1
|
Wang Y, Du B, Han X, Qu L. Molecular mechanism underlying the protective effects of ischemic preconditioning in total knee arthroplasty. Chin J Traumatol 2024:S1008-1275(24)00153-6. [PMID: 39551662 DOI: 10.1016/j.cjtee.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 11/19/2024] Open
Abstract
PROPOSE To investigate the molecular mechanisms underlying the protective effects of ischemic preconditioning (IPC) in patients undergoing total knee arthroplasty. METHODS GSE21164 was extracted from an online database, followed by an investigation of differentially expressed genes (DEGs) between IPC treatment samples at 2 time points (T0T and T1T). Function and pathway enrichment analyses were performed on the DEGs. A protein-protein interaction network was constructed to identify hub genes according to 5 different algorithms, followed by enrichment analysis. In addition, long noncoding RNAs (lncRNAs) were identified between the T0T and T1T samples. Furthermore, a competing endogenous RNA network was predicted based on the identified lncRNA-messenger RNA (mRNA), lncRNA-microRNA (miRNA), and mRNA-miRNA relationships revealed in this study. Finally, a drug-gene network was investigated. Statistical analyses were performed using GraphPad Prism 8.0. Differences between groups were determined using an unpaired t-test. p < 0.05 was considered significant. RESULTS A total of 343 DEGs at T0 and 10 DEGs at T1 were identified and compared with their respective control groups, followed by 100 DEGs between T0T and T1T. Based on these 100 DEGs, protein-protein interaction network analysis revealed 9 hub genes, mainly with mitochondria-related functions and the carbon metabolism pathway. Six differentially expressed lncRNAs were investigated between T0T and T1T. A competing endogenous RNA network was constructed using 259 lncRNA-miRNA-mRNA interactions, including alpha-2-macroglobulin antisense RNA 1-miR-7161-5p-iron-sulfur cluster scaffold. Finally, 13 chemical drugs associated with the hub genes were explored. CONCLUSION Iron-sulfur cluster scaffold may promote IPC-induced ischemic tolerance mediated by alpha-2-macroglobulin antisense RNA 1-miR-7161-5p axis. Moreover, IPC may induce a protective response after total knee arthroplasty via mitochondria-related functions and the carbon metabolism pathway, which should be further validated in the near future.
Collapse
Affiliation(s)
- Yongli Wang
- Department of Anesthesiology, the 80th Group Military Hospital of the Chinese People's Liberation Army, Weifang, 261000, Shandong province, China
| | - Bencai Du
- Orthopedic Center, Sunshine Union Hospital, Weifang, 261000, Shandong province, China
| | - Xueliang Han
- Orthopedic Center, Sunshine Union Hospital, Weifang, 261000, Shandong province, China
| | - Lianjun Qu
- Orthopedic Center, Sunshine Union Hospital, Weifang, 261000, Shandong province, China.
| |
Collapse
|
2
|
Varga K, Paszternák A, Kovács V, Guczogi A, Sikur N, Patakfalvi D, Bagaméry F, Szökő É, Tábi T. Differential Cytoprotective Effect of Resveratrol and Its Derivatives: Focus on Antioxidant and Autophagy-Inducing Effects. Int J Mol Sci 2024; 25:11274. [PMID: 39457058 PMCID: PMC11509103 DOI: 10.3390/ijms252011274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/14/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
Numerous beneficial effects of resveratrol were reported; however, its pharmacological profile is contradictious. Previously, we have demonstrated that resveratrol has a dose-dependent cytoprotective effect and the essential role of autophagy induction was demonstrated. Resveratrol suffers from unfavorable pharmacokinetics, hindering its clinical use. Our aim was to study the cytoprotective effect of resveratrol derivatives to better understand structure-activity relationships that may facilitate the development of compounds with better druglike characteristics. Serum-deprivation-induced caspase activation, free radical generation, mitochondrial membrane depolarization and autophagy were detected in the presence of resveratrol analogs with different oxidation states on mouse embryonal fibroblasts. Distinct cytoprotective mechanisms of the examined compounds were revealed. Monomethyl resveratrol had similar potency to resveratrol (EC50: 85.3 vs. 84.2 μM); however, autophagy induction was not essential for its cytoprotective effect. Oxyresveratrol was found to be a strong antioxidant that can induce direct cytoprotection rather than autophagy. Trimethyl-resveratrol, lacking free hydroxyl groups, induced damage that was too significant and hardly compensated by the activation of cytoprotective machineries, and caspase activation was reduced by only 24.5%. Based on our results, methylation of resveratrol reduces its antioxidant activity, while autophagy induction can still contribute to its cytoprotective effect. The introduction of an additional hydroxyl group, however, augments the antioxidant properties, inducing cytoprotection without autophagy induction.
Collapse
Affiliation(s)
- Kamilla Varga
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (K.V.); (A.P.); (N.S.); (F.B.); (É.S.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 26 Üllői út, H-1085 Budapest, Hungary
| | - Alexandra Paszternák
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (K.V.); (A.P.); (N.S.); (F.B.); (É.S.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 26 Üllői út, H-1085 Budapest, Hungary
| | - Virág Kovács
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (K.V.); (A.P.); (N.S.); (F.B.); (É.S.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 26 Üllői út, H-1085 Budapest, Hungary
| | - Annamária Guczogi
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (K.V.); (A.P.); (N.S.); (F.B.); (É.S.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 26 Üllői út, H-1085 Budapest, Hungary
| | - Noémi Sikur
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (K.V.); (A.P.); (N.S.); (F.B.); (É.S.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 26 Üllői út, H-1085 Budapest, Hungary
| | - Dimitrisz Patakfalvi
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (K.V.); (A.P.); (N.S.); (F.B.); (É.S.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 26 Üllői út, H-1085 Budapest, Hungary
| | - Fruzsina Bagaméry
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (K.V.); (A.P.); (N.S.); (F.B.); (É.S.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 26 Üllői út, H-1085 Budapest, Hungary
| | - Éva Szökő
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (K.V.); (A.P.); (N.S.); (F.B.); (É.S.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 26 Üllői út, H-1085 Budapest, Hungary
| | - Tamás Tábi
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (K.V.); (A.P.); (N.S.); (F.B.); (É.S.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, 26 Üllői út, H-1085 Budapest, Hungary
| |
Collapse
|
3
|
Jackson CW, Xu J, Escobar I, Saul I, Fagerli E, Dave KR, Perez-Pinzon MA. Resveratrol Preconditioning Downregulates PARP1 Protein to Alleviate PARP1-Mediated Cell Death Following Cerebral Ischemia. Transl Stroke Res 2024; 15:165-178. [PMID: 36633794 PMCID: PMC10336177 DOI: 10.1007/s12975-022-01119-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023]
Abstract
Stroke remains a leading cause of mortality; however, available therapeutics are limited. The study of ischemic tolerance, in paradigms such as resveratrol preconditioning (RPC), provides promise for the development of novel prophylactic therapies. The heavily oxidative environment following stroke promotes poly-ADP-ribose polymerase 1 (PARP1)-overactivation and parthanatos, both of which are major contributors to neuronal injury. In this study, we tested the hypothesis that RPC instills ischemic tolerance through decreasing PARP1 overexpression and parthanatos following in vitro and in vivo cerebral ischemia. To test this hypothesis, we utilized rat primary neuronal cultures (PNCs) and middle cerebral artery occlusion (MCAO) in the rat as in vitro and in vivo models, respectively. RPC was administered 2 days preceding ischemic insults. RPC protected PNCs against oxygen and glucose deprivation (OGD)-induced neuronal loss, as well as increases in total PARP1 protein, implying protection against PARP1-overactivation. Twelve hours following OGD, we observed reductions in NAD+/NADH as well as an increase in AIF nuclear translocation, but RPC ameliorated NAD+/NADH loss and blocked AIF nuclear translocation. MCAO in the rat induced AIF nuclear translocation in the ischemic penumbra after 24 h, which was ameliorated with RPC. We tested the hypothesis that RPC's neuroprotection was instilled through long-term downregulation of nuclear PARP1 protein. RPC downregulated nuclear PARP1 protein for at least 6 days in PNCs, likely contributing to RPC's ischemic tolerance. This study describes a novel mechanism by which RPC instills prophylaxis against ischemia-induced PARP1 overexpression and parthanatos, through a long-term reduction of nuclear PARP1 protein.
Collapse
Grants
- R01 NS045676 NINDS NIH HHS
- 3R01NS034773, R01NS45676, R01NS054147 NIH HHS
- R01 NS054147 NINDS NIH HHS
- RF1 NS034773 NINDS NIH HHS
- R01 NS097658 NINDS NIH HHS
- R01 NS034773 NINDS NIH HHS
- 3R01NS034773, R01NS45676, R01NS054147 NIH HHS
- 3R01NS034773, R01NS45676, R01NS054147 NIH HHS
- 3R01NS034773, R01NS45676, R01NS054147 NIH HHS
- 3R01NS034773, R01NS45676, R01NS054147 NIH HHS
- 3R01NS034773, R01NS45676, R01NS054147 NIH HHS
Collapse
Affiliation(s)
- Charles W Jackson
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33136, USA
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Jing Xu
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33136, USA
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Iris Escobar
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33136, USA
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Isabel Saul
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33136, USA
| | - Eric Fagerli
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33136, USA
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Kunjan R Dave
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33136, USA
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Miguel A Perez-Pinzon
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA.
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, PO Box 016960, Miami, FL, 33136, USA.
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
4
|
Raut S, Bhalerao A, Powers M, Gonzalez M, Mancuso S, Cucullo L. Hypometabolism, Alzheimer's Disease, and Possible Therapeutic Targets: An Overview. Cells 2023; 12:2019. [PMID: 37626828 PMCID: PMC10453773 DOI: 10.3390/cells12162019] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/19/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
The brain is a highly dynamic organ that requires a constant energy source to function normally. This energy is mostly supplied by glucose, a simple sugar that serves as the brain's principal fuel source. Glucose transport across the blood-brain barrier (BBB) is primarily controlled via sodium-independent facilitated glucose transport, such as by glucose transporter 1 (GLUT1) and 3 (GLUT3). However, other glucose transporters, including GLUT4 and the sodium-dependent transporters SGLT1 and SGLT6, have been reported in vitro and in vivo. When the BBB endothelial layer is crossed, neurons and astrocytes can absorb the glucose using their GLUT1 and GLUT3 transporters. Glucose then enters the glycolytic pathway and is metabolized into adenosine triphosphate (ATP), which supplies the energy to support cellular functions. The transport and metabolism of glucose in the brain are impacted by several medical conditions, which can cause neurological and neuropsychiatric symptoms. Alzheimer's disease (AD), Parkinson's disease (PD), epilepsy, traumatic brain injury (TBI), schizophrenia, etc., are a few of the most prevalent disorders, characterized by a decline in brain metabolism or hypometabolism early in the course of the disease. Indeed, AD is considered a metabolic disorder related to decreased brain glucose metabolism, involving brain insulin resistance and age-dependent mitochondrial dysfunction. Although the conventional view is that reduced cerebral metabolism is an effect of neuronal loss and consequent brain atrophy, a growing body of evidence points to the opposite, where hypometabolism is prodromal or at least precedes the onset of brain atrophy and the manifestation of clinical symptoms. The underlying processes responsible for these glucose transport and metabolic abnormalities are complicated and remain poorly understood. This review article provides a comprehensive overview of the current understanding of hypometabolism in AD and potential therapeutic targets.
