells, IGF1R activated AKT and stabilized the Bak-Mcl-1 complex, thereby conferring cell resistance to apoptosis.
Collapse
|
30
|
Chang YK, Choi H, Jeong JY, Na KR, Lee KW, Lim BJ, Choi DE. Dapagliflozin, SGLT2 Inhibitor, Attenuates Renal Ischemia-Reperfusion Injury. PLoS One 2016; 11:e0158810. [PMID: 27391020 PMCID: PMC4938401 DOI: 10.1371/journal.pone.0158810] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/22/2016] [Indexed: 01/24/2023] Open
Abstract
Dapagliflozin, a new type of drug used to treat diabetes mellitus (DM), is a sodium/glucose cotransporter 2 (SGLT2) inhibitor. Although some studies showed that SGLT2 inhibition attenuated reactive oxygen generation in diabetic kidney the role of SGLT2 inhibition is unknown. We evaluated whether SLT2 inhibition has renoprotective effects in ischemia-reperfusion (IR) models. We evaluated whether dapagliflozin reduces renal damage in IR mice model. In addition, hypoxic HK2 cells were treated with or without SGLT2 inhibitor to investigate cell survival, the apoptosis signal pathway, and the induction of hypoxia-inducible factor 1 (HIF1) and associated proteins. Dapagliflozin improved renal function. Dapagliflozin reduced renal expression of Bax, renal tubule injury and TUNEL-positive cells and increased renal expression of HIF1 in IR-injured mice. HIF1 inhibition by albendazole negated the renoprotective effects of dapagliflozin treatment in IR-injured mice. In vitro, dapagliflozin increased the expression of HIF1, AMP-activated protein kinase (AMPK), and ERK and increased cell survival of hypoxic HK2 cells in a dose-dependent manner. In conclusion, dapagliflozin attenuates renal IR injury. HIF1 induction by dapagliflozin may play a role in renoprotection against renal IR injury.
Collapse
Affiliation(s)
- Yoon-Kyung Chang
- Department of Nephrology, Daejeon St. Mary Hospital, Daejeon, South Korea
- Department of Nephrology, Catholic University of Korea, Seoul, South Korea
| | - Hyunsu Choi
- Clinical Research Institute, Daejeon St. Mary Hospital, Daejeon, South Korea
| | - Jin Young Jeong
- Department of Nephrology, School of medicine, Chungnam National University, Daejeon, South Korea
- Department of Medical Science, School of medicine, Chungnam National University, Daejeon, South Korea
| | - Ki-Ryang Na
- Department of Nephrology, School of medicine, Chungnam National University, Daejeon, South Korea
| | - Kang Wook Lee
- Department of Nephrology, School of medicine, Chungnam National University, Daejeon, South Korea
| | - Beom Jin Lim
- Department of pathology, College of medicine, Yeonse University, Seoul, South Korea
- * E-mail: (DEC); (BJL)
| | - Dae Eun Choi
- Department of Nephrology, School of medicine, Chungnam National University, Daejeon, South Korea
- * E-mail: (DEC); (BJL)
| |
Collapse
|
31
|
He XH, Tang JJ, Wang YL, Zhang ZZ, Yan XT. Transduced Heme Oxygenase-1 Fusion Protein Reduces Renal Ischemia/Reperfusion Injury Through Its Antioxidant and Antiapoptotic Roles in Rats. Transplant Proc 2016; 47:1627-32. [PMID: 26293025 DOI: 10.1016/j.transproceed.2015.04.098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 04/15/2015] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Heme oxygenase-1 (HO-1) has a protective role against ischemia/reperfusion (I/R) injury. METHODS We produced an HO-1 fusion protein mediated by cell penetrated peptide PEP-1, also known as PEP-1-HO-1 fusion protein, and investigated its role in renal I/R injury in rats. Male Sprague-Dawley rats were subjected to 45 minutes of ischemia by occluding the bilateral renal arteries and 6 hours of reperfusion to prepare the model of renal I/R. Animals were randomized to receive PEP-1-HO-1 fusion protein or equal volume of physiologic saline 30 minutes before ischemia. RESULTS Administration of PEP-1-HO-1 fusion protein resulted in a significant increase in HO-1 expression. His-probe expression (1 part of the PEP-1-HO-1 fusion protein) was only observed in PEP-1-HO-1-treated animals. I/R caused renal dysfunction and increases in malondialdehyde level and cell apoptosis, and decreased superoxide dismutase activity. Treatment of PEP-1-HO-1 fusion protein reversed these changes. Furthermore, administration of PEP-1-HO-1 inhibited the I/R-induced increase in nuclear factor-κB activation. CONCLUSIONS These findings suggest that transduction of PEP-1-HO-1 attenuates renal I/R injury in rats, which might be partly attributable to its antioxidant and antiapoptotic effects.
Collapse
Affiliation(s)
- X-H He
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| | - J-J Tang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Y-L Wang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Z-Z Zhang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - X-T Yan
- Department of Anesthesiology, Shenzhen Boan Maternity and Child Health Hospital, Shenzhen, China
| |
Collapse
|
32
|
Abstract
Depending on the subpopulation, obstructive sleep apnea (OSA) can affect more than 75% of surgical patients. An increasing body of evidence supports the association between OSA and perioperative complications, but some data indicate important perioperative outcomes do not differ between patients with and without OSA. In this review we will provide an overview of the pathophysiology of sleep apnea and the risk factors for perioperative complications related to sleep apnea. We also discuss a clinical algorithm for the identification and management of OSA patients facing surgery.
Collapse
Affiliation(s)
- Sebastian Zaremba
- Department of Anaesthesia Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, 02114, USA; Department of Neurology, Rheinische-Friedrich-Wilhelms-University, Bonn, D-53127, Germany; German Center for Neurodegenerative Diseases, Bonn, D-53127, Germany
| | - James E Mojica
- Department of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, 02114, USA
| | - Matthias Eikermann
- Department of Anaesthesia Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, 02114, USA; Department of Anaesthesia and Critical Care, University Hospital Essen, Essen, 45147, Germany
| |
Collapse
|
33
|
Kapitsinou PP, Haase VH. Molecular mechanisms of ischemic preconditioning in the kidney. Am J Physiol Renal Physiol 2015; 309:F821-34. [DOI: 10.1152/ajprenal.00224.2015] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/21/2015] [Indexed: 12/26/2022] Open
Abstract
More effective therapeutic strategies for the prevention and treatment of acute kidney injury (AKI) are needed to improve the high morbidity and mortality associated with this frequently encountered clinical condition. Ischemic and/or hypoxic preconditioning attenuates susceptibility to ischemic injury, which results from both oxygen and nutrient deprivation and accounts for most cases of AKI. While multiple signaling pathways have been implicated in renoprotection, this review will focus on oxygen-regulated cellular and molecular responses that enhance the kidney's tolerance to ischemia and promote renal repair. Central mediators of cellular adaptation to hypoxia are hypoxia-inducible factors (HIFs). HIFs play a crucial role in ischemic/hypoxic preconditioning through the reprogramming of cellular energy metabolism, and by coordinating adenosine and nitric oxide signaling with antiapoptotic, oxidative stress, and immune responses. The therapeutic potential of HIF activation for the treatment and prevention of ischemic injuries will be critically examined in this review.
Collapse
Affiliation(s)
- Pinelopi P. Kapitsinou
- Departments of Medicine, Anatomy and Cell Biology, and the Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Volker H. Haase
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee; and
- Medicine and Research Services, Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee
| |
Collapse
|
34
|
Lynam EC, Xie Y, Dawson R, Mcgovern J, Upton Z, Wang X. Severe hypoxia and malnutrition collectively contribute to scar fibroblast inhibition and cell apoptosis. Wound Repair Regen 2015; 23:664-71. [DOI: 10.1111/wrr.12343] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/22/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Emily C. Lynam
- Tissue Repair and Regeneration Program; Institute of Health and Biomedical Innovation, Queensland University of Technology; Australia
| | - Yan Xie
- Tissue Repair and Regeneration Program; Institute of Health and Biomedical Innovation, Queensland University of Technology; Australia
| | - Rebecca Dawson
- Tissue Repair and Regeneration Program; Institute of Health and Biomedical Innovation, Queensland University of Technology; Australia
| | - Jacqui Mcgovern
- Tissue Repair and Regeneration Program; Institute of Health and Biomedical Innovation, Queensland University of Technology; Australia
| | - Zee Upton
- Tissue Repair and Regeneration Program; Institute of Health and Biomedical Innovation, Queensland University of Technology; Australia
| | - XiQiao Wang
- Tissue Organ Bank & Tissue Engineering Centre; General Hospital of Ningxia Medical University; Ningxia China
| |
Collapse
|
35
|
Tregub P, Kulikov V, Motin Y, Bespalov A, Osipov I. Combined exposure to hypercapnia and hypoxia provides its maximum neuroprotective effect during focal ischemic injury in the brain. J Stroke Cerebrovasc Dis 2014; 24:381-7. [PMID: 25498739 DOI: 10.1016/j.jstrokecerebrovasdis.2014.09.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/22/2014] [Accepted: 09/05/2014] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND In the present research, we compared the neuroprotective efficiency of combined and isolated exposure to hypoxia and hypercapnia preceding focal cerebral ischemic injury in rats. The study was conducted to verify the hypothesis of a possible increase in normobaric hypoxia (NbH; 90 mm Hg) efficiency when combined with permissive hypercapnia (PH; 50 mm Hg). METHODS The rats from the test groups were subjected to a 15-fold exposure to NbH (90 mm Hg) and/or PH (50 mm Hg). After the 15th exposure, cerebral ischemic injury was induced by photochemical thrombosis. Seventy-two hours later, neurologic deficit was determined on the Neurological Severity Score scale and by the rotarod test, and the volume of cerebral infarction was measured after focal photochemical thrombosis. RESULTS The neurologic deficit decreased most efficiently in rats that underwent PH and hypercapnic hypoxia (HH) exposure, whereas NbH had no impact on the neurologic status of the animals. On the contrary, motor coordination disturbances were minimal during exposure to hypoxia and HH. All respiratory interventions reduced the cerebral ischemic infarction volume in rats. The smallest infarction volumes were registered in the area of photochemical thrombosis in rats from the hypercapnic-hypoxic impact group, whereas exposure to NbH or PH did not show any cross difference. CONCLUSIONS The impact of PH has greater neuroprotective potential compared with NbH. Thus, we can assume that hypercapnia is a predominant factor in providing neuroprotection in combination with hypoxia.
Collapse
Affiliation(s)
- Pavel Tregub
- Department of Pathophysiology, Federal Agency for Health and Social Development, Altai State Medical University, Barnaul, Altai Region, Russia.
| | - Vladimir Kulikov
- Department of Pathophysiology, Federal Agency for Health and Social Development, Altai State Medical University, Barnaul, Altai Region, Russia
| | - Yuri Motin
- Department of Histology, Federal Agency for Health and Social Development, Altai State Medical University, Barnaul, Altai Region, Russia
| | - Andrey Bespalov
- Department of Pathophysiology, Federal Agency for Health and Social Development, Altai State Medical University, Barnaul, Altai Region, Russia
| | - Ilya Osipov
- Department of Pathophysiology, Federal Agency for Health and Social Development, Altai State Medical University, Barnaul, Altai Region, Russia
| |
Collapse
|
36
|
Akhtar MZ, Sutherland AI, Huang H, Ploeg RJ, Pugh CW. The role of hypoxia-inducible factors in organ donation and transplantation: the current perspective and future opportunities. Am J Transplant 2014; 14:1481-7. [PMID: 24909061 DOI: 10.1111/ajt.12737] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 02/11/2014] [Accepted: 03/07/2014] [Indexed: 01/25/2023]
Abstract
Hypoxia-inducible factors are the universal cellular oxygen-sensitive transcription factors that activate a number of hypoxia responsive genes, some of which are responsible for protective cellular functions. During organ donation, allografts are exposed to significant periods of hypoxia and ischemia. Exploiting this pathway during donor management and organ preservation could prevent and reduce allograft injury and improve the outcomes of organ transplantation. We review the evidence on this pathway in organ preservation, drawing on experimental studies on donor management and ischemia reperfusion injury focusing on kidney, liver, cardiac and lung transplantation. We review the major technical and experimental challenges in exploring this pathway and suggest potential future avenues for research.
Collapse
Affiliation(s)
- M Z Akhtar
- Nuffield Department of Surgical Sciences, Oxford Transplant Centre, University of Oxford, Oxford, UK; Centre for Cellular and Molecular Physiology, Old Road Campus, University of Oxford, Oxford, UK
| | | | | | | | | |
Collapse
|
37
|
Chronic intermittent hypoxic preconditioning suppresses pilocarpine-induced seizures and associated hippocampal neurodegeneration. Brain Res 2014; 1563:122-30. [DOI: 10.1016/j.brainres.2014.03.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 01/05/2023]
|
38
|
Stabilization of hypoxia inducible factor-1α ameliorates acute renal neurogenic hypertension. J Hypertens 2014; 32:587-97. [DOI: 10.1097/hjh.0000000000000060] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
39
|
Magalhães J, Gonçalves IO, Lumini-Oliveira J, Marques-Aleixo I, Passos E, Rocha-Rodrigues S, Machado NG, Moreira AC, Rizo D, Viscor G, Oliveira PJ, Torrella JR, Ascensão A. Modulation of cardiac mitochondrial permeability transition and apoptotic signaling by endurance training and intermittent hypobaric hypoxia. Int J Cardiol 2014; 173:40-5. [PMID: 24602319 DOI: 10.1016/j.ijcard.2014.02.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/23/2014] [Accepted: 02/08/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND Modulation of the mitochondrial permeability transition pore (MPTP) and inhibition of the apoptotic signaling are critically associated with the cardioprotective phenotypes afforded by both intermittent hypobaric-hypoxia (IHH) and endurance-training (ET). We recently proposed that IHH and ET improve cardiac function and basic mitochondrial capacity, although without showing addictive effects. Here we investigate whether a combination of IHH and ET alters cardiac mitochondrial vulnerability to MPTP and related apoptotic signaling. METHODS Male Wistar rats were divided into normoxic-sedentary (NS), normoxic-exercised (NE, 1h/day/5 week treadmill-running), hypoxic-sedentary (HS, 6000 m, 5h/day/5 weeks) and hypoxic-exercised (HE) to study susceptibility to calcium-induced cardiac MPTP opening. Mitochondrial cyclophilin D (CypD), adenine nucleotide translocator (ANT), Bax and Bcl-2 protein contents were semi-quantified by Western blotting. Cardiac caspase 3-, 8- and 9-like activities were measured. Mitochondrial aconitase and superoxide dismutase (MnSOD) activity and malondialdehyde (MDA) and sulphydryl group (-SH) content were determined. RESULTS Susceptibility to MPTP decreased in NE and HS vs. NS and even further in HE. The ANT content increased in HE vs. NS. Bcl-2/Bax ratio increased in NE and HS compared to NS. Decreased activities in tissue caspase 3-like (HE vs. NS) and caspase 9-like (HS and HE vs. NS) were observed. Mitochondrial aconitase increased in NE and HS vs. NS. No alterations between groups were observed for caspase 8-like activity, MnSOD, CypD, MDA and -SH. CONCLUSIONS Data confirm that IHH and ET modulate cardiac mitochondria to a protective phenotype characterized by decreased MPTP induction and apoptotic signaling, although without visible addictive effects as initially hypothesized.
Collapse
Affiliation(s)
- J Magalhães
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Portugal.
| | - I O Gonçalves
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Portugal
| | - J Lumini-Oliveira
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Portugal; Faculty of Health Sciences, University of Fernando Pessoa, Portugal
| | - I Marques-Aleixo
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Portugal
| | - E Passos
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Portugal
| | - S Rocha-Rodrigues
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Portugal
| | - N G Machado
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - A C Moreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - D Rizo
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Spain
| | - G Viscor
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Spain
| | - P J Oliveira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - J R Torrella
- Department of Physiology and Immunology, Faculty of Biology, University of Barcelona, Spain
| | - A Ascensão
- Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Portugal
| |
Collapse
|
40
|
Shokeir AA, Hussein AM, Barakat N, Abdelaziz A, Elgarba M, Awadalla A. Activation of nuclear factor erythroid 2-related factor 2 (Nrf2) and Nrf-2-dependent genes by ischaemic pre-conditioning and post-conditioning: new adaptive endogenous protective responses against renal ischaemia/reperfusion injury. Acta Physiol (Oxf) 2014; 210:342-53. [PMID: 24010821 DOI: 10.1111/apha.12164] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 02/25/2013] [Accepted: 09/02/2013] [Indexed: 12/12/2022]
Abstract
AIM To investigate the impact of ischaemic pre-conditioning (Ipre) and post-conditioning (Ipost) on expression of nuclear factor erythroid 2-related factor 2 (Nrf2) gene and its dependent genes, haem oxygenase-1 (HO-1) and NADPH-quinone oxidoreductase-1 (NQO-1); inflammatory cytokines TNF-α, IL1β and ICAM-1; and apoptotic markers such as caspase-3 in renal ischaemia/reperfusion (I/R) injury. METHODS One hundred and fifty male Sprague Dawley rats were classified into five groups (each consisted of 30 rats): sham, control (I/R), Ipre + I/R, Ipre without I/R and Ipost + I/R. Serum creatinine and blood urea nitrogen (BUN) were measured at 2, 24 and 48 h after ischaemia. In kidney tissues, mRNA of Nrf2, HO-1, NQO-1, TNF-α, IL-1β and ICAM-1 and immunohistochemical expression of Nrf2 and caspase-3 were assessed. RESULTS Serum creatinine and BUN improved significantly in Pre + I/R group; however, they did not show any significant improvement in Post + I/R group. Also, Ipre-I/R group showed non-significant change in serum creatinine and BUN. The expression of Nrf2, HO-1 and NQO-1 is increased significantly in Pre + I/R and Pre - I/R groups, while the enhancement in Post + I/R group was non-significant. Moreover, the expression of proinflammatory cytokines (TNF-α, IL-1 and ICAM-1) and apoptotic (caspase-3) markers showed high significant attenuation in Pre + I/R group, but slight significant attenuation in Pre + I/R group. CONCLUSION The renoprotective action of Ipre might include early activation and enhanced expression of Nrf2 gene and its dependent antioxidant genes, HO-1 and NOQ1, as endogenous adaptive renoprotective genes, as well as reduction in TNF-α, IL-1β, ICAM-1 and caspase-3.
Collapse
Affiliation(s)
- A. A. Shokeir
- Urology and Nephrology Center; Faculty of Medicine; Mansoura University; Mansoura Egypt
| | - A. M. Hussein
- Physiology Department; Faculty of Medicine; Mansoura University; Mansoura Egypt
| | - N. Barakat
- Urology and Nephrology Center; Faculty of Medicine; Mansoura University; Mansoura Egypt
| | - A. Abdelaziz
- Pathology Department; Faculty of Medicine; Mansoura University; Mansoura Egypt
| | - M. Elgarba
- Urology Department; Faculty of Medicine; Omar ElMokhtar University; Bida Libya
| | - A. Awadalla
- Urology and Nephrology Center; Faculty of Medicine; Mansoura University; Mansoura Egypt
| |
Collapse
|
41
|
Lipopolysaccharide-induced cross-tolerance against renal ischemia–reperfusion injury is mediated by hypoxia-inducible factor-2α-regulated nitric oxide production. Kidney Int 2014; 85:276-88. [DOI: 10.1038/ki.2013.342] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 05/20/2013] [Accepted: 06/13/2013] [Indexed: 11/09/2022]
|
42
|
Comparative Effects of Phosphoenolpyruvate, a Glycolytic Intermediate, as an Organ Preservation Agent with Glucose and N-Acetylcysteine against Organ Damage during Cold Storage of Mouse Liver and Kidney. ISRN PHARMACOLOGY 2013; 2013:375825. [PMID: 24490082 PMCID: PMC3893771 DOI: 10.1155/2013/375825] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 10/20/2013] [Indexed: 11/18/2022]
Abstract
We evaluated the usefulness of phosphoenolpyruvate (PEP), a glycolytic intermediate with antioxidative and energy supplementation potentials, as an organ preservation agent. Using ex vivo mouse liver and kidney of a static cold storage model, we compared the effects of PEP against organ damage and oxidative stress during cold preservation with those of glucose or N-acetylcysteine (NAC). Lactate dehydrogenase (LDH) leakage, histological changes, and oxidative stress parameters (measured as thiobarbituric acid reactive substance and glutathione content) were determined. PEP (100 mM) significantly prevented an increase in LDH leakage, histological changes, such as tubulonecrosis and vacuolization, and changes in oxidative stress parameters during 72 h of cold preservation in mouse liver. Although glucose (100 mM) partly prevented LDH leakage and histological changes, no effects against oxidative stress were observed. By contrast, NAC inhibited oxidative stress in the liver and did not prevent LDH leakage or histological changes. PEP also significantly prevented kidney damage during cold preservation in a dose-dependent manner, and the protective effects were superior to those of glucose and NAC. We suggest that PEP, a functional carbohydrate with organ protective and antioxidative activities, may be useful as an organ preservation agent in clinical transplantation.
Collapse
|
43
|
Tregub P, Kulikov V, Bespalov A. Tolerance to acute hypoxia maximally increases in case of joint effect of normobaric hypoxia and permissive hypercapnia in rats. ACTA ACUST UNITED AC 2013; 20:165-70. [PMID: 24083870 DOI: 10.1016/j.pathophys.2013.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/26/2013] [Accepted: 09/07/2013] [Indexed: 11/27/2022]
Abstract
INTRODUCTION We studied the comparative efficacy of independent and combined effects of normobaric hypoxia (90mmHg) and permissive hypercapnia (50mmHg) in increasing the tolerance of rats to acute hypobaric hypoxia. METHODS We determined the time to loss of pose and life duration as a measure to assess the degree of tolerance of animals to hypobaric hypoxia by exposing them to an altitude of 11,500m (barometric=180mmHg). RESULTS Exposure to hypercapnic hypoxia increased the tolerance to acute hypobaric hypoxia compared to exposure to normobaric hypoxia or permissive hypercapnia alone. DISCUSSION The positive effects of hypercapnia and hypercapnic hypoxia occurred after one exposure, and increasing the number of exposures proportionally increased the tolerance to acute hypobaric hypoxia. The effect of permissive hypercapnia on increasing the tolerance to acute hypobaric hypoxia was found to be significantly greater than that of exposure to normobaric hypoxia. Therefore, we propose that hypercapnia is the dominant factor in increasing tolerance to acute hypobaric hypoxia. CONCLUSION Tolerance to acute hypoxia maximally increases in case of joint effect of normobaric hypoxia and permissive hypercapnia.
Collapse
Affiliation(s)
- Pavel Tregub
- Department of Pathophysiology, Altai State Medical University, Barnaul, Russia.
| | | | | |
Collapse
|
44
|
Wang Z, Si LY. Hypoxia-inducible factor-1α and vascular endothelial growth factor in the cardioprotective effects of intermittent hypoxia in rats. Ups J Med Sci 2013; 118:65-74. [PMID: 23441597 PMCID: PMC3633332 DOI: 10.3109/03009734.2013.766914] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 12/11/2012] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE This study investigated the effects of short-term intermittent hypoxia (IH) preconditioning on cardiac structure and function in rats and the influence of ischemia reperfusion (I/R) injury. Special attention was then paid to the involvement of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF). METHODS Wistar rats were given IH treatment for 1, 7, 14, or 28 days. Some of them were thereafter subject to myocardial infarction surgery. Right ventricle systolic pressure (RVSP), myocardial capillary density (CD), and mRNA/protein expression of HIF-1α, VEGF, and Bcl-2 in rat myocardial tissue were determined. Apoptotic cell number was determined by TUNEL staining, and concentrations of malondialdehyde (MDA) and superoxide dismutase (SOD) were measured. RESULTS IH treatment for 1, 7, 14, and 28 days reduced the myocardial infarction size, whereas IH for 28 days increased the RVSP, ratio of right to left ventricle weight (RV/LV+S), and CD. IH up-regulated the mRNA and protein levels of HIF-1α, VEGF, and Bcl-2 both under normal and I/R conditions. The induced expression of HIF-1α and VEGF by IH reached a peak after 7 days of treatment. Moreover, IH for 28 days induced cardiomyocyte apoptosis, whereas prior treatment with IH for 1, 7, 14, and 28 days all markedly attenuated the apoptosis effected by the subsequent I/R injury. IH also decreased the concentrations of MDA but increased those of SOD in myocardial tissue of both in normal rats and following I/R. CONCLUSIONS The present study demonstrates that short-term IH protects the heart from I/R injury through inhibiting apoptosis and oxidative stress. The up-regulation of HIF-1α and VEGF by short-term IH may participate in the cardioprotective effect of IH.
Collapse
Affiliation(s)
- Zhang Wang
- Department of Geriatrics, The First Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Liang-Yi Si
- Department of Geriatrics, The First Affiliated Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
45
|
Milton SL, Dawson-Scully K. Alleviating brain stress: what alternative animal models have revealed about therapeutic targets for hypoxia and anoxia. FUTURE NEUROLOGY 2013; 8:287-301. [PMID: 25264428 DOI: 10.2217/fnl.13.12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
While the mammalian brain is highly dependent on oxygen, and can withstand only a few minutes without air, there are both vertebrate and invertebrate examples of anoxia tolerance. One example is the freshwater turtle, which can withstand days without oxygen, thus providing a vertebrate model with which to examine the physiology of anoxia tolerance without the pathology seen in mammalian ischemia/reperfusion studies. Insect models such as Drosophila melanogaster have additional advantages, such as short lifespans, low cost and well-described genetics. These models of anoxia tolerance share two common themes that enable survival without oxygen: entrance into a state of deep hypometabolism, and the suppression of cellular injury during anoxia and upon restoration of oxygen. The study of such models of anoxia tolerance, adapted through millions of years of evolution, may thus suggest protective pathways that could serve as therapeutic targets for diseases characterized by oxygen deprivation and ischemic/reperfusion injuries.
Collapse
Affiliation(s)
- Sarah L Milton
- Department of Biological Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA
| | - Ken Dawson-Scully
- Department of Biological Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA
| |
Collapse
|
46
|
High concentrations of L-ascorbic acid specifically inhibit the growth of human leukemic cells via downregulation of HIF-1α transcription. PLoS One 2013; 8:e62717. [PMID: 23626851 PMCID: PMC3633866 DOI: 10.1371/journal.pone.0062717] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 03/25/2013] [Indexed: 12/15/2022] Open
Abstract
We examined the antileukemic effects of high concentrations of L-ascorbic acid (high AA) on human leukemic cells. In vitro, high AA markedly induced apoptosis in various leukemic cell lines by generating hydrogen peroxide (H2O2) but not in normal hematopoietic stem/progenitor cells. High AA significantly repressed leukemic cell proliferation as well as neoangiogenesis in immunodeficient mice. We then noted that in leukemic cells, HIF-1α transcription was strongly suppressed by high AA and correlated with the transcription of VEGF. Our data indicate that exposure to high AA markedly increased the intracellular AA content of leukemic cells and inhibited the nuclear translocation of NF-κB, which mediates expression of HIF-1α. We next generated K562 cells that overexpressed HIF-1α (K562-HIF1α cells) and assessed the mechanistic relationship between inhibition of HIF-1α transcription and the antileukemic effect of high AA. The ability of high AA to induce apoptosis was significantly lower in K562-HIF1α cells than in K562 cells in vitro. We found that expression of HIF-1α-regulated antiapoptotic proteins of the Bcl-2 family, such as Mcl-1, Bcl-xL, and Bcl-2, was significantly suppressed by high AA in K562 cells, but was sustained at higher levels in K562-HIF1α cells, regardless of high AA exposure. Moreover, repression of cell proliferation and neoangiogenesis by high AA was completely abrogated in mice receiving transplants of K562-HIF1α cells. These results indicate that, along with H2O2 generation, downregulation of HIF-1α transcription plays a crucial role in growth inhibition of human leukemic cells by high AA.
Collapse
|
47
|
Machado C, Malheiros DMAC, Adamy A, Santos LS, Silva Filho AFD, Nahas WC, Lemos FBC. Protective response in renal transplantation: no clinical or molecular differences between open and laparoscopic donor nephrectomy. Clinics (Sao Paulo) 2013; 68:483-8. [PMID: 23778338 PMCID: PMC3634954 DOI: 10.6061/clinics/2013(04)08] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 12/11/2012] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE Prolonged warm ischemia time and increased intra-abdominal pressure caused by pneumoperitoneum during a laparoscopic donor nephrectomy could enhance renal ischemia reperfusion injury. For this reason, laparoscopic donor nephrectomy may be associated with a slower graft function recovery. However, an adequate protective response may balance the ischemia reperfusion damage. This study investigated whether laparoscopic donor nephrectomy modified the protective response of renal tissue during kidney transplantation. METHODS Patients undergoing live renal transplantation were prospectively analyzed and divided into two groups based on the donor nephrectomy approach used: 1) the control group, recipients of open donor nephrectomy (n = 29), and 2) the study group, recipients of laparoscopic donor nephrectomy (n = 26). Graft biopsies were obtained at two time points: T-1 = after warm ischemia time and T+1 = 45 minutes after kidney reperfusion. The samples were analyzed by immunohistochemistry for the Bcl-2 and HO-1 proteins and by real-time polymerase chain reaction for the mRNA expression of Bcl-2, HO-1 and vascular endothelial growth factor. RESULTS The area under the curve for creatinine and delayed graft function were similar in both the laparoscopic and open groups. There was no difference in the protective gene expression between the laparoscopic donor nephrectomy and open donor nephrectomy groups. The protein expression of HO-1 and Bcl-2 were similar between the open and laparoscopic groups. Furthermore, the gene expression of B-cell lymphoma 2 correlated with the warm ischemia time in the open group (p = 0.047) and that of vascular endothelial growth factor with the area under the curve for creatinine in the laparoscopic group (p = 0.01). CONCLUSION The postoperative renal function and protective factor expression were similar between laparoscopic donor nephrectomy and open donor nephrectomy. These findings ensure laparoscopic donor nephrectomy utilization in renal transplantation.
Collapse
Affiliation(s)
- Christiano Machado
- Hospital de Caridade, Irmandade Santa Casa de Misericórdia de Curitiba, Division of Urology, Curitiba/PR, Brazil.
| | | | | | | | | | | | | |
Collapse
|
48
|
Nangaku M, Rosenberger C, Heyman SN, Eckardt KU. Regulation of hypoxia-inducible factor in kidney disease. Clin Exp Pharmacol Physiol 2013; 40:148-57. [DOI: 10.1111/1440-1681.12005] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 08/10/2012] [Accepted: 08/15/2012] [Indexed: 12/14/2022]
Affiliation(s)
- Masaomi Nangaku
- Division of Nephology and Endocrinology; The University of Tokyo School of Medicine; Tokyo; Japan
| | | | - Samuel N Heyman
- Department of Medicine; Hadassah Hebrew University Hospital; Mt Scopus; Jerusalem; Israel
| | - Kai-Uwe Eckardt
- Department of Nephrology and Hypertension; Friedrich-Alexander University; Erlangen-Nuremberg; Germany
| |
Collapse
|
49
|
Basile DP, Dwinell MR, Wang SJ, Shames BD, Donohoe DL, Chen S, Sreedharan R, Van Why SK. Chromosome substitution modulates resistance to ischemia reperfusion injury in Brown Norway rats. Kidney Int 2012; 83:242-50. [PMID: 23235564 PMCID: PMC3561482 DOI: 10.1038/ki.2012.391] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Brown Norway rats (BN, BN/NHsdMcwi) are profoundly resistant to developing acute kidney injury (AKI) following ischemia reperfusion. To help define the genetic basis for this resistance, we used consomic rats, in which individual chromosomes from BN rats were placed into the genetic background of Dahl SS rats (SS, SS/JrHsdMcwi) to determine which chromosomes contain alleles contributing to protection from AKI. The parental strains had dramatically different sensitivity to ischemia reperfusion with plasma creatinine levels following 45 minutes of ischemia and 24 hours reperfusion of 4.1 and 1.3 mg/dl in SS and in BN, respectively. No consomic strain showed protection similar to the parental BN strain. Nine consomic strains (SS-7BN, SS-XBN, SS-8BN, SS-4BN, SS-15BN, SS-3BN, SS-10BN, SS-6BN, and SS-5BN) showed partial protection (plasma creatinine about 2.5-3.0 mg/dl), suggesting that multiple alleles contribute to the severity of AKI. In silico analysis was performed using disease ontology database terms and renal function quantitative trait loci from the rat genome database on the BN chromosomes giving partial protection from AKI. This tactic identified at least 36 candidate genes, with several previously linked to the pathophysiology of AKI. Thus, natural variants of these alleles or yet to be identified alleles on these chromosomes provide protection against AKI. These alleles may be potential modulators of AKI in susceptible patient populations.
Collapse
Affiliation(s)
- David P Basile
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Beiral HJV, Rodrigues-Ferreira C, Fernandes AM, Gonsalez SR, Mortari NC, Takiya CM, Sorenson MM, Figueiredo-Freitas C, Galina A, Vieyra A. The impact of stem cells on electron fluxes, proton translocation, and ATP synthesis in kidney mitochondria after ischemia/reperfusion. Cell Transplant 2012; 23:207-20. [PMID: 23211430 DOI: 10.3727/096368912x659862] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Tissue damage by ischemia/reperfusion (I/R) results from a temporary cessation of blood flow followed by the restoration of circulation. The injury depresses mitochondrial respiration, increases the production of reactive oxygen species (ROS), decreases the mitochondrial transmembrane potential, and stimulates invasion by inflammatory cells. The primary objective of this work was to address the potential use of bone marrow stem cells (BMSCs) to preserve and restore mitochondrial function in the kidney after I/R. Mitochondria from renal proximal tubule cells were isolated by differential centrifugation from rat kidneys subjected to I/R (clamping of renal arteries followed by release of circulation after 30 min), without or with subcapsular administration of BMSCs. Respiration starting from mitochondrial complex II was strongly affected following I/R. However, when BMSCs were injected before ischemia or together with reperfusion, normal electron fluxes, electrochemical gradient for protons, and ATP synthesis were almost completely preserved, and mitochondrial ROS formation occurred at a low rate. In homogenates from cultured renal cells transiently treated with antimycin A, the coculture with BMSCs induced a remarkable increase in protein S-nitrosylation that was similar to that found in mitochondria isolated from I/R rats, evidence that BMSCs protected against both superoxide anion and peroxynitrite. Labeled BMSCs migrated to damaged tubules, suggesting that the injury functions as a signal to attract and host the injected BMSCs. Structural correlates of BMSC injection in kidney tissue included stimulus of tubule cell proliferation, inhibition of apoptosis, and decreased inflammatory response. Histopathological analysis demonstrated a score of complete preservation of tubular structures by BMSCs, associated with normal plasma creatinine and urinary osmolality. These key findings shed light on the mechanisms that explain, at the mitochondrial level, how stem cells prevent damage by I/R. The action of BMSCs on mitochondrial functions raises the possibility that autologous BMSCs may help prevent I/R injuries associated with transplantation and acute renal diseases.
Collapse
Affiliation(s)
- Hellen J V Beiral
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|