1
|
Bichler Z, Vanan S, Zhang Z, Dong Q(S, Lee JWL, Zhang C, Hang L, Jiang M, Padmanabhan P, Saw WT, Zhou Z, Gulyás B, Lim KL, Zeng L, Tan EK. Environmental Factors Exacerbate Parkinsonian Phenotypes in an Asian-Specific Knock-In LRRK2 Risk Variant in Mice. Int J Mol Sci 2025; 26:3556. [PMID: 40332013 PMCID: PMC12027425 DOI: 10.3390/ijms26083556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/30/2025] [Accepted: 04/06/2025] [Indexed: 05/08/2025] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder affecting nearly 10 million people worldwide, and for which no cure is currently known. Mutations in the Leucine-Rich Repeat Kinase 2 (LRRK2) gene, age, as well as environmental factors such as neurotoxin exposure and stress, are known to increase the risk of developing the disease in humans. To investigate the role of a specific Asian variant of the LRRK2 gene to induce susceptibility to stress and trigger PD phenotypes with time, knock-in (KI) mice bearing the human LRRK2 R1628P risk variant have been generated and studied from 2 to 16 months of age in the presence (or absence) of stress insults, including neurotoxin injections and chronic mild stress applied at 3 months of age. Pathophysiological and behavioural phenotypes have been measured at different ages and primary neurons and fibroblast cells were cultured from the KI mouse line and treated with H2O2 to study susceptibility towards oxidative stress in vitro. KI mice displayed specific PD features and these phenotypes were aggravated by environmental stresses. In particular, KI mice developed locomotion impairment and increased constipation. In addition, dopamine-related proteins were dysregulated in KI mice brains: Dopamine transporter (DAT) was decreased in the midbrain and striatum and dopamine levels were increased. Primary fibroblast cells and cortical neurons from KI mice also displayed increased susceptibility to oxidative stress. Therefore, the LRRK2 R1628P KI mice are an excellent model to study the progressive development of PD.
Collapse
Affiliation(s)
- Zoë Bichler
- Behavioural Neuroscience Lab, Research Department, National Neuroscience Institute, Singapore 308433, Singapore; (Z.B.); (Q.D.)
- Center for Biometric Analysis, The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Sarivin Vanan
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore 308433, Singapore; (S.V.); (Z.Z.); (J.W.L.L.); (M.J.)
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (P.P.); (B.G.); (K.L.L.)
- Neurodegeneration Research Lab, Research Department, National Neuroscience Institute, Singapore 308433, Singapore; (C.Z.); (L.H.)
| | - Zhiwei Zhang
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore 308433, Singapore; (S.V.); (Z.Z.); (J.W.L.L.); (M.J.)
| | - Qianying (Sally) Dong
- Behavioural Neuroscience Lab, Research Department, National Neuroscience Institute, Singapore 308433, Singapore; (Z.B.); (Q.D.)
| | - Jolene Wei Ling Lee
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore 308433, Singapore; (S.V.); (Z.Z.); (J.W.L.L.); (M.J.)
- Neuroscience and Behavioral Disorders Program, DUKE-NUS Graduate Medical School, Singapore 169857, Singapore; (W.T.S.); (Z.Z.)
| | - Chengwu Zhang
- Neurodegeneration Research Lab, Research Department, National Neuroscience Institute, Singapore 308433, Singapore; (C.Z.); (L.H.)
| | - Liting Hang
- Neurodegeneration Research Lab, Research Department, National Neuroscience Institute, Singapore 308433, Singapore; (C.Z.); (L.H.)
| | - Mei Jiang
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore 308433, Singapore; (S.V.); (Z.Z.); (J.W.L.L.); (M.J.)
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan 523808, China
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (P.P.); (B.G.); (K.L.L.)
| | - Wuan Ting Saw
- Neuroscience and Behavioral Disorders Program, DUKE-NUS Graduate Medical School, Singapore 169857, Singapore; (W.T.S.); (Z.Z.)
- Translational Therapeutics Lab, Research Department, National Neuroscience Institute, Singapore 169856, Singapore
| | - Zhidong Zhou
- Neuroscience and Behavioral Disorders Program, DUKE-NUS Graduate Medical School, Singapore 169857, Singapore; (W.T.S.); (Z.Z.)
- Translational Therapeutics Lab, Research Department, National Neuroscience Institute, Singapore 169856, Singapore
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (P.P.); (B.G.); (K.L.L.)
| | - Kah Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (P.P.); (B.G.); (K.L.L.)
- Neurodegeneration Research Lab, Research Department, National Neuroscience Institute, Singapore 308433, Singapore; (C.Z.); (L.H.)
| | - Li Zeng
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore 308433, Singapore; (S.V.); (Z.Z.); (J.W.L.L.); (M.J.)
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (P.P.); (B.G.); (K.L.L.)
- Neuroscience and Behavioral Disorders Program, DUKE-NUS Graduate Medical School, Singapore 169857, Singapore; (W.T.S.); (Z.Z.)
| | - Eng King Tan
- Neuroscience and Behavioral Disorders Program, DUKE-NUS Graduate Medical School, Singapore 169857, Singapore; (W.T.S.); (Z.Z.)
- Research Department, National Neuroscience Institute, Singapore General Hospital (SGH) Campus, Singapore 168581, Singapore
- Department of Neurology, National Neuroscience Institute, Singapore 308433, Singapore
| |
Collapse
|
2
|
He Y, Li R, Yu Y, Xu Z, Gao J, Wang C, Huang C, Qi Z. HucMSC extracellular vesicles increasing SATB 1 to activate the Wnt/β-catenin pathway in 6-OHDA-induced Parkinson's disease model. IUBMB Life 2024; 76:1154-1174. [PMID: 39082886 DOI: 10.1002/iub.2893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/20/2024] [Indexed: 11/22/2024]
Abstract
Parkinson's disease (PD) is a degenerative disorder of the nervous system characterized by the loss of dopaminergic neurons and damage of neurons in the substantia nigra (SN) and striatum, resulting in impaired motor functions. This study aims to investigate how extracellular vesicles (EVs) derived from human umbilical cord mesenchymal stem cells (HucMSC) regulate Special AT-rich sequence-binding protein-1 (SATB 1) and influence Wnt/β-catenin pathway and autophagy in PD model. The PD model was induced by damaging SH-SY5Y cells and mice using 6-OHDA. According to the study, administering EVs every other day for 14 days improved the motor behavior of 6-OHDA-induced PD mice and reduced neuronal damage, including dopaminergic neurons. Treatment with EVs for 12 hours increased the viability of 6-OHDA-induced SH-SY5Y cells. The upregulation of SATB 1 expression with EV treatment resulted in the activation of the Wnt/β-catenin pathway in PD model and led to overexpression of β-catenin. Meanwhile, the expression of LC3 II was decreased, indicating alterations in autophagy. In conclusion, EVs could mitigate neuronal damage in the 6-OHDA-induced PD model by upregulating SATB 1 and activating Wnt/β-catenin pathway while also regulating autophagy. Further studies on the potential therapeutic applications of EVs for PD could offer new insights and strategies.
Collapse
Affiliation(s)
- Ying He
- Medical College, Guangxi University, Nanning, China
- Department of Pharmacy, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Ruicheng Li
- Medical College, Guangxi University, Nanning, China
| | - Yuxi Yu
- Medical College, Guangxi University, Nanning, China
| | - Zhiran Xu
- Translational Medicine Research Center, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Jiaxin Gao
- Medical College, Guangxi University, Nanning, China
| | - Cancan Wang
- Medical College, Guangxi University, Nanning, China
| | - Chusheng Huang
- Department of Thoracic and Cardiovascular Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhongquan Qi
- Medical College, Guangxi University, Nanning, China
| |
Collapse
|
3
|
He Y, Li R, Yu Y, Huang C, Xu Z, Wang T, Chen M, Huang H, Qi Z. Human neural stem cells promote mitochondrial genesis to alleviate neuronal damage in MPTP-induced cynomolgus monkey models. Neurochem Int 2024; 175:105700. [PMID: 38417589 DOI: 10.1016/j.neuint.2024.105700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 03/01/2024]
Abstract
Currently, there is no effective treatment for Parkinson's disease (PD), and the regenerative treatment of neural stem cells (NSCs) is considered the most promising method. This study aimed to investigate the protective effect and mechanism of NSCs on neurons in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced cynomolgus monkey (Macaca fascicularis) model of PD. We first found that injecting NSCs into the subarachnoid space relieved motor dysfunction in PD cynomolgus monkeys, as well as reduced dopaminergic neuron loss and neuronal damage in the substantia nigra (SN) and striatum. Besides, NSCs decreased 17-estradiol (E2) level, an estrogen, in the cerebrospinal fluid (CSF) of PD cynomolgus monkeys, which shows NSCs may provide neuro-protection by controlling estrogen levels in the CSF. Furthermore, NSCs elevated proliferator-activated receptor gamma coactivator-1 alpha (PGC-1a), mitofusin 2 (MFN2), and optic atrophy 1 (OPA1) expression, three genes mediating mitochondrial biogenesis, in the SN and striatum of PD monkeys. In addition, NSCs suppress reactive oxygen species (ROS) production caused by MPTP, as well as mitochondrial autophagy, therefore preserving dopaminergic neurons. In summary, our findings show that NSCs may preserve dopaminergic and neuronal cells in an MPTP-induced PD cynomolgus monkey model. These protective benefits might be attributed to NSCs' ability of modulating estrogen balance, increasing mitochondrial biogenesis, and limiting oxidative stress and mitochondrial autophagy. These findings add to our understanding of the mechanism of NSC treatment and shed light on further clinical treatment options.
Collapse
Affiliation(s)
- Ying He
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China; The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, 545007, China
| | - Ruicheng Li
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yuxi Yu
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Chusheng Huang
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530004, China
| | - Zhiran Xu
- Translational Medicine Research Center, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, 530011, China
| | - Tianbao Wang
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Ming Chen
- Jinjiang Municipal Hospital (Shanghai Sixth People's Hospital Fujian Campus), Quanzhou, Fujian, 362200, China
| | - Hongri Huang
- Guangxi Taimei Rensheng Biotechnology Co., Ltd., Nanning, Guangxi, 530011, China
| | - Zhongquan Qi
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China.
| |
Collapse
|
4
|
Niederberger E, Möller M, Mungo E, Hass M, Wilken-Schmitz A, Manderscheid C, Möser CV, Geisslinger G. Distinct molecular mechanisms contribute to the reduction of melanoma growth and tumor pain after systemic and local depletion of alpha-Synuclein in mice. FASEB J 2023; 37:e23287. [PMID: 37930651 DOI: 10.1096/fj.202301489r] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/29/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023]
Abstract
Epidemiological studies show a coincidence between Parkinson's disease (PD) and malignant melanoma. It has been suggested that this relationship is due, at least in part, to modulation of alpha-Synuclein (αSyn/Snca). αSyn oligomers accumulate in PD, which triggers typical PD symptoms, and in malignant melanoma, which increases the proliferation of tumor cells. In addition, αSyn contributes to non-motor symptoms of PD, including pain. In this study, we investigated the role of αSyn in melanoma growth and melanoma-induced pain in a mouse model using systemic and local depletion of αSyn. B16BL6 wild-type as well as αSyn knock-down melanoma cells were inoculated into the paws of αSyn knock-out mice and wild-type mice, respectively. Tumor growth and tumor-induced pain hypersensitivity were assessed over a period of 21 days. Molecular mechanisms were analyzed by RT-PCR and Western Blot in tumors, spinal cord, and sciatic nerve. Our results indicate that both global and local ablation of Snca contribute to reduced tumor growth and to a reduction of tumor-induced mechanical allodynia, though mechanisms contributing to these effects differ. While injection of wild-type cells in Snca knock-out mice strongly increased the immune response in the tumor, local Snca knock-down decreased autophagy mechanisms and the inflammatory reaction in the tumor. In conclusion, a knockdown of αSyn might constitute a promising approach to inhibiting the progression of melanoma and reducing tumor-induced pain.
Collapse
Affiliation(s)
- Ellen Niederberger
- Goethe-Universität Frankfurt, Universitätsklinikum, pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine & Pharmacology ITMP, Frankfurt am Main, Germany
| | - Moritz Möller
- Goethe-Universität Frankfurt, Universitätsklinikum, pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Frankfurt am Main, Germany
| | - Eleonora Mungo
- Goethe-Universität Frankfurt, Universitätsklinikum, pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Frankfurt am Main, Germany
| | - Michelle Hass
- Goethe-Universität Frankfurt, Universitätsklinikum, pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Frankfurt am Main, Germany
| | - Annett Wilken-Schmitz
- Goethe-Universität Frankfurt, Universitätsklinikum, pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Frankfurt am Main, Germany
| | - Christine Manderscheid
- Goethe-Universität Frankfurt, Universitätsklinikum, pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Frankfurt am Main, Germany
| | - Christine V Möser
- Goethe-Universität Frankfurt, Universitätsklinikum, pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine & Pharmacology ITMP, Frankfurt am Main, Germany
| | - Gerd Geisslinger
- Goethe-Universität Frankfurt, Universitätsklinikum, pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine & Pharmacology ITMP, Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Frankfurt am Main, Germany
| |
Collapse
|
5
|
Shirsath K, Agrawal YO. A Potential Strategy for Treating Parkinson's Disease Through Intranasal Nanoemulsions. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:1137-1145. [PMID: 35733314 DOI: 10.2174/1871527321666220622163403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Intranasal delivery has great potential to cross the blood-brain barrier and deliver the drug molecule into the central nervous system faster than the traditional methods. The olfactory neuronal and trigeminal pathways both are involved in intranasal delivery. The nano-technology is an innovative strategy for the nose to brain delivery. The mucoadhesive nanoemulsion formulation is a modified technology that increases the duration of drug accumulation and provides prolonged delivery at a targeted site. The nanoemulsion formulation oil, surfactant, and co-surfactant components maintain lower surface tension and particle coalescence. The globule dimension and zeta potential are affected in brain targeting. The globule size of the innovative formulation should be < 200 nm for drug permeation because, in humans, the average axon magnitude ranges from around 100 to 700 nm. Furthermore, modified technology of nanoemulsions like nanogel and nanoemulsion in-situ gel provide a great advantage to cure neurodegenerative disorders. Therefore, focusing on the innovative pharmaceutical approaches of nanoemulsion in intranasal drug delivery, the current review provides insight into the applications of nanoemulsion in neurodegenerative disorders like Parkinson's disease, which are due to the depletion of dopamine in substania nigra resulting in cardinal motor activity bradykinesia and tremors. The review also touches upon the pathways for intranasal delivery of nanoemulsion, the pathogenesis of Parkinson's disease, and the future direction of the research on intranasal nanoemulsion.
Collapse
Affiliation(s)
- Krushna Shirsath
- Department of Pharmaceutics, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Yogeeta O Agrawal
- Department of Pharmaceutics, R.C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| |
Collapse
|
6
|
Niederberger E, Wilken-Schmitz A, Manderscheid C, Schreiber Y, Gurke R, Tegeder I. Non-Reproducibility of Oral Rotenone as a Model for Parkinson's Disease in Mice. Int J Mol Sci 2022; 23:ijms232012658. [PMID: 36293513 PMCID: PMC9604506 DOI: 10.3390/ijms232012658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Oral rotenone has been proposed as a model for Parkinson’s disease (PD) in mice. To establish the model in our lab and study complex behavior we followed a published treatment regimen. C57BL/6 mice received 30 mg/kg body weight of rotenone once daily via oral administration for 4 and 8 weeks. Motor functions were assessed by RotaRod running. Immunofluorescence studies were used to analyze the morphology of dopaminergic neurons, the expression of alpha-Synuclein (α-Syn), and inflammatory gliosis or infiltration in the substantia nigra. Rotenone-treated mice did not gain body weight during treatment compared with about 4 g in vehicle-treated mice, which was however the only robust manifestation of drug treatment and suggested local gut damage. Rotenone-treated mice had no deficits in motor behavior, no loss or sign of degeneration of dopaminergic neurons, no α-Syn accumulation, and only mild microgliosis, the latter likely an indirect remote effect of rotenone-evoked gut dysbiosis. Searching for explanations for the model failure, we analyzed rotenone plasma concentrations via LC-MS/MS 2 h after administration of the last dose to assess bioavailability. Rotenone was not detectable in plasma at a lower limit of quantification of 2 ng/mL (5 nM), showing that oral rotenone had insufficient bioavailability to achieve sustained systemic drug levels in mice. Hence, oral rotenone caused local gastrointestinal toxicity evident as lack of weight gain but failed to evoke behavioral or biological correlates of PD within 8 weeks.
Collapse
Affiliation(s)
- Ellen Niederberger
- Institute for Clinical Pharmacology, Goethe-University Frankfurt, Theodor Stern-Kai 7, 60590 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor Stern-Kai 7, 60596 Frankfurt, Germany
- Correspondence: ; Tel.: +49-69-6301-7616; Fax: +49-69-6301-7636
| | - Annett Wilken-Schmitz
- Institute for Clinical Pharmacology, Goethe-University Frankfurt, Theodor Stern-Kai 7, 60590 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor Stern-Kai 7, 60596 Frankfurt, Germany
| | - Christine Manderscheid
- Institute for Clinical Pharmacology, Goethe-University Frankfurt, Theodor Stern-Kai 7, 60590 Frankfurt, Germany
| | - Yannick Schreiber
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor Stern-Kai 7, 60596 Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Theodor Stern-Kai 7, 60596 Frankfurt, Germany
| | - Robert Gurke
- Institute for Clinical Pharmacology, Goethe-University Frankfurt, Theodor Stern-Kai 7, 60590 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor Stern-Kai 7, 60596 Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Theodor Stern-Kai 7, 60596 Frankfurt, Germany
| | - Irmgard Tegeder
- Institute for Clinical Pharmacology, Goethe-University Frankfurt, Theodor Stern-Kai 7, 60590 Frankfurt, Germany
| |
Collapse
|
7
|
Möller M, Möser CV, Weiß U, Niederberger E. The Role of AlphαSynuclein in Mouse Models of Acute, Inflammatory and Neuropathic Pain. Cells 2022; 11:cells11121967. [PMID: 35741096 PMCID: PMC9221919 DOI: 10.3390/cells11121967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/02/2022] [Accepted: 06/16/2022] [Indexed: 02/06/2023] Open
Abstract
(1) AlphαSynuclein (αSyn) is a synaptic protein which is expressed in the nervous system and has been linked to neurodegenerative diseases, in particular Parkinson’s disease (PD). Symptoms of PD are mainly due to overexpression and aggregation of αSyn and include pain. However, the interconnection of αSyn and pain has not been clarified so far. (2) We investigated the potential effects of a αSyn knock-out on the nociceptive behaviour in mouse models of acute, inflammatory and neuropathic pain. Furthermore, we assessed the impact of αSyn deletion on pain-related cellular and molecular mechanisms in the spinal cord in these models. (3) Our results showed a reduction of acute cold nociception in αSyn knock-out mice while responses to acute heat and mechanical noxious stimulation were similar in wild type and knock-out mice. Inflammatory nociception was not affected by αSyn knock-out which is also mirrored by unaltered inflammatory gene expression. In contrast, in the SNI model of neuropathic pain, αSyn knock-out mice showed decreased mechanical allodynia as compared to wild type mice. This effect was associated with reduced proinflammatory mechanisms and suppressed activation of MAP kinase signalling in the spinal cord while endogenous antinociceptive mechanisms are not inhibited. (4) Our data indicate that αSyn plays a role in neuropathy and its inhibition might be useful to ameliorate pain symptoms after nerve injury.
Collapse
Affiliation(s)
- Moritz Möller
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (M.M.); (C.V.M.); (U.W.)
| | - Christine V. Möser
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (M.M.); (C.V.M.); (U.W.)
| | - Ulrike Weiß
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (M.M.); (C.V.M.); (U.W.)
| | - Ellen Niederberger
- Pharmazentrum Frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (M.M.); (C.V.M.); (U.W.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Correspondence: ; Tel.: +49-69-6301-7616; Fax: +49-69-6301-7636
| |
Collapse
|
8
|
Tian Y, Chen HB, Ma XX, Li SH, Li CM, Wu SH, Liu FZ, Du Y, Li K, Su W. Aberrant Volume-Wise and Voxel-Wise Concordance Among Dynamic Intrinsic Brain Activity Indices in Parkinson's Disease: A Resting-State fMRI Study. Front Aging Neurosci 2022; 14:814893. [PMID: 35422695 PMCID: PMC9004459 DOI: 10.3389/fnagi.2022.814893] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/07/2022] [Indexed: 11/17/2022] Open
Abstract
Researches using resting-state functional magnetic resonance imaging (rs-fMRI) have applied different regional measurements to study the intrinsic brain activity (IBA) of patients with Parkinson's disease (PD). Most previous studies have only examined the static characteristics of IBA in patients with PD, neglecting the dynamic features. We sought to explore the concordance between the dynamics of different rs-fMRI regional indices. This study included 31 healthy controls (HCs) and 57 PD patients to calculate the volume-wise (across voxels) and voxel-wise (across periods) concordance using a sliding time window approach. This allowed us to compare the concordance of dynamic alterations in frequently used metrics such as degree centrality (DC), global signal connectivity (GSC), voxel-mirrored heterotopic connectivity (VMHC), the amplitude of low-frequency fluctuations (ALFF), and regional homogeneity (ReHo). We analyzed the changes of concordance indices in the PD patients and investigated the relationship between aberrant concordance values and clinical/neuropsychological assessments in the PD patients. We found that, compared with the HCs, the PD patients had lower volume concordance in the whole brain and lower voxel-wise concordance in the posterior cerebellar lobe, cerebellar tonsils, superior temporal gyrus, and supplementary motor region. We also found negative correlations between these concordance alterations and patients' age. The exploratory results contribute to a better understanding of IBA alterations and pathophysiological mechanisms in PD.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Dongcheng, Beijing, China
| | - Hai-Bo Chen
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xin-Xin Ma
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Shu-Hua Li
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Chun-Mei Li
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Shao-Hui Wu
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Dongcheng, Beijing, China
| | - Feng-Zhi Liu
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Dongcheng, Beijing, China
| | - Yu Du
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Dongcheng, Beijing, China
| | - Kai Li
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Wen Su
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School of Peking Union Medical College, Dongcheng, Beijing, China
| |
Collapse
|
9
|
Horsager J, Knudsen K, Sommerauer M. Clinical and imaging evidence of brain-first and body-first Parkinson's disease. Neurobiol Dis 2022; 164:105626. [PMID: 35031485 DOI: 10.1016/j.nbd.2022.105626] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 12/17/2022] Open
Abstract
Braak's hypothesis has been extremely influential over the last two decades. However, neuropathological and clinical evidence suggest that the model does not conform to all patients with Parkinson's disease (PD). To resolve this controversy, a new model was recently proposed; in brain-first PD, the initial α-synuclein pathology arise inside the central nervous system, likely rostral to the substantia nigra pars compacta, and spread via interconnected structures - eventually affecting the autonomic nervous system; in body-first PD, the initial pathological α-synuclein originates in the enteric nervous system with subsequent caudo-rostral propagation to the autonomic and central nervous system. By using REM-sleep behavior disorder (RBD) as a clinical identifier to distinguish between body-first PD (RBD-positive at motor symptom onset) and brain-first PD (RBD-negative at motor symptom onset), we explored the literature to evaluate clinical and imaging differences between these proposed subtypes. Body-first PD patients display: 1) a larger burden of autonomic symptoms - in particular orthostatic hypotension and constipation, 2) more frequent pathological α-synuclein in peripheral tissues, 3) more brainstem and autonomic nervous system involvement in imaging studies, 4) more symmetric striatal dopaminergic loss and motor symptoms, and 5) slightly more olfactory dysfunction. In contrast, only minor cortical metabolic alterations emerge before motor symptoms in body-first. Brain-first PD is characterized by the opposite clinical and imaging patterns. Patients with pathological LRRK2 genetic variants mostly resemble a brain-first PD profile whereas patients with GBA variants typically conform to a body-first profile. SNCA-variant carriers are equally distributed between both subtypes. Overall, the literature indicates that body-first and brain-first PD might be two distinguishable entities on some clinical and imaging markers.
Collapse
Affiliation(s)
- Jacob Horsager
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark.
| | - Karoline Knudsen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Michael Sommerauer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark; Department of Neurology, University Hospital Cologne, Faculty of Medicine, University of Cologne, Köln, Germany; Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
10
|
Leggio L, Paternò G, Vivarelli S, Falzone GG, Giachino C, Marchetti B, Iraci N. Extracellular Vesicles as Novel Diagnostic and Prognostic Biomarkers for Parkinson's Disease. Aging Dis 2021; 12:1494-1515. [PMID: 34527424 PMCID: PMC8407885 DOI: 10.14336/ad.2021.0527] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 05/27/2021] [Indexed: 12/29/2022] Open
Abstract
The elderly population will significantly increase in the next decade and, with it, the proportion of people affected by age-related diseases. Among them, one of the most invalidating is Parkinson's disease (PD), characterized by motor- and non-motor dysfunctions which strongly impair the quality of life of affected individuals. PD is characterized by the progressive degeneration of dopaminergic neurons, with consequent dopamine depletion, and the accumulation of misfolded α-synuclein aggregates. Although 150 years have passed since PD first description, no effective therapies are currently available, but only palliative treatments. Importantly, PD is often diagnosed when the neuronal loss is elevated, making difficult any therapeutic intervention. In this context, two key challenges remain unanswered: (i) the early diagnosis to avoid the insurgence of irreversible symptoms; and (ii) the reliable monitoring of therapy efficacy. Research strives to identify novel biomarkers for PD diagnosis, prognosis, and therapeutic follow-up. One of the most promising sources of biomarkers is represented by extracellular vesicles (EVs), a heterogeneous population of nanoparticles, released by all cells in the microenvironment. Brain-derived EVs are able to cross the blood-brain barrier, protecting their payload from enzymatic degradation, and are easily recovered from biofluids. Interestingly, EV content is strongly influenced by the specific pathophysiological status of the donor cell. In this manuscript, the role of EVs as source of novel PD biomarkers is discussed, providing all recent findings concerning relevant proteins and miRNAs carried by PD patient-derived EVs, from several biological specimens. Moreover, the contribution of mitochondria-derived EVs will be dissected. Finally, the promising possibility to use EVs as source of markers to monitor PD therapy efficacy will be also examined. In the future, larger cohort studies will help to validate these EV-associated candidates, that might be effectively used as non-invasive and robust source of biomarkers for PD.
Collapse
Affiliation(s)
- Loredana Leggio
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, 95125 Catania, Italy.
| | - Greta Paternò
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, 95125 Catania, Italy.
| | - Silvia Vivarelli
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, 95125 Catania, Italy.
| | - Giovanna G Falzone
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, 95125 Catania, Italy.
| | - Carmela Giachino
- Neuropharmacology Section, OASI Research Institute-IRCCS, 94018 Troina, Italy.
| | - Bianca Marchetti
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, 95125 Catania, Italy.
- Neuropharmacology Section, OASI Research Institute-IRCCS, 94018 Troina, Italy.
| | - Nunzio Iraci
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, 95125 Catania, Italy.
| |
Collapse
|
11
|
Langley MR, Ghaisas S, Palanisamy BN, Ay M, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Characterization of nonmotor behavioral impairments and their neurochemical mechanisms in the MitoPark mouse model of progressive neurodegeneration in Parkinson's disease. Exp Neurol 2021; 341:113716. [PMID: 33839143 PMCID: PMC9797183 DOI: 10.1016/j.expneurol.2021.113716] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/24/2021] [Accepted: 04/05/2021] [Indexed: 12/30/2022]
Abstract
Mitochondrial dysfunction has been implicated as a key player in the pathogenesis of Parkinson's disease (PD). The MitoPark mouse, a transgenic mitochondrial impairment model developed by specific inactivation of TFAM in dopaminergic neurons, spontaneously exhibits progressive motor deficits and neurodegeneration, recapitulating several features of PD. Since nonmotor symptoms are now recognized as important features of the prodromal stage of PD, we comprehensively assessed the clinically relevant motor and nonmotor deficiencies from ages 8-24 wk in both male and female MitoPark mice and their littermate controls. As expected, motor deficits in MitoPark mice began around 12-14 wk and became severe by 16-24 wk. Interestingly, MitoPark mice exhibited olfactory deficits in the novel and social scent tests as early as 10-12 wk as compared to age-matched littermate controls. Additionally, male MitoPark mice showed spatial memory deficits before female mice, beginning at 8 wk and becoming most severe at 16 wk, as determined by the Morris water maze. MitoPark mice between 16 and 24 wk spent more time immobile in forced swim and tail suspension tests, and made fewer entries into open arms of the elevated plus maze, indicating a depressive and anxiety-like phenotype, respectively. Importantly, depressive behavior as determined by immobility in forced swim test was reversible by antidepressant treatment with desipramine. Neurochemical and mechanistic studies revealed significant changes in CREB phosphorylation, BDNF, and catecholamine levels as well as neurogenesis in key brain regions. Collectively, our results indicate that MitoPark mice progressively exhibit deficits in olfactory discrimination, cognitive learning and memory, and anxiety- and depression-like behaviors as well as key neurochemical signaling associated with nonmotor deficits in PD. Thus, MitoPark mice can serve as an invaluable model for studying nonmotor deficits in addition to studying the motor deficits related to pathology in PD.
Collapse
Affiliation(s)
- Monica R Langley
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America
| | - Shivani Ghaisas
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America
| | - Bharathi N Palanisamy
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America
| | - Muhammet Ay
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America
| | - Huajun Jin
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America
| | - Vellareddy Anantharam
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America
| | - Arthi Kanthasamy
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America
| | - Anumantha G Kanthasamy
- Parkinson Disorders Research Program, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America.
| |
Collapse
|
12
|
Cabral-Pacheco GA, Garza-Veloz I, Castruita-De la Rosa C, Ramirez-Acuña JM, Perez-Romero BA, Guerrero-Rodriguez JF, Martinez-Avila N, Martinez-Fierro ML. The Roles of Matrix Metalloproteinases and Their Inhibitors in Human Diseases. Int J Mol Sci 2020; 21:E9739. [PMID: 33419373 PMCID: PMC7767220 DOI: 10.3390/ijms21249739] [Citation(s) in RCA: 838] [Impact Index Per Article: 167.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/10/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent extracellular matrix (ECM) remodeling endopeptidases that have the capacity to degrade almost every component of the ECM. The degradation of the ECM is of great importance, since it is related to embryonic development and angiogenesis. It is also involved in cell repair and the remodeling of tissues. When the expression of MMPs is altered, it can generate the abnormal degradation of the ECM. This is the initial cause of the development of chronic degenerative diseases and vascular complications generated by diabetes. In addition, this process has an association with neurodegeneration and cancer progression. Within the ECM, the tissue inhibitors of MMPs (TIMPs) inhibit the proteolytic activity of MMPs. TIMPs are important regulators of ECM turnover, tissue remodeling, and cellular behavior. Therefore, TIMPs (similar to MMPs) modulate angiogenesis, cell proliferation, and apoptosis. An interruption in the balance between MMPs and TIMPs has been implicated in the pathophysiology and progression of several diseases. This review focuses on the participation of both MMPs (e.g., MMP-2 and MMP-9) and TIMPs (e.g., TIMP-1 and TIMP-3) in physiological processes and on how their abnormal regulation is associated with human diseases. The inclusion of current strategies and mechanisms of MMP inhibition in the development of new therapies targeting MMPs was also considered.
Collapse
Affiliation(s)
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y Ciencias de la Salud, Carretera Zacatecas-Guadalajara Km.6. Ejido la Escondida, Zacatecas 98160, Mexico; (G.AC.-P.); (C.C.-D.l.R.); (J.MR.-A.); (B.AP.-R.); (J.FG.-R.); (N.M.-A.)
| | | | | | | | | | | | - Margarita L Martinez-Fierro
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y Ciencias de la Salud, Carretera Zacatecas-Guadalajara Km.6. Ejido la Escondida, Zacatecas 98160, Mexico; (G.AC.-P.); (C.C.-D.l.R.); (J.MR.-A.); (B.AP.-R.); (J.FG.-R.); (N.M.-A.)
| |
Collapse
|
13
|
Vanan S, Zeng X, Chia SY, Varnäs K, Jiang M, Zhang K, Saw WT, Padmanabhan P, Yu WP, Zhou ZD, Halldin C, Gulyás B, Tan EK, Zeng L. Altered striatal dopamine levels in Parkinson's disease VPS35 D620N mutant transgenic aged mice. Mol Brain 2020; 13:164. [PMID: 33261640 PMCID: PMC7706192 DOI: 10.1186/s13041-020-00704-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Vacuolar protein sorting 35 (VPS35) is a major component of the retromer complex that mediates the retrograde transport of cargo proteins from endosomes to the trans-Golgi network. Mutations such as D620N in the VPS35 gene have been identified in patients with autosomal dominant Parkinson's disease (PD). However, it remains poorly understood whether and how VPS35 deficiency or mutation contributes to PD pathogenesis; specifically, the studies that have examined VPS35 thus far have differed in results and methodologies. We generated a VPS35 D620N mouse model using a Rosa26-based transgene expression platform to allow expression in a spatial manner, so as to better address these discrepancies. Here, aged (20-months-old) mice were first subjected to behavioral tests. Subsequently, DAB staining analysis of substantia nigra (SN) dopaminergic neurons with the marker for tyrosine hydroxylase (TH) was performed. Next, HPLC was used to determine dopamine levels, along with levels of its two metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), in the striatum. Western blotting was also performed to study the levels of key proteins associated with PD. Lastly, autoradiography (ARG) evaluation of [3H]FE-PE2I binding to the striatal dopamine transporter DAT was carried out. We found that VPS35 D620N Tg mice displayed a significantly higher dopamine level than NTg counterparts. All results were then compared with that of current VPS35 studies to shed light on the disease pathogenesis. Our model allows future studies to explicitly control spatial expression of the transgene which would generate a more reliable PD phenotype.
Collapse
Affiliation(s)
- Sarivin Vanan
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Xiaoxia Zeng
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Sook Yoong Chia
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Katarina Varnäs
- Department of Clinical Neuroscience, Psychiatry Section, Karolinska Institutet PET Centre, Karolinska Institutet, Karolinska University Hospital Solna, R5:02, 171 76, Stockholm, Sweden
| | - Mei Jiang
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Ke Zhang
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Wuan Ting Saw
- Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| | - Wei-Ping Yu
- Animal Gene Editing Laboratory, Biological Resource Centre, A*STAR, Singapore, 138673, Singapore.,Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Zhi-Dong Zhou
- Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.,Signature Research Program in Neuroscience and Behavioral Disorders Program, DUKE-NUS Graduate Medical School, Singapore, 169857, Singapore
| | - Christer Halldin
- Department of Clinical Neuroscience, Psychiatry Section, Karolinska Institutet PET Centre, Karolinska Institutet, Karolinska University Hospital Solna, R5:02, 171 76, Stockholm, Sweden.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| | - Balázs Gulyás
- Department of Clinical Neuroscience, Psychiatry Section, Karolinska Institutet PET Centre, Karolinska Institutet, Karolinska University Hospital Solna, R5:02, 171 76, Stockholm, Sweden.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| | - Eng-King Tan
- Department of Research, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore. .,Signature Research Program in Neuroscience and Behavioral Disorders Program, DUKE-NUS Graduate Medical School, Singapore, 169857, Singapore. .,Department of Neurology, National Neuroscience Institute, SGH Campus, Singapore, 169856, Singapore.
| | - Li Zeng
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore. .,Signature Research Program in Neuroscience and Behavioral Disorders Program, DUKE-NUS Graduate Medical School, Singapore, 169857, Singapore. .,Center for Molecular Neuropathology, Lee Kong Chian School of Medicine, Nanyang Technological University, Novena Campus, 11 Mandalay Road, Singapore, 308232, Singapore.
| |
Collapse
|
14
|
Ongre SO, Dalen I, Tysnes OB, Alves G, Herlofson K. Progression of fatigue in Parkinson's disease - a 9-year follow-up. Eur J Neurol 2020; 28:108-116. [PMID: 32920893 DOI: 10.1111/ene.14520] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/09/2020] [Accepted: 08/27/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND PURPOSE Although highly disabling, the pathogenesis and evolution of fatigue in Parkinson's disease (PD) is largely unknown, and no sufficiently documented treatment currently exists. The aim of the present study was to investigate the evolution of fatigue during the first 9 years after diagnosis. METHODS This study is part of the Norwegian ParkWest collaboration, a prospective population-based longitudinal cohort study. The present study comprised 191 newly diagnosed patients and 170 control participants. Fatigue was assessed by the Fatigue Severity Scale, with examinations at baseline and then every other year up to 9 years of follow-up. Linear mixed models were applied to investigate possible variables associated with fatigue. RESULTS It was found that there was a statistically significant increase in the proportion of PD patients with fatigue during the first 9 years after diagnosis. A large proportion of patients had a significant increase or decrease in fatigue score between consecutive visits. In addition, the relative risk of persistent fatigue and ever having fatigue was higher than for controls. There were statistically significant longitudinal associations between higher levels of fatigue and female gender, comorbidity at baseline, depressive symptoms, dependency in activities of daily living and better cognitive functioning. Lower levels of fatigue were associated with the use of dopamine agonists. CONCLUSION Fatigue is a common, severely limiting symptom in PD. This study demonstrates associations with other factors that could yield a better understanding of the symptom and thus possible treatment strategies, although further investigations are necessary to establish causal relationships.
Collapse
Affiliation(s)
- S O Ongre
- Department of Neurology, Sorlandet Hospital, Kristiansand, Norway.,Department of Research, Sorlandet Hospital, Kristiansand, Norway
| | - I Dalen
- Department of Research, Section for Biostatistics, Stavanger University Hospital, Stavanger, Norway
| | - O-B Tysnes
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - G Alves
- Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway.,Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - K Herlofson
- Department of Research, Sorlandet Hospital, Kristiansand, Norway
| |
Collapse
|
15
|
Lin Y, Fu Y, Zeng YF, Hu JP, Lin XZ, Cai NQ, Weng Q, Zhao YJ, Lin Y, Cao DR, Wang N. Six Visual Rating Scales as A Biomarker for Monitoring Atrophied Brain Volume in Parkinson's Disease. Aging Dis 2020; 11:1082-1090. [PMID: 33014524 PMCID: PMC7505277 DOI: 10.14336/ad.2019.1103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 11/03/2019] [Indexed: 12/21/2022] Open
Abstract
The focus of our investigation was to determine the feasibility of using six visual rating scales as whole-brain imaging markers for monitoring atrophied brain volume in Parkinson’s disease (PD). This was a prospective cross-sectional single-center observational study. A total of 98 PD patients were enrolled and underwent an MRI scan and a battery of neuropsychological evaluations. The brain volume was calculated using the online resource MRICloud. Brain atrophy was rated based on six visual rating scales. Correlation analysis was performed between visual rating scores and brain volume and clinical features. We found a significant negative correlation between the total scores of visual rating scores and quantitative brain volume, indicating that six visual rating scales reliably reflect whole brain atrophy in PD. Multiple linear regression-based analyses indicated severer non-motor symptoms were significantly associated with higher scores on the visual rating scales. Furthermore, we performed sample size calculations to evaluate the superiority of visual rating scales; the result show that using total scores of visual rating scales as an outcome measure, sample sizes for differentiating cognition injury require significantly fewer subjects (n = 177) compared with using total brain volume (n = 2524). Our data support the use of the total visual rating scores rather than quantitative brain volume as a biomarker for monitoring cerebral atrophy.
Collapse
Affiliation(s)
- Yu Lin
- 1Department of Neurology and Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Ying Fu
- 1Department of Neurology and Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China.,2Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Yi-Fang Zeng
- 1Department of Neurology and Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Jian-Ping Hu
- 3Department of Radiology, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Xiao-Zhen Lin
- 4Department of Geriatrics, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Nai-Qing Cai
- 1Department of Neurology and Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Qiang Weng
- 3Department of Radiology, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Yi-Jing Zhao
- 3Department of Radiology, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Yi Lin
- 1Department of Neurology and Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Dai-Rong Cao
- 3Department of Radiology, First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Ning Wang
- 1Department of Neurology and Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| |
Collapse
|
16
|
Marchetti B. Nrf2/Wnt resilience orchestrates rejuvenation of glia-neuron dialogue in Parkinson's disease. Redox Biol 2020; 36:101664. [PMID: 32863224 PMCID: PMC7395594 DOI: 10.1016/j.redox.2020.101664] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress and inflammation have long been recognized to contribute to Parkinson's disease (PD), a common movement disorder characterized by the selective loss of midbrain dopaminergic neurons (mDAn) of the substantia nigra pars compacta (SNpc). The causes and mechanisms still remain elusive, but a complex interplay between several genes and a number of interconnected environmental factors, are chiefly involved in mDAn demise, as they intersect the key cellular functions affected in PD, such as the inflammatory response, mitochondrial, lysosomal, proteosomal and autophagic functions. Nuclear factor erythroid 2 -like 2 (NFE2L2/Nrf2), the master regulator of cellular defense against oxidative stress and inflammation, and Wingless (Wnt)/β-catenin signaling cascade, a vital pathway for mDAn neurogenesis and neuroprotection, emerge as critical intertwinned actors in mDAn physiopathology, as a decline of an Nrf2/Wnt/β-catenin prosurvival axis with age underlying PD mutations and a variety of noxious environmental exposures drive PD neurodegeneration. Unexpectedly, astrocytes, the so-called "star-shaped" cells, harbouring an arsenal of "beneficial" and "harmful" molecules represent the turning point in the physiopathological and therapeutical scenario of PD. Fascinatingly, "astrocyte's fil rouge" brings back to Nrf2/Wnt resilience, as boosting the Nrf2/Wnt resilience program rejuvenates astrocytes, in turn (i) mitigating nigrostriatal degeneration of aged mice, (ii) reactivating neural stem progenitor cell proliferation and neuron differentiation in the brain and (iii) promoting a beneficial immunomodulation via bidirectional communication with mDAns. Then, through resilience of Nrf2/Wnt/β-catenin anti-ageing, prosurvival and proregenerative molecular programs, it seems possible to boost the inherent endogenous self-repair mechanisms. Here, the cellular and molecular aspects as well as the therapeutical options for rejuvenating glia-neuron dialogue will be discussed together with major glial-derived mechanisms and therapies that will be fundamental to the identification of novel diagnostic tools and treatments for neurodegenerative diseases (NDs), to fight ageing and nigrostriatal DAergic degeneration and promote functional recovery.
Collapse
Affiliation(s)
- Bianca Marchetti
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Pharmacology Section, Medical School, University of Catania, Via S. Sofia 65, 95125, Catania, Italy; Oasi Research Institute-IRCCS, Neuropharmacology Section, Via Conte Ruggero 73, 94018, Troina, EN, Italy.
| |
Collapse
|
17
|
Fagerberg P, Klingelhoefer L, Bottai M, Langlet B, Kyritsis K, Rotter E, Reichmann H, Falkenburger B, Delopoulos A, Ioakimidis I. Lower Energy Intake among Advanced vs. Early Parkinson's Disease Patients and Healthy Controls in a Clinical Lunch Setting: A Cross-Sectional Study. Nutrients 2020; 12:E2109. [PMID: 32708668 PMCID: PMC7400863 DOI: 10.3390/nu12072109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023] Open
Abstract
Unintentional weight loss has been observed among Parkinson's disease (PD) patients. Changes in energy intake (EI) and eating behavior, potentially caused by fine motor dysfunction and eating-related symptoms, might contribute to this. The primary aim of this study was to investigate differences in objectively measured EI between groups of healthy controls (HC), early (ESPD) and advanced stage PD patients (ASPD) during a standardized lunch in a clinical setting. The secondary aim was to identify clinical features and eating behavior abnormalities that explain EI differences. All participants (n = 23 HC, n = 20 ESPD, and n = 21 ASPD) went through clinical evaluations and were eating a standardized meal (200 g sausages, 400 g potato salad, 200 g apple purée and 500 mL water) in front of two video cameras. Participants ate freely, and the food was weighed pre- and post-meal to calculate EI (kcal). Multiple linear regression was used to explain group differences in EI. ASPD had a significantly lower EI vs. HC (-162 kcal, p < 0.05) and vs. ESPD (-203 kcal, p < 0.01) when controlling for sex. The number of spoonfuls, eating problems, dysphagia and upper extremity tremor could explain most (86%) of the lower EI vs. HC, while the first three could explain ~50% vs. ESPD. Food component intake analysis revealed significantly lower potato salad and sausage intakes among ASPD vs. both HC and ESPD, while water intake was lower vs. HC. EI is an important clinical target for PD patients with an increased risk of weight loss. Our results suggest that interventions targeting upper extremity tremor, spoonfuls, dysphagia and eating problems might be clinically useful in the prevention of unintentional weight loss in PD. Since EI was lower in ASPD, EI might be a useful marker of disease progression in PD.
Collapse
Affiliation(s)
- Petter Fagerberg
- Department of Biosciences and Nutrition, Karolinska Institutet, 171 77 Stockholm, Sweden; (B.L.); (I.I.)
| | - Lisa Klingelhoefer
- Department of Neurology, Technical University Dresden, 01099 Dresden, Germany; (L.K.); (E.R.); (H.R.); (B.F.)
| | - Matteo Bottai
- Division of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden;
| | - Billy Langlet
- Department of Biosciences and Nutrition, Karolinska Institutet, 171 77 Stockholm, Sweden; (B.L.); (I.I.)
| | - Konstantinos Kyritsis
- Electrical and Computer Engineering Department, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (K.K.); (A.D.)
| | - Eva Rotter
- Department of Neurology, Technical University Dresden, 01099 Dresden, Germany; (L.K.); (E.R.); (H.R.); (B.F.)
| | - Heinz Reichmann
- Department of Neurology, Technical University Dresden, 01099 Dresden, Germany; (L.K.); (E.R.); (H.R.); (B.F.)
| | - Björn Falkenburger
- Department of Neurology, Technical University Dresden, 01099 Dresden, Germany; (L.K.); (E.R.); (H.R.); (B.F.)
| | - Anastasios Delopoulos
- Electrical and Computer Engineering Department, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (K.K.); (A.D.)
| | - Ioannis Ioakimidis
- Department of Biosciences and Nutrition, Karolinska Institutet, 171 77 Stockholm, Sweden; (B.L.); (I.I.)
| |
Collapse
|
18
|
van Deursen DN, van den Heuvel OA, Booij J, Berendse HW, Vriend C. Autonomic failure in Parkinson's disease is associated with striatal dopamine deficiencies. J Neurol 2020; 267:1922-1930. [PMID: 32162062 PMCID: PMC7320937 DOI: 10.1007/s00415-020-09785-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 12/11/2022]
Abstract
Autonomic dysfunction is a common non-motor symptom in Parkinson's disease (PD). Dopamine and serotonin are known to play a role in autonomic regulation, and, therefore, PD-related degeneration of serotonergic and dopaminergic neurons in these regions may be associated with autonomic dysfunction. We sought to clarify the association between extrastriatal serotonergic and striatal dopaminergic degeneration and the severity of autonomic symptoms, including gastrointestinal, pupillomotor, thermoregulatory, cardiovascular, and urinary dysfunction. We performed hierarchical multiple regression analyses to determine the relationships between (extra)striatal serotonergic and dopaminergic degeneration and autonomic dysfunction in 310 patients with PD. We used [123I]FP-CIT SPECT binding to presynaptic serotonin (SERT) and dopamine (DAT) transporters as a measure of the integrity of these neurotransmitter systems, and the SCOPA-AUT (Scales for Outcomes in Parkinson's Disease-Autonomic) questionnaire to evaluate the perceived severity of autonomic dysfunction. Motor symptom severity, medication status, and sex were added to the model as covariates. Additional analyses were also performed using five subdomains of the SCOPA-AUT: cardiovascular, gastrointestinal, urinary, thermoregulatory, and pupillomotor symptoms. We found that autonomic symptoms were most significantly related to lower [123I]FP-CIT binding ratios in the right caudate nucleus and were mainly driven by gastrointestinal and cardiovascular dysfunction. These results provide a first look into the modest role of dopaminergic projections towards the caudate nucleus in the pathophysiology of autonomic dysfunction in PD, but the underlying mechanism warrants further investigation.
Collapse
Affiliation(s)
- Dagmar N van Deursen
- Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Odile A van den Heuvel
- Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC, Academic Medical Center, Meibergdreef 9, Amsterdam, The Netherlands
| | - Henk W Berendse
- Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Chris Vriend
- Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
| |
Collapse
|
19
|
Chase BA, Markopoulou K. Olfactory Dysfunction in Familial and Sporadic Parkinson's Disease. Front Neurol 2020; 11:447. [PMID: 32547477 PMCID: PMC7273509 DOI: 10.3389/fneur.2020.00447] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/27/2020] [Indexed: 12/26/2022] Open
Abstract
This minireview discusses our current understanding of the olfactory dysfunction that is frequently observed in sporadic and familial forms of Parkinson's disease and parkinsonian syndromes. We review the salient characteristics of olfactory dysfunction in these conditions, discussing its prevalence and characteristics, how neuronal processes and circuits are altered in Parkinson's disease, and what is assessed by clinically used measures of olfactory function. We highlight how studies of monogenic Parkinson's disease and investigations in ethnically diverse populations have contributed to understanding the mechanisms underlying olfactory dysfunction. Furthermore, we discuss how imaging and system-level approaches have been used to understand the pathogenesis of olfactory dysfunction. We discuss the challenging, remaining gaps in understanding the basis of olfactory dysfunction in neurodegeneration. We propose that insights could be obtained by following longitudinal cohorts with familial forms of Parkinson's disease using a combination of approaches: a multifaceted longitudinal assessment of olfactory function during disease progression is essential to identify not only how dysfunction arises, but also to address its relationship to motor and non-motor Parkinson's disease symptoms. An assessment of cohorts having monogenic forms of Parkinson's disease, available within the Genetic Epidemiology of Parkinson's Disease (GEoPD), as well as other international consortia, will have heuristic value in addressing the complexity of olfactory dysfunction in the context of the neurodegenerative process. This will inform our understanding of Parkinson's disease as a multisystem disorder and facilitate the more effective use of olfactory dysfunction assessment in identifying prodromal Parkinson's disease and understanding disease progression.
Collapse
Affiliation(s)
- Bruce A. Chase
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, United States
| | - Katerina Markopoulou
- Department of Neurology, NorthShore University HealthSystem, Evanston, IL, United States
- Department of Neurology, University of Chicago, Chicago, IL, United States
| |
Collapse
|
20
|
Altered white matter microarchitecture in Parkinson's disease: a voxel-based meta-analysis of diffusion tensor imaging studies. Front Med 2020; 15:125-138. [PMID: 32458190 DOI: 10.1007/s11684-019-0725-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 10/12/2019] [Indexed: 02/05/2023]
Abstract
This study aimed to define the most consistent white matter microarchitecture pattern in Parkinson's disease (PD) reflected by fractional anisotropy (FA), addressing clinical profiles and methodology-related heterogeneity. Web-based publication databases were searched to conduct a meta-analysis of whole-brain diffusion tensor imaging studies comparing PD with healthy controls (HC) using the anisotropic effect size-signed differential mapping. A total of 808 patients with PD and 760 HC coming from 27 databases were finally included. Subgroup analyses were conducted considering heterogeneity with respect to medication status, disease stage, analysis methods, and the number of diffusion directions in acquisition. Compared with HC, patients with PD had decreased FA in the left middle cerebellar peduncle, corpus callosum (CC), left inferior fronto-occipital fasciculus, and right inferior longitudinal fasciculus. Most of the main results remained unchanged in subgroup meta-analyses of medicated patients, early stage patients, voxel-based analysis, and acquisition with 30 diffusion directions. The subgroup meta-analysis of medication-free patients showed FA decrease in the right olfactory cortex. The cerebellum and CC, associated with typical motor impairment, showed the most consistent FA decreases in PD. Medication status, analysis approaches, and the number of diffusion directions have an important impact on the findings, needing careful evaluation in future meta-analyses.
Collapse
|
21
|
Marchetti B, Tirolo C, L'Episcopo F, Caniglia S, Testa N, Smith JA, Pluchino S, Serapide MF. Parkinson's disease, aging and adult neurogenesis: Wnt/β-catenin signalling as the key to unlock the mystery of endogenous brain repair. Aging Cell 2020; 19:e13101. [PMID: 32050297 PMCID: PMC7059166 DOI: 10.1111/acel.13101] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/27/2019] [Accepted: 12/25/2019] [Indexed: 12/14/2022] Open
Abstract
A common hallmark of age-dependent neurodegenerative diseases is an impairment of adult neurogenesis. Wingless-type mouse mammary tumor virus integration site (Wnt)/β-catenin (WβC) signalling is a vital pathway for dopaminergic (DAergic) neurogenesis and an essential signalling system during embryonic development and aging, the most critical risk factor for Parkinson's disease (PD). To date, there is no known cause or cure for PD. Here we focus on the potential to reawaken the impaired neurogenic niches to rejuvenate and repair the aged PD brain. Specifically, we highlight WβC-signalling in the plasticity of the subventricular zone (SVZ), the largest germinal region in the mature brain innervated by nigrostriatal DAergic terminals, and the mesencephalic aqueduct-periventricular region (Aq-PVR) Wnt-sensitive niche, which is in proximity to the SNpc and harbors neural stem progenitor cells (NSCs) with DAergic potential. The hallmark of the WβC pathway is the cytosolic accumulation of β-catenin, which enters the nucleus and associates with T cell factor/lymphoid enhancer binding factor (TCF/LEF) transcription factors, leading to the transcription of Wnt target genes. Here, we underscore the dynamic interplay between DAergic innervation and astroglial-derived factors regulating WβC-dependent transcription of key genes orchestrating NSC proliferation, survival, migration and differentiation. Aging, inflammation and oxidative stress synergize with neurotoxin exposure in "turning off" the WβC neurogenic switch via down-regulation of the nuclear factor erythroid-2-related factor 2/Wnt-regulated signalosome, a key player in the maintenance of antioxidant self-defense mechanisms and NSC homeostasis. Harnessing WβC-signalling in the aged PD brain can thus restore neurogenesis, rejuvenate the microenvironment, and promote neurorescue and regeneration.
Collapse
Affiliation(s)
- Bianca Marchetti
- Department of Biomedical and Biotechnological Sciences (BIOMETEC)Pharmacology and Physiology SectionsMedical SchoolUniversity of CataniaCataniaItaly
- Neuropharmacology SectionOASI Research Institute‐IRCCSTroinaItaly
| | - Cataldo Tirolo
- Neuropharmacology SectionOASI Research Institute‐IRCCSTroinaItaly
| | | | | | - Nunzio Testa
- Neuropharmacology SectionOASI Research Institute‐IRCCSTroinaItaly
| | - Jayden A. Smith
- Department of Clinical Neurosciences and NIHR Biomedical Research CentreUniversity of CambridgeCambridgeUK
| | - Stefano Pluchino
- Department of Clinical Neurosciences and NIHR Biomedical Research CentreUniversity of CambridgeCambridgeUK
| | - Maria F. Serapide
- Department of Biomedical and Biotechnological Sciences (BIOMETEC)Pharmacology and Physiology SectionsMedical SchoolUniversity of CataniaCataniaItaly
| |
Collapse
|
22
|
Höllerhage M, Bickle M, Höglinger GU. Unbiased Screens for Modifiers of Alpha-Synuclein Toxicity. Curr Neurol Neurosci Rep 2019; 19:8. [PMID: 30739256 DOI: 10.1007/s11910-019-0925-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW We provide an overview about unbiased screens to identify modifiers of alpha-synuclein (αSyn)-induced toxicity, present the models and the libraries that have been used for screening, and describe how hits from primary screens were selected and validated. RECENT FINDINGS Screens can be classified as either genetic or chemical compound modifier screens, but a few screens do not fit this classification. Most screens addressing αSyn-induced toxicity, including genome-wide overexpressing and deletion, were performed in yeast. More recently, newer methods such as CRISPR-Cas9 became available and were used for screening purposes. Paradoxically, given that αSyn-induced toxicity plays a role in neurological diseases, there is a shortage of human cell-based models for screening. Moreover, most screens used mutant or fluorescently tagged forms of αSyn and only very few screens investigated wild-type αSyn. Particularly, no genome-wide αSyn toxicity screen in human dopaminergic neurons has been published so far. Most unbiased screens for modifiers of αSyn toxicity were performed in yeast, and there is a lack of screens performed in human and particularly dopaminergic cells.
Collapse
Affiliation(s)
- Matthias Höllerhage
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377, Munich, Germany
- Department of Neurology, Technical University of Munich (TUM), 81675, Munich, Germany
| | - Marc Bickle
- HT-Technology Development Studio, Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
| | - Günter U Höglinger
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), 81377, Munich, Germany.
- Department of Neurology, Technical University of Munich (TUM), 81675, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Ludwig Maximilians University (LMU), 81377, Munich, Germany.
| |
Collapse
|
23
|
De Lazzari F, Bisaglia M, Zordan MA, Sandrelli F. Circadian Rhythm Abnormalities in Parkinson's Disease from Humans to Flies and Back. Int J Mol Sci 2018; 19:ijms19123911. [PMID: 30563246 PMCID: PMC6321023 DOI: 10.3390/ijms19123911] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/23/2018] [Accepted: 11/30/2018] [Indexed: 12/20/2022] Open
Abstract
Clinical and research studies have suggested a link between Parkinson’s disease (PD) and alterations in the circadian clock. Drosophila melanogaster may represent a useful model to study the relationship between the circadian clock and PD. Apart from the conservation of many genes, cellular mechanisms, signaling pathways, and neuronal processes, Drosophila shows an organized central nervous system and well-characterized complex behavioral phenotypes. In fact, Drosophila has been successfully used in the dissection of the circadian system and as a model for neurodegenerative disorders, including PD. Here, we describe the fly circadian and dopaminergic systems and report recent studies which indicate the presence of circadian abnormalities in some fly PD genetic models. We discuss the use of Drosophila to investigate whether, in adults, the disruption of the circadian system might be causative of brain neurodegeneration. We also consider approaches using Drosophila, which might provide new information on the link between PD and the circadian clock. As a corollary, since PD develops its symptomatology over a large part of the organism’s lifespan and given the relatively short lifespan of fruit flies, we suggest that genetic models of PD could be used to perform lifelong screens for drug-modulators of general and/or circadian-related PD traits.
Collapse
Affiliation(s)
| | - Marco Bisaglia
- Department of Biology, University of Padova, 35131 Padova, Italy.
| | - Mauro Agostino Zordan
- Department of Biology, University of Padova, 35131 Padova, Italy.
- Cognitive Neuroscience Center, University of Padova, 35100 Padova, Italy.
| | | |
Collapse
|
24
|
Park SB, Kwon KY, Lee JY, Im K, Sunwoo JS, Lee KB, Roh H, Ahn MY, Park S, Kim SJ, Oh JS, Kim JS. Lack of association between dopamine transporter loss and non-motor symptoms in patients with Parkinson’s disease: a detailed PET analysis of 12 striatal subregions. Neurol Sci 2018; 40:311-317. [DOI: 10.1007/s10072-018-3632-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 11/01/2018] [Indexed: 10/27/2022]
|
25
|
Gatt A, Ekonomou A, Somani A, Thuret S, Howlett D, Corbett A, Johnson M, Perry E, Attems J, Francis P, Aarsland D, Ballard C. Importance of Proactive Treatment of Depression in Lewy Body Dementias: The Impact on Hippocampal Neurogenesis and Cognition in a Post-Mortem Study. Dement Geriatr Cogn Disord 2018; 44:283-293. [PMID: 29393203 DOI: 10.1159/000484437] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/17/2017] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To examine the impact of selective serotonin reuptake inhibitors (SSRIs) and depression on neurogenesis and cognition in dementia with Lewy bodies (DLB) and Parkinson disease dementia (PDD). METHODS Late-stage progenitor cells were quantified in the subgranular zone (SGZ) of the hippocampal dentate gyrus of DLB/PDD patients (n = 41) and controls without dementia (n = 15) and compared between treatment groups (unmedicated, SSRIs, acetyl cholinesterase inhibitors [AChEIs], combined SSRIs and AChEIs). RESULTS DLB/PDD patients had more doublecortin-positive cells in the SGZ compared to controls. The doublecortin-positive cell count was higher in the SGZ of patients treated with SSRIs and correlated to higher cognitive scores. CONCLUSION SSRI treatment was associated with increased hippocampal neurogenesis and preservation of cognition in DLB/PDD patients.
Collapse
Affiliation(s)
- Ariana Gatt
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Parkinson disease is a common neurodegenerative disorder that causes progressive motor and nonmotor disability. It is diagnosed clinically and requires a detailed history and neurologic examination to exclude alternative diagnoses. Although disease-modifying therapies do not exist for Parkinson disease, effective symptomatic therapies, including dopaminergic medications and surgery, allow patients to maintain good quality of life for many years. Nonmotor symptoms, including mood, cognitive, sleep, autonomic, and gastrointestinal symptoms, should be managed by a multidisciplinary team of clinicians. Recent advances include new diagnostic criteria from the Movement Disorder Society and the addition of new symptomatic therapies for treating motor complications and nonmotor symptoms in advanced disease.
Collapse
Affiliation(s)
- Houman Homayoun
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (H.H.)
| |
Collapse
|
27
|
Emamzadeh FN, Surguchov A. Parkinson's Disease: Biomarkers, Treatment, and Risk Factors. Front Neurosci 2018; 12:612. [PMID: 30214392 PMCID: PMC6125353 DOI: 10.3389/fnins.2018.00612] [Citation(s) in RCA: 333] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/13/2018] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder caused mainly by lack of dopamine in the brain. Dopamine is a neurotransmitter involved in movement, motivation, memory, and other functions; its level is decreased in PD brain as a result of dopaminergic cell death. Dopamine loss in PD brain is a cause of motor deficiency and, possibly, a reason of the cognitive deficit observed in some PD patients. PD is mostly not recognized in its early stage because of a long latency between the first damage to dopaminergic cells and the onset of clinical symptoms. Therefore, it is very important to find reliable molecular biomarkers that can distinguish PD from other conditions, monitor its progression, or give an indication of a positive response to a therapeutic intervention. PD biomarkers can be subdivided into four main types: clinical, imaging, biochemical, and genetic. For a long time protein biomarkers, dopamine metabolites, amino acids, etc. in blood, serum, cerebrospinal liquid (CSF) were considered the most promising. Among the candidate biomarkers that have been tested, various forms of α-synuclein (α-syn), i.e., soluble, aggregated, post-translationally modified, etc. were considered potentially the most efficient. However, the encouraging recent results suggest that microRNA-based analysis may bring considerable progress, especially if it is combined with α-syn data. Another promising analysis is the advanced metabolite profiling of body fluids, called "metabolomics" which may uncover metabolic fingerprints specific for various stages of PD. Conventional pharmacological treatment of PD is based on the replacement of dopamine using dopamine precursors (levodopa, L-DOPA, L-3,4 dihydroxyphenylalanine), dopamine agonists (amantadine, apomorphine) and MAO-B inhibitors (selegiline, rasagiline), which can be used alone or in combination with each other. Potential risk factors include environmental toxins, drugs, pesticides, brain microtrauma, focal cerebrovascular damage, and genomic defects. This review covers molecules that might act as the biomarkers of PD. Then, PD risk factors (including genetics and non-genetic factors) and PD treatment options are discussed.
Collapse
Affiliation(s)
- Fatemeh N. Emamzadeh
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, University of Lancaster, Lancaster, United Kingdom
| | - Andrei Surguchov
- Department of Neurology, Kansas University Medical Center, Kansas City, KS, United States
| |
Collapse
|
28
|
Little D, Luft C, Mosaku O, Lorvellec M, Yao Z, Paillusson S, Kriston-Vizi J, Gandhi S, Abramov AY, Ketteler R, Devine MJ, Gissen P. A single cell high content assay detects mitochondrial dysfunction in iPSC-derived neurons with mutations in SNCA. Sci Rep 2018; 8:9033. [PMID: 29899557 PMCID: PMC5998042 DOI: 10.1038/s41598-018-27058-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/25/2018] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial dysfunction is implicated in many neurodegenerative diseases including Parkinson's disease (PD). Induced pluripotent stem cells (iPSCs) provide a unique cell model for studying neurological diseases. We have established a high-content assay that can simultaneously measure mitochondrial function, morphology and cell viability in iPSC-derived dopaminergic neurons. iPSCs from PD patients with mutations in SNCA and unaffected controls were differentiated into dopaminergic neurons, seeded in 384-well plates and stained with the mitochondrial membrane potential dependent dye TMRM, alongside Hoechst-33342 and Calcein-AM. Images were acquired using an automated confocal screening microscope and single cells were analysed using automated image analysis software. PD neurons displayed reduced mitochondrial membrane potential and altered mitochondrial morphology compared to control neurons. This assay demonstrates that high content screening techniques can be applied to the analysis of mitochondria in iPSC-derived neurons. This technique could form part of a drug discovery platform to test potential new therapeutics for PD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Daniel Little
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, United Kingdom.
| | - Christin Luft
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, United Kingdom
| | - Olukunbi Mosaku
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, United Kingdom
| | - Maëlle Lorvellec
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, United Kingdom
| | - Zhi Yao
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, United Kingdom
- The Francis Crick Institute, 1 Midland Road, King's Cross, London, United Kingdom
| | - Sébastien Paillusson
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, United Kingdom
| | - Janos Kriston-Vizi
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, United Kingdom
| | - Sonia Gandhi
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, United Kingdom
- The Francis Crick Institute, 1 Midland Road, King's Cross, London, United Kingdom
| | - Andrey Y Abramov
- Department of Molecular Neuroscience, University College London, Institute of Neurology, Queen Square, London, United Kingdom
| | - Robin Ketteler
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, United Kingdom
| | - Michael J Devine
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, United Kingdom.
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, United Kingdom.
| | - Paul Gissen
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, United Kingdom
| |
Collapse
|
29
|
Maugest L, McGovern EM, Mazalovic K, Doulazmi M, Apartis E, Anheim M, Bourdain F, Benchetrit E, Czernecki V, Broussolle E, Bonnet C, Falissard B, Jahanshahi M, Vidailhet M, Roze E. Health-Related Quality of Life Is Severely Affected in Primary Orthostatic Tremor. Front Neurol 2018; 8:747. [PMID: 29379467 PMCID: PMC5775514 DOI: 10.3389/fneur.2017.00747] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/27/2017] [Indexed: 12/17/2022] Open
Abstract
Background Primary orthostatic tremor (POT) is a movement disorder characterized by unsteadiness upon standing still due to a tremor affecting the legs. It is a gradually progressive condition with limited treatment options. Impairments in health-related quality of life (HQoL) seem to far exceed the physical disability associated with the condition. Methods A multi-center, mixed-methodology study was undertaken to investigate 40 consecutive patients presenting with POT to four movement disorder centers in France. HQoL was investigated using eight quantitative scales and a qualitative study which employed semi-structured interviews. Qualitative data were analyzed with a combination of grounded-theory approach. Results Our results confirm that HQoL in POT is severely affected. Fear of falling was identified as the main predictor of HQoL. The qualitative arm of our study explored our initial results in greater depth and uncovered themes not identified by the quantitative approach. Conclusion Our results illustrate the huge potential of mixed methodology in identifying issues influencing HQoL in POT. Our work paves the way for enhanced patient care and improved HQoL in POT and is paradigmatic of this modern approach for investigating HQoL issues in chronic neurological disorders.
Collapse
Affiliation(s)
- Lucie Maugest
- Département de Neurologie, EA 4184, Hôpital universitaire de Dijon, Dijon, France
| | - Eavan M McGovern
- Department of Neurology, St Vincent's University Hospital, Dublin, Ireland.,School of Medicine and Medical Sciences, University College Dublin, Dublin, Ireland
| | - Katia Mazalovic
- Département de Médecine générale, Faculté de Médecine, Université de Bourgogne, Dijon, France
| | - Mohamed Doulazmi
- Sorbonne Universités, UPMC Univ Paris 06, UMR8256, INSERM, CNRS, Institut de Biologie Paris Seine, Adaptation Biologique et Vieillissement, Paris, France
| | - Emmanuelle Apartis
- Département de Neurophysiologie, Hôpital de Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Mathieu Anheim
- Département de Neurologie, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch-Graffenstaden, France.,Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Frédéric Bourdain
- Département de Neurologie, Centre médico-chirurgical Foch, Suresnes, France
| | - Eve Benchetrit
- Département de Neurologie, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Virginie Czernecki
- Département de Neurologie, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Emmanuel Broussolle
- Département de Neurologie, Service de Mouvements anormaux, Hôpital Neurologique et Neurochirurgical Pierre Wertheimer, Hospices Civils de Lyon, Lyon, France.,Université de Lyon, Université Lyon I, Faculté de Médecine Lyon Sud Charles Mérieux, Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Lyon, France
| | - Cecilia Bonnet
- Département de Neurologie, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Bruno Falissard
- CESP, Univ. Paris-Sud, Université Paris-Saclay, UVSQ, INSERM U1178, Paris, France
| | - Marjan Jahanshahi
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, The National Hospital for Neurology and Neurosurgery, University College London, London, United Kingdom
| | - Marie Vidailhet
- Département de Neurologie, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.,UMR S 975, CNRS UMR 7225, ICM, Sorbonne Universités, UPMC Université Paris, Paris, France
| | - Emmanuel Roze
- Département de Neurologie, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France.,UMR S 975, CNRS UMR 7225, ICM, Sorbonne Universités, UPMC Université Paris, Paris, France
| |
Collapse
|
30
|
Masilamoni GJ, Smith Y. Chronic MPTP administration regimen in monkeys: a model of dopaminergic and non-dopaminergic cell loss in Parkinson's disease. J Neural Transm (Vienna) 2017; 125:337-363. [PMID: 28861737 DOI: 10.1007/s00702-017-1774-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/29/2017] [Indexed: 12/17/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder clinically characterized by cardinal motor deficits including bradykinesia, tremor, rigidity and postural instability. Over the past decades, it has become clear that PD symptoms extend far beyond motor signs to include cognitive, autonomic and psychiatric impairments, most likely resulting from cortical and subcortical lesions of non-dopaminergic systems. In addition to nigrostriatal dopaminergic degeneration, pathological examination of PD brains, indeed, reveals widespread distribution of intracytoplasmic inclusions (Lewy bodies) and death of non-dopaminergic neurons in the brainstem and thalamus. For that past three decades, the MPTP-treated monkey has been recognized as the gold standard PD model because it displays some of the key behavioral and pathophysiological changes seen in PD patients. However, a common criticism raised by some authors about this model, and other neurotoxin-based models of PD, is the lack of neuronal loss beyond the nigrostriatal dopaminergic system. In this review, we argue that this assumption is largely incorrect and solely based on data from monkeys intoxicated with acute administration of MPTP. Work achieved in our laboratory and others strongly suggest that long-term chronic administration of MPTP leads to brain pathology beyond the dopaminergic system that displays close similarities to that seen in PD patients. This review critically examines these data and suggests that the chronically MPTP-treated nonhuman primate model may be suitable to study the pathophysiology and therapeutics of some non-motor features of PD.
Collapse
Affiliation(s)
- Gunasingh J Masilamoni
- Yerkes National Primate Research Center, Emory University, 954, Gatewood Rd NE, Atlanta, GA, 30322, USA.
- Udall Center of Excellence for Parkinson's Disease, Emory University, 954, Gatewood Rd NE, Atlanta, GA, 30322, USA.
| | - Yoland Smith
- Yerkes National Primate Research Center, Emory University, 954, Gatewood Rd NE, Atlanta, GA, 30322, USA
- Department of Neurology, Emory University, 954, Gatewood Rd NE, Atlanta, GA, 30322, USA
- Udall Center of Excellence for Parkinson's Disease, Emory University, 954, Gatewood Rd NE, Atlanta, GA, 30322, USA
| |
Collapse
|
31
|
Brandt MD, Krüger-Gerlach D, Hermann A, Meyer AK, Kim KS, Storch A. Early Postnatal but Not Late Adult Neurogenesis Is Impaired in the Pitx3-Mutant Animal Model of Parkinson's Disease. Front Neurosci 2017; 11:471. [PMID: 28883785 PMCID: PMC5573808 DOI: 10.3389/fnins.2017.00471] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 08/09/2017] [Indexed: 01/10/2023] Open
Abstract
The generation of new neurons in the adult dentate gyrus has functional implications for hippocampal formation. Reduced hippocampal neurogenesis has been described in various animal models of hippocampal dysfunction such as dementia and depression, which are both common non-motor-symptoms of Parkinson's disease (PD). As dopamine plays an important role in regulating precursor cell proliferation, the loss of dopaminergic neurons in the substantia nigra (SN) in PD may be related to the reduced neurogenesis observed in the neurogenic regions of the adult brain: subventricular zone (SVZ) and dentate gyrus (DG). Here we examined adult hippocampal neurogenesis in the Pitx3-mutant mouse model of PD (aphakia mice), which phenotypically shows a selective embryonic degeneration of dopamine neurons within the SN and to a smaller extent in the ventral tegmental area (VTA). Proliferating cells were labeled with BrdU in aphakia mice and healthy controls from 3 to 42 weeks of age. Three weeks old mutant mice showed an 18% reduction of proliferating cells in the DG and of 26% in the SVZ. Not only proliferation but also the number of new neurons was impaired in young aphakia mice resulting in 33% less newborn cells 4 weeks after BrdU-labeling. Remarkably, however, the decline in the number of proliferating cells in the neurogenic regions vanished in older animals (8–42 weeks) indicating that aging masks the effect of dopamine depletion on adult neurogenesis. Region specific reduction in precursor cells proliferation correlated with the extent of dopaminergic degeneration in mesencephalic subregions (VTA and SN), which supports the theory of age- and region-dependent regulatory effects of dopaminergic projections. Physiological stimulation of adult neurogenesis by physical activity (wheel running) almost doubled the number of proliferating cells in the dentate gyrus of 8 weeks old aphakia mice to a number comparable to that of wild-type mice, abolishing the slight reduction of baseline neurogenesis at this age. The described age-dependent susceptibility of adult neurogenesis to PD-like dopaminergic degeneration and its responsiveness to physical activity might have implications for the understanding of the pathophysiology and treatment of non-motor symptoms in PD.
Collapse
Affiliation(s)
- Moritz D Brandt
- Department of Neurology, Technische Universität DresdenDresden, Germany.,German Center for Neurodegenerative Diseases DresdenDresden, Germany
| | | | - Andreas Hermann
- Department of Neurology, Technische Universität DresdenDresden, Germany.,German Center for Neurodegenerative Diseases DresdenDresden, Germany.,Center for Regenerative Therapies Dresden, Technische Universität DresdenDresden, Germany
| | - Anne K Meyer
- Department of Neurology, Technische Universität DresdenDresden, Germany
| | - Kwang-Soo Kim
- Molecular Neurobiology Laboratory, McLean Hospital/Harvard Medical SchoolBelmont, MA, United States
| | - Alexander Storch
- German Center for Neurodegenerative Diseases RostockRostock, Germany.,Department of Neurology, University of RostockRostock, Germany
| |
Collapse
|
32
|
Krüger R, Klucken J, Weiss D, Tönges L, Kolber P, Unterecker S, Lorrain M, Baas H, Müller T, Riederer P. Classification of advanced stages of Parkinson's disease: translation into stratified treatments. J Neural Transm (Vienna) 2017; 124:1015-1027. [PMID: 28342083 PMCID: PMC5514193 DOI: 10.1007/s00702-017-1707-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/11/2017] [Indexed: 01/07/2023]
Abstract
Advanced stages of Parkinson's disease (advPD) still impose a challenge in terms of classification and related stage-adapted treatment recommendations. Previous concepts that define advPD by certain milestones of motor disability apparently fall short in addressing the increasingly recognized complexity of motor and non-motor symptoms and do not allow to account for the clinical heterogeneity that require more personalized approaches. Therefore, deep phenotyping approaches are required to characterize the broad-scaled, continuous and multidimensional spectrum of disease-related motor and non-motor symptoms and their progression under real-life conditions. This will also facilitate the reasoning for clinical care and therapeutic decisions, as neurologists currently have to refer to clinical trials that provide guidance on a group level; however, this does not always account for the individual needs of patients. Here, we provide an overview on different classifications for advPD that translate into critical phenotypic patterns requiring the differential therapeutic adjustments. New concepts refer to precision medicine approaches also in PD and first studies on genetic stratification for therapeutic outcomes provide a potential for more objective treatment recommendations. We define novel treatment targets that align with this concept and make use of emerging device-based assessments of real-life information on PD symptoms. As these approaches require empowerment of patients and integration into treatment decisions, we present communication strategies and decision support based on new technologies to adjust treatment of advPD according to patient demands and safety.
Collapse
Affiliation(s)
- Rejko Krüger
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-Sur-Alzette, Luxembourg.
- Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg.
| | - Jochen Klucken
- Molecular Neurology, University of Erlangen, Erlangen, Germany
| | - Daniel Weiss
- Department for Neurodegenerative Diseases and Hertie-Institute for Clinical Brain Research, Center for Neurology, University of Tübingen, Tübingen, Germany
| | - Lars Tönges
- Department of Neurology of the Ruhr-University Bochum at St Josef-Hospital, Gudrunstrasse 56, 44791 , Bochum, Germany
| | - Pierre Kolber
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-Sur-Alzette, Luxembourg
- Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
| | - Stefan Unterecker
- Center of Mental Health, Clinic and Policlinic of Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Würzburg, Germany
| | | | - Horst Baas
- Department of Neurology, Klinikum Hanau GmbH, Hanau, Germany
| | - Thomas Müller
- Department of Neurology, St. Joseph Hospital Berlin-Weissensee, Berlin, Germany
| | - Peter Riederer
- Center of Mental Health, Clinic and Policlinic of Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Würzburg, Germany
| |
Collapse
|
33
|
Suzuki K, Miyamoto M, Miyamoto T, Uchiyama T, Watanabe Y, Suzuki S, Kadowaki T, Fujita H, Matsubara T, Sakuramoto H, Hirata K. Istradefylline improves daytime sleepiness in patients with Parkinson's disease: An open-label, 3-month study. J Neurol Sci 2017; 380:230-233. [PMID: 28870576 DOI: 10.1016/j.jns.2017.07.045] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/27/2017] [Accepted: 07/28/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Istradefylline, a selective adenosine A2A receptor antagonist, has been reported to improve daily "off time" and motor symptoms in patients with Parkinson's disease (PD). However, the effect of istradefylline on sleep problems has not been thoroughly investigated. METHODS We evaluated the effect of istradefylline on daytime sleepiness, sleep disturbances, and motor symptoms in 22 PD patients who were affected by the wearing off phenomenon in an open-label, 3-month study. Participants received 20-40mg/day istradefylline once daily (morning) over a 3-month period. The Epworth Sleepiness Scale (ESS), PD sleep scale (PDSS)-2 and PD Questionnaire (PDQ-8) were administered at baseline, 2weeks, 1month, 2months and 3months. At baseline and 3months, patients were evaluated on the Movement Disorder Society Revision of the Unified PD Rating Scale (MDS-UPDRS) parts III and IV. RESULTS Twenty-one patients (95.5%) completed the study. At 3months, MDS-UPDRS part III (-5.3, p=0.0002) and part IV (-2.5, p=0.001) scores improved and off time decreased significantly (-50.1min, p=0.0004). PDQ-8 scores were unchanged at 3months. ESS scores decreased significantly at 2months and 3months (-2.4 and -3.3, respectively, p<0.0001), but the total PDSS-2 scores did not change. CONCLUSION Istradefylline improved daytime sleepiness in PD patients, possibly through its effect on enhancing alertness. In addition, the lack of significant changes in the total PDSS-2 scores over the study period suggests istradefylline had no negative impact on sleep.
Collapse
Affiliation(s)
- Keisuke Suzuki
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan.
| | - Masayuki Miyamoto
- Department of Clinical Medicine for Nursing, Dokkyo Medical University, School of Nursing, Tochigi, Japan
| | - Tomoyuki Miyamoto
- Department of Neurology, Dokkyo Medical University Koshigaya Hospital, Saitama, Japan
| | - Tomoyuki Uchiyama
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan; Neuro-urology and Continence Center, Dokkyo Medical University Hospital, Tochigi, Japan
| | - Yuka Watanabe
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan; Department of Neurology, Dokkyo Medical University, Nikko Medical Center, Tochigi, Japan
| | - Shiho Suzuki
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan
| | - Taro Kadowaki
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan
| | - Hiroaki Fujita
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan
| | - Takeo Matsubara
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan
| | | | - Koichi Hirata
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan
| |
Collapse
|
34
|
Jellinger KA. Neuropathology of Nonmotor Symptoms of Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 133:13-62. [PMID: 28802920 DOI: 10.1016/bs.irn.2017.05.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Parkinson's disease (PD), a multiorgan neurodegenerative disorder associated with α-synuclein deposits throughout the nervous system and many organs, is clinically characterized by motor and nonmotor features, many of the latter antedating motor dysfunctions by 20 or more years. The causes of the nonmotor manifestations such as olfactory, autonomic, sensory, neuropsychiatric, visuospatial, sleep, and other disorders are unlikely to be related to single lesions. They are mediated by the involvement of both dopaminergic and nondopaminergic systems, and diverse structures outside the nigrostriatal system that is mainly responsible for the motor features of PD. The nonmotor alterations appear in early/prodromal stages of the disease and its further progression, suggesting a topographical and chronological spread of the lesions. This lends further support for the notion that PD is a multiorgan proteinopathy, although the exact relationship between presymptomatic and later developing nonmotor features of PD and neuropathology awaits further elucidation.
Collapse
|
35
|
Wang W, Ma X, Zhou L, Liu J, Zhu X. A conserved retromer sorting motif is essential for mitochondrial DLP1 recycling by VPS35 in Parkinson's disease model. Hum Mol Genet 2017; 26:781-789. [PMID: 28040727 DOI: 10.1093/hmg/ddw430] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/16/2016] [Indexed: 12/13/2022] Open
Abstract
Impaired mitochondria dynamics and quality control are involved in mitochondrial dysfunction and pathogenesis of Parkinson's disease (PD). VPS35 mutations cause autosomal dominant PD and we recently demonstrated that fPD-associated VPS35 mutants can cause mitochondrial fragmentation through enhanced VPS35-DLP1 interaction. In this study, we focused on the specific sites on DLP1 responsible for the VPS35-DLP1 interaction. A highly conserved FLV motif was identified in the C-terminus of DLP1, mutation of which significantly reduced VPS35-DLP1 interaction. A decoy peptide design based on this FLV motif could block the VPS35-DLP1 interaction and inhibit the recycling of mitochondrial DLP1 complexes. Importantly, VPS35 D620N mutant-induced mitochondrial fragmentation and respiratory deficits could be rescued by the treatment of this decoy peptide in both M17 cells overexpressing D620N or PD fibroblasts bearing this mutation. Overall, our results lend further support to the notion that VPS35-DLP1 interaction is key to the retromer-dependent recycling of mitochondrial DLP1 complex during mitochondrial fission and provide a novel therapeutic target to control excessive fission and associated mitochondrial deficits.
Collapse
Affiliation(s)
- Wenzhang Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Xiaopin Ma
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Leping Zhou
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA.,Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, People's Republic of China
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, People's Republic of China
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
36
|
Mistry PK, Lopez G, Schiffmann R, Barton NW, Weinreb NJ, Sidransky E. Gaucher disease: Progress and ongoing challenges. Mol Genet Metab 2017; 120:8-21. [PMID: 27916601 PMCID: PMC5425955 DOI: 10.1016/j.ymgme.2016.11.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 12/31/2022]
Abstract
Over the past decades, tremendous progress has been made in the field of Gaucher disease, the inherited deficiency of the lysosomal enzyme glucocerebrosidase. Many of the colossal achievements took place during the course of the sixty-year tenure of Dr. Roscoe Brady at the National Institutes of Health. These include the recognition of the enzymatic defect involved, the isolation and characterization of the protein, the localization and characterization of the gene and its nearby pseudogene, as well as the identification of the first mutant alleles in patients. The first treatment for Gaucher disease, enzyme replacement therapy, was conceived of, developed and tested at the Clinical Center of the National Institutes of Health. Advances including recombinant production of the enzyme, the development of mouse models, pioneering gene therapy experiments, high throughput screens of small molecules and the generation of induced pluripotent stem cell models have all helped to catapult research in Gaucher disease into the twenty-first century. The appreciation that mutations in the glucocerebrosidase gene are an important risk factor for parkinsonism further expands the impact of this work. However, major challenges still remain, some of which are described here, that will provide opportunities, excitement and discovery for the next generations of Gaucher investigators.
Collapse
Affiliation(s)
- Pramod K Mistry
- Yale University School of Medicine, Department of Internal Medicine, 333 Cedar Street, LMP 1080, P.O. Box 208019, New Haven, CT 06520-8019, United States.
| | - Grisel Lopez
- Medical Genetics Branch, NHGRI, NIH, Bldg 35A Room 1E623, 35 Convent Drive, Bethesda, MD 20892, United States.
| | - Raphael Schiffmann
- Institute of Metabolic Disease, Baylor Research Institute, Dallas, TX 75226, United States.
| | - Norman W Barton
- Therapeutic Area Head Neuroscience, Shire plc, 300 Shire Way, Lexington, MA 02421, United States.
| | - Neal J Weinreb
- University of Miami Miller School of Medicine, Department of Human Genetics and Medicine (Hematology), UHealth Sylvester Coral Springs, 8170 Royal Palm Boulevard, Coral Springs, FL 33065, United States.
| | - Ellen Sidransky
- Medical Genetics Branch, NHGRI, NIH, Bldg 35A Room 1E623, 35 Convent Drive, Bethesda, MD 20892, United States.
| |
Collapse
|
37
|
Herzallah MM, Khdour HY, Taha AB, Elmashala AM, Mousa HN, Taha MB, Ghanim Z, Sehwail MM, Misk AJ, Balsdon T, Moustafa AA, Myers CE, Gluck MA. Depression Reduces Accuracy While Parkinsonism Slows Response Time for Processing Positive Feedback in Patients with Parkinson's Disease with Comorbid Major Depressive Disorder Tested on a Probabilistic Category-Learning Task. Front Psychiatry 2017; 8:84. [PMID: 28659830 PMCID: PMC5466983 DOI: 10.3389/fpsyt.2017.00084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 04/28/2017] [Indexed: 02/05/2023] Open
Abstract
Major depressive disorder (MDD) is the most common non-motor manifestation of Parkinson's disease (PD) affecting 50% of patients. However, little is known about the cognitive correlates of MDD in PD. Using a computer-based cognitive task that dissociates learning from positive and negative feedback, we tested four groups of subjects: (1) patients with PD with comorbid MDD, (2) patients with PD without comorbid MDD, (3) matched patients with MDD alone (without PD), and (4) matched healthy control subjects. Furthermore, we used a mathematical model of decision-making to fit both choice and response time data, allowing us to detect and characterize differences between the groups that are not revealed by cognitive results. The groups did not differ in learning accuracy from negative feedback, but the MDD groups (PD patients with MDD and patients with MDD alone) exhibited a selective impairment in learning accuracy from positive feedback when compared to the non-MDD groups (PD patients without MDD and healthy subjects). However, response time in positive feedback trials in the PD groups (both with and without MDD) was significantly slower than the non-PD groups (MDD and healthy groups). While faster response time usually correlates with poor learning accuracy, it was paradoxical in PD groups, with PD patients with MDD having impaired learning accuracy and PD patients without MDD having intact learning accuracy. Mathematical modeling showed that both MDD groups (PD with MDD and MDD alone) were significantly slower than non-MDD groups in the rate of accumulation of information for stimuli trained by positive feedback, which can lead to lower response accuracy. Conversely, modeling revealed that both PD groups (PD with MDD and PD alone) required more evidence than other groups to make responses, thus leading to slower response times. These results suggest that PD patients with MDD exhibit cognitive profiles with mixed traits characteristic of both MDD and PD, furthering our understanding of both PD and MDD and their often-complex comorbidity. To the best of our knowledge, this is the first study to examine feedback-based learning in PD with MDD while controlling for the effects of PD and MDD.
Collapse
Affiliation(s)
- Mohammad M Herzallah
- Palestinian Neuroscience Initiative, Al-Quds University, Abu Dis, Palestine.,Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, United States
| | - Hussain Y Khdour
- Palestinian Neuroscience Initiative, Al-Quds University, Abu Dis, Palestine.,Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, United States
| | - Ahmad B Taha
- Palestinian Neuroscience Initiative, Al-Quds University, Abu Dis, Palestine
| | - Amjad M Elmashala
- Palestinian Neuroscience Initiative, Al-Quds University, Abu Dis, Palestine
| | - Hamza N Mousa
- Palestinian Neuroscience Initiative, Al-Quds University, Abu Dis, Palestine
| | - Mohamad B Taha
- Palestinian Neuroscience Initiative, Al-Quds University, Abu Dis, Palestine
| | - Zaid Ghanim
- Palestinian Neuroscience Initiative, Al-Quds University, Abu Dis, Palestine
| | - Mahmud M Sehwail
- Palestinian Neuroscience Initiative, Al-Quds University, Abu Dis, Palestine
| | - Adel J Misk
- Palestinian Neuroscience Initiative, Al-Quds University, Abu Dis, Palestine
| | - Tarryn Balsdon
- School of Social Sciences and Psychology, Marcs Institute for Brain and Behavior, Western Sydney University, Sydney, NSW, Australia
| | - Ahmed A Moustafa
- School of Social Sciences and Psychology, Marcs Institute for Brain and Behavior, Western Sydney University, Sydney, NSW, Australia
| | - Catherine E Myers
- Department of Veterans Affairs, VA New Jersey Health Care System, East Orange, NJ, United States.,Department of Physiology, Pharmacology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Mark A Gluck
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, United States
| |
Collapse
|
38
|
Pan P, Zhan H, Xia M, Zhang Y, Guan D, Xu Y. Aberrant regional homogeneity in Parkinson's disease: A voxel-wise meta-analysis of resting-state functional magnetic resonance imaging studies. Neurosci Biobehav Rev 2016; 72:223-231. [PMID: 27916710 DOI: 10.1016/j.neubiorev.2016.11.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 11/07/2016] [Accepted: 11/21/2016] [Indexed: 12/14/2022]
Abstract
Studies of abnormal regional homogeneity (ReHo) in Parkinson's disease (PD) have reported inconsistent results. Therefore, we conducted a meta-analysis using the Seed-based d Mapping software package to identify the most consistent and replicable findings. A systematic literature search was performed to identify eligible whole-brain resting-state functional magnetic resonance imaging studies that had measured differences in ReHo between patients with PD and healthy controls between January 2000 and June 4, 2016. A total of ten studies reporting 11 comparisons (212 patients; 182 controls) were included. Increased ReHo was consistently identified in the bilateral inferior parietal lobules, bilateral medial prefrontal cortices, and left cerebellum of patients with PD when compared to healthy controls, while decreased ReHo was observed in the right putamen, right precentral gyrus, and left lingual gyrus. The results of the current meta-analysis demonstrate a consistent and coexistent pattern of impairment and compensation of intrinsic brain activity that predominantly involves the default mode and motor networks, which may advance our understanding of the pathophysiological mechanisms underlying PD.
Collapse
Affiliation(s)
- PingLei Pan
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, PR China; Department of Neurology, The Affiliated Yancheng Hospital, School of Medicine, Southeast University, Yancheng, PR China
| | - Hui Zhan
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, PR China
| | - MingXu Xia
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, PR China
| | - Yang Zhang
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - DeNing Guan
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, PR China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, PR China; Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, PR China; The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China; Jiangsu Key Laboratory for Molecular Medicine, Nanjing University Medical School, Nanjing, Jiangsu, PR China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, PR China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, PR China.
| |
Collapse
|
39
|
Knudsen K, Krogh K, Østergaard K, Borghammer P. Constipation in parkinson's disease: Subjective symptoms, objective markers, and new perspectives. Mov Disord 2016; 32:94-105. [PMID: 27873359 DOI: 10.1002/mds.26866] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/30/2016] [Accepted: 10/05/2016] [Indexed: 12/16/2022] Open
Abstract
Constipation is among the first nonmotor symptoms to develop in the prodromal phase of PD. Pathological alpha-synuclein deposition is present throughout the gastrointestinal tract up to 20 years preceding diagnosis. Nevertheless, constipation in the context of PD remains ill defined and poorly understood. In this review, we summarize current knowledge of subjective symptoms and objective measures of constipation in PD. More than 10 different definitions of constipation have been used in the PD literature, making generalizations difficult. When pooling results from the most homogeneous studies in PD, a median constipation prevalence of 40% to 50% emerges, but with large variation across individual studies. Also, constipation prevalence tends to increase with disease progression. A similar prevalence is observed among patients with idiopathic rapid eye movement sleep behavior disorder. Interestingly, we detected a correlation between constipation prevalence in PD patients and healthy control groups in individual studies, raising concerns about how various constipation questionnaires are implemented across study populations. More than 80% of PD patients exhibit prolonged colonic transit time, and the same is probably true for de novo PD patients. Thus, the prevalence of objective colonic dysfunction exceeds the prevalence of subjective constipation. Colonic transit time measures are simple, widely available, and hold promise as a useful biomarker in manifest PD. More research is needed to elucidate the role of gastrointestinal dysfunction in disease progression of PD. Moreover, colonic transit measures may have utility as a more accurate risk factor for predicting PD in the prodromal phase. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Karoline Knudsen
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Klaus Krogh
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Karen Østergaard
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Per Borghammer
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
40
|
Van der Schyf CJ. Psychotropic Drug Development Strategies that Target Neuropsychiatric Etiologies in Alzheimer's and Parkinson's Diseases. Drug Dev Res 2016; 77:458-468. [DOI: 10.1002/ddr.21368] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 08/25/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Cornelis J. Van der Schyf
- Department of Biomedical and Pharmaceutical Sciences; College of Pharmacy, Idaho State University; Pocatello Idaho 83209
- Graduate School; Idaho State University; 921 South 8th Avenue Pocatello Idaho 83209
| |
Collapse
|