Collapse
Affiliation(s)
- Snehal Raut
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA; (S.R.); (A.B.); (M.G.); (S.M.)
| | - Aditya Bhalerao
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA; (S.R.); (A.B.); (M.G.); (S.M.)
| | - Michael Powers
- Department of Biological and Biomedical Sciences, Oakland University, Rochester, MI 48309, USA;
| | - Minelly Gonzalez
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA; (S.R.); (A.B.); (M.G.); (S.M.)
| | - Salvatore Mancuso
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA; (S.R.); (A.B.); (M.G.); (S.M.)
| | - Luca Cucullo
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA; (S.R.); (A.B.); (M.G.); (S.M.)
| |
Collapse
|
5
|
Madder ( Rubia cordifolia L.) Alleviates Myocardial Ischemia-Reperfusion Injury by Protecting Endothelial Cells from Apoptosis and Inflammation. Mediators Inflamm 2023; 2023:5015039. [PMID: 36875688 PMCID: PMC9981279 DOI: 10.1155/2023/5015039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 02/25/2023] Open
Abstract
Objective Ischemia-reperfusion injury often occurs in organ transplantation, coronary heart disease, ischemic heart disease, and other diseases, which greatly reduces clinical efficacy. This study examined the effectiveness of madder as a medicine to treat ischemia-reperfusion injury. Methods The efficacy of madder was evaluated by measuring myocardial infarction size, coronary outflow volume, myocardial contraction rate, activation of inflammatory factors, autophagy factors, apoptosis factors, and related pathway genes in mice. Results The results indicated that treatment with madder can effectively reduce the area of myocardial infarction and restore arterial blood flow velocity and myocardial contractility in mice. Additionally, madder treatment inhibited the expression of inflammatory factors, autophagy factors, and apoptosis factors in mice and reduced the degree of myocardial cell injury. Studies have also shown that madder treatment can alleviate myocardial ischemia-reperfusion injury in mice and inhibit the occurrence of inflammatory response by inhibiting the activity of the NF-κB pathway. Conclusion The results showed that madder was effective against ischemia-reperfusion injury, thus showing potential as a clinical drug for treating ischemia-reperfusion injury.
Collapse
|
6
|
Ma W, Li CY, Zhang SJ, Zang CH, Yang JW, Wu Z, Wang GD, Liu J, Liu W, Liu KP, Liang Y, Zhang XK, Li JJ, Guo JH, Li LY. Neuroprotective effects of long noncoding RNAs involved in ischemic postconditioning after ischemic stroke. Neural Regen Res 2021; 17:1299-1309. [PMID: 34782575 PMCID: PMC8643058 DOI: 10.4103/1673-5374.327346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
During acute reperfusion, the expression profiles of long noncoding RNAs in adult rats with focal cerebral ischemia undergo broad changes. However, whether long noncoding RNAs are involved in neuroprotective effects following focal ischemic stroke in rats remains unclear. In this study, RNA isolation and library preparation was performed for long noncoding RNA sequencing, followed by determining the coding potential of identified long noncoding RNAs and target gene prediction. Differential expression analysis, long noncoding RNA functional enrichment analysis, and co-expression network analysis were performed comparing ischemic rats with and without ischemic postconditioning rats. Rats were subjected to ischemic postconditioning via the brief and repeated occlusion of the middle cerebral artery or femoral artery. Quantitative real-time reverse transcription-polymerase chain reaction was used to detect the expression levels of differentially expressed long noncoding RNAs after ischemic postconditioning in a rat model of ischemic stroke. The results showed that ischemic postconditioning greatly affected the expression profile of long noncoding RNAs and mRNAs in the brains of rats that underwent ischemic stroke. The predicted target genes of some of the identified long noncoding RNAs (cis targets) were related to the cellular response to ischemia and stress, cytokine signal transduction, inflammation, and apoptosis signal transduction pathways. In addition, 15 significantly differentially expressed long noncoding RNAs were identified in the brains of rats subjected to ischemic postconditioning. Nine candidate long noncoding RNAs that may be related to ischemic postconditioning were identified by a long noncoding RNA expression profile and long noncoding RNA-mRNA co-expression network analysis. Expression levels were verified by quantitative real-time reverse transcription-polymerase chain reaction. These results suggested that the identified long noncoding RNAs may be involved in the neuroprotective effects associated with ischemic postconditioning following ischemic stroke. The experimental animal procedures were approved by the Animal Experiment Ethics Committee of Kunming Medical University (approval No. KMMU2018018) in January 2018.
Collapse
Affiliation(s)
- Wei Ma
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Chun-Yan Li
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Si-Jia Zhang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Cheng-Hao Zang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - Jin-Wei Yang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - Zhen Wu
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - Guo-Dong Wang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Jie Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Wei Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Kuang-Pin Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Yu Liang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Xing-Kui Zhang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Jun-Jun Li
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| | - Jian-Hui Guo
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, Yunnan Province, China
| | - Li-Yan Li
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province, China
| |
Collapse
|
7
|
Turchanyi B, Korei C, Somogyi V, Kiss F, Peto K, Nemeth N. Beneficial postoperative micro-rheological effects of intraoperative administration of diclophenac or ischemic preconditioning in patients with lower extremity operations -Preliminary data. Clin Hemorheol Microcirc 2021; 79:557-565. [PMID: 34420941 DOI: 10.3233/ch-211200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Ischemia-reperfusion (I/R) may worsen blood rheology that has been demonstrated by clinical and experimental data. It is also known that anti-inflammatory agents and preconditioning methods may reduce I/R injury. OBJECTIVE We aimed to analyze hemorheological alterations in elective knee operations and the effects of intraoperative nonsteroidal anti-inflammatory drug (NSAID) administration and application of ischemic preconditioning. METHODS Hemorheological variables of 17 patients with total knee replacement or anterior crucial ligament replacement were analyzed. The ischemic (tourniquet) time was 92±15 minutes. Seven patients did not receive NSAID (Control group), 5 patients got i.v. sodium-diclophenac 10 minutes before and 6 hours after reperfusion. Five patients had ischemic preconditioning (3×15 minutes). Blood samples were collected before the ischemia, 10 minutes after reperfusion, on the 1st and 2nd p.o. day. RESULTS Whole blood viscosity didn't show notable inter-group differences, except for a slight decrease in the preconditioning group. RBC deformability decreased, erythrocyte aggregation enhanced by the 1st and 2nd p.o. days in Control group. In NSAID and preconditioning groups the changes were moderate, aggregation values significantly lowered compared to the Control group. CONCLUSION Intraoperatively administered diclophenac or ischemic preconditioning could moderate the deterioration in micro-rheological parameters caused by I/R in patients.
Collapse
Affiliation(s)
- Bela Turchanyi
- Department of Traumatology and Hand Surgery, Faculty of Medicine, University of Debrecen, Hungary
| | - Csaba Korei
- Department of Traumatology and Hand Surgery, Faculty of Medicine, University of Debrecen, Hungary.,Doctoral School of Clinical Medicine, University of Debrecen, Hungary
| | - Viktoria Somogyi
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Hungary
| | - Ferenc Kiss
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Hungary
| | - Katalin Peto
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Hungary
| | - Norbert Nemeth
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Hungary
| |
Collapse
|
8
|
Stacey BS, Campbell Z, Bailey DM. Elevated cerebral perfusion and preserved cognition in elite Brazilian Jiu-Jitsu athletes: Evidence for neuroprotection. Scand J Med Sci Sports 2021; 31:2115-2122. [PMID: 34343371 DOI: 10.1111/sms.14031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/23/2021] [Accepted: 07/30/2021] [Indexed: 12/01/2022]
Abstract
Brazilian Jiu-Jitsu (BJJ) is a popular martial art that exposes participants to recurrent intermittent asphyxiation due to controlled application of neck chokes. To what extent the sport impacts the regulation of cerebral blood flow (CBF) and cognition has not been examined. This study compared eleven elite Brazilian Jiu-Jitsu athletes (aged 30 ± 8 y) who trained 12 ± 6 hours/week for 8 ± 4 years against eleven cardiorespiratory fitness (CRF)- and age-matched controls. Internal carotid (ICA) and vertebral artery (VA) blood flow were measured via duplex ultrasound to determine global cerebral blood flow (gCBF). Mild cognitive impairment and sub-domains of memory, attention/concentration/visual motor coordination, and executive function were determined by psychometric testing. There was no evidence of mild cognitive impairment in the athletes, and cognitive function was comparable between groups (all p > 0.05). In contrast, resting gCBF was selectively elevated in the athletes (741 ± 186 mL∙min-1 vs. 573 ± 166 mL∙min-1 , p = 0.037) due to combined differences in ICA (+65 mL∙min-1 , p = 0.079) and VA (+19 mL∙min-1 , p = 0.277) flow. In conclusion, the sustained elevation in resting cerebral perfusion provides preliminary evidence for adaptive neuroprotection that is independent of CRF and likely mediated by choke-induced cerebral preconditioning and/or lifelong exposure to BJJ-specific high-intensity interval training.
Collapse
Affiliation(s)
- Benjamin S Stacey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, UK
| | - Zac Campbell
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, UK
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, UK
| |
Collapse
|
9
|
Sheng R, Chen JL, Qin ZH. Cerebral conditioning: Mechanisms and potential clinical implications. BRAIN HEMORRHAGES 2021. [DOI: 10.1016/j.hest.2021.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
10
|
Wu XM, Qian C, Jiang F, Bao YX, Qian ZM, Ke Y. The involvement of nuclear factor-κB in astroprotection against ischemia-reperfusion injury by ischemia-preconditioned neurons. J Cell Physiol 2021; 236:4515-4527. [PMID: 33442879 DOI: 10.1002/jcp.30168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/21/2020] [Accepted: 11/06/2020] [Indexed: 11/12/2022]
Abstract
Ischemic preconditioned (IP) neurons protect astrocytes against ischemia/reperfusion (I/R)-induced injury by inhibiting oxidative stress. However, the relevant mechanisms are unknown. Based on the role of nuclear factor-κB (NF-κB) in cell survival and adaption to oxidative stress, we hypothesized that NF-κB might be associated with astroprotection induced by IP neurons via upregulation of antioxidant enzymes. Here, we investigated the effects of IP neurons on NF-κB activation, cell viability, reactive oxygen species (ROS), expression of antioxidant enzymes, erythropoietin (EPO), and tumor necrosis factor α (TNF-α), in the presence or absence of BAY11-7082 (an NF-κB inhibitor), anti-EPO, and anti-TNF-α antibodies, in astrocytes treated with or without I/R. We found that IP neurons could keep NF-κB activation at a relatively higher but beneficial level, and in turn, upregulated the activity of antioxidant enzymes and hence enhanced cell viability and reduced ROS in I/R treated astrocytes. The results collectively indicated that IP neurons are able to significantly inhibit the I/R-induced NF-κB overactivation, probably via EPO and TNF-α, being essential for IP neuron-induced astroprotection under the conditions of I/R. We concluded that NF-κB-mediated antioxidative stress is one of the mechanisms by which IP neurons protect astrocytes against I/R injury.
Collapse
Affiliation(s)
- Xiao-Mei Wu
- Institute of Translational & Precision Medicine and Institute for Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
- School of Biomedical Sciences and Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Christopher Qian
- School of Biomedical Sciences and Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Fei Jiang
- Institute of Translational & Precision Medicine and Institute for Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| | - Yu-Xin Bao
- Research Center for Medicine and Biology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhong-Ming Qian
- Institute of Translational & Precision Medicine and Institute for Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
- Laboratory of Neuropharmacology, School of Pharmacy & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ya Ke
- School of Biomedical Sciences and Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| |
Collapse
|
11
|
Colàs-Campàs L, Farre J, Mauri-Capdevila G, Molina-Seguín J, Aymerich N, Ois Á, Roquer J, Tur S, García-Carreira MDC, Martí-Fàbregas J, Cruz-Culebras A, Segura T, Arque G, Purroy F. Inflammatory Response of Ischemic Tolerance in Circulating Plasma: Preconditioning-Induced by Transient Ischemic Attack (TIA) Phenomena in Acute Ischemia Patients (AIS). Front Neurol 2020; 11:552470. [PMID: 33192985 PMCID: PMC7658473 DOI: 10.3389/fneur.2020.552470] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/30/2020] [Indexed: 11/15/2022] Open
Abstract
Introduction: Ischemic tolerance (IT) refers to a state where cells are resistant to the damaging effects caused by periods of ischemia. In a clinical scenario, the IT phenomenon would be activated by a recent transient ischemic attack (TIA) before an ischemic stroke (IS). The characterization of inflammatory protein expression patterns will contribute to improved understanding of IT. Methods: A total of 477 IS patients from nine hospitals, recruited between January 2011 and January 2016, were included in the current study and divided in three groups: 438 (91.9%) patients without previous TIA (group 1), 22 (4.6%) patients who suffered TIA 24 h before IS (group 2), and 17 (3.5%) patients who suffered TIA between 24 h and 7 days prior to IS (group 3). An inflammatory biomarker panel (IL-6, NT-proBNP, hsCRP, hs-Troponin, NSE, and S-100b) on plasma and a cytokine antibody array was performed to achieve the preconditioning signature potentially induced by TIA phenomena. Primary outcome was modified rankin scale (mRs) score at 90 days. Results: Recent previous TIA was associated with better clinical outcome at 90 days (median mRS of group 1: 2.0 [1.0–4.0]; group 2: 2.0 [0.0–3.0]; group 3: 1.0 [0–2.5]; p = 0.086) and smaller brain lesion (group 1: 3.7 [0.7–18.3]; group 2: 0.8 [0.3–8.9]; group 3: 0.6 [0.1–5.5] mL; p = 0.006). All inflammation biomarkers were down regulated in the groups of recent TIA prior to IS compared to those who did not suffer a TIA events. Moreover, a cytokine antibody array revealed 30 differentially expressed proteins between the three groups. Among them, HRG1-alpha (Fold change 74.4 between group 1 and 2; 74.2 between group 1 and 3) and MAC-1 (Fold change 0.05 between group 1 and 2; 0.06 between group 1 and 3) expression levels would better stratify patients with TIA 7 days before IS. These two proteins showed an earlier inflammation profile that was not detectable by the biomarker panel. Conclusion: Inflammatory pathways were activated by transient ischemic attack, however the period of time between this event and a further ischemic stroke could be determined by a protein signature that would contribute to define the role of ischemic tolerance induced by TIA.
Collapse
Affiliation(s)
- Laura Colàs-Campàs
- Clinical Neurosciences Group, Institut de Recerca Biomèdica de Lleida, Lleida, Spain
| | - Joan Farre
- Clinical Neurosciences Group, Institut de Recerca Biomèdica de Lleida, Lleida, Spain.,Medical Laboratory, Hospital Universitari Arnau de Vilanova, Lleida, Spain
| | - Gerard Mauri-Capdevila
- Clinical Neurosciences Group, Institut de Recerca Biomèdica de Lleida, Lleida, Spain.,Stroke Unit, Department of Neurology, Hospital Universitari Arnau de Vilanova, Lleida, Spain
| | - Jessica Molina-Seguín
- Clinical Neurosciences Group, Institut de Recerca Biomèdica de Lleida, Lleida, Spain
| | | | | | | | - Silvia Tur
- Hospital Son Espases, Palma de Mallorca, Spain
| | | | | | | | - Tomás Segura
- Complejo Hospitalario Universitario de Albacete, Albacete, Spain
| | - Gloria Arque
- Clinical Neurosciences Group, Institut de Recerca Biomèdica de Lleida, Lleida, Spain
| | - Francisco Purroy
- Clinical Neurosciences Group, Institut de Recerca Biomèdica de Lleida, Lleida, Spain.,Stroke Unit, Department of Neurology, Hospital Universitari Arnau de Vilanova, Lleida, Spain
| |
Collapse
|
12
|
Electroacupuncture Pretreatment Elicits Tolerance to Cerebral Ischemia/Reperfusion through Inhibition of the GluN2B/m-Calpain/p38 MAPK Proapoptotic Pathway. Neural Plast 2020; 2020:8840675. [PMID: 33061951 PMCID: PMC7542475 DOI: 10.1155/2020/8840675] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/29/2020] [Accepted: 09/07/2020] [Indexed: 01/01/2023] Open
Abstract
Background As one of the first steps in the pathology of cerebral ischemia, glutamate-induced excitotoxicity progresses too fast to be the target of postischemic intervention. However, ischemic preconditioning including electroacupuncture (EA) might elicit cerebral ischemic tolerance through ameliorating excitotoxicity. Objective To investigate whether EA pretreatment based on TCM theory could elicit cerebral tolerance against ischemia/reperfusion (I/R) injury, and explore its potential excitotoxicity inhibition mechanism from regulating proapoptotic pathway of the NMDA subtype of glutamate receptor (GluN2B). Methods The experimental procedure included 5 consecutive days of pretreatment stage and the subsequent modeling stage for one day. All rats were evenly randomized into three groups: sham MCAO/R, MCAO/R, and EA+MCAO/R. During pretreatment procedure, only rats in the EA+MCAO/R group received EA intervention on GV20, SP6, and PC6 once a day for 5 days. Model preparation for MCAO/R or sham MCAO/R started 2 hours after the last pretreatment. 24 hours after model preparation, the Garcia neurobehavioral scoring criteria was used for the evaluation of neurological deficits, TTC for the measurement of infarct volume, TUNEL staining for determination of neural cell apoptosis at hippocampal CA1 area, and WB and double immunofluorescence staining for expression and the cellular localization of GluN2B and m-calpain and p38 MAPK. Results This EA pretreatment regime could improve neurofunction, decrease cerebral infarction volume, and reduce neuronal apoptosis 24 hours after cerebral I/R injury. And EA pretreatment might inhibit the excessive activation of GluN2B receptor, the GluN2B downstream proapoptotic mediator m-calpain, and the phosphorylation of its transcription factor p38 MAPK in the hippocampal neurons after cerebral I/R injury. Conclusion The EA regime might induce tolerance against I/R injury partially through the regulation of the proapoptotic GluN2B/m-calpain/p38 MAPK pathway of glutamate.
Collapse
|
13
|
Possible involvement of D2/D3 receptor activation in ischemic preconditioning mediated protection of the brain. Brain Res 2020; 1748:147116. [PMID: 32919985 DOI: 10.1016/j.brainres.2020.147116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/16/2020] [Accepted: 09/04/2020] [Indexed: 12/16/2022]
Abstract
Ischemic stroke is a medical condition that arises because of poor blood supply to the brain. Reperfusion being salvage to the brain further causes, exacerbation of tissue injury, known as reperfusion injury. Ischemic preconditioning (IPC) has been known to provide benefits against ischemia reperfusion (I/R) injury. Dopamine D2/D3 receptor mediated several pathways are also reported as mediators in the IPC mediated neuroprotection. This study investigates the possible involvement of D2/D3 receptor activation in IPC mediated neuroprotection in the I/R brain. Global cerebral ischemia/reperfusion (GCI/R) injury in swiss albino mice was induced by occluding the common carotid arteries for 17 min, followed by 24 h reperfusion. IPC was provided by giving 3 episodes of I/R prior to Ischemia (17 min). Morris water maze (MWM) was used to assess the spatial learning, memory and Rota rod, lateral push test as well as inclined beam test were conducted to assess the motor functions in animals. Cerebral oxidative markers (thiobarbituric acid reactive species-TBARS, reduced glutathione-GSH, superoxide dismutase-SOD, and catalase-CAT), inflammatory markers (IL-6, IL-10, TNF-α, and myeloperoxidase-MPO), acetylcholinesterase activity-AChE, infarct size (% weight and % volume), and histopathological changes were also assessed. Haloperidol (0.05 mg/kg, i.p) was used to antagonize the effects of D2/D3 receptor activation. I/R animals showed reduction in memory, motor function, increase in cerebral oxidative stress, inflammation, AChE activity, infarct size and histopathological changes. Episodes of IPC prior to ischemia, attenuated the deleterious effects of I/R injury. Administration of haloperidol abolished the protective effects of IPC. Hence, it may be concluded that IPC mediated neuroprotection may involves dopamine D2/D3 receptor activation in mice.
Collapse
|
14
|
Gerace E, Zianni E, Landucci E, Scartabelli T, Berlinguer Palmini R, Iezzi D, Moroni F, Di Luca M, Mannaioni G, Gardoni F, Pellegrini-Giampietro DE. Differential mechanisms of tolerance induced by NMDA and 3,5-dihydroxyphenylglycine (DHPG) preconditioning. J Neurochem 2020; 155:638-649. [PMID: 32343420 DOI: 10.1111/jnc.15033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 11/26/2022]
Abstract
We investigated the molecular events triggered by NMDA and 3,5-dihydroxyphenylglycine (DHPG) preconditioning, that lead to neuroprotection against excitotoxic insults (AMPA or oxygen and glucose deprivation) in rat organotypic hippocampal slices, with particular attention on glutamate receptors and on cannabinoid system. We firstly evaluated the protein expression of NMDA and AMPA receptor subunits after preconditioning using western blot analysis performed in post-synaptic densities. We observed that following NMDA, but not DHPG preconditioning, the expression of GluA1 was significantly reduced and this reduction appeared to be associated with the internalization of AMPA receptors. Whole-cell voltage clamp recordings on CA1 pyramidal neurons of organotypic slices show that 24 hr after exposure to NMDA and DHPG preconditioning, AMPA-induced currents were significantly reduced. To clarify the mechanisms induced by DHPG preconditioning, we then investigated the involvement of the endocannabinoid system. Exposure of slices to the CB1 antagonist AM251 prevented the development of tolerance to AMPA toxicity induced by DHPG but not NMDA. Accordingly, the MAG-lipase inhibitor URB602, that increases arachidonoylglycerol (2-AG) content, but not the FAAH inhibitor URB597, that limits the degradation of anandamide, was also able to induce tolerance versus AMPA and OGD toxicity, suggesting that 2-AG is responsible for the DHPG-induced tolerance. In conclusion, preconditioning with NMDA or DHPG promotes differential neuroprotective mechanisms: NMDA by internalization of GluA1-AMPA receptors, DHPG by producing the endocannabinoid 2-AG.
Collapse
Affiliation(s)
- Elisabetta Gerace
- Department of Neuroscience, Psychology, Drug Research and Child Health (NeuroFarBa), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy.,Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Elisa Zianni
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy
| | - Elisa Landucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Tania Scartabelli
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Rolando Berlinguer Palmini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NeuroFarBa), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Daniela Iezzi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NeuroFarBa), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Flavio Moroni
- Department of Neuroscience, Psychology, Drug Research and Child Health (NeuroFarBa), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Monica Di Luca
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy
| | - Guido Mannaioni
- Department of Neuroscience, Psychology, Drug Research and Child Health (NeuroFarBa), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy
| | | |
Collapse
|
15
|
Rodriguez C, Agulla J, Delgado-Esteban M. Refocusing the Brain: New Approaches in Neuroprotection Against Ischemic Injury. Neurochem Res 2020; 46:51-63. [PMID: 32189131 DOI: 10.1007/s11064-020-03016-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/28/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022]
Abstract
A new era for neuroprotective strategies is emerging in ischemia/reperfusion. This has forced to review the studies existing to date based in neuroprotection against oxidative stress, which have undoubtedly contributed to clarify the brain endogenous mechanisms, as well as to identify possible therapeutic targets or biomarkers in stroke and other neurological diseases. The efficacy of exogenous administration of neuroprotective compounds has been shown in different studies so far. However, something must be missing to get these treatments successfully applied in the clinical environment. Here, the mechanisms involved in neuronal protection against physiological level of ROS and the main neuroprotective signaling pathways induced by excitotoxic and ischemic stimuli are reviewed. Also, the endogenous ischemic tolerance in terms of brain self-protection mechanisms against subsequent cerebral ischemia is revisited to highlight how the preconditioning has emerged as a powerful tool to understand these phenomena. A better understanding of endogenous defense against exacerbated ROS and metabolism in nervous cells will therefore aid to design pharmacological antioxidants targeted specifically against oxidative damage induced by ischemic injury, but also might be very valuable for translational medicine.
Collapse
Affiliation(s)
- Cristina Rodriguez
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Salamanca, Spain.,Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Salamanca, Spain
| | - Jesús Agulla
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Salamanca, Spain.,Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Salamanca, Spain
| | - María Delgado-Esteban
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Salamanca, Spain. .,Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Salamanca, Spain. .,Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca, Spain.
| |
Collapse
|
16
|
Yang T, Sun Y, Li Q, Li S, Shi Y, Leak RK, Chen J, Zhang F. Ischemic preconditioning provides long-lasting neuroprotection against ischemic stroke: The role of Nrf2. Exp Neurol 2019; 325:113142. [PMID: 31812555 DOI: 10.1016/j.expneurol.2019.113142] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 12/03/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND PURPOSE A major gap in the field of ischemic preconditioning (IPC) is whether or not long-lasting neuroprotection can be achieved. Moreover, the specific mechanisms underlying IPC and how they can be translated into the clinic remain uncertain. To fill these gaps, we tested the hypothesis that IPC exerts long-lasting structural and functional neuroprotection against ischemic stroke through the master gatekeeper of antioxidant defenses, nuclear factor erythroid 2-related factor 2 (Nrf2). We also tested whether the brain could be pharmaceutically preconditioned with a potent and blood-brain barrier-permeable Nrf2 activator, 2-cyano-3,12-dioxo-oleana-1,9(11)-dien-28-trifluoethyl amide (CDDO-TFEA). METHODS IPC was induced by transient middle cerebral artery occlusion (MCAO) for 12 min, and ischemic stroke was generated by MCAO for 60 min in wild-type (WT) or Nrf2 knockout (KO) mice. Sensorimotor function, learning/memory skills, and brain tissue loss were measured up to 35 days after stroke. Primary rodent cortical neurons from wildtype (WT) and Nrf2 KO mice were subjected to lethal oxygen-glucose deprivation (OGD) or a brief OGD episode as a preconditioning (PC) stimulus before OGD. Cell viability/death, lipid electrophile generation, and Nrf2 activation were measured. CDDO-TFEA or its vehicle was administered in vivo for three consecutive days before MCAO. Tissue loss and neurological tests were performed 35 days after stroke. RESULTS IPC significantly reduced sensorimotor deficits, post-stroke cognitive impairments, and brain tissue loss, 35 days after MCAO in WT mice. These enduring protective effects of IPC were inhibited in Nrf2 KO mice. In neuronal cultures, PC also endowed primary neurons with ischemic tolerance against OGD-induced cell death, an effect that was abolished by loss of Nrf2 expression in KO neurons. PC induced the generation of low levels of lipid electrophiles and led to activation of the Nrf2 pathway. The mechanism underlying IPC may be translatable, as exogenous administration of the Nrf2 activator CDDO-TFEA significantly reduced neurological dysfunction and ischemic brain damage after MCAO. CONCLUSIONS IPC provides long-lasting neuroprotection against ischemic brain injury and post-stroke cognitive dysfunction. Nrf2 activation plays a key role in this beneficial outcome and is a promising therapeutic target for the attenuation of ischemic brain injury.
Collapse
Affiliation(s)
- Tuo Yang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yang Sun
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qianqian Li
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Senmiao Li
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yejie Shi
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Jun Chen
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, PA, USA
| | - Feng Zhang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
17
|
de Rivero Vaccari JP, Bramlett HM, Perez-Pinzon MA, Raval AP. Estrogen preconditioning: A promising strategy to reduce inflammation in the ischemic brain. CONDITIONING MEDICINE 2019; 2:106-113. [PMID: 32617523 PMCID: PMC7331970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
During the premenopausal phase of a woman's life, estrogen naturally protects against ischemic brain damage and its debilitating consequence of cognitive decline. However, the decline in estrogen at menopause exponentially increases a women's risk for cerebral ischemia and its severity. Supplementation of estrogen during menopause is the most logical solution to abate this increased risk for cerebral ischemia; however, continuous therapy has proven to be contraindicative. Studies from our laboratory over the past decade have shown that a single bolus or long-term periodic 17β-estradiol treatment(s) two days prior to ischemia mimics ischemic preconditioning-conferred protection of the brain in ovariectomized or reproductively senescent female rats. These studies also demonstrated that 17β-estradiol-induced preconditioning (EPC) requires estrogen receptor (ER)-subtype beta (ER-β) activation. ER-β is expressed throughout the brain, including in the hippocampus, which plays a key role in learning and memory. Because periodic activation of ER-β mitigates post-ischemic cognitive decline in ovariectomized female rats, it can be surmised that EPC has the potential to reduce post-ischemic damage and cognitive decline in females. Estrogens are key anti-inflammatory agents; therefore this review discusses the effects of EPC on the inflammasome. Furthermore, as we now clearly know, the brain acts differently in males and females. Indeed, neurodegenerative diseases, including cerebral ischemia, and pharmacological drugs affect males and females in different ways. Thus, inasmuch as the National Institutes of Health and the Stroke Treatment Academic Industry Roundtable (STAIR) consortium mandate inclusion of female experimental animals, this review also discusses the need to close the gap in our knowledge in future studies of EPC in female animal models of cerebral ischemia.
Collapse
Affiliation(s)
| | - Helen M. Bramlett
- Department of Neurological Surgery and The Miami Project to Cure Paralysis
- Bruce W. Carter Department of Veterans Affairs Medical Center, Miami
| | - Miguel A. Perez-Pinzon
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida 33136, U.S.A
| | - Ami P. Raval
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida 33136, U.S.A
| |
Collapse
|
18
|
Melis N, Thuillier R, Steichen C, Giraud S, Sauvageon Y, Kaminski J, Pelé T, Badet L, Richer JP, Barrera-Chimal J, Jaisser F, Tauc M, Hauet T. Emerging therapeutic strategies for transplantation-induced acute kidney injury: protecting the organelles and the vascular bed. Expert Opin Ther Targets 2019; 23:495-509. [PMID: 31022355 DOI: 10.1080/14728222.2019.1609451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Renal ischemia-reperfusion injury (IRI) is a significant clinical challenge faced by clinicians in a broad variety of clinical settings such as perioperative and intensive care. Renal IRI induced acute kidney injury (AKI) is a global public health concern associated with high morbidity, mortality, and health-care costs. Areas covered: This paper focuses on the pathophysiology of transplantation-related AKI and recent findings on cellular stress responses at the intersection of 1. The Unfolded protein response; 2. Mitochondrial dysfunction; 3. The benefits of mineralocorticoid receptor antagonists. Lastly, perspectives are offered to the readers. Expert opinion: Renal IRI is caused by a sudden and temporary impairment of blood flow to the organ. Defining the underlying cellular cascades involved in IRI will assist us in the identification of novel interventional targets to attenuate IRI with the potential to improve transplantation outcomes. Targeting mitochondrial function and cellular bioenergetics upstream of cellular damage may offer several advantages compared to targeting downstream inflammatory and fibrosis processes. An improved understanding of the cellular pathophysiological mechanisms leading to kidney injury will hopefully offer improved targeted therapies to prevent and treat the injury in the future.
Collapse
Affiliation(s)
- Nicolas Melis
- a Laboratory of Cellular and Molecular Biology , Center for Cancer Research, National Cancer Institute , Bethesda , MD , USA
| | - Raphael Thuillier
- b IRTOMIT , Inserm U1082 , Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France.,d CHU Poitiers , Service de Biochimie , Poitiers , France.,e Fédération Hospitalo-Universitaire SUPORT , Poitiers , France
| | - Clara Steichen
- b IRTOMIT , Inserm U1082 , Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France
| | - Sebastien Giraud
- b IRTOMIT , Inserm U1082 , Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France.,d CHU Poitiers , Service de Biochimie , Poitiers , France
| | - Yse Sauvageon
- b IRTOMIT , Inserm U1082 , Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France
| | - Jacques Kaminski
- b IRTOMIT , Inserm U1082 , Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France
| | - Thomas Pelé
- b IRTOMIT , Inserm U1082 , Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France
| | - Lionel Badet
- f Faculté de Médecine , Université Claude Bernard Lyon 1 , Villeurbanne , France.,g Hospices Civiles de Lyon , Service d'urologie et de chirurgie de la transplantation , Lyon , France
| | - Jean Pierre Richer
- b IRTOMIT , Inserm U1082 , Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France.,h CHU de Poitiers , Service de chirurgie générale et endocrinienne , Poitiers , France.,i Faculté de Médecine et de Pharmacie , ABS Lab (Laboratoire d'Anatomie, Biomécanique et Simulation), Université de Poitiers , Poitiers , France
| | - Jonatan Barrera-Chimal
- j Laboratorio de Fisiología Cardiovascular y Trasplante Renal, Unidad de Medicina Traslacional , Instituto de Investigaciones Biomédicas, UNAM and Instituto Nacional de Cardiología Ignacio Chávez , Mexico City , Mexico
| | - Frédéric Jaisser
- k INSERM, UMRS 1138, Team 1 , Centre de Recherche des Cordeliers, Pierre et Marie Curie University, Paris, Descartes University , Paris , France
| | - Michel Tauc
- l LP2M CNRS-UMR7370, LabEx ICST , Medical Faculty, Université Côte d'Azur , Nice , France
| | - Thierry Hauet
- b IRTOMIT , Inserm U1082 , Poitiers , France.,c Faculté de Médecine et de Pharmacie , Université de Poitiers , Poitiers , France.,d CHU Poitiers , Service de Biochimie , Poitiers , France.,e Fédération Hospitalo-Universitaire SUPORT , Poitiers , France.,i Faculté de Médecine et de Pharmacie , ABS Lab (Laboratoire d'Anatomie, Biomécanique et Simulation), Université de Poitiers , Poitiers , France.,m IBiSA Plateforme 'plate-forme MOdélisation Préclinique - Innovation Chirurgicale et Technologique (MOPICT)', Domaine Expérimental du Magneraud , Surgères , France
| |
Collapse
|
19
|
Secondo A, Petrozziello T, Tedeschi V, Boscia F, Vinciguerra A, Ciccone R, Pannaccione A, Molinaro P, Pignataro G, Annunziato L. ORAI1/STIM1 Interaction Intervenes in Stroke and in Neuroprotection Induced by Ischemic Preconditioning Through Store-Operated Calcium Entry. Stroke 2019; 50:1240-1249. [DOI: 10.1161/strokeaha.118.024115] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Agnese Secondo
- From the Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Italy (A.S., T.P., V.T., F.B., A.V., R.C., A.P., P.M., G.P.)
| | - Tiziana Petrozziello
- From the Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Italy (A.S., T.P., V.T., F.B., A.V., R.C., A.P., P.M., G.P.)
| | - Valentina Tedeschi
- From the Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Italy (A.S., T.P., V.T., F.B., A.V., R.C., A.P., P.M., G.P.)
| | - Francesca Boscia
- From the Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Italy (A.S., T.P., V.T., F.B., A.V., R.C., A.P., P.M., G.P.)
| | - Antonio Vinciguerra
- From the Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Italy (A.S., T.P., V.T., F.B., A.V., R.C., A.P., P.M., G.P.)
| | - Roselia Ciccone
- From the Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Italy (A.S., T.P., V.T., F.B., A.V., R.C., A.P., P.M., G.P.)
| | - Anna Pannaccione
- From the Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Italy (A.S., T.P., V.T., F.B., A.V., R.C., A.P., P.M., G.P.)
| | - Pasquale Molinaro
- From the Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Italy (A.S., T.P., V.T., F.B., A.V., R.C., A.P., P.M., G.P.)
| | - Giuseppe Pignataro
- From the Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Italy (A.S., T.P., V.T., F.B., A.V., R.C., A.P., P.M., G.P.)
| | | |
Collapse
|
20
|
Xu L, Cao H, Xie Y, Zhang Y, Du M, Xu X, Ye R, Liu X. Exosome-shuttled miR-92b-3p from ischemic preconditioned astrocytes protects neurons against oxygen and glucose deprivation. Brain Res 2019; 1717:66-73. [PMID: 30986407 DOI: 10.1016/j.brainres.2019.04.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 12/15/2022]
Abstract
Ischemic preconditioning (IPC) exerts protective effects against ischemic cerebral injury. In the present study, an in vitro model of cerebral ischemia (oxygen and glucose deprivation, OGD) was established to investigate the neuroprotective mechanism of IPC. We found that conditioned medium (C.M.) from astrocytes rather than neurons nor microglia cell line BV2 exerted neuroprotection. Moreover, exosomes derived from OGD preconditioned astrocytes can be taken up by neurons and attenuated OGD-induced neuron death and apoptosis. High-throughput microRNA (miRNA) sequencing revealed that miR-92b-3p levels in exosomes released from preconditioned astrocytes were increased. Overexpression of miR-92b-3p in neurons with miR-92b-3p mimic achieved the same protective effects as C.M. from astrocytes. Thus, we propose that the mechanism of IPC may associate with astrocytes, and that exosome-mediated miR-92b-3p shuttle from preconditioned astrocytes to neurons participate in these process.
Collapse
Affiliation(s)
- Lili Xu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China; Cerebrovascular Disease Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hui Cao
- Cerebrovascular Disease Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yi Xie
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| | - Yao Zhang
- Cerebrovascular Disease Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Mingyang Du
- Cerebrovascular Disease Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiaohui Xu
- Cerebrovascular Disease Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ruidong Ye
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China.
| | - Xinfeng Liu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
21
|
Impact of remote ischemic preconditioning preceding coronary artery bypass grafting on inducing neuroprotection. J Thorac Cardiovasc Surg 2019; 157:1466-1476.e3. [DOI: 10.1016/j.jtcvs.2018.08.116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/17/2018] [Accepted: 08/29/2018] [Indexed: 11/22/2022]
|
22
|
Sangeetha RP, Ramesh VJ, Kamath S, Christopher R, Bhat DI, Arvinda HR, Chakrabarti D. Effect of remote ischemic preconditioning on cerebral vasospasm and biomarkers of cerebral ischemia in aneurysmal subarachnoid hemorrhage (ERVAS): A protocol for a randomized, controlled pilot trial. Brain Circ 2019; 5:12-18. [PMID: 31001595 PMCID: PMC6458778 DOI: 10.4103/bc.bc_26_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/16/2018] [Accepted: 01/14/2019] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION: Cerebral vasospasm is a dreaded complication of aneurysmal subarachnoid hemorrhage (aSAH) predisposing to delayed cerebral ischemia. We intend to study the cerebroprotective effects of remote ischemic preconditioning (RIPC) in patients with aSAH. MATERIALS AND METHODS: This is a single-center, prospective, parallel group, randomized, pilot trial, approved by the Institutional Ethics Committee. Patients with aSAH admitted to our hospital for surgical clipping; fulfilling the trial inclusion criteria will be randomized to true RIPC (n = 12) (inflating upper extremity blood pressure cuff thrice for 5 min to 30 mmHg above systolic blood pressure) or sham RIPC (n = 12) (inflating blood pressure cuff thrice for 5 min to 30 mmHg) in 1:1 allocation ratio using a computerized random allocation sequence and block randomization. RESULTS: Our primary outcome measure is vasospasm on cerebral angiography and transcranial Doppler study, and concentration of serum S100B and neuron-specific enolase at 24 h after RIPC and on day 7 of ictus. Our secondary outcomes are safety of RIPC, cerebral oxygen saturation, and Glasgow coma score, and extended Glasgow outcome scale scores at discharge and at 1, 3, and 6 months following discharge. Outcome measures will be assessed by an observer blinded to the study intervention. CONCLUSION: If our preliminary results demonstrate a beneficial effect of RIPC, this would serve as a clinically applicable and safe preemptive method of protection against cerebral ischemia.
Collapse
Affiliation(s)
- R P Sangeetha
- Department of Neuroanaesthesia and Neurocritical Care, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - V J Ramesh
- Department of Neuroanaesthesia and Neurocritical Care, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Sriganesh Kamath
- Department of Neuroanaesthesia and Neurocritical Care, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Rita Christopher
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Dhananjaya I Bhat
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - H R Arvinda
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Dhritiman Chakrabarti
- Department of Neuroanaesthesia and Neurocritical Care, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| |
Collapse
|
23
|
Barriers and Advances in Kidney Preservation. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9206257. [PMID: 30643824 PMCID: PMC6311271 DOI: 10.1155/2018/9206257] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/15/2018] [Accepted: 11/14/2018] [Indexed: 12/16/2022]
Abstract
Despite the fact that a significant fraction of kidney graft dysfunctions observed after transplantation is due to ischemia-reperfusion injuries, there is still no clear consensus regarding optimal kidney preservation strategy. This stems directly from the fact that as of yet, the mechanisms underlying ischemia-reperfusion injury are poorly defined, and the role of each preservation parameter is not clearly outlined. In the meantime, as donor demography changes, organ quality is decreasing which directly increases the rate of poor outcome. This situation has an impact on clinical guidelines and impedes their possible harmonization in the transplant community, which has to move towards changing organ preservation paradigms: new concepts must emerge and the definition of a new range of adapted preservation method is of paramount importance. This review presents existing barriers in transplantation (e.g., temperature adjustment and adequate protocol, interest for oxygen addition during preservation, and clear procedure for organ perfusion during machine preservation), discusses the development of novel strategies to overcome them, and exposes the importance of identifying reliable biomarkers to monitor graft quality and predict short and long-term outcomes. Finally, perspectives in therapeutic strategies will also be presented, such as those based on stem cells and their derivatives and innovative models on which they would need to be properly tested.
Collapse
|
24
|
Effect of Combined Treatment of Ketorolac and Remote Ischemic Preconditioning on Renal Ischemia-Reperfusion Injury in Patients Undergoing Partial Nephrectomy: Pilot Study. J Clin Med 2018; 7:jcm7120470. [PMID: 30477089 PMCID: PMC6306905 DOI: 10.3390/jcm7120470] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/14/2018] [Accepted: 11/22/2018] [Indexed: 11/16/2022] Open
Abstract
We evaluated postoperative renal function in patients with/without combined therapy of ketorolac and remote ischemic preconditioning during partial nephrectomy. Sixteen patients were randomly allocated to either the ketorolac combined with RIPC group (KI, n = 8) or control group (n = 8). The KI group received both remote ischemic preconditioning before surgery and intravenous ketorolac of 1 mg/kg before renal artery clamping. Renal parameters were measured before induction, after anesthesia induction, and 2, 12, 24, 48, and 72 h after renal artery declamping. Acute kidney injury was assessed by Acute Kidney Injury Network criteria. The estimated glomerular filtration rate decreased in both groups, but then increased significantly at 48 h and 72 h after declamping only in the KI group compared to 24 h (p = 0.001 and p = 0.016). Additionally, it was higher at 48 h and 72 h after declamping in the KI group compared to the control group (p = 0.025 and p = 0.044). The incidence of acute kidney injury was significantly reduced in the KI group (13%) compared to the control group (83%) (p = 0.026). FENa was markedly increased at 2 h after declamping, and recovered in both groups, but it was more significant at 12 h after declamping in the KI group (p = 0.022). Urinary N-acetyl-1-β-D-glucosoaminidase and serum neutrophil gelatinase-associated lipocalin were similar (p = 0.291 and p = 0.818). There is a possibility that combined therapy of ketorolac and remote ischemic preconditioning prior to ischemia may alleviate renal dysfunction and reduce the incidence of acute kidney injury in patients undergoing partial nephrectomy.
Collapse
|
25
|
Khoury N, Xu J, Stegelmann SD, Jackson CW, Koronowski KB, Dave KR, Young JI, Perez-Pinzon MA. Resveratrol Preconditioning Induces Genomic and Metabolic Adaptations within the Long-Term Window of Cerebral Ischemic Tolerance Leading to Bioenergetic Efficiency. Mol Neurobiol 2018; 56:4549-4565. [PMID: 30343466 DOI: 10.1007/s12035-018-1380-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/04/2018] [Indexed: 01/23/2023]
Abstract
Neuroprotective agents administered post-cerebral ischemia have failed so far in the clinic to promote significant recovery. Thus, numerous efforts were redirected toward prophylactic approaches such as preconditioning as an alternative therapeutic strategy. Our laboratory has revealed a novel long-term window of cerebral ischemic tolerance mediated by resveratrol preconditioning (RPC) that lasts for 2 weeks in mice. To identify its mediators, we conducted an RNA-seq experiment on the cortex of mice 2 weeks post-RPC, which revealed 136 differentially expressed genes. The majority of genes (116/136) were downregulated upon RPC and clustered into biological processes involved in transcription, synaptic signaling, and neurotransmission. The downregulation in these processes was reminiscent of metabolic depression, an adaptation used by hibernating animals to survive severe ischemic states by downregulating energy-consuming pathways. Thus, to assess metabolism, we used a neuronal-astrocytic co-culture model and measured the cellular respiration rate at the long-term window post-RPC. Remarkably, we observed an increase in glycolysis and mitochondrial respiration efficiency upon RPC. We also observed an increase in the expression of genes involved in pyruvate uptake, TCA cycle, and oxidative phosphorylation, all of which indicated an increased reliance on energy-producing pathways. We then revealed that these nuclear and mitochondrial adaptations, which reduce the reliance on energy-consuming pathways and increase the reliance on energy-producing pathways, are epigenetically coupled through acetyl-CoA metabolism and ultimately increase baseline ATP levels. This increase in ATP would then allow the brain, a highly metabolic organ, to endure prolonged durations of energy deprivation encountered during cerebral ischemia.
Collapse
Affiliation(s)
- Nathalie Khoury
- Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA.,Department of Neurology, University of Miami, Miller School of Medicine, P.O. Box 016960, Miami, FL, 33101, USA.,Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - Jing Xu
- Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA.,Department of Neurology, University of Miami, Miller School of Medicine, P.O. Box 016960, Miami, FL, 33101, USA.,Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - Samuel D Stegelmann
- Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA.,Department of Neurology, University of Miami, Miller School of Medicine, P.O. Box 016960, Miami, FL, 33101, USA
| | - Charles W Jackson
- Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA.,Department of Neurology, University of Miami, Miller School of Medicine, P.O. Box 016960, Miami, FL, 33101, USA.,Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - Kevin B Koronowski
- Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA.,Department of Neurology, University of Miami, Miller School of Medicine, P.O. Box 016960, Miami, FL, 33101, USA.,Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - Kunjan R Dave
- Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA.,Department of Neurology, University of Miami, Miller School of Medicine, P.O. Box 016960, Miami, FL, 33101, USA.,Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - Juan I Young
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA.,John P. Hussman Institute for Human Genomics, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA.,Department of Human Genetics, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - Miguel A Perez-Pinzon
- Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA. .,Department of Neurology, University of Miami, Miller School of Medicine, P.O. Box 016960, Miami, FL, 33101, USA. .,Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
26
|
Yang T, Sun Y, Mao L, Zhang M, Li Q, Zhang L, Shi Y, Leak RK, Chen J, Zhang F. Brain ischemic preconditioning protects against ischemic injury and preserves the blood-brain barrier via oxidative signaling and Nrf2 activation. Redox Biol 2018; 17:323-337. [PMID: 29775963 PMCID: PMC6007054 DOI: 10.1016/j.redox.2018.05.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 04/23/2018] [Accepted: 05/03/2018] [Indexed: 12/30/2022] Open
Abstract
Brain ischemic preconditioning (IPC) with mild ischemic episodes is well known to protect the brain against subsequent ischemic challenges. However, the underlying mechanisms are poorly understood. Here we demonstrate the critical role of the master redox transcription factor, nuclear factor (erythroid-derived 2)-like 2 (Nrf2), in IPC-mediated neuroprotection and blood-brain barrier (BBB) preservation. We report that IPC causes generation of endogenous lipid electrophiles, including 4-hydroxy-2-nonenal (4-HNE), which release Nrf2 from inhibition by Keap1 (via Keap1-C288) and inhibition by glycogen synthase kinase 3β (via GSK3β-C199). Nrf2 then induces expression of its target genes, including a new target, cadherin 5, a key component of adherens junctions of the BBB. These effects culminate in mitigation of BBB leakage and of neurological deficits after stroke. Collectively, these studies are the first to demonstrate that IPC protects the BBB against ischemic injury by generation of endogenous electrophiles and activation of the Nrf2 pathway through inhibition of Keap1- and GSK3β-dependent Nrf2 degradation.
Collapse
Affiliation(s)
- Tuo Yang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yang Sun
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Leilei Mao
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology and Key Laboratory of Cerebral Microcirculation, University of Shandong, Affiliated Hospital of Taishan Medical College, Tai'an, Shandong, China
| | - Meijuan Zhang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Qianqian Li
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lili Zhang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yejie Shi
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Jun Chen
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, USA; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| | - Feng Zhang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology and Key Laboratory of Cerebral Microcirculation, University of Shandong, Affiliated Hospital of Taishan Medical College, Tai'an, Shandong, China.
| |
Collapse
|
27
|
Ramos-Araque ME, Rodriguez C, Vecino R, Cortijo Garcia E, de Lera Alfonso M, Sanchez Barba M, Colàs-Campàs L, Purroy F, Arenillas JF, Almeida A, Delgado-Esteban M. The Neuronal Ischemic Tolerance Is Conditioned by the Tp53 Arg72Pro Polymorphism. Transl Stroke Res 2018; 10:204-215. [PMID: 29687302 PMCID: PMC6421278 DOI: 10.1007/s12975-018-0631-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/03/2018] [Accepted: 04/06/2018] [Indexed: 01/04/2023]
Abstract
Cerebral preconditioning (PC) confers endogenous brain protection after stroke. Ischemic stroke patients with a prior transient ischemic attack (TIA) may potentially be in a preconditioned state. Although PC has been associated with the activation of pro-survival signals, the mechanism by which preconditioning confers neuroprotection is not yet fully clarified. Recently, we have described that PC-mediated neuroprotection against ischemic insult is promoted by p53 destabilization, which is mediated by its main regulator MDM2. Moreover, we have previously described that the human Tp53 Arg72Pro single nucleotide polymorphism (SNP) controls susceptibility to ischemia-induced neuronal apoptosis and governs the functional outcome of patients after stroke. Here, we studied the contribution of the human Tp53 Arg72Pro SNP on PC-induced neuroprotection after ischemia. Our results showed that cortical neurons expressing the Pro72-p53 variant exhibited higher PC-mediated neuroprotection as compared with Arg72-p53 neurons. PC prevented ischemia-induced nuclear and cytosolic p53 stabilization in Pro72-p53 neurons. However, PC failed to prevent mitochondrial p53 stabilization, which occurs in Arg72-p53 neurons after ischemia. Furthermore, PC promoted neuroprotection against ischemia by controlling the p53/active caspase-3 pathway in Pro72-p53, but not in Arg72-p53 neurons. Finally, we found that good prognosis associated to TIA within 1 month prior to ischemic stroke was restricted to patients harboring the Pro72 allele. Our findings demonstrate that the Tp53 Arg72Pro SNP controls PC-promoted neuroprotection against a subsequent ischemic insult by modulating mitochondrial p53 stabilization and then modulates TIA-induced ischemic tolerance.
Collapse
Affiliation(s)
- Maria E Ramos-Araque
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Calle Zacarías González 2, 37007, Salamanca, Spain
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Salamanca, Spain
| | - Cristina Rodriguez
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Calle Zacarías González 2, 37007, Salamanca, Spain
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Salamanca, Spain
| | - Rebeca Vecino
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Calle Zacarías González 2, 37007, Salamanca, Spain
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Salamanca, Spain
| | - Elisa Cortijo Garcia
- Stroke Unit, Department of Neurology, University Hospital of Valladolid, University of Valladolid, Valladolid, Spain
| | - Mercedes de Lera Alfonso
- Stroke Unit, Department of Neurology, University Hospital of Valladolid, University of Valladolid, Valladolid, Spain
| | - Mercedes Sanchez Barba
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Calle Zacarías González 2, 37007, Salamanca, Spain
- Department of Statistics, University Hospital of Salamanca, University of Salamanca, Salamanca, Spain
| | | | - Francisco Purroy
- Clinical Neurosciences Group, IRBLleida. UdL, Lleida, Spain
- Stroke Unit, University Hospital Arnau de Vilanova, Lleida, Spain
| | - Juan F Arenillas
- Stroke Unit, Department of Neurology, University Hospital of Valladolid, University of Valladolid, Valladolid, Spain
- Neurovascular Research Laboratory (i3), Instituto de Biología y Genética Molecular, Universidad de Valladolid, CSIC, Valladolid, Spain
| | - Angeles Almeida
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Calle Zacarías González 2, 37007, Salamanca, Spain
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Salamanca, Spain
| | - Maria Delgado-Esteban
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Calle Zacarías González 2, 37007, Salamanca, Spain.
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Salamanca, Spain.
| |
Collapse
|
28
|
Liu SM, Zhao WL, Song HQ, Meng R, Li SJ, Ren CH, Ovbiagele B, Ji XM, Feng WW. Rationale and Study Design for a Single-Arm Phase IIa Study Investigating Feasibility of Preventing Ischemic Cerebrovascular Events in High-Risk Patients with Acute Non-disabling Ischemic Cerebrovascular Events Using Remote Ischemic Conditioning. Chin Med J (Engl) 2018; 131:347-351. [PMID: 29363651 PMCID: PMC5798057 DOI: 10.4103/0366-6999.223849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Background: Acute minor ischemic stroke (AMIS) or transient ischemic attack (TIA) is a common cerebrovascular event with a considerable high recurrence. Prior research demonstrated the effectiveness of regular long-term remote ischemic conditioning (RIC) in secondary stroke prevention in patients with intracranial stenosis. We hypothesized that RIC can serve as an effective adjunctive therapy to pharmacotherapy in preventing ischemic events in patients with AMIS/TIA. This study aimed to investigate the feasibility, safety, and preliminary efficacy of daily RIC in inhibiting cerebrovascular/cardiovascular events after AMIS/TIA. Methods: This is a single-arm, open-label, multicenter Phase IIa futility study with a sample size of 165. Patients with AMIS/TIA receive RIC as an additional therapy to secondary stroke prevention regimen. RIC consists of five cycles of 5-min inflation (200 mmHg) and 5-min deflation of cuffs on bilateral upper limbs twice a day for 90 days. The antiplatelet strategy is based on individual physician's best practice: aspirin alone, clopidogrel alone, or combination of aspirin and clopidogrel. We will assess the recurrence rate of ischemic stroke/TIA within 3 months as the primary outcomes. Conclusions: The data gathered from the study will be used to determine whether a further large-scale, multicenter randomized controlled Phase II trial is warranted in patients with AMIS/TIA. Trial Registration: ClinicalTrials.gov, NCT03004820; https://www.clinicaltrials.gov/ct2/show/NCT03004820.
Collapse
Affiliation(s)
- Shi-Meng Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Wen-Le Zhao
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29403, USA
| | - Hai-Qing Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Ran Meng
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Si-Jie Li
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing 100053, China
| | - Chang-Hong Ren
- Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing 100053, China
| | - Bruce Ovbiagele
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29403, USA
| | - Xun-Ming Ji
- Department of Neurology, Xuanwu Hospital, Capital Medical University; Beijing Key Laboratory of Hypoxia Conditioning Translational Medicine, Beijing 100053, China
| | - Wu-Wei Feng
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29403, USA
| |
Collapse
|
29
|
Lv J, Hu W, Yang Z, Li T, Jiang S, Ma Z, Chen F, Yang Y. Focusing on claudin-5: A promising candidate in the regulation of BBB to treat ischemic stroke. Prog Neurobiol 2018; 161:79-96. [PMID: 29217457 DOI: 10.1016/j.pneurobio.2017.12.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/20/2017] [Accepted: 12/03/2017] [Indexed: 12/11/2022]
Abstract
Claudin-5 is a tight junction (TJ) protein in the blood-brain barrier (BBB) that has recently attracted increased attention. Numerous studies have demonstrated that claudin-5 regulates the integrity and permeability of the BBB. Increased claudin-5 expression plays a neuroprotective role in neurological diseases, particularly in cerebral ischemic stroke. Moreover, claudin-5 might be a potential marker for early hemorrhagic transformation detection in ischemic stroke. In light of the distinctive effects of claudin-5 on the nervous system, we present the elaborate network of roles that claudin-5 plays in ischemic stroke. In this review, we first introduce basic knowledge regarding the BBB and the claudin family, the characterization and regulation of claudin-5, and association between claudin-5 and other TJ proteins. Subsequently, we describe BBB dysfunction and neuron-specific drivers of pathogenesis of ischemic stroke, including inflammatory disequilibrium and oxidative stress. Furthermore, we summarize promising ischemic stroke treatments that target the BBB via claudin-5, including modified rt-PA therapy, pharmacotherapy, hormone treatment, receptor-targeted therapy, gene therapy, and physical therapy. This review highlights recent advances and provides a comprehensive summary of claudin-5 in the regulation of the BBB and may be helpful for drug design and clinical therapy for treatment of ischemic stroke.
Collapse
Affiliation(s)
- Jianjun Lv
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Wei Hu
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China; Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Zhi Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Fulin Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China.
| |
Collapse
|
30
|
Wu XM, Qian C, Zhou YF, Yan YC, Luo QQ, Yung WH, Zhang FL, Jiang LR, Qian ZM, Ke Y. Bi-directionally protective communication between neurons and astrocytes under ischemia. Redox Biol 2017; 13:20-31. [PMID: 28551085 PMCID: PMC5447396 DOI: 10.1016/j.redox.2017.05.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/16/2017] [Accepted: 05/19/2017] [Indexed: 01/10/2023] Open
Abstract
The extensive existing knowledge on bi-directional communication between astrocytes and neurons led us to hypothesize that not only ischemia-preconditioned (IP) astrocytes can protect neurons but also IP neurons protect astrocytes from lethal ischemic injury. Here, we demonstrated for the first time that neurons have a significant role in protecting astrocytes from ischemic injury. The cultured medium from IP neurons (IPcNCM) induced a remarkable reduction in LDH and an increase in cell viability in ischemic astrocytes in vitro. Selective neuronal loss by kainic acid injection induced a significant increase in apoptotic astrocyte numbers in the brain of ischemic rats in vivo. Furthermore, TUNEL analysis, DNA ladder assay, and the measurements of ROS, GSH, pro- and anti-apoptotic factors, anti-oxidant enzymes and signal molecules in vitro and/or in vivo demonstrated that IP neurons protect astrocytes by an EPO-mediated inhibition of pro-apoptotic signals, activation of anti-apoptotic proteins via the P13K/ERK/STAT5 pathways and activation of anti-oxidant proteins via up-regulation of anti-oxidant enzymes. We demonstrated the existence of astro-protection by IP neurons under ischemia and proposed that the bi-directionally protective communications between cells might be a common activity in the brain or peripheral organs under most if not all pathological conditions.
Collapse
Affiliation(s)
- Xiao-Mei Wu
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Shatin, NT, Hong Kong, China; Department of Biochemistry, Institute for Nautical Medicine, Nantong University, Nantong 226001, China
| | - Christopher Qian
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Yu-Fu Zhou
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Shatin, NT, Hong Kong, China; Laboratory of Neuropharmacology, Fudan University School of Pharmacy, 826 Zhang Heng Road, Shanghai 201203, China
| | - Yick-Chun Yan
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Qian-Qian Luo
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, 826 Zhang Heng Road, Shanghai 201203, China; Department of Biochemistry, Institute for Nautical Medicine, Nantong University, Nantong 226001, China
| | - Wing-Ho Yung
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Fa-Li Zhang
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, 826 Zhang Heng Road, Shanghai 201203, China
| | - Li-Rong Jiang
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, 826 Zhang Heng Road, Shanghai 201203, China
| | - Zhong Ming Qian
- Laboratory of Neuropharmacology, Fudan University School of Pharmacy, 826 Zhang Heng Road, Shanghai 201203, China.
| | - Ya Ke
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| |
Collapse
|
31
|
Abstract
OPINION STATEMENT Preconditioning is the premise that controlled preemptive exposure to sub-lethal doses of a stressor and can condition an organism or organ to later withstand a lethal dose. This process relies on marshaling endogenous survival resources that have evolved as part of an organism's evolutionary struggle to overcome at times harsh environmental conditions. This preconditioning response occurs through activation of myriad complex mechanisms that run the gamut from alterations in gene expression to the de novo synthesis and post-translational modification of proteins, and it may occur across exposure to a wide variety of stressors (i.e., ischemia, hypoxia, hypothermia, drugs). This review will focus on preconditioning in relation to an ischemic stressor (ischemic preconditioning) and how this process may be harnessed as a protective method to ameliorate targeted acute neurologic diseases especially. There has been considerable eagerness to translate ischemic preconditioning to the bedside, and to that end there have been recent trials examining its efficacy in various clinical settings. However, some of these trials have reached diverging conclusions with a protective effect seen in studies targeting acute kidney injury solely while no benefit was seen in larger trials targeting combined endpoints including cardio-, neuro-, and renoprotection in a cohort of patients undergoing cardiac surgery. While an extensive body of pre-clinical research offers ischemic preconditioning as a robust and highly faithful protective phenomenon, its clinical utility remains unproven. This current state may be due to persisting gaps in our understanding of how best to harness its power. This review will provide an overview of the biological mechanisms proposed to underlie ischemic preconditioning, explore initial disease targets, examine the challenges we must overcome to optimally engage this system, and report findings of recent clinical trials.
Collapse
Affiliation(s)
- Maranatha Ayodele
- Department of Neurology, University of Miami, Miller School of Medicine, 1120 NW 14th Street, CRB 1353, Miami, FL, 33136, USA.
| | - Sebastian Koch
- Department of Neurology, University of Miami, Miller School of Medicine, 1120 NW 14th Street, CRB 1365, Miami, FL, 33136, USA
| |
Collapse
|
32
|
Tauskela JS, Bourourou M, Blondeau N. Tackling issues in the path toward clinical translation in brain conditioning: Potential offered by nutraceuticals. Brain Circ 2017; 3:78-86. [PMID: 30276308 PMCID: PMC6126266 DOI: 10.4103/bc.bc_8_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 05/23/2017] [Accepted: 05/31/2017] [Indexed: 11/21/2022] Open
Abstract
Brief periods of ischemia have been shown in many experimental setups to provide tolerance against ischemia in multiple organs including the brain, when administered before (preconditioning) or even after (postconditioning) the normally lethal ischemia. In addition to these so-called ischemic conditionings, many pharmacological and natural agents (e.g., chemicals and nutraceuticals) can also act as potent pre- and post-conditioners. Deriving from the original concept of ischemic preconditioning, these various conditioning paradigms may be promising as clinical-stage therapies for prevention of ischemic-related injury, especially stroke. As no proven experimentally identified strategy has translated into clinical success, the experimental induction of neuroprotection using these various conditioning paradigms has raised several questions, even before considering translation to clinical studies in humans. The first aim of the review is to consider key questions on preclinical studies of pre- or post-conditioning modalities including those induced by chemical or nutraceuticals. Second, we make the argument that several key issues can be addressed by a novel concept, nutraceutical preconditioning. Specifically, α-linolenic acid (alpha-linolenic acid [ALA] an omega-3 polyunsaturated fatty acid), contained in plant-derived edible products, is essential in the daily diet, and a body of work has identified ALA as a pre- and post-conditioner of the brain. Nutritional intervention and functional food development are an emerging direction for preventing stroke damage, offering the potential to improving clinical outcomes through activation of the endogenous protective mechanisms known collectively as conditioning.
Collapse
Affiliation(s)
- Joseph S Tauskela
- Department of Translational Bioscience, Human Health Therapeutics, National Research Council Canada, Ottawa, Ontario, Canada K1A 0R6
| | - Miled Bourourou
- University of Côte d'Azur, Centre National de la Recherche Scientifique, IPMC, UMR7275 Sophia Antipolis, F-06560, France
| | - Nicolas Blondeau
- University of Côte d'Azur, Centre National de la Recherche Scientifique, IPMC, UMR7275 Sophia Antipolis, F-06560, France
| |
Collapse
|
33
|
Effects of Remote Ischemic Preconditioning on Heme Oxygenase-1 Expression and Cutaneous Wound Repair. Int J Mol Sci 2017; 18:ijms18020438. [PMID: 28218659 PMCID: PMC5343972 DOI: 10.3390/ijms18020438] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/06/2017] [Accepted: 02/13/2017] [Indexed: 12/26/2022] Open
Abstract
Skin wounds may lead to scar formation and impaired functionality. Remote ischemic preconditioning (RIPC) can induce the anti-inflammatory enzyme heme oxygenase-1 (HO-1) and protect against tissue injury. We aim to improve cutaneous wound repair by RIPC treatment via induction of HO-1. RIPC was applied to HO-1-luc transgenic mice and HO-1 promoter activity and mRNA expression in skin and several other organs were determined in real-time. In parallel, RIPC was applied directly or 24h prior to excisional wounding in mice to investigate the early and late protective effects of RIPC on cutaneous wound repair, respectively. HO-1 promoter activity was significantly induced on the dorsal side and locally in the kidneys following RIPC treatment. Next, we investigated the origin of this RIPC-induced HO-1 promoter activity and demonstrated increased mRNA in the ligated muscle, heart and kidneys, but not in the skin. RIPC did not change HO-1 mRNA and protein levels in the wound 7 days after cutaneous injury. Both early and late RIPC did not accelerate wound closure nor affect collagen deposition. RIPC induces HO-1 expression in several organs, but not the skin, and did not improve excisional wound repair, suggesting that the skin is insensitive to RIPC-mediated protection.
Collapse
|
34
|
Park UJ, Kim HT, Cho WH, Park JH, Jung HR, Kim MY. Remote Ischemic Preconditioning Enhances the Expression of Genes Encoding Antioxidant Enzymes and Endoplasmic Reticulum Stress-Related Proteins in Rat Skeletal Muscle. Vasc Specialist Int 2016; 32:141-149. [PMID: 28042553 PMCID: PMC5198760 DOI: 10.5758/vsi.2016.32.4.141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/21/2016] [Accepted: 09/26/2016] [Indexed: 01/16/2023] Open
Abstract
Purpose: Ischemic preconditioning (IPC), including remote IPC (rIPC) and direct IPC (dIPC), is a promising method to decrease ischemia-reperfusion (IR) injury. This study tested the effect of both rIPC and dIPC on the genes for antioxidant enzymes and endoplasmic reticulum (ER) stress-related proteins. Materials and Methods: Twenty rats were randomly divided into the control and study groups. In the control group (n=10), the right hind limb was sham-operated. The left hind limb (IscR) of the control group underwent IR injury without IPC. In the study group (n=10), the right hind limb received IR injury after 3 cycles of rIPC. The IscR received IR injury after 3 cycles of dIPC. Gene expression was analyzed by Quantitative real-time polymerase chain reaction from the anterior tibialis muscle. Results: The expression of the antioxidant enzyme genes including glutathione peroxidase (GPx), superoxide dismutase (SOD) 1 and catalase (CAT) were significantly reduced in IscR compared with sham treatment. In comparison with IscR, rIPC enhanced the expression of GPx, SOD2, and CAT genes. dIPC enhanced the expression of SOD2 and CAT genes. The expression of SOD2 genes was consistently higher in rIPC than in dIPC, but the difference was only significant for SOD2. The expression of genes for ER stress-related proteins tended to be reduced in IscR in comparison with sham treatment. However, the difference was only significant for C/EBP homologous protein (CHOP). In comparison with IscR, rIPC significantly up-regulated activating transcription factor 4 and CHOP, whereas dIPC up-regulated CHOP. Conclusion: Both rIPC and dIPC enhanced expression of genes for antioxidant enzymes and ER stress-related proteins.
Collapse
Affiliation(s)
- Ui Jun Park
- Department of Surgery, Keimyung University School of Medicine, Daegu, Ulsan, Korea
| | - Hyoung Tae Kim
- Department of Surgery, Keimyung University School of Medicine, Daegu, Ulsan, Korea
| | - Won Hyun Cho
- Department of Surgery, Keimyung University School of Medicine, Daegu, Ulsan, Korea
| | - Jae Hyoung Park
- Department of Physiology, Keimyung University School of Medicine, Daegu, Ulsan, Korea
| | - Hye Ra Jung
- Department of Pathology, Keimyung University School of Medicine, Daegu, Ulsan, Korea
| | - Min Young Kim
- Department of Nursing, University of Ulsan, Ulsan, Korea
| |
Collapse
|
35
|
Su F, Guo AC, Li WW, Zhao YL, Qu ZY, Wang YJ, Wang Q, Zhu YL. Low-Dose Ethanol Preconditioning Protects Against Oxygen-Glucose Deprivation/Reoxygenation-Induced Neuronal Injury By Activating Large Conductance, Ca 2+-Activated K + Channels In Vitro. Neurosci Bull 2016; 33:28-40. [PMID: 27854008 DOI: 10.1007/s12264-016-0080-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/27/2016] [Indexed: 12/29/2022] Open
Abstract
Increasing evidence suggests that low to moderate ethanol ingestion protects against the deleterious effects of subsequent ischemia/reperfusion; however, the underlying mechanism has not been elucidated. In the present study, we showed that expression of the neuronal large-conductance, Ca2+-activated K+ channel (BKCa) α-subunit was upregulated in cultured neurons exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) compared with controls. Preconditioning with low-dose ethanol (10 mmol/L) increased cell survival rate in neurons subjected to OGD/R, attenuated the OGD/R-induced elevation of cytosolic Ca2+ levels, and reduced the number of apoptotic neurons. Western blots revealed that ethanol preconditioning upregulated expression of the anti-apoptotic protein Bcl-2 and downregulated the pro-apoptotic protein Bax. The protective effect of ethanol preconditioning was antagonized by a BKCa channel inhibitor, paxilline. Inside-out patches in primary neurons also demonstrated the direct activation of the BKCa channel by 10 mmol/L ethanol. The above results indicated that low-dose ethanol preconditioning exerts its neuroprotective effects by attenuating the elevation of cytosolic Ca2+ and preventing neuronal apoptosis, and this is mediated by BKCa channel activation.
Collapse
Affiliation(s)
- Fang Su
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, 100050, China
| | - An-Chen Guo
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, 100050, China.,Beijing Institute for Brain Disorders, Beijing, 100069, China.,China National Clinical Research Center for Neurological Diseases, Beijing, 100050, China
| | - Wei-Wei Li
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, 100050, China.,Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Yi-Long Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, 100050, China.,China National Clinical Research Center for Neurological Diseases, Beijing, 100050, China
| | - Zheng-Yi Qu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Yong-Jun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, 100050, China.,Beijing Institute for Brain Disorders, Beijing, 100069, China.,China National Clinical Research Center for Neurological Diseases, Beijing, 100050, China
| | - Qun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, 100050, China.,Beijing Institute for Brain Disorders, Beijing, 100069, China.,China National Clinical Research Center for Neurological Diseases, Beijing, 100050, China
| | - Yu-Lan Zhu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
36
|
Preconditioning is hormesis part I: Documentation, dose-response features and mechanistic foundations. Pharmacol Res 2016; 110:242-264. [DOI: 10.1016/j.phrs.2015.12.021] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/18/2015] [Accepted: 12/19/2015] [Indexed: 12/16/2022]
|
37
|
Ischemic preconditioning inhibits over-expression of arginyl-tRNA synthetase gene Rars in ischemia-injured neurons. ACTA ACUST UNITED AC 2016; 36:554-557. [PMID: 27465332 DOI: 10.1007/s11596-016-1624-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 06/06/2016] [Indexed: 12/20/2022]
Abstract
The expression changes of Rars gene in ischemia-injured neurons were investigated by detecting its translational product arginyl-tRNA synthetase (ArgRS), and the inhibitory effects of ischemic preconditioning (IPC) on Rars gene were explored. Both IPC model and prolonged ischemia (PI) model were established by using the classic oxygen glucose deprivation (OGD) method. The primary cultured neurons were assigned into the following groups: the experimental group (IPC+PI group), undergoing PI after a short period of IPC; the conditional control group (PI control group), subjected to PI without IPC; blank control group, the normally cultured neurons. The Rars transcriptional activities and ArgRS expression levels were measured at different time points after re-oxygenation (3 h/6 h/12 h/24 h). Data were collected and statistically analyzed. Compared to the blank control group, the Rars activities and ArgRS levels were significantly increased in PI control group, peaking at the time point of 6 h after re-oxygenation. Rars activities and ArgRS levels were significantly lower in the experimental group than in the PI control group at different time points after re-oxygenation. PI insult can induce an escalating activity of Rars and lead to ArgRS over-expression in primary cultured neurons. IPC can inhibit the increased Rars activity and down-regulate ArgRS expression of ischemia-insulted neurons. This mechanism may confer ischemic tolerance on neurons.
Collapse
|
38
|
Repeat remote ischaemic pre-conditioning for improved cardiovascular function in humans: A systematic review. IJC HEART & VASCULATURE 2016; 11:55-58. [PMID: 28616526 PMCID: PMC5441349 DOI: 10.1016/j.ijcha.2016.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/04/2016] [Indexed: 01/17/2023]
Abstract
BACKGROUND Single exposure to remote ischaemic pre-conditioning (RIPC) has been shown to be effective in reducing major adverse events during cardiac surgery. We evaluated the efficacy of repeated exposure RIPC to elicit improvements in cardiovascular function. METHODS A systematic search was conducted up until May 1st, 2015, using the following databases: EMBASE, PubMed (Medline), Web of Science and the Cochrane Central Registry of Controlled Trials (CENTRAL). Data was extracted and synthesized from published studies of repeat RIPC. RESULTS Data from seven studies showed evidence of improvements in vascular function and anti-hypertensive effects of systolic, diastolic and mean arterial blood pressure following repeat RIPC. Currently existing work justifies a systematic review but not data pooling of individual study data. Repeat RIPC has also produced evidence of improvements in endothelial dependent vasodilation, but not non-endothelial dependent vasodilation, cutaneous vascular conductance or cardiorespiratory fitness. CONCLUSION Repeated RIPC exposure has produced evidence of improvements in endothelial dependent vasodilation, ulcer healing and blood pressure but no benefit in non-endothelial dependent vasodilation, cutaneous vascular conductance or cardiorespiratory fitness. The optimal delivery of RIPC remains unclear, but at least 3 or preferably 4, 5 min exposures appears to be most beneficial, at least for reducing blood pressure. Aside from those undertaking cardiac surgery, other study populations with endothelial dysfunction may benefit from repeat exposure to RIPC.
Collapse
|
39
|
Zeiler SR, Hubbard R, Gibson EM, Zheng T, Ng K, O'Brien R, Krakauer JW. Paradoxical Motor Recovery From a First Stroke After Induction of a Second Stroke: Reopening a Postischemic Sensitive Period. Neurorehabil Neural Repair 2015; 30:794-800. [PMID: 26721868 DOI: 10.1177/1545968315624783] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND OBJECTIVE Prior studies have suggested that after stroke there is a time-limited period of increased responsiveness to training as a result of heightened plasticity-a sensitive period thought to be induced by ischemia itself. Using a mouse model, we have previously shown that most training-associated recovery after a caudal forelimb area (CFA) stroke occurs in the first week and is attributable to reorganization in a medial premotor area (AGm). The existence of a stroke-induced sensitive period leads to the counterintuitive prediction that a second stroke should reopen this window and promote full recovery from the first stroke. To test this prediction, we induced a second stroke in the AGm of mice with incomplete recovery after a first stroke in CFA. METHODS Mice were trained to perform a skilled prehension (reach-to-grasp) task to an asymptotic level of performance, after which they underwent photocoagulation-induced stroke in CFA. After a 7-day poststroke delay, the mice were then retrained to asymptote. We then induced a second stroke in the AGm, and after only a 1-day delay, retrained the mice. RESULTS Recovery of prehension was incomplete when training was started after a 7-day poststroke delay and continued for 19 days. However, a second focal stroke in the AGm led to a dramatic response to 9 days of training, with full recovery to normal levels of performance. CONCLUSIONS New ischemia can reopen a sensitive period of heightened responsiveness to training and mediate full recovery from a previous stroke.
Collapse
Affiliation(s)
| | | | | | - Tony Zheng
- Johns Hopkins University, Baltimore, MD, USA
| | | | | | | |
Collapse
|
40
|
Tülü S, Mulino M, Pinggera D, Luger M, Würtinger P, Grams A, Bodner T, Beer R, Helbok R, Matteucci-Gothe R, Unterhofer C, Gizewski E, Schmutzhard E, Thomé C, Ortler M. Remote ischemic preconditioning in the prevention of ischemic brain damage during intracranial aneurysm treatment (RIPAT): study protocol for a randomized controlled trial. Trials 2015; 16:594. [PMID: 26714784 PMCID: PMC4696326 DOI: 10.1186/s13063-015-1102-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 12/03/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The treatment of intracranial aneurysms may be associated with cerebral ischemia. We hypothesize that pre-interventional remote ischemic preconditioning (RIPC) reduces ischemic cerebral tissue damage in patients undergoing elective intracranial aneurysm treatment. METHODS/DESIGN This study is a single-center, prospective, randomized, double-blind explorative trial. Patients with an unruptured intracranial aneurysm admitted to Innsbruck Medical University Hospital for coiling or clipping will be consecutively randomized to either the intervention group (= RIPC by inflating an upper extremity blood-pressure cuff for 3 x 5 min to 200 mmHg) or the control group after induction of anesthesia. Participants will be randomized 1:1 to either the preconditioning group or the sham group using a random allocation sequence and block randomization. The precalculated sample size is n = 24 per group. The primary endpoint is the area-under-the-curve concentration of serum biomarkers (S100B, NSE, GFAP, MMP9, MBP, and cellular microparticles) in the first five days after treatment. Secondary endpoints are the number and volume of new ischemic lesions in magnetic resonance imaging and clinical outcome evaluated with the National Institutes of Health Stroke Scale, the modified Rankin Scale, and neuropsychological tests at six and twelve months. All outcome variables will be determined by observers blinded to group allocation. This study was approved by the local institutional Ethics Committee (UN5164), version 3.0 of the study protocol, dated 20 October 2013. DISCUSSION This study uses the elective treatment of intracranial aneurysms as a paradigmatic situation to explore the neuroprotective effects of RIPC. If effects are demonstrable in this pilot trial, a larger, prospective phase III trial will be considered.
Collapse
Affiliation(s)
- Selma Tülü
- Department of Neurosurgery, Medical University of Innsbruck, 35, Anichstrasse, Innsbruck, 6020, Austria.
| | - Miriam Mulino
- Department of Neurosurgery, Medical University of Innsbruck, 35, Anichstrasse, Innsbruck, 6020, Austria.
| | - Daniel Pinggera
- Department of Neurosurgery, Medical University of Innsbruck, 35, Anichstrasse, Innsbruck, 6020, Austria.
| | - Markus Luger
- Department of Anesthesiology and Intensive Care Medicine, Medical University of Innsbruck, Innsbruck, 6020, Austria.
| | - Philipp Würtinger
- Central Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Innsbruck, Innsbruck, 6020, Austria.
| | - Astrid Grams
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, 6020, Austria.
| | - Thomas Bodner
- Department of Neurology, Medical University of Innsbruck, Innsbruck, 6020, Austria.
| | - Ronny Beer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, 6020, Austria.
| | - Raimund Helbok
- Department of Neurology, Medical University of Innsbruck, Innsbruck, 6020, Austria.
| | - Raffaella Matteucci-Gothe
- Department of Public Health and Health Technology Assessment, UMIT Health and Life Sciences University, Hall in Tirol, Austria.
| | - Claudia Unterhofer
- Department of Neurosurgery, Medical University of Innsbruck, 35, Anichstrasse, Innsbruck, 6020, Austria.
| | - Elke Gizewski
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, 6020, Austria.
| | - Erich Schmutzhard
- Department of Neurology, Medical University of Innsbruck, Innsbruck, 6020, Austria.
| | - Claudius Thomé
- Department of Neurosurgery, Medical University of Innsbruck, 35, Anichstrasse, Innsbruck, 6020, Austria.
| | - Martin Ortler
- Department of Neurosurgery, Medical University of Innsbruck, 35, Anichstrasse, Innsbruck, 6020, Austria.
| |
Collapse
|
41
|
|
42
|
Selim M, Wang M. Ischemic Preconditioning: The Long-Awaited Savior of Neuroprotection. Has It Arrived? Neurotherapeutics 2015; 12:655-6. [PMID: 26076993 PMCID: PMC4489952 DOI: 10.1007/s13311-015-0365-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Magdy Selim
- Department of Neurology - Stroke Division, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Palmer 127, Boston, MA, 02215, USA,
| | | |
Collapse
|
43
|
MicroRNAs in Kidney Transplantation: Living up to Their Expectations? J Transplant 2015; 2015:354826. [PMID: 26078872 PMCID: PMC4442302 DOI: 10.1155/2015/354826] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/03/2015] [Accepted: 03/18/2015] [Indexed: 12/12/2022] Open
Abstract
Since the discovery of microRNAs, ample research has been conducted to elucidate their involvement in an array of (patho)physiological conditions. Ischemia reperfusion injury is a major problem in kidney transplantation and its mechanism is still not fully known, nor is there an effective therapy. Furthermore, no biomarker is available to specifically measure (ischemic) damage after kidney transplantation or predict transplantation outcome. In this review, we summarize studies conducted on microRNAs in renal ischemia reperfusion injury and kidney transplantation. Although the number of publications on miRNAs in different areas of nephrology is increasing every year, only a limited number of reports that address the role of miRNAs in relation to ischemia reperfusion injury or kidney transplantation are available. All reports up to June 2014 on microRNAs in renal IRI, kidney transplantation, and renal allograft status were included. Design of the studies was highly variable and there was limited overlap between microRNAs found in these reports. No single microRNA expression pattern could be found, although multiple microRNAs involved in the immune response seem to be altered after ischemia reperfusion injury and kidney transplantation. Although there is a growing interest in microRNA research in kidney transplantation aiming to identify biomarkers and therapeutical targets, to date, no specific microRNA has been demonstrated to be applicable as either one, mostly because of lack of specificity. More systematical research is needed to determine whether microRNAs can be applied as biomarker, therapeutic target, or therapeutic agent in kidney transplantation.
Collapse
|
44
|
Wang Y, Reis C, Applegate R, Stier G, Martin R, Zhang JH. Ischemic conditioning-induced endogenous brain protection: Applications pre-, per- or post-stroke. Exp Neurol 2015; 272:26-40. [PMID: 25900056 DOI: 10.1016/j.expneurol.2015.04.009] [Citation(s) in RCA: 309] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 04/06/2015] [Accepted: 04/11/2015] [Indexed: 11/17/2022]
Abstract
In the area of brain injury and neurodegenerative diseases, a plethora of experimental and clinical evidence strongly indicates the promise of therapeutically exploiting the endogenous adaptive system at various levels like triggers, mediators and the end-effectors to stimulate and mobilize intrinsic protective capacities against brain injuries. It is believed that ischemic pre-conditioning and post-conditioning are actually the strongest known interventions to stimulate the innate neuroprotective mechanism to prevent or reverse neurodegenerative diseases including stroke and traumatic brain injury. Recently, studies showed the effectiveness of ischemic per-conditioning in some organs. Therefore the term ischemic conditioning, including all interventions applied pre-, per- and post-ischemia, which spans therapeutic windows in 3 time periods, has recently been broadly accepted by scientific communities. In addition, it is extensively acknowledged that ischemia-mediated protection not only affects the neurons but also all the components of the neurovascular network (consisting of neurons, glial cells, vascular endothelial cells, pericytes, smooth muscle cells, and venule/veins). The concept of cerebroprotection has been widely used in place of neuroprotection. Intensive studies on the cellular signaling pathways involved in ischemic conditioning have improved the mechanistic understanding of tolerance to cerebral ischemia. This has added impetus to exploration for potential pharmacologic mimetics, which could possibly induce and maximize inherent protective capacities. However, most of these studies were performed in rodents, and the efficacy of these mimetics remains to be evaluated in human patients. Several classical signaling pathways involving apoptosis, inflammation, or oxidation have been elaborated in the past decades. Newly characterized mechanisms are emerging with the advances in biotechnology and conceptual renewal. In this review we are going to focus on those recently reported methodological and mechanistic discoveries in the realm of ischemic conditioning. Due to the varied time differences of ischemic conditioning in different animal models and clinical trials, it is important to define optimal timing to achieve the best conditioning induced neuroprotection. This brings not only an opportunity in the treatment of stroke, but challenges as well, as data is just becoming available and the procedures are not yet optimized. The purpose of this review is to shed light on exploiting these ischemic conditioning modalities to protect the cerebrovascular system against diverse injuries and neurodegenerative disorders.
Collapse
Affiliation(s)
- Yuechun Wang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, USA; Department of Physiology, Jinan University School of Medicine, Guangzhou, China
| | - Cesar Reis
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Richard Applegate
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Gary Stier
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Robert Martin
- Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, USA; Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, USA; Department of Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, USA.
| |
Collapse
|
45
|
Morland C, Lauritzen KH, Puchades M, Holm-Hansen S, Andersson K, Gjedde A, Attramadal H, Storm-Mathisen J, Bergersen LH. The lactate receptor, G-protein-coupled receptor 81/hydroxycarboxylic acid receptor 1: Expression and action in brain. J Neurosci Res 2015; 93:1045-55. [DOI: 10.1002/jnr.23593] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/21/2015] [Accepted: 03/23/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Cecilie Morland
- The Brain and Muscle Energy Group; Department of Anatomy; Institute of Basic Medical Sciences, University of Oslo; Oslo Norway
- The Brain and Muscle Energy Group; Department of Oral Biology; University of Oslo; Oslo Norway
| | - Knut Husø Lauritzen
- The Brain and Muscle Energy Group; Department of Anatomy; Institute of Basic Medical Sciences, University of Oslo; Oslