1
|
Nagata S, Yamasaki R. The Involvement of Glial Cells in Blood-Brain Barrier Damage in Neuroimmune Diseases. Int J Mol Sci 2024; 25:12323. [PMID: 39596390 PMCID: PMC11594741 DOI: 10.3390/ijms252212323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
The blood-brain barrier and glial cells, particularly astrocytes, interact with each other in neuroimmune diseases. In the inflammatory environment typical of these diseases, alterations in vascular endothelial cell surface molecules and weakened cell connections allow immune cells and autoantibodies to enter the central nervous system. Glial cells influence the adhesion of endothelial cells by changing their morphology and releasing various signaling molecules. Multiple sclerosis has been the most studied disease in relation to vascular endothelial and glial cell interactions, but these cells also significantly affect the onset and severity of other neuroimmune conditions, including demyelinating and inflammatory diseases. In this context, we present an overview of these interactions and highlight how they vary across different neuroimmune diseases.
Collapse
Affiliation(s)
- Satoshi Nagata
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Clinical Education Center, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Ryo Yamasaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
2
|
Garton T, Gadani SP, Gill AJ, Calabresi PA. Neurodegeneration and demyelination in multiple sclerosis. Neuron 2024; 112:3231-3251. [PMID: 38889714 PMCID: PMC11466705 DOI: 10.1016/j.neuron.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024]
Abstract
Progressive multiple sclerosis (PMS) is an immune-initiated neurodegenerative condition that lacks effective therapies. Although peripheral immune infiltration is a hallmark of relapsing-remitting MS (RRMS), PMS is associated with chronic, tissue-restricted inflammation and disease-associated reactive glial states. The effector functions of disease-associated microglia, astrocytes, and oligodendrocyte lineage cells are beginning to be defined, and recent studies have made significant progress in uncovering their pathologic implications. In this review, we discuss the immune-glia interactions that underlie demyelination, failed remyelination, and neurodegeneration with a focus on PMS. We highlight the common and divergent immune mechanisms by which glial cells acquire disease-associated phenotypes. Finally, we discuss recent advances that have revealed promising novel therapeutic targets for the treatment of PMS and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Thomas Garton
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sachin P Gadani
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alexander J Gill
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter A Calabresi
- Division of Neuroimmunology, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Zhou Y, Wang X, Yin W, Li Y, Guo Y, Chen C, Boltze J, Liesz A, Sparwasser T, Wen D, Yu W, Li P. Perioperative stroke deteriorates white matter integrity by enhancing cytotoxic CD8 + T-cell activation. CNS Neurosci Ther 2024; 30:e14747. [PMID: 38973085 PMCID: PMC11227991 DOI: 10.1111/cns.14747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/28/2024] [Accepted: 04/17/2024] [Indexed: 07/09/2024] Open
Abstract
AIM To explore the regulatory mechanisms of microglia-mediated cytotoxic CD8+ T-cell infiltration in the white matter injury of perioperative stroke (PIS). METHODS Adult male C57BL/6 mice were subjected to ileocolic bowel resection (ICR) 24 h prior to permanent distant middle cerebral artery occlusion (dMCAO) to establish model PIS. White matter injury, functional outcomes, peripheral immune cell infiltration, and microglia phenotype were assessed up to 28 days after dMCAO using behavioral phenotyping, immunofluorescence staining, transmission electron microscopy, western blot, and FACS analysis. RESULTS We found surgery aggravated white matter injury and deteriorated sensorimotor deficits up to 28 days following PIS. The PIS mice exhibited significantly increased activation of peripheral and central CD8+ T cells, while significantly reduced numbers of mature oligodendrocytes compared to IS mice. Neutralizing CD8+ T cells partly reversed the aggravated demyelination following PIS. Pharmacological blockage or genetic deletion of receptor-interacting protein kinase 1 (RIPK1) activity could alleviate CD8+ T-cell infiltration and demyelination in PIS mice. CONCLUSION Surgery exacerbates demyelination and worsens neurological function by promoting infiltration of CD8+ T cells and microglia necroptosis, suggesting that modulating interactions of CD8+ T cells and microglia could be a novel therapeutic target of long-term neurological deficits of PIS.
Collapse
Affiliation(s)
- Yuxi Zhou
- Department of Anesthesiology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University)Ministry of EducationShanghaiChina
| | - Xin Wang
- Department of Anesthesiology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University)Ministry of EducationShanghaiChina
| | - Wen Yin
- Department of Anesthesiology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University)Ministry of EducationShanghaiChina
| | - Yan Li
- Department of Anesthesiology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University)Ministry of EducationShanghaiChina
| | - Yunlu Guo
- Department of Anesthesiology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University)Ministry of EducationShanghaiChina
| | - Chen Chen
- Department of Anesthesiology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University)Ministry of EducationShanghaiChina
| | | | - Arthur Liesz
- Institute for Stroke and Dementia Research (ISD), University HospitalLMU MunichMunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | - Tim Sparwasser
- Institute of Medical Microbiology and HygieneUniversity Medical Center of the Johannes Gutenberg‐University MainzMainzGermany
- Research Center for Immunotherapy (FZI)University Medical Center, Johannes Gutenberg‐University MainzMainzGermany
| | - Daxiang Wen
- Department of Anesthesiology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University)Ministry of EducationShanghaiChina
| | - Weifeng Yu
- Department of Anesthesiology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University)Ministry of EducationShanghaiChina
| | - Peiying Li
- Department of Anesthesiology, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University)Ministry of EducationShanghaiChina
- Clinical Research Center, Renji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Outcomes Research ConsortiumClevelandOhioUSA
| |
Collapse
|
4
|
Mehmood A, Shah S, Guo RY, Haider A, Shi M, Ali H, Ali I, Ullah R, Li B. Methyl-CpG-Binding Protein 2 Emerges as a Central Player in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorders. Cell Mol Neurobiol 2023; 43:4071-4101. [PMID: 37955798 PMCID: PMC11407427 DOI: 10.1007/s10571-023-01432-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023]
Abstract
MECP2 and its product methyl-CpG binding protein 2 (MeCP2) are associated with multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD), which are inflammatory, autoimmune, and demyelinating disorders of the central nervous system (CNS). However, the mechanisms and pathways regulated by MeCP2 in immune activation in favor of MS and NMOSD are not fully understood. We summarize findings that use the binding properties of MeCP2 to identify its targets, particularly the genes recognized by MeCP2 and associated with several neurological disorders. MeCP2 regulates gene expression in neurons, immune cells and during development by modulating various mechanisms and pathways. Dysregulation of the MeCP2 signaling pathway has been associated with several disorders, including neurological and autoimmune diseases. A thorough understanding of the molecular mechanisms underlying MeCP2 function can provide new therapeutic strategies for these conditions. The nervous system is the primary system affected in MeCP2-associated disorders, and other systems may also contribute to MeCP2 action through its target genes. MeCP2 signaling pathways provide promise as potential therapeutic targets in progressive MS and NMOSD. MeCP2 not only increases susceptibility and induces anti-inflammatory responses in immune sites but also leads to a chronic increase in pro-inflammatory cytokines gene expression (IFN-γ, TNF-α, and IL-1β) and downregulates the genes involved in immune regulation (IL-10, FoxP3, and CX3CR1). MeCP2 may modulate similar mechanisms in different pathologies and suggest that treatments for MS and NMOSD disorders may be effective in treating related disorders. MeCP2 regulates gene expression in MS and NMOSD. However, dysregulation of the MeCP2 signaling pathway is implicated in these disorders. MeCP2 plays a role as a therapeutic target for MS and NMOSD and provides pathways and mechanisms that are modulated by MeCP2 in the regulation of gene expression.
Collapse
Affiliation(s)
- Arshad Mehmood
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Suleman Shah
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Ruo-Yi Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Arsalan Haider
- Key Lab of Health Psychology, Institute of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Mengya Shi
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Hamid Ali
- Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad, 44000, Pakistan
| | - Ijaz Ali
- Centre for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally, 32093, Kuwait
| | - Riaz Ullah
- Medicinal Aromatic and Poisonous Plants Research Center, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China.
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, 050000, Hebei, People's Republic of China.
| |
Collapse
|
5
|
Lamorie‐Foote K, Liu Q, Shkirkova K, Ge B, He S, Morgan TE, Mack WJ, Sioutas C, Finch CE, Mack WJ. Particulate matter exposure and chronic cerebral hypoperfusion promote oxidative stress and induce neuronal and oligodendrocyte apoptosis in male mice. J Neurosci Res 2023; 101:384-402. [PMID: 36464774 PMCID: PMC10107949 DOI: 10.1002/jnr.25153] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 10/16/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Chronic cerebral hypoperfusion (CCH) may amplify the neurotoxicity of nanoscale particulate matter (nPM), resulting in white matter injury. This study characterized the joint effects of nPM (diameter ≤ 200 nm) and CCH secondary to bilateral carotid artery stenosis (BCAS) exposure on neuronal and white matter injury in a murine model. nPM was collected near a highway and re-aerosolized for exposure. Ten-week-old C57BL/6 male mice were randomized into four groups: filtered air (FA), nPM, FA + BCAS, and nPM + BCAS. Mice were exposed to FA or nPM for 10 weeks. BCAS surgeries were performed. Markers of inflammation, oxidative stress, and apoptosis were examined. nPM + BCAS exposure increased brain hemisphere TNFα protein compared to FA. iNOS and HNE immunofluorescence were increased in the corpus callosum and cerebral cortex of nPM + BCAS mice compared to FA. While nPM exposure alone did not decrease cortical neuronal cell count, nPM decreased corpus callosum oligodendrocyte cell count. nPM exposure decreased mature oligodendrocyte cell count and increased oligodendrocyte precursor cell count in the corpus callosum. nPM + BCAS mice exhibited a 200% increase in cortical neuronal TUNEL staining and a 700% increase in corpus callosum oligodendrocyte TUNEL staining compared to FA. There was a supra-additive interaction between nPM and BCAS on cortical neuronal TUNEL staining (2.6× the additive effects of nPM + BCAS). nPM + BCAS exposure increased apoptosis, neuroinflammation, and oxidative stress in the cerebral cortex and corpus callosum. nPM + BCAS exposure increased neuronal apoptosis above the separate responses to each exposure. However, oligodendrocytes in the corpus callosum demonstrated a greater susceptibility to the combined neurotoxic effects of nPM + BCAS exposure.
Collapse
Affiliation(s)
- Krista Lamorie‐Foote
- Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Neurological Surgery, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Qinghai Liu
- Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Kristina Shkirkova
- Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Brandon Ge
- Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Shannon He
- Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Todd E. Morgan
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Wendy J. Mack
- Department of Population and Public Health SciencesUniversity of Southern California, Keck School of MedicineLos AngelesCaliforniaUSA
| | - Constantinos Sioutas
- Department of Civil and Environmental Engineering, Viterbi School of EngineeringUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Caleb E. Finch
- Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - William J. Mack
- Zilkha Neurogenetic InstituteUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Neurological Surgery, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
6
|
Scalabrino G. Epidermal Growth Factor in the CNS: A Beguiling Journey from Integrated Cell Biology to Multiple Sclerosis. An Extensive Translational Overview. Cell Mol Neurobiol 2022; 42:891-916. [PMID: 33151415 PMCID: PMC8942922 DOI: 10.1007/s10571-020-00989-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022]
Abstract
This article reviews the wealth of papers dealing with the different effects of epidermal growth factor (EGF) on oligodendrocytes, astrocytes, neurons, and neural stem cells (NSCs). EGF induces the in vitro and in vivo proliferation of NSCs, their migration, and their differentiation towards the neuroglial cell line. It interacts with extracellular matrix components. NSCs are distributed in different CNS areas, serve as a reservoir of multipotent cells, and may be increased during CNS demyelinating diseases. EGF has pleiotropic differentiative and proliferative effects on the main CNS cell types, particularly oligodendrocytes and their precursors, and astrocytes. EGF mediates the in vivo myelinotrophic effect of cobalamin on the CNS, and modulates the synthesis and levels of CNS normal prions (PrPCs), both of which are indispensable for myelinogenesis and myelin maintenance. EGF levels are significantly lower in the cerebrospinal fluid and spinal cord of patients with multiple sclerosis (MS), which probably explains remyelination failure, also because of the EGF marginal role in immunology. When repeatedly administered, EGF protects mouse spinal cord from demyelination in various experimental models of autoimmune encephalomyelitis. It would be worth further investigating the role of EGF in the pathogenesis of MS because of its multifarious effects.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Department of Biomedical Sciences, University of Milan, Via Mangiagalli 31, 20133, Milan, Italy.
| |
Collapse
|
7
|
Razi O, Tartibian B, Laher I, Govindasamy K, Zamani N, Rocha-Rodrigues S, Suzuki K, Zouhal H. Multimodal Benefits of Exercise in Patients With Multiple Sclerosis and COVID-19. Front Physiol 2022; 13:783251. [PMID: 35492581 PMCID: PMC9048028 DOI: 10.3389/fphys.2022.783251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 03/31/2022] [Indexed: 11/24/2022] Open
Abstract
Multiple sclerosis (MS) is a demyelinating disease characterized by plaque formation and neuroinflammation. The plaques can present in various locations, causing a variety of clinical symptoms in patients with MS. Coronavirus disease-2019 (COVID-19) is also associated with systemic inflammation and a cytokine storm which can cause plaque formation in several areas of the brain. These concurring events could exacerbate the disease burden of MS. We review the neuro-invasive properties of SARS-CoV-2 and the possible pathways for the entry of the virus into the central nervous system (CNS). Complications due to this viral infection are similar to those occurring in patients with MS. Conditions related to MS which make patients more susceptible to viral infection include inflammatory status, blood-brain barrier (BBB) permeability, function of CNS cells, and plaque formation. There are also psychoneurological and mood disorders associated with both MS and COVID-19 infections. Finally, we discuss the effects of exercise on peripheral and central inflammation, BBB integrity, glia and neural cells, and remyelination. We conclude that moderate exercise training prior or after infection with SARS-CoV-2 can produce health benefits in patients with MS patients, including reduced mortality and improved physical and mental health of patients with MS.
Collapse
Affiliation(s)
- Omid Razi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Razi University, Kermanshah, Iran
| | - Bakhtyar Tartibian
- Department of Sports Injuries, Faculty of Physical Education and Sports Sciences, Allameh Tabataba’i University, Tehran, Iran
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Karuppasamy Govindasamy
- Department of Physical Education & Sports Science, SRM Institute of Science and Technology, Kattankulathur, India
| | - Nastaran Zamani
- Department of Biology, Faculty of Science, Payame-Noor University, Tehran, Iran
| | - Silvia Rocha-Rodrigues
- Escola Superior de Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Viana do Castelo, Portugal
- Research Centre in Sports Sciences, Health Sciences and Human Development (CIDESD), Quinta de Prados, Edifício Ciências de Desporto, Vila Real, Portugal
- Tumor & Microenvironment Interactions Group, i3S, Porto, Portugal
| | | | - Hassane Zouhal
- Laboratoire Mouvement, Sport, Santé, University of Rennes, Rennes, France
- Institut International des Sciences du Sport (2I2S), Irodouer, France
| |
Collapse
|
8
|
Scalabrino G. Newly Identified Deficiencies in the Multiple Sclerosis Central Nervous System and Their Impact on the Remyelination Failure. Biomedicines 2022; 10:biomedicines10040815. [PMID: 35453565 PMCID: PMC9026986 DOI: 10.3390/biomedicines10040815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of multiple sclerosis (MS) remains enigmatic and controversial. Myelin sheaths in the central nervous system (CNS) insulate axons and allow saltatory nerve conduction. MS brings about the destruction of myelin sheaths and the myelin-producing oligodendrocytes (ODCs). The conundrum of remyelination failure is, therefore, crucial in MS. In this review, the roles of epidermal growth factor (EGF), normal prions, and cobalamin in CNS myelinogenesis are briefly summarized. Thereafter, some findings of other authors and ourselves on MS and MS-like models are recapitulated, because they have shown that: (a) EGF is significantly decreased in the CNS of living or deceased MS patients; (b) its repeated administration to mice in various MS-models prevents demyelination and inflammatory reaction; (c) as was the case for EGF, normal prion levels are decreased in the MS CNS, with a strong correspondence between liquid and tissue levels; and (d) MS cobalamin levels are increased in the cerebrospinal fluid, but decreased in the spinal cord. In fact, no remyelination can occur in MS if these molecules (essential for any form of CNS myelination) are lacking. Lastly, other non-immunological MS abnormalities are reviewed. Together, these results have led to a critical reassessment of MS pathogenesis, partly because EGF has little or no role in immunology.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| |
Collapse
|
9
|
Aguado T, Huerga-Gómez A, Sánchez-de la Torre A, Resel E, Chara JC, Matute C, Mato S, Galve-Roperh I, Guzman M, Palazuelos J. Δ 9 -Tetrahydrocannabinol promotes functional remyelination in the mouse brain. Br J Pharmacol 2021; 178:4176-4192. [PMID: 34216154 DOI: 10.1111/bph.15608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/07/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Research on demyelinating disorders aims to find novel molecules that are able to induce oligodendrocyte precursor cell differentiation to promote central nervous system remyelination and functional recovery. Δ9 -Tetrahydrocannabinol (THC), the most prominent active constituent of the hemp plant Cannabis sativa, confers neuroprotection in animal models of demyelination. However, the possible effect of THC on myelin repair has never been studied. EXPERIMENTAL APPROACH By using oligodendroglia-specific reporter mouse lines in combination with two models of toxin-induced demyelination, we analysed the effect of THC on the processes of oligodendrocyte regeneration and functional remyelination. KEY RESULTS We show that THC administration enhanced oligodendrocyte regeneration, white matter remyelination and motor function recovery. THC also promoted axonal remyelination in organotypic cerebellar cultures. THC remyelinating action relied on the induction of oligodendrocyte precursor differentiation upon cell cycle exit and via CB1 cannabinoid receptor activation. CONCLUSIONS AND IMPLICATIONS Overall, our study identifies THC administration as a promising pharmacological strategy aimed to promote functional CNS remyelination in demyelinating disorders.
Collapse
Affiliation(s)
- Tania Aguado
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación en Neuroquímica (IUIN), Complutense University, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Alba Huerga-Gómez
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación en Neuroquímica (IUIN), Complutense University, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Aníbal Sánchez-de la Torre
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación en Neuroquímica (IUIN), Complutense University, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Eva Resel
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación en Neuroquímica (IUIN), Complutense University, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Juan Carlos Chara
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Neurosciences, University of the Basque Country UPV/EHU and Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Carlos Matute
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Neurosciences, University of the Basque Country UPV/EHU and Achucarro Basque Center for Neuroscience, Leioa, Spain.,Biocruces, Barakaldo, Spain
| | - Susana Mato
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Neurosciences, University of the Basque Country UPV/EHU and Achucarro Basque Center for Neuroscience, Leioa, Spain.,Biocruces, Barakaldo, Spain
| | - Ismael Galve-Roperh
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación en Neuroquímica (IUIN), Complutense University, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Manuel Guzman
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación en Neuroquímica (IUIN), Complutense University, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Javier Palazuelos
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Department of Biochemistry and Molecular Biology, Instituto Universitario de Investigación en Neuroquímica (IUIN), Complutense University, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
10
|
Piller M, Werkman IL, Brown RI, Latimer AJ, Kucenas S. Glutamate Signaling via the AMPAR Subunit GluR4 Regulates Oligodendrocyte Progenitor Cell Migration in the Developing Spinal Cord. J Neurosci 2021; 41:5353-5371. [PMID: 33975920 PMCID: PMC8221590 DOI: 10.1523/jneurosci.2562-20.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 11/21/2022] Open
Abstract
Oligodendrocyte progenitor cells (OPCs) are specified from discrete precursor populations during gliogenesis and migrate extensively from their origins, ultimately distributing throughout the brain and spinal cord during early development. Subsequently, a subset of OPCs differentiates into mature oligodendrocytes, which myelinate axons. This process is necessary for efficient neuronal signaling and organism survival. Previous studies have identified several factors that influence OPC development, including excitatory glutamatergic synapses that form between neurons and OPCs during myelination. However, little is known about how glutamate signaling affects OPC migration before myelination. In this study, we use in vivo, time-lapse imaging in zebrafish in conjunction with genetic and pharmacological perturbation to investigate OPC migration and myelination when the GluR4A ionotropic glutamate receptor subunit is disrupted. In our studies, we observed that gria4a mutant embryos and larvae displayed abnormal OPC migration and altered dorsoventral distribution in the spinal cord. Genetic mosaic analysis confirmed that these effects were cell-autonomous, and we identified that voltage-gated calcium channels were downstream of glutamate receptor signaling in OPCs and could rescue the migration and myelination defects we observed when glutamate signaling was perturbed. These results offer new insights into the complex system of neuron-OPC interactions and reveal a cell-autonomous role for glutamatergic signaling in OPCs during neural development.SIGNIFICANCE STATEMENT The migration of oligodendrocyte progenitor cells (OPCs) is an essential process during development that leads to uniform oligodendrocyte distribution and sufficient myelination for central nervous system function. Here, we demonstrate that the AMPA receptor (AMPAR) subunit GluR4A is an important driver of OPC migration and myelination in vivo and that activated voltage-gated calcium channels are downstream of glutamate receptor signaling in mediating this migration.
Collapse
Affiliation(s)
- Melanie Piller
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904
| | - Inge L Werkman
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904
| | - Robin Isadora Brown
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904
| | - Andrew J Latimer
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904
| | - Sarah Kucenas
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904
| |
Collapse
|
11
|
Une H, Yamasaki R, Nagata S, Yamaguchi H, Nakamuta Y, Indiasari UC, Cui Y, Shinoda K, Masaki K, Götz M, Kira JI. Brain gray matter astroglia-specific connexin 43 ablation attenuates spinal cord inflammatory demyelination. J Neuroinflammation 2021; 18:126. [PMID: 34090477 PMCID: PMC8180177 DOI: 10.1186/s12974-021-02176-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/19/2021] [Indexed: 11/10/2022] Open
Abstract
Background Brain astroglia are activated preceding the onset of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). We characterized the effects of brain astroglia on spinal cord inflammation, focusing on astroglial connexin (Cx)43, because we recently reported that Cx43 has a critical role in regulating neuroinflammation. Methods Because glutamate aspartate transporter (GLAST)+ astroglia are enriched in the brain gray matter, we generated Cx43fl/fl;GLAST-CreERT2/+ mice that were brain gray matter astroglia-specific Cx43 conditional knockouts (Cx43 icKO). EAE was induced by immunization with myelin oligodendroglia glycoprotein (MOG) 35–55 peptide 10 days after tamoxifen injection. Cx43fl/fl mice were used as controls. Results Acute and chronic EAE signs were significantly milder in Cx43 icKO mice than in controls whereas splenocyte MOG-specific responses were unaltered. Histologically, Cx43 icKO mice showed significantly less demyelination and fewer CD45+ infiltrating immunocytes, including F4/80+ macrophages, and Iba1+ microglia in the spinal cord than controls. Microarray analysis of the whole cerebellum revealed marked upregulation of anti-inflammatory A2-specific astroglia gene sets in the pre-immunized phase and decreased proinflammatory A1-specific and pan-reactive astroglial gene expression in the onset phase in Cx43 icKO mice compared with controls. Astroglia expressing C3, a representative A1 marker, were significantly decreased in the cerebrum, cerebellum, and spinal cord of Cx43 icKO mice compared with controls in the peak phase. Isolated Cx43 icKO spinal microglia showed more anti-inflammatory and less proinflammatory gene expression than control microglia in the pre-immunized phase. In particular, microglial expression of Ccl2, Ccl5, Ccl7, and Ccl8 in the pre-immunized phase and of Cxcl9 at the peak phase was lower in Cx43 icKO than in controls. Spinal microglia circularity was significantly lower in Cx43 icKO than in controls in the peak phase. Significantly lower interleukin (IL)-6, interferon-γ, and IL-10 levels were present in cerebrospinal fluid from Cx43 icKO mice in the onset phase compared with controls. Conclusions The ablation of Cx43 in brain gray matter astroglia attenuates EAE by promoting astroglia toward an anti-inflammatory phenotype and suppressing proinflammatory activation of spinal microglia partly through depressed cerebrospinal fluid proinflammatory cytokine/chemokine levels. Brain astroglial Cx43 might be a novel therapeutic target for MS. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02176-1.
Collapse
Affiliation(s)
- Hayato Une
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ryo Yamasaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Satoshi Nagata
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hiroo Yamaguchi
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuko Nakamuta
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ulfa Camelia Indiasari
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yiwen Cui
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Koji Shinoda
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Katsuhisa Masaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Magdalena Götz
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians University Munich, Munich, Germany
| | - Jun-Ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan. .,Translational Neuroscience Center, Graduate School of Medicine, and School of Pharmacy at Fukuoka, International University of Health and Welfare, 137-1 Enokizu, Ookawa, Fukuoka, 831-8501, Japan. .,Department of Neurology, Brain and Nerve Center, Fukuoka Central Hospital, International University of Health and Welfare, 2-6-11 Yakuin, Chuo-ku, Fukuoka, 810-0022, Japan.
| |
Collapse
|
12
|
Traiffort E, Kassoussi A, Zahaf A, Laouarem Y. Astrocytes and Microglia as Major Players of Myelin Production in Normal and Pathological Conditions. Front Cell Neurosci 2020; 14:79. [PMID: 32317939 PMCID: PMC7155218 DOI: 10.3389/fncel.2020.00079] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/19/2020] [Indexed: 12/13/2022] Open
Abstract
Myelination is an essential process that consists of the ensheathment of axons by myelin. In the central nervous system (CNS), myelin is synthesized by oligodendrocytes. The proliferation, migration, and differentiation of oligodendrocyte precursor cells constitute a prerequisite before mature oligodendrocytes extend their processes around the axons and progressively generate a multilamellar lipidic sheath. Although myelination is predominately driven by oligodendrocytes, the other glial cells including astrocytes and microglia, also contribute to this process. The present review is an update of the most recent emerging mechanisms involving astrocyte and microglia in myelin production. The contribution of these cells will be first described during developmental myelination that occurs in the early postnatal period and is critical for the proper development of cognition and behavior. Then, we will report the novel findings regarding the beneficial or deleterious effects of astroglia and microglia, which respectively promote or impair the endogenous capacity of oligodendrocyte progenitor cells (OPCs) to induce spontaneous remyelination after myelin loss. Acute delineation of astrocyte and microglia activities and cross-talk should uncover the way towards novel therapeutic perspectives aimed at recovering proper myelination during development or at breaking down the barriers impeding the regeneration of the damaged myelin that occurs in CNS demyelinating diseases.
Collapse
Affiliation(s)
| | | | - Amina Zahaf
- U1195 Inserm, University Paris-Saclay, Kremlin-Bicêtre, France
| | - Yousra Laouarem
- U1195 Inserm, University Paris-Saclay, Kremlin-Bicêtre, France
| |
Collapse
|
13
|
Cheng J, Shen W, Jin L, Pan J, Zhou Y, Pan G, Xie Q, Hu Q, Wu S, Zhang H, Chen X. Treadmill exercise promotes neurogenesis and myelin repair via upregulating Wnt/β‑catenin signaling pathways in the juvenile brain following focal cerebral ischemia/reperfusion. Int J Mol Med 2020; 45:1447-1463. [PMID: 32323740 PMCID: PMC7138282 DOI: 10.3892/ijmm.2020.4515] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/20/2020] [Indexed: 12/15/2022] Open
Abstract
Physical exercise has a neuroprotective effect and is an important treatment after ischemic stroke. Promoting neurogenesis and myelin repair in the penumbra is an important method for the treatment of ischemic stroke. However, the role and potential mechanism of exercise in neurogenesis and myelin repair still needs to be clarified. The goal of the present study was to ascertain the possible effect of treadmill training on the neuroprotective signaling pathway in juvenile rats after ischemic stroke. The model of middle cerebral artery occlusion (MCAO) in juvenile rats was established and then the rats were randomly divided into 9 groups. XAV939 (an inhibitor of the Wnt/β‑catenin pathway) was used to confirm the effects of the Wnt/β‑catenin signaling pathway on exercise‑mediated neurogenesis and myelin repair. Neurological deficits were detected by modified neurological severity score, the injury of brain tissue and the morphology of neurons was detected by hematoxylin‑eosin staining and Nissl staining, and the infarct volume was detected by 2,3,5‑triphenyl tetrazolium chloride staining. The changes in myelin were observed by Luxol fast blue staining. The neuron ultrastructure was observed by transmission electron microscopy. Immunofluorescence and western blots analyzed the molecular mechanisms. The results showed that treadmill exercise improved neurogenesis, enhanced myelin repair, promoted neurological function recovery and reduced infarct volume. These were the results of the upregulation of Wnt3a and nucleus β‑catenin, brain‑derived neurotrophic factor (BDNF) and myelin basic protein (MBP). In addition, XAV939 inhibited treadmill exercise‑induced neurogenesis and myelin repair, which was consistent with the downregulation of Wnt3a, nucleus β‑catenin, BDNF and MBP expression, and the deterioration of neurological function. In summary, treadmill exercise promotes neurogenesis and myelin repair by upregulating the Wnt/β‑catenin signaling pathway, to improve the neurological deficit caused by focal cerebral ischemia/reperfusion.
Collapse
Affiliation(s)
- Jingyan Cheng
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Weimin Shen
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Lingqin Jin
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Juanjuan Pan
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Yan Zhou
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Guoyuan Pan
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Qingfeng Xie
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Quan Hu
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Shamin Wu
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Hongmei Zhang
- Nursing Department, Hangzhou Children's Hospital, Hangzhou, Zhejiang 310000, P.R. China
| | - Xiang Chen
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| |
Collapse
|
14
|
White Matter and Neuroprotection in Alzheimer's Dementia. Molecules 2020; 25:molecules25030503. [PMID: 31979414 PMCID: PMC7038211 DOI: 10.3390/molecules25030503] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Myelin is the main component of the white matter of the central nervous system (CNS), allowing the proper electrical function of the neurons by ensheathing and insulating the axons. The extensive use of magnetic resonance imaging has highlighted the white matter alterations in Alzheimer’s dementia (AD) and other neurodegenerative diseases, alterations which are early, extended, and regionally selective. Given that the white matter turnover is considerable in the adulthood, and that myelin repair is currently recognized as being the only true reparative capability of the mature CNS, oligodendrocyte precursor cells (OPCs), the cells that differentiate in oligodendrocyte, responsible for myelin formation and repair, are regarded as a potential target for neuroprotection. In this review, several aspects of the OPC biology are reviewed. The histology and functional role of OPCs in the neurovascular-neuroglial unit as described in preclinical and clinical studies on AD is discussed, such as the OPC vulnerability to hypoxia-ischemia, neuroinflammation, and amyloid deposition. Finally, the position of OPCs in drug discovery strategies for dementia is discussed.
Collapse
|
15
|
White Matter Stroke Induces a Unique Oligo-Astrocyte Niche That Inhibits Recovery. J Neurosci 2019; 39:9343-9359. [PMID: 31591156 DOI: 10.1523/jneurosci.0103-19.2019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 08/21/2019] [Accepted: 09/08/2019] [Indexed: 12/15/2022] Open
Abstract
Subcortical white matter stroke is a common stroke subtype. White matter stroke stimulates adjacent oligodendrocyte progenitor cells (OPCs) to divide and migrate to the lesion, but stroke OPCs have only a limited differentiation into mature oligodendrocytes. To understand the molecular systems that are active in OPC responses in white matter stroke, OPCs were virally labeled and laser-captured in the region of partial damage adjacent to the infarct in male mice. RNAseq indicates two distinct OPC transcriptomes associated with the proliferative and limited-regeneration phases of OPCs after stroke. Molecular pathways related to nuclear receptor activation, ECM turnover, and lipid biosynthesis are activated during proliferative OPC phases after stroke; inflammatory and growth factor signaling is activated in the later stage of limited OPC differentiation. Within ECM proteins, Matrilin-2 is induced early after stroke and then rapidly downregulated. Prediction of upstream regulators of the OPC stroke transcriptome identifies several candidate molecules, including Inhibin A-a negative regulator of Matrilin-2. Inhibin A is induced in reactive astrocytes after stroke, including in humans. In functional assays, Matrilin-2 induces OPC differentiation, and Inhibin A inhibits OPC Matrilin-2 expression and inhibits OPC differentiation. In vivo, Matrilin-2 promotes motor recovery after white matter stroke, and promotes OPC differentiation and ultrastructural evidence of remyelination. These studies show that white matter stroke induces an initial proliferative and reparative response in OPCs, but this is blocked by a local cellular niche where reactive astrocytes secrete Inhibin A, downregulating Matrilin-2 and blocking myelin repair and recovery.SIGNIFICANCE STATEMENT Stroke in the cerebral white matter of the brain is common. The biology of damage and recovery in this stroke subtype are not well defined. These studies use cell-specific RNA sequencing and gain-of-function studies to show that white matter stroke induces a glial signaling niche, present in both humans and mice, between reactive astrocytes and oligodendrocyte progenitor cells. Astrocyte secretion of Inhibin A and downregulation of oligodendrocyte precursor production of Matrilin-2 limit OPC differentiation, tissue repair, and recovery in this disease.
Collapse
|
16
|
Novel neuroprotective tetramethylpyrazine analog T-006 promotes neurogenesis and neurological restoration in a rat model of stroke. Neuroreport 2019; 30:658-663. [DOI: 10.1097/wnr.0000000000001256] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Mu J, Li M, Wang T, Li X, Bai M, Zhang G, Kong J. Myelin Damage in Diffuse Axonal Injury. Front Neurosci 2019; 13:217. [PMID: 30941005 PMCID: PMC6433984 DOI: 10.3389/fnins.2019.00217] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/26/2019] [Indexed: 01/09/2023] Open
Abstract
Diffuse axonal injury (DAI) is characterized by delayed axonal disconnection. Although the effect of DAI on axonal pathology has been well documented, there is limited information regarding the role of myelin in the pathogenesis of DAI. We used a modified Marmarou method to create a moderate DAI model in adult rat and examined the corpus callosum and brain stem for myelin pathology and dynamic glial responses to DAI. During the first week following DAI, Luxol Fast Blue staining and western blot analysis for MBP showed significant loss of myelin in the corpus callosum and the brain stem. Increased apoptosis of mature oligodendrocyte, as depicted by its marker CC-1, was observed. Conversely, there was an increased number of Olig2-positive cells accompanied by hypertrophic microglia/macrophage and mild reactive astrocytes. Electron microscopy revealed degenerating axons in the corpus callosum and marked myelin abnormalities in the brain stem in the early stage of DAI. Brain stem regions exhibited myelin intrusions or external protrusions with widespread delamination and myelin collapse, leading to degeneration of accompanying axons. Our results show distinct pathologic processes involving axon and myelin between the corpus callosum and the brain stem in DAI. Oligodendrocyte selective vulnerability and subsequent demyelination may contribute to axonal degeneration in the brain stem. Defining the cause of ongoing oligodendrocyte death and promoting myelin regeneration may provide important targets for therapeutic interventions of DAI.
Collapse
Affiliation(s)
- Jiao Mu
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, China
| | - Meiyu Li
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, China
| | - Tingting Wang
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, China
| | - Xiujuan Li
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, China
| | - Meiling Bai
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, China
| | - Guohui Zhang
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, China
| | - Jiming Kong
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, China.,Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
18
|
Wang X, Xuan W, Zhu ZY, Li Y, Zhu H, Zhu L, Fu DY, Yang LQ, Li PY, Yu WF. The evolving role of neuro-immune interaction in brain repair after cerebral ischemic stroke. CNS Neurosci Ther 2018; 24:1100-1114. [PMID: 30350341 DOI: 10.1111/cns.13077] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/23/2018] [Accepted: 09/25/2018] [Indexed: 12/13/2022] Open
Abstract
Stroke is the world's leading cause of disability with limited brain repair treatments which effectively improve long-term neurological deficits. The neuroinflammatory responses persist into the late repair phase of stroke and participate in all brain repair elements, including neurogenesis, angiogenesis, synaptogenesis, remyelination and axonal sprouting, shedding new light on post-stroke brain recovery. Resident brain glial cells, such as astrocytes not only contribute to neuroinflammation after stroke, but also secrete a wide range of trophic factors that can promote post-stroke brain repair. Alternatively, activated microglia, monocytes, and neutrophils in the innate immune system, traditionally considered as major damaging factors after stroke, have been suggested to be extensively involved in brain repair after stroke. The adaptive immune system may also have its bright side during the late regenerative phase, affecting the immune suppressive regulatory T cells and B cells. This review summarizes the recent findings in the evolving role of neuroinflammation in multiple post-stroke brain repair mechanisms and poses unanswered questions that may generate new directions for future research and give rise to novel therapeutic targets to improve stroke recovery.
Collapse
Affiliation(s)
- Xin Wang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wei Xuan
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zi-Yu Zhu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yan Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hao Zhu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ling Zhu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Dan-Yun Fu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Li-Qun Yang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Pei-Ying Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wei-Feng Yu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
19
|
Zhang G, Zhang T, Li N, Wu L, Gu J, Li C, Zhao C, Liu W, Shan L, Yu P, Yang X, Tang Y, Yang G, Wang Y, Sun Y, Zhang Z. Tetramethylpyrazine nitrone activates the BDNF/Akt/CREB pathway to promote post-ischaemic neuroregeneration and recovery of neurological functions in rats. Br J Pharmacol 2018; 175:517-531. [PMID: 29161771 PMCID: PMC5773967 DOI: 10.1111/bph.14102] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 11/02/2017] [Accepted: 11/07/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Neuronal regeneration from endogenous precursors is an attractive strategy for the treatment of ischaemic stroke. However, most stroke-generated newborn neurons die over time. Therefore, a drug that is both neuroprotective and pro-neurogenic may be beneficial after stroke. Here, we assessed the neurogenic and oligodendrogenic effects of tetramethylpyrazine nitrone (TBN), a neuroprotective drug candidate for stroke, in a rat model of ischaemic stroke. EXPERIMENTAL APPROACH We used Sprague Dawley rats with middle cerebral artery occlusion (MCAO). TBN was administered by tail vein injection beginning at 3 h post ischaemia. Therapeutic effect of TBN was evaluated by neurological behaviour and cerebral infarction. Promotion of neurogenesis and oligodendrogenesis was determined by double immunofluorescent staining and Western blotting analyses. Primary cultures of cortical neurons were used to assess the effect of TBN on neuronal differentiation in vitro. KEY RESULTS TBN reduced cerebral infarction, preserved and/or restored neurological function and promoted neurogenesis and oligodendrogenesis in rats after MCAO. In addition, TBN stimulated neuronal differentiation on primary culture of cortical neurons in vitro. Pro-neurogenic effects of TBN were attributed to its activation of the AKT/cAMP responsive element-binding protein through increasing brain-derived neurotrophic factor (BDNF) expression, as shown by the abolition of the effects of TBN by a specific inhibitor of BDNF receptor ANA-12 and by the PI3K inhibitor LY294002. CONCLUSION AND IMPLICATIONS As TBN can simultaneously provide neuroprotection and pro-neurogenic effects, it may be a promising treatment for both acute phase neuroprotection and long-term functional recovery after ischaemic stroke.
Collapse
Affiliation(s)
- Gaoxiao Zhang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐cerebrovascular DiseasesJinan University College of PharmacyGuangzhouChina
| | - Tao Zhang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐cerebrovascular DiseasesJinan University College of PharmacyGuangzhouChina
| | - Ning Li
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐cerebrovascular DiseasesJinan University College of PharmacyGuangzhouChina
| | - Liangmiao Wu
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐cerebrovascular DiseasesJinan University College of PharmacyGuangzhouChina
| | - Jianbo Gu
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐cerebrovascular DiseasesJinan University College of PharmacyGuangzhouChina
- Guangzhou Magpie Pharmaceuticals Co., LTD.GuangzhouChina
| | - Cuimei Li
- Guangzhou Magpie Pharmaceuticals Co., LTD.GuangzhouChina
| | - Chen Zhao
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐cerebrovascular DiseasesJinan University College of PharmacyGuangzhouChina
| | - Wei Liu
- Guangzhou Magpie Pharmaceuticals Co., LTD.GuangzhouChina
| | - Luchen Shan
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐cerebrovascular DiseasesJinan University College of PharmacyGuangzhouChina
| | - Pei Yu
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐cerebrovascular DiseasesJinan University College of PharmacyGuangzhouChina
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Center for Disease Control and PreventionShenzhenChina
| | - Yaohui Tang
- Neuroscience and Neuroengineering Center, Med‐X Research Institute and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Guo‐Yuan Yang
- Neuroscience and Neuroengineering Center, Med‐X Research Institute and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Yuqiang Wang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐cerebrovascular DiseasesJinan University College of PharmacyGuangzhouChina
| | - Yewei Sun
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐cerebrovascular DiseasesJinan University College of PharmacyGuangzhouChina
| | - Zaijun Zhang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐cerebrovascular DiseasesJinan University College of PharmacyGuangzhouChina
| |
Collapse
|
20
|
Beyer BA, Fang M, Sadrian B, Montenegro-Burke JR, Plaisted WC, Kok BPC, Saez E, Kondo T, Siuzdak G, Lairson LL. Metabolomics-based discovery of a metabolite that enhances oligodendrocyte maturation. Nat Chem Biol 2018; 14:22-28. [PMID: 29131145 PMCID: PMC5928791 DOI: 10.1038/nchembio.2517] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 10/11/2017] [Indexed: 01/24/2023]
Abstract
Endogenous metabolites play essential roles in the regulation of cellular identity and activity. Here we have investigated the process of oligodendrocyte precursor cell (OPC) differentiation, a process that becomes limiting during progressive stages of demyelinating diseases, including multiple sclerosis, using mass-spectrometry-based metabolomics. Levels of taurine, an aminosulfonic acid possessing pleotropic biological activities and broad tissue distribution properties, were found to be significantly elevated (∼20-fold) during the course of oligodendrocyte differentiation and maturation. When added exogenously at physiologically relevant concentrations, taurine was found to dramatically enhance the processes of drug-induced in vitro OPC differentiation and maturation. Mechanism of action studies suggest that the oligodendrocyte-differentiation-enhancing activities of taurine are driven primarily by its ability to directly increase available serine pools, which serve as the initial building block required for the synthesis of the glycosphingolipid components of myelin that define the functional oligodendrocyte cell state.
Collapse
Affiliation(s)
- Brittney A Beyer
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, USA
- The California Institute for Biomedical Research, La Jolla, California, USA
| | - Mingliang Fang
- Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, La Jolla, California, USA
| | - Benjamin Sadrian
- The California Institute for Biomedical Research, La Jolla, California, USA
| | - J Rafael Montenegro-Burke
- Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, La Jolla, California, USA
| | - Warren C Plaisted
- The California Institute for Biomedical Research, La Jolla, California, USA
| | - Bernard P C Kok
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Enrique Saez
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Toru Kondo
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Gary Siuzdak
- Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, La Jolla, California, USA
- Department of Molecular and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Luke L Lairson
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
21
|
Stinnett GR, Lin S, Korotcov AV, Korotcova L, Morton PD, Ramachandra SD, Pham A, Kumar S, Agematsu K, Zurakowski D, Wang PC, Jonas RA, Ishibashi N. Microstructural Alterations and Oligodendrocyte Dysmaturation in White Matter After Cardiopulmonary Bypass in a Juvenile Porcine Model. J Am Heart Assoc 2017; 6:JAHA.117.005997. [PMID: 28862938 PMCID: PMC5586442 DOI: 10.1161/jaha.117.005997] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Newly developed white matter (WM) injury is common after cardiopulmonary bypass (CPB) in severe/complex congenital heart disease. Fractional anisotropy (FA) allows measurement of macroscopic organization of WM pathology but has rarely been applied after CPB. The aims of our animal study were to define CPB‐induced FA alterations and to determine correlations between these changes and cellular events after congenital heart disease surgery. Methods and Results Normal porcine WM development was first assessed between 3 and 7 weeks of age: 3‐week‐old piglets were randomly assigned to 1 of 3 CPB‐induced insults. FA was analyzed in 31 WM structures. WM oligodendrocytes, astrocytes, and microglia were assessed immunohistologically. Normal porcine WM development resembles human WM development in early infancy. We found region‐specific WM vulnerability to insults associated with CPB. FA changes after CPB were also insult dependent. Within various WM areas, WM within the frontal cortex was susceptible, suggesting that FA in the frontal cortex should be a biomarker for WM injury after CPB. FA increases occur parallel to cellular processes of WM maturation during normal development; however, they are altered following surgery. CPB‐induced oligodendrocyte dysmaturation, astrogliosis, and microglial expansion affect these changes. FA enabled capturing CPB‐induced cellular events 4 weeks postoperatively. Regions most resilient to CPB‐induced FA reduction were those that maintained mature oligodendrocytes. Conclusions Reducing alterations of oligodendrocyte development in the frontal cortex can be both a metric and a goal to improve neurodevelopmental impairment in the congenital heart disease population. Studies using this model can provide important data needed to better interpret human imaging studies.
Collapse
Affiliation(s)
- Gary R Stinnett
- Children's National Heart Institute, Children's National Health System, Washington, DC.,Center for Neuroscience Research, Children's National Health System, Washington, DC
| | - Stephen Lin
- Department of Radiology, Howard University, Washington, DC
| | - Alexandru V Korotcov
- Department of Radiology, Howard University, Washington, DC.,Center for Neuroscience and Regenerative Medicine, Uniformed Services University, Bethesda, MD
| | - Ludmila Korotcova
- Children's National Heart Institute, Children's National Health System, Washington, DC.,Center for Neuroscience Research, Children's National Health System, Washington, DC
| | - Paul D Morton
- Children's National Heart Institute, Children's National Health System, Washington, DC.,Center for Neuroscience Research, Children's National Health System, Washington, DC
| | - Shruti D Ramachandra
- Children's National Heart Institute, Children's National Health System, Washington, DC.,Center for Neuroscience Research, Children's National Health System, Washington, DC
| | - Angeline Pham
- George Washington University School of Medicine and Health Science, Washington, DC
| | - Sonali Kumar
- George Washington University School of Medicine and Health Science, Washington, DC
| | - Kota Agematsu
- Children's National Heart Institute, Children's National Health System, Washington, DC.,Center for Neuroscience Research, Children's National Health System, Washington, DC
| | - David Zurakowski
- Departments of Anesthesia and Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Paul C Wang
- Department of Radiology, Howard University, Washington, DC.,College of Science and Engineering, Fu Jen Catholic University, Taipei, Taiwan
| | - Richard A Jonas
- Children's National Heart Institute, Children's National Health System, Washington, DC .,Center for Neuroscience Research, Children's National Health System, Washington, DC.,George Washington University School of Medicine and Health Science, Washington, DC
| | - Nobuyuki Ishibashi
- Children's National Heart Institute, Children's National Health System, Washington, DC .,Center for Neuroscience Research, Children's National Health System, Washington, DC.,George Washington University School of Medicine and Health Science, Washington, DC
| |
Collapse
|
22
|
Nogo receptor blockade overcomes remyelination failure after white matter stroke and stimulates functional recovery in aged mice. Proc Natl Acad Sci U S A 2016; 113:E8453-E8462. [PMID: 27956620 DOI: 10.1073/pnas.1615322113] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
White matter stroke is a distinct stroke subtype, accounting for up to 25% of stroke and constituting the second leading cause of dementia. The biology of possible tissue repair after white matter stroke has not been determined. In a mouse stroke model, white matter ischemia causes focal damage and adjacent areas of axonal myelin disruption and gliosis. In these areas of only partial damage, local white matter progenitors respond to injury, as oligodendrocyte progenitors (OPCs) proliferate. However, OPCs fail to mature into oligodendrocytes (OLs) even in regions of demyelination with intact axons and instead divert into an astrocytic fate. Local axonal sprouting occurs, producing an increase in unmyelinated fibers in the corpus callosum. The OPC maturation block after white matter stroke is in part mediated via Nogo receptor 1 (NgR1) signaling. In both aged and young adult mice, stroke induces NgR1 ligands and down-regulates NgR1 inhibitors during the peak OPC maturation block. Nogo ligands are also induced adjacent to human white matter stroke in humans. A Nogo signaling blockade with an NgR1 antagonist administered after stroke reduces the OPC astrocytic transformation and improves poststroke oligodendrogenesis in mice. Notably, increased white matter repair in aged mice is translated into significant poststroke motor recovery, even when NgR1 blockade is provided during the chronic time points of injury. These data provide a perspective on the role of NgR1 ligand function in OPC fate in the context of a specific and common type of stroke and show that it is amenable to systemic intervention to promote recovery.
Collapse
|
23
|
Verden D, Macklin WB. Neuroprotection by central nervous system remyelination: Molecular, cellular, and functional considerations. J Neurosci Res 2016; 94:1411-1420. [PMID: 27618492 DOI: 10.1002/jnr.23923] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/09/2016] [Accepted: 08/24/2016] [Indexed: 12/27/2022]
Abstract
Oligodendrocytes and their myelin sheaths play an intricate role in axonal health and function. The prevalence of white matter pathology in a wide variety of central nervous system disorders has gained attention in recent years. Remyelination has therefore become a major target of therapeutic research, with the aim of protecting axons from further damage. The axon-myelin unit is elaborate, and demyelination causes profound changes in axonal molecular domains, signal transmission, and metabolism. Remyelination is known to restore some of these changes, but many of its outcomes remain unknown. Understanding how different aspects of the axon-myelin unit are restored by remyelination is important for making effective, targeted therapeutics for white matter dysfunction. Additionally, understanding how subtle deficits relate to axonal function during demyelination and remyelination may provide clues into the impact of myelin on neuronal circuits. In this review, we discuss the current knowledge of the neuroprotective effects of remyelination, as well as gaps in our knowledge. Finally, we propose systems with unique myelin profiles that may serve as useful models for investigating remyelination efficacy. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Dylan Verden
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | - Wendy B Macklin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado.
| |
Collapse
|
24
|
Arellano RO, Sánchez-Gómez MV, Alberdi E, Canedo-Antelo M, Chara JC, Palomino A, Pérez-Samartín A, Matute C. Axon-to-Glia Interaction Regulates GABAA Receptor Expression in Oligodendrocytes. Mol Pharmacol 2016; 89:63-74. [PMID: 26538574 DOI: 10.1124/mol.115.100594] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/03/2015] [Indexed: 01/02/2023] Open
Abstract
Myelination requires oligodendrocyte-neuron communication, and both neurotransmitters and contact interactions are essential for this process. Oligodendrocytes are endowed with neurotransmitter receptors whose expression levels and properties may change during myelination. However, only scant information is available about the extent and timing of these changes or how they are regulated by oligodendrocyte-neuron interactions. Here, we used electrophysiology to study the expression of ionotropic GABA, glutamate, and ATP receptors in oligodendrocytes derived from the optic nerve and forebrain cultured either alone or in the presence of dorsal root ganglion neurons. We observed that oligodendrocytes from both regions responded to these transmitters at 1 day in culture. After the first day in culture, however, GABA sensitivity diminished drastically to less than 10%, while that of glutamate and ATP remained constant. In contrast, the GABA response amplitude was sustained and remained stable in oligodendrocytes cocultured with dorsal root ganglion neurons. Immunochemistry and pharmacological properties of the responses indicated that they were mediated by distinctive GABAA receptors and that in coculture with neurons, the oligodendrocytes bearing the receptors were those in direct contact with axons. These results reveal that GABAA receptor regulation in oligodendrocytes is driven by axonal cues and that GABA signaling may play a role in myelination and/or during axon-glia recognition.
Collapse
Affiliation(s)
- Rogelio O Arellano
- Achucarro Basque Center for Neuroscience, Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, and Departamento de Neurociencias, Universidad del País Vasco, Leioa, Spain (R.O.A., M.V.S.-G., E.A., M.C.-A., J.C.C., A.P., A.P.-S., C.M.); and Instituto de Neurobiología, Laboratorio de Neurofisiología Celular, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México (R.O.A.)
| | - María Victoria Sánchez-Gómez
- Achucarro Basque Center for Neuroscience, Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, and Departamento de Neurociencias, Universidad del País Vasco, Leioa, Spain (R.O.A., M.V.S.-G., E.A., M.C.-A., J.C.C., A.P., A.P.-S., C.M.); and Instituto de Neurobiología, Laboratorio de Neurofisiología Celular, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México (R.O.A.)
| | - Elena Alberdi
- Achucarro Basque Center for Neuroscience, Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, and Departamento de Neurociencias, Universidad del País Vasco, Leioa, Spain (R.O.A., M.V.S.-G., E.A., M.C.-A., J.C.C., A.P., A.P.-S., C.M.); and Instituto de Neurobiología, Laboratorio de Neurofisiología Celular, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México (R.O.A.)
| | - Manuel Canedo-Antelo
- Achucarro Basque Center for Neuroscience, Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, and Departamento de Neurociencias, Universidad del País Vasco, Leioa, Spain (R.O.A., M.V.S.-G., E.A., M.C.-A., J.C.C., A.P., A.P.-S., C.M.); and Instituto de Neurobiología, Laboratorio de Neurofisiología Celular, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México (R.O.A.)
| | - Juan Carlos Chara
- Achucarro Basque Center for Neuroscience, Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, and Departamento de Neurociencias, Universidad del País Vasco, Leioa, Spain (R.O.A., M.V.S.-G., E.A., M.C.-A., J.C.C., A.P., A.P.-S., C.M.); and Instituto de Neurobiología, Laboratorio de Neurofisiología Celular, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México (R.O.A.)
| | - Aitor Palomino
- Achucarro Basque Center for Neuroscience, Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, and Departamento de Neurociencias, Universidad del País Vasco, Leioa, Spain (R.O.A., M.V.S.-G., E.A., M.C.-A., J.C.C., A.P., A.P.-S., C.M.); and Instituto de Neurobiología, Laboratorio de Neurofisiología Celular, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México (R.O.A.)
| | - Alberto Pérez-Samartín
- Achucarro Basque Center for Neuroscience, Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, and Departamento de Neurociencias, Universidad del País Vasco, Leioa, Spain (R.O.A., M.V.S.-G., E.A., M.C.-A., J.C.C., A.P., A.P.-S., C.M.); and Instituto de Neurobiología, Laboratorio de Neurofisiología Celular, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México (R.O.A.)
| | - Carlos Matute
- Achucarro Basque Center for Neuroscience, Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, and Departamento de Neurociencias, Universidad del País Vasco, Leioa, Spain (R.O.A., M.V.S.-G., E.A., M.C.-A., J.C.C., A.P., A.P.-S., C.M.); and Instituto de Neurobiología, Laboratorio de Neurofisiología Celular, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México (R.O.A.)
| |
Collapse
|
25
|
Wu W, Shao J, Lu H, Xu J, Zhu A, Fang W, Hui G. Guard of delinquency? A role of microglia in inflammatory neurodegenerative diseases of the CNS. Cell Biochem Biophys 2015; 70:1-8. [PMID: 24633457 DOI: 10.1007/s12013-014-9872-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Activation of microglia and inflammation-mediated neurotoxicity are believed to play an important role in the pathogenesis of several neurodegenerative disorders, including multiple sclerosis. Studies demonstrate complex functions of activated microglia that can lead to either beneficial or detrimental outcomes, depending on the form and the timing of activation. Combined with genetic and environmental factors, overactivation and dysregulation of microglia cause progressive neurotoxic consequences which involve a vicious cycle of neuron injury and unregulated neuroinflammation. Thus, modulation of microglial activation appears to be a promising new therapeutic target. While current therapies do attempt to block activation of microglia, they indiscriminately inhibit inflammation thus also curbing beneficial effects of inflammation and delaying recovery. Multiple signaling cascades, often cross-talking, are involved in every step of microglial activation. One of the key challenges is to understand the molecular mechanisms controlling cytokine expression and phagocytic activity, as well as cell-specific consequences of dysregulated cytokine expression. Further, a better understanding of how the integration of multiple cytokine signals influences the function or activity of individual microglia remains an important research objective to identify potential therapeutic targets for clinical intervention to promote repair.
Collapse
Affiliation(s)
- Weijiang Wu
- Department of Neurosurgery, Wuxi Third People's Hospital, Wuxi, Jiangsu, China
| | | | | | | | | | | | | |
Collapse
|
26
|
KhorshidAhmad T, Acosta C, Cortes C, Lakowski TM, Gangadaran S, Namaka M. Transcriptional Regulation of Brain-Derived Neurotrophic Factor (BDNF) by Methyl CpG Binding Protein 2 (MeCP2): a Novel Mechanism for Re-Myelination and/or Myelin Repair Involved in the Treatment of Multiple Sclerosis (MS). Mol Neurobiol 2015; 53:1092-1107. [PMID: 25579386 DOI: 10.1007/s12035-014-9074-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/29/2014] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis (MS) is a chronic progressive, neurological disease characterized by the targeted immune system-mediated destruction of central nervous system (CNS) myelin. Autoreactive CD4+ T helper cells have a key role in orchestrating MS-induced myelin damage. Once activated, circulating Th1-cells secrete a variety of inflammatory cytokines that foster the breakdown of blood-brain barrier (BBB) eventually infiltrating into the CNS. Inside the CNS, they become reactivated upon exposure to the myelin structural proteins and continue to produce inflammatory cytokines such as tumor necrosis factor α (TNFα) that leads to direct activation of antibodies and macrophages that are involved in the phagocytosis of myelin. Proliferating oligodendrocyte precursors (OPs) migrating to the lesion sites are capable of acute remyelination but unable to completely repair or restore the immune system-mediated myelin damage. This results in various permanent clinical neurological disabilities such as cognitive dysfunction, fatigue, bowel/bladder abnormalities, and neuropathic pain. At present, there is no cure for MS. Recent remyelination and/or myelin repair strategies have focused on the role of the neurotrophin brain-derived neurotrophic factor (BDNF) and its upstream transcriptional repressor methyl CpG binding protein (MeCP2). Research in the field of epigenetic therapeutics involving histone deacetylase (HDAC) inhibitors and lysine acetyl transferase (KAT) inhibitors is being explored to repress the detrimental effects of MeCP2. This review will address the role of MeCP2 and BDNF in remyelination and/or myelin repair and the potential of HDAC and KAT inhibitors as novel therapeutic interventions for MS.
Collapse
Affiliation(s)
- Tina KhorshidAhmad
- College of Pharmacy, University of Manitoba, 750 McDermot Avenue, Winnipeg, R3E 0T5, Manitoba, Canada.,Manitoba Multiple Sclerosis Research Network Organization (MMSRNO), Winnipeg, Canada
| | - Crystal Acosta
- College of Pharmacy, University of Manitoba, 750 McDermot Avenue, Winnipeg, R3E 0T5, Manitoba, Canada.,Manitoba Multiple Sclerosis Research Network Organization (MMSRNO), Winnipeg, Canada
| | - Claudia Cortes
- College of Pharmacy, University of Manitoba, 750 McDermot Avenue, Winnipeg, R3E 0T5, Manitoba, Canada.,Manitoba Multiple Sclerosis Research Network Organization (MMSRNO), Winnipeg, Canada
| | - Ted M Lakowski
- College of Pharmacy, University of Manitoba, 750 McDermot Avenue, Winnipeg, R3E 0T5, Manitoba, Canada.,Manitoba Multiple Sclerosis Research Network Organization (MMSRNO), Winnipeg, Canada
| | - Surendiran Gangadaran
- College of Pharmacy, University of Manitoba, 750 McDermot Avenue, Winnipeg, R3E 0T5, Manitoba, Canada.,Manitoba Multiple Sclerosis Research Network Organization (MMSRNO), Winnipeg, Canada
| | - Michael Namaka
- College of Pharmacy, University of Manitoba, 750 McDermot Avenue, Winnipeg, R3E 0T5, Manitoba, Canada. .,Manitoba Multiple Sclerosis Research Network Organization (MMSRNO), Winnipeg, Canada. .,College of Medicine, University of Manitoba, Winnipeg, Canada. .,School of Medical Rehabilitation, College of Medicine, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
27
|
Abstract
High-grade gliomas remain incurable and lethal. Through the availability of the stem-like cells responsible for glioblastoma (GB) formation, expansion, resilience and recurrence, the discovery of glioma cancer stem cells (GCSCs) is revolutionizing this field. GCSCs provide an unprecedented opportunity to reproduce and study GB pathophysiology more accurately. This critically emphasizes our ability to unambiguously identify, isolate and investigate cells that do qualify as GCSCs, to use them as a potential model that is truly predictive of GBs and of their regulation and response to therapeutic agents. We review this concept against the background of key findings on somatic, neural and solid tumour stem cells (SCs), also taking into account the emerging phenomenon of phenotypic SC plasticity. We suggest that basic approaches in these areas can be imported into the GCSC field, so that the same functional method used to identify normal somatic SCs becomes the most appropriate to define GCSCs. This, combined with knowledge of the cellular and molecular basis of normal adult neurogenesis, promises to improve the identification of GCSCs and of selective markers, as well as the development of innovative, more specific and efficacious antiglioma strategies.
Collapse
Affiliation(s)
- E Binda
- Department of Biotechnology and Biosciences, University of Milan Bicocca, Milan, Italy
| | | | | |
Collapse
|
28
|
Kim HJ, Chuang DM. HDAC inhibitors mitigate ischemia-induced oligodendrocyte damage: potential roles of oligodendrogenesis, VEGF, and anti-inflammation. Am J Transl Res 2014; 6:206-223. [PMID: 24936215 PMCID: PMC4058304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 04/18/2014] [Indexed: 06/03/2023]
Abstract
White matter injury is an important component of stroke pathology, but its pathophysiology and potential treatment remain relatively elusive and underexplored. We previously reported that after permanent middle cerebral artery occlusion (pMCAO), sodium butyrate (SB) and trichostatin A (TSA) induced neurogenesis via histone deacetylase (HDAC) inhibition in multiple ischemic brain regions in rats; these effects-which depended on activation of brain-derived neurotrophic factor (BDNF)-TrkB signaling-contributed to behavioral improvement. The present study found that SB or TSA robustly protected against ischemia-induced loss of oligodendrocytes detected by confocal microscopy of myelin basic protein (MBP) immunostaining in the ipsilateral subventricular zone (SVZ), striatum, corpus callosum, and frontal cortex seven days post-pMCAO. Co-localization of 5-bromo-2'-deoxyuridine (BrdU)(+) and MBP(+) cells after SB treatment suggested the occurrence of oligodendrogenesis. SB also strongly upregulated vascular endothelial growth factor (VEGF), which plays a major role in neurogenesis, angiogenesis, and functional recovery after stroke. These SB-induced effects were markedly suppressed by blocking the TrkB signaling pathway with K252a. pMCAO-induced activation of microglia (OX42(+)) and macrophages/monocytes (ED1(+))-which has been linked to white matter injury-was robustly suppressed by SB in a K252a-sensitive manner. In addition, SB treatment largely blocked caspase-3(+) and OX42(+) cells in ipsilateral brain regions. Our results suggest that HDAC inhibitor-mediated protection against ischemia-induced oligodendrocyte loss may involve multiple mechanisms including oligodendrogenesis, VEGF upregulation, anti-inflammation, and caspase-3 downregulation. Taken together, the results suggest that post-insult treatment with HDAC inhibitors is a rational strategy to mitigate white matter injury following ischemic stroke.
Collapse
Affiliation(s)
- Hyeon Ju Kim
- Molecular Neurobiology Section, National Institute of Mental Health, National Institutes of Health Bethesda, MD 20892-1363, USA
| | - De-Maw Chuang
- Molecular Neurobiology Section, National Institute of Mental Health, National Institutes of Health Bethesda, MD 20892-1363, USA
| |
Collapse
|
29
|
Agematsu K, Korotcova L, Scafidi J, Gallo V, Jonas RA, Ishibashi N. Effects of preoperative hypoxia on white matter injury associated with cardiopulmonary bypass in a rodent hypoxic and brain slice model. Pediatr Res 2014; 75:618-25. [PMID: 24488087 PMCID: PMC3992169 DOI: 10.1038/pr.2014.9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 10/22/2013] [Indexed: 11/12/2022]
Abstract
BACKGROUND White matter (WM) injury is common after cardiopulmonary bypass or deep hypothermic circulatory arrest in neonates who have cerebral immaturity secondary to in utero hypoxia. The mechanism remains unknown. We investigated effects of preoperative hypoxia on deep hypothermic circulatory arrest-induced WM injury using a combined experimental paradigm in rodents. METHODS Mice were exposed to hypoxia (prehypoxia). Oxygen-glucose deprivation was performed under three temperatures to simulate brain conditions of deep hypothermic circulatory arrest including ischemia-reperfusion/reoxygenation under hypothermia. RESULTS WM injury in prenormoxia was identified after 35 °C-oxygen-glucose deprivation. In prehypoxia, injury was displayed in all groups. Among oligodendrocyte stages, the preoligodendrocyte was the most susceptible, while the oligodendrocyte progenitor was resistant to insult. When effects of prehypoxia were assessed, injury of mature oligodendrocytes and oligodendrocyte progenitors in prehypoxia significantly increased as compared with prenormoxia, indicating that mature oligodendrocytes and progenitors that had developed under hypoxia had greater vulnerability. Conversely, damage of oligodendrocyte progenitors in prehypoxia were not identified after 15 °C-oxygen-glucose deprivation, suggesting that susceptible oligodendrocytes exposed to hypoxia are protected by deep hypothermia. CONCLUSION Developmental alterations due to hypoxia result in an increased WM susceptibility to injury. Promoting WM regeneration by oligodendrocyte progenitors after earlier surgery using deep hypothermia is the most promising approach for successful WM development in congenital heart disease patients.
Collapse
Affiliation(s)
- Kota Agematsu
- Children’s National Heart Institute, Children’s National Medical Center, Washington, DC,Center for Neuroscience Research, Children’s National Medical Center, Washington, DC
| | - Ludmila Korotcova
- Children’s National Heart Institute, Children’s National Medical Center, Washington, DC,Center for Neuroscience Research, Children’s National Medical Center, Washington, DC
| | - Joseph Scafidi
- Center for Neuroscience Research, Children’s National Medical Center, Washington, DC
| | - Vittorio Gallo
- Center for Neuroscience Research, Children’s National Medical Center, Washington, DC
| | - Richard A. Jonas
- Children’s National Heart Institute, Children’s National Medical Center, Washington, DC,Center for Neuroscience Research, Children’s National Medical Center, Washington, DC
| | - Nobuyuki Ishibashi
- Children’s National Heart Institute, Children’s National Medical Center, Washington, DC,Center for Neuroscience Research, Children’s National Medical Center, Washington, DC,Correspondence: Nobuyuki Ishibashi, MD, Children’s National Heart Institute and Center for Neuroscience Research, Children’s National Medical Center, 111 Michigan Avenue, N.W., Washington, DC, 20010-2970. Tel: 202-476-2388, Fax: 202-476-5572,
| |
Collapse
|
30
|
Franklin RJM, Gallo V. The translational biology of remyelination: past, present, and future. Glia 2014; 62:1905-15. [PMID: 24446279 DOI: 10.1002/glia.22622] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/07/2013] [Accepted: 12/10/2013] [Indexed: 01/01/2023]
Abstract
Amongst neurological diseases, multiple sclerosis (MS) presents an attractive target for regenerative medicine. This is because the primary pathology, the loss of myelin-forming oligodendrocytes, can be followed by a spontaneous and efficient regenerative process called remyelination. While cell transplantation approaches have been explored as a means of replacing lost oligodendrocytes, more recently therapeutic approaches that target the endogenous regenerative process have been favored. This is in large part due to our increasing understanding of (1) the cell types within the adult brain that are able to generate new oligodendrocytes, (2) the mechanisms and pathways by which this achieved, and (3) an emerging awareness of the reasons why remyelination efficiency eventually fails. Here we review some of these advances and also highlight areas where questions remain to be answered in both the biology and translational potential of this important regenerative process.
Collapse
Affiliation(s)
- Robin J M Franklin
- Wellcome Trust-MRC Cambridge Stem Cell Institute and Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, United Kingdom
| | | |
Collapse
|
31
|
Oligodendrocyte lineage and subventricular zone response to traumatic axonal injury in the corpus callosum. J Neuropathol Exp Neurol 2014; 72:1106-25. [PMID: 24226267 PMCID: PMC4130339 DOI: 10.1097/nen.0000000000000009] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Traumatic brain injury frequently causes traumatic axonal injury (TAI) in white matter tracts. Experimental TAI in the corpus callosum of adult mice was used to examine the effects on oligodendrocyte lineage cells and myelin in conjunction with neuroimaging. The injury targeted the corpus callosum over the subventricular zone, a source of neural stem/progenitor cells. Traumatic axonal injury was produced in the rostral body of the corpus callosum by impact onto the skull at the bregma. During the first week after injury, magnetic resonance diffusion tensor imaging showed that axial diffusivity decreased in the corpus callosum and that corresponding regions exhibited significant axon damage accompanied by hypertrophic microglia and reactive astrocytes. Oligodendrocyte progenitor proliferation increased in the subventricular zone and corpus callosum. Oligodendrocytes in the corpus callosum shifted toward upregulation of myelin gene transcription. Plp/CreERT:R26IAP reporter mice showed normal reporter labeling of myelin sheaths 0 to 2 days after injury but labeling was increased between 2 and 7 days after injury. Electron microscopy revealed axon degeneration, demyelination, and redundant myelin figures. These findings expand the cell types and responses to white matter injuries that inform diffusion tensor imaging evaluation and identify pivotal white matter changes after TAI that may affect axon vulnerability vs. recovery after brain injury.
Collapse
|
32
|
Jagielska A, Wilhite KD, Van Vliet KJ. Extracellular acidic pH inhibits oligodendrocyte precursor viability, migration, and differentiation. PLoS One 2013; 8:e76048. [PMID: 24098762 PMCID: PMC3786906 DOI: 10.1371/journal.pone.0076048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/22/2013] [Indexed: 02/04/2023] Open
Abstract
Axon remyelination in the central nervous system requires oligodendrocytes that produce myelin. Failure of this repair process is characteristic of neurodegeneration in demyelinating diseases such as multiple sclerosis, and it remains unclear how the lesion microenvironment contributes to decreased remyelination potential of oligodendrocytes. Here, we show that acidic extracellular pH, which is characteristic of demyelinating lesions, decreases the migration, proliferation, and survival of oligodendrocyte precursor cells (OPCs), and reduces their differentiation into oligodendrocytes. Further, OPCs exhibit directional migration along pH gradients toward acidic pH. These in vitro findings support a possible in vivo scenario whereby pH gradients attract OPCs toward acidic lesions, but resulting reduction in OPC survival and motility in acid decreases progress toward demyelinated axons and is further compounded by decreased differentiation into myelin-producing oligodendrocytes. As these processes are integral to OPC response to nerve demyelination, our results suggest that lesion acidity could contribute to decreased remyelination.
Collapse
Affiliation(s)
- Anna Jagielska
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Kristen D. Wilhite
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Krystyn J. Van Vliet
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
33
|
|
34
|
Torres KJ, Göttle P, Kremer D, Rivera JF, Aguirre-Cruz L, Corona T, Hartung HP, Küry P. Vinpocetine inhibits oligodendroglial precursor cell differentiation. Cell Physiol Biochem 2012; 30:711-22. [PMID: 22854710 DOI: 10.1159/000341451] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In multiple sclerosis during periods of remission a limited degree of myelin repair can be observed mediated by oligodendroglial precursor cells. Phosphodiesterase inhibitors act as anti-inflammatory agents and might hold promise for future multiple sclerosis treatment. AIMS To investigate whether phosphodiesterase inhibitors could also influence myelin repair. METHODS We stimulated primary oligodendroglial precursor cells with cilostazol, rolipram and vinpocetine and assessed their effects on repair related cellular processes. RESULTS We found that vinpocetine exerted a strong negative effect on myelin expression while cilostazol and rolipram did not show such effects. In addition, vinpocetine decreased morphological complexities suggesting an overall negative impact on oligodendroglial cell maturation. We provide evidence that this is not mediated via a blockade of phosphodiesterase-1 but rather by inhibition of IĸB kinase. CONCLUSION These findings suggest that vinpocetine via IĸB inhibition exerts a strong negative impact on oligodendroglial cell maturation and may therefore provide the rationale to restrict its application during periods of remission in multiple sclerosis patients. This is of particular interest since vinpocetine is widely used as a health supplement thought to act as a cognitive and memory enhancer for healthy people and patients with neurological or muscle diseases.
Collapse
Affiliation(s)
- Klintsy Julieta Torres
- Heinrich-Heine-University, Medical Faculty, Department of Neurology, Düsseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Sherafat MA, Heibatollahi M, Mongabadi S, Moradi F, Javan M, Ahmadiani A. Electromagnetic field stimulation potentiates endogenous myelin repair by recruiting subventricular neural stem cells in an experimental model of white matter demyelination. J Mol Neurosci 2012; 48:144-53. [PMID: 22588976 DOI: 10.1007/s12031-012-9791-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 04/26/2012] [Indexed: 04/28/2023]
Abstract
Electromagnetic fields (EMFs) may affect the endogenous neural stem cells within the brain. The aim of this study was to assess the effects of EMFs on the process of toxin-induced demyelination and subsequent remyelination. Demyelination was induced using local injection of lysophosphatidylcholine within the corpus callosum of adult female Sprague-Dawley rats. EMFs (60 Hz; 0.7 mT) were applied for 2 h twice a day for 7, 14, or 28 days postlesion. BrdU labeling and immunostaining against nestin, myelin basic protein (MBP), and BrdU were used for assessing the amount of neural stem cells within the tissue, remyelination patterns, and tracing of proliferating cells, respectively. EMFs significantly reduced the extent of demyelinated area and increased the level of MBP staining within the lesion area on days 14 and 28 postlesion. EMFs also increased the number of BrdU- and nestin-positive cells within the area between SVZ and lesion as observed on days 7 and 14 postlesion. It seems that EMF potentiates proliferation and migration of neural stem cells and enhances the repair of myelin in the context of demyelinating conditions.
Collapse
Affiliation(s)
- Mohammad Amin Sherafat
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
36
|
Ferrari D, Zalfa C, Nodari LR, Gelati M, Carlessi L, Delia D, Vescovi AL, De Filippis L. Differential pathotropism of non-immortalized and immortalized human neural stem cell lines in a focal demyelination model. Cell Mol Life Sci 2012; 69:1193-210. [PMID: 22076651 PMCID: PMC11115189 DOI: 10.1007/s00018-011-0873-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 09/22/2011] [Accepted: 10/18/2011] [Indexed: 01/02/2023]
Abstract
Cell therapy is reaching the stage of phase I clinical trials for post-traumatic, post-ischemic, or neurodegenerative disorders, and the selection of the appropriate cell source is essential. In order to assess the capacity of different human neural stem cell lines (hNSC) to contribute to neural tissue regeneration and to reduce the local inflammation after an acute injury, we transplanted GMP-grade non-immortalized hNSCs and v-myc (v-IhNSC), c-myc T58A (T-IhNSC) immortalized cells into the corpus callosum of adult rats after 5 days from focal demyelination induced by lysophosphatidylcholine. At 15 days from transplantation, hNSC and T-IhNSC migrated to the lesioned area where they promoted endogenous remyelination and differentiated into mature oligodendrocytes, while the all three cell lines were able to integrate in the SVZ. Moreover, where demyelination was accompanied by an inflammatory reaction, a significant reduction of microglial cells' activation was observed. This effect correlated with a differential migratory pattern of transplanted hNSC and IhNSC, significantly enhanced in the former, thus suggesting a specific NSC-mediated immunomodulatory effect on the local inflammation. We provide evidence that, in the subacute phase of a demyelination injury, different human immortalized and non-immortalized NSC lines, all sharing homing to the stem niche, display a differential pathotropism, both through cell-autonomous and non-cell autonomous effects. Overall, these findings promote IhNSC as an inexhaustible cell source for large-scale preclinical studies and non-immortalized GMP grade hNSC lines as an efficacious, safe, and reliable therapeutic tool for future clinical applications.
Collapse
Affiliation(s)
- Daniela Ferrari
- Department of Biotechnology and Biosciences, Università Milano Bicocca, Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Ishibashi N, Scafidi J, Murata A, Korotcova L, Zurakowski D, Gallo V, Jonas RA. White matter protection in congenital heart surgery. Circulation 2012; 125:859-71. [PMID: 22247493 DOI: 10.1161/circulationaha.111.048215] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Neurodevelopmental delays in motor skills and white matter (WM) injury have been documented in congenital heart disease and after pediatric cardiac surgery. The lack of a suitable animal model has hampered our understanding of the cellular mechanisms underlying WM injury in these patients. Our aim is to identify an optimal surgical strategy for WM protection to reduce neurological injury in congenital heart disease patients. METHODS AND RESULTS We developed a porcine cardiopulmonary bypass model that displays area-dependent WM maturation. In this model, WM injury was identified after cardiopulmonary bypass-induced ischemia-reperfusion injury. The degree of injury was inversely correlated with the maturation stage, which indicates maturation-dependent vulnerability of WM. Within different oligodendrocyte developmental stages, we show selective vulnerability of O4+ preoligodendrocytes, whereas oligodendrocyte progenitor cells were resistant to insults. This indicates that immature WM is vulnerable to cardiopulmonary bypass-induced injury but has an intrinsic potential for recovery mediated by endogenous oligodendrocyte progenitor cells. Oligodendrocyte progenitor cell number decreased with age, which suggests that earlier repair allows successful WM development. Oligodendrocyte progenitor cell proliferation was observed within a few days after cardiopulmonary bypass-induced ischemia-reperfusion injury; however, by 4 weeks, arrested oligodendrocyte maturation and delayed myelination were detected. Logistic model confirmed that maintenance of higher oxygenation and reduction of inflammation were effective in minimizing the risk of injury at immature stages of WM development. CONCLUSIONS Primary repair in neonates and young infants potentially provides successful WM development in congenital heart disease patients. Cardiac surgery during this susceptible period should avoid ischemia-reperfusion injury and minimize inflammation to prevent long-term WM-related neurological impairment.
Collapse
Affiliation(s)
- Nobuyuki Ishibashi
- Children's National Medical Center, 111 Michigan Ave NW, Washington, DC 20010-2970, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Enriquez-Algeciras M, Ding D, Chou TH, Wang J, Padgett KR, Porciatti V, Bhattacharya SK. Evaluation of a transgenic mouse model of multiple sclerosis with noninvasive methods. Invest Ophthalmol Vis Sci 2011; 52:2405-11. [PMID: 21228378 DOI: 10.1167/iovs.10-6425] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To evaluate the ND4 transgenic mouse model of multiple sclerosis using noninvasive methods. METHODS Assessment of neurologic/behavioral abnormalities was made using pattern electroretinogram (PERG), magnetic resonance imaging (MRI), optic coherence tomography (OCT), and end point histologic analysis. RESULTS Electrophysiologic (PERG) recordings demonstrated functional deficits in vision commensurate with neurologic/behavioral abnormalities. In ND4 mice, the authors found PERG abnormalities preceded neurologic/gait abnormalities. MRI demonstrated subtle structural changes that progressed over time in correlation with behavioral abnormalities. CONCLUSIONS The ND4 mouse model has been evaluated using well-defined parameters of noninvasive methods (PERG, MRI, and OCT), enabling objective identification of functional and structural deficits and their correlation with neurologic/gait abnormality.
Collapse
|
39
|
Miljković D, Timotijević G, Stojković MM. Astrocytes in the tempest of multiple sclerosis. FEBS Lett 2011; 585:3781-8. [DOI: 10.1016/j.febslet.2011.03.047] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Revised: 03/21/2011] [Accepted: 03/23/2011] [Indexed: 12/11/2022]
|
40
|
Jennings A, Carroll W. Quantification of oligodendrocyte progenitor cells in human and cat optic nerve: implications for endogenous repair in multiple sclerosis. Glia 2010; 58:1425-36. [PMID: 20549750 DOI: 10.1002/glia.21018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In multiple sclerosis (MS), one strategy to reduce disability is enhancement of endogenous repair by remyelinating oligodendrocytes derived from oligodendrocyte progenitor cells (OP). An important prerequisite is determining the abundance of OP relative to oligodendrocytes in normal human central nervous system (CNS), which, in turn, requires reliable OP identification. To achieve this, cat and human optic nerves (ON) were subjected to varied preparation protocols, and the resultant neuroglial staining profiles correlated to generate an antigenic phenotype for OP applicable to human autopsy specimens. OP, interchangeably called NG2cells due to universal NG2 expression, were shown to comprise a separate class of neuroglial cells, related to oligodendrocytes by expression of the oligodendrocyte lineage transcription factors, Olig1 and Olig2. Despite their morphological complexity, including contact with axons and other neuroglia, NG2cells all appear capable of responding as OP to counter local oligodendrocyte loss. However, quantification revealed that NG2cells comprised less than 5% of the neuroglia and had a ratio to oligodendrocytes of about 1:10, not only in human and cat ON but also in white and gray-matter regions of cat spinal cord. The finding that NG2cells are not abundant, particularly relative to oligodendrocytes, may have implications for efforts to enhance endogenous repair in MS.
Collapse
Affiliation(s)
- Alison Jennings
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, Western Australia, Australia.
| | | |
Collapse
|
41
|
Dutta R, Trapp BD. Mechanisms of neuronal dysfunction and degeneration in multiple sclerosis. Prog Neurobiol 2010; 93:1-12. [PMID: 20946934 DOI: 10.1016/j.pneurobio.2010.09.005] [Citation(s) in RCA: 324] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 09/14/2010] [Accepted: 09/30/2010] [Indexed: 01/18/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system. Due to its high prevalence, MS is the leading cause of non-traumatic neurological disability in young adults in the United States and Europe. The clinical disease course is variable and starts with reversible episodes of neurological disability in the third or fourth decade of life. This transforms into a disease of continuous and irreversible neurological decline by the sixth or seventh decade. Available therapies for MS patients have little benefit for patients who enter this irreversible phase of the disease. It is well established that irreversible loss of axons and neurons are the major cause of the irreversible and progressive neurological decline that most MS patients endure. This review discusses the etiology, mechanisms and progress made in determining the cause of axonal and neuronal loss in MS.
Collapse
Affiliation(s)
- Ranjan Dutta
- Department of Neurosciences/NC30, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | |
Collapse
|
42
|
Neri M, Maderna C, Ferrari D, Cavazzin C, Vescovi AL, Gritti A. Robust generation of oligodendrocyte progenitors from human neural stem cells and engraftment in experimental demyelination models in mice. PLoS One 2010; 5:e10145. [PMID: 20405042 PMCID: PMC2853578 DOI: 10.1371/journal.pone.0010145] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 03/16/2010] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Cell-based therapy holds great promises for demyelinating diseases. Human-derived fetal and adult oligodendrocyte progenitors (OPC) gave encouraging results in experimental models of dysmyelination but their limited proliferation in vitro and their potential immunogenicity might restrict their use in clinical applications. Virtually unlimited numbers of oligodendroglial cells could be generated from long-term self-renewing human (h)-derived neural stem cells (hNSC). However, robust oligodendrocyte production from hNSC has not been reported so far, indicating the need for improved understanding of the molecular and environmental signals controlling hNSC progression through the oligodendroglial lineage. The aim of this work was to obtain enriched and renewable cultures of hNSC-derived oligodendroglial cells by means of epigenetic manipulation. METHODOLOGY/PRINCIPAL FINDINGS We report here the generation of large numbers of hNSC-derived oligodendroglial cells by concurrent/sequential in vitro exposure to combinations of growth factors (FGF2, PDGF-AA), neurotrophins (NT3) and hormones (T3). In particular, the combination FGF2+NT3+PDGF-AA resulted in the maintenance and enrichment of an oligodendroglial cell population displaying immature phenotype (i.e., proliferation capacity and expression of PDGFRalpha, Olig1 and Sox10), limited self-renewal and increased migratory activity in vitro. These cells generate large numbers of oligodendroglial progeny at the early stages of maturation, both in vitro and after transplantation in models of CNS demyelination. CONCLUSIONS/SIGNIFICANCE We describe a reliable method to generate large numbers of oligodendrocytes from a renewable source of somatic, non-immortalized NSC from the human foetal brain. We also provide insights on the mechanisms underlying the pro-oligodendrogenic effect of the treatments in vitro and discuss potential issues responsible for the limited myelinating capacity shown by hNSC-derived oligodendrocytes in vivo.
Collapse
Affiliation(s)
- Margherita Neri
- San Raffaele Scientific Institute, San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), Milano, Italy
- Vita-Salute San Raffaele University, Milano, Italy
| | - Claudio Maderna
- San Raffaele Scientific Institute, San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), Milano, Italy
| | - Daniela Ferrari
- Bioscience and Biotechnology Department, University of Milano-Bicocca, Milano, Italy
| | - Chiara Cavazzin
- San Raffaele Scientific Institute, San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), Milano, Italy
| | - Angelo L. Vescovi
- Bioscience and Biotechnology Department, University of Milano-Bicocca, Milano, Italy
| | - Angela Gritti
- San Raffaele Scientific Institute, San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), Milano, Italy
| |
Collapse
|
43
|
Merson TD, Binder MD, Kilpatrick TJ. Role of cytokines as mediators and regulators of microglial activity in inflammatory demyelination of the CNS. Neuromolecular Med 2010; 12:99-132. [PMID: 20411441 DOI: 10.1007/s12017-010-8112-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Accepted: 02/26/2010] [Indexed: 12/11/2022]
Abstract
As the resident innate immune cells of the central nervous system (CNS), microglia fulfil a critical role in maintaining tissue homeostasis and in directing and eliciting molecular responses to CNS damage. The human disease Multiple Sclerosis and animal models of inflammatory demyelination are characterized by a complex interplay between degenerative and regenerative processes, many of which are regulated and mediated by microglia. Cellular communication between microglia and other neural and immune cells is controlled to a large extent by the activity of cytokines. Here we review the role of cytokines as mediators and regulators of microglial activity in inflammatory demyelination, highlighting their importance in potentiating cell damage, promoting neuroprotection and enhancing cellular repair in a context-dependent manner.
Collapse
Affiliation(s)
- Tobias D Merson
- Florey Neuroscience Institutes, Centre for Neuroscience, University of Melbourne, Parkville, VIC, 3010, Australia.
| | | | | |
Collapse
|
44
|
Peroxisome proliferator-activated receptor-gamma agonists promote differentiation and antioxidant defenses of oligodendrocyte progenitor cells. J Neuropathol Exp Neurol 2009; 68:797-808. [PMID: 19535992 DOI: 10.1097/nen.0b013e3181aba2c1] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Several lines of evidence suggest that peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonists may control brain inflammation and, therefore, may be useful for the treatment of human CNS inflammatory conditions. The PPAR-gamma agonists delay the onset and ameliorate clinical manifestations in animal demyelinating disease models, in which the beneficial effects are thought to be mainly related to anti-inflammatory effects on peripheral and brain immune cells. Direct effects on neurons, oligodendrocytes, and other CNS resident cells cannot be excluded, however. To analyze potential direct actions of PPAR-gamma agonists on oligodendrocytes, we investigated the effects of both natural (15-deoxy Delta prostaglandin J2) and synthetic (pioglitazone) PPAR-gamma agonists in primary cultures of rat oligodendrocyte progenitor cells. The PPAR-gamma agonists promoted oligodendrocyte progenitor cell differentiation and enhanced their antioxidant defenses by increasing levels of catalase and copper-zinc superoxide dismutase while maintaining the overall homeostasis of the glutathione system. Protective effects were abolished in the presence of the specific PPAR-gamma antagonist GW9662, indicating that they are specifically dependent on PPAR-gamma. These observations suggest that in addition to their known anti-inflammatory effects, PPAR-gamma agonists may protect oligodendrocyte progenitor cells by preserving their integrity and favoring their differentiation into myelin-forming cells. Thus, PPAR-gamma may promote recovery from demyelination by direct effects on oligodendrocytes.
Collapse
|
45
|
Abstract
Remyelination involves reinvesting demyelinated axons with new myelin sheaths. In stark contrast to the situation that follows loss of neurons or axonal damage, remyelination in the CNS can be a highly effective regenerative process. It is mediated by a population of precursor cells called oligodendrocyte precursor cells (OPCs), which are widely distributed throughout the adult CNS. However, despite its efficiency in experimental models and in some clinical diseases, remyelination is often inadequate in demyelinating diseases such as multiple sclerosis (MS), the most common demyelinating disease and a cause of neurological disability in young adults. The failure of remyelination has profound consequences for the health of axons, the progressive and irreversible loss of which accounts for the progressive nature of these diseases. The mechanisms of remyelination therefore provide critical clues for regeneration biologists that help them to determine why remyelination fails in MS and in other demyelinating diseases and how it might be enhanced therapeutically.
Collapse
|
46
|
O'Malley HA, Shreiner AB, Chen GH, Huffnagle GB, Isom LL. Loss of Na+ channel beta2 subunits is neuroprotective in a mouse model of multiple sclerosis. Mol Cell Neurosci 2008; 40:143-55. [PMID: 19013247 DOI: 10.1016/j.mcn.2008.10.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 06/10/2008] [Accepted: 10/02/2008] [Indexed: 01/05/2023] Open
Abstract
Multiple sclerosis (MS) is a CNS disease that includes demyelination and axonal degeneration. Voltage-gated Na+ channels are abnormally expressed and distributed in MS and its animal model, Experimental Allergic Encephalomyelitis (EAE). Up-regulation of Na+ channels along demyelinated axons is proposed to lead to axonal loss in MS/EAE. We hypothesized that Na+ channel beta2 subunits (encoded by Scn2b) are involved in MS/EAE pathogenesis, as beta2 is responsible for regulating levels of channel cell surface expression in neurons. We induced non-relapsing EAE in Scn2b(+/+) and Scn2b(-/-) mice on the C57BL/6 background. Scn2b(-/-) mice display a dramatic reduction in EAE symptom severity and lethality as compared to wildtype, with significant decreases in axonal degeneration and axonal loss. Scn2b(-/-) mice show normal peripheral immune cell populations, T cell proliferation, cytokine release, and immune cell infiltration into the CNS in response to EAE, suggesting that Scn2b inactivation does not compromise immune function. Our data suggest that loss of beta2 is neuroprotective in EAE by prevention of Na+ channel up-regulation in response to demyelination.
Collapse
Affiliation(s)
- Heather A O'Malley
- Department of Pharmacology, Program in Cellular and Molecular Biology, University of Michigan, 1301 MSRB III, SPC 5632, 1150 W. Medical Center Dr., Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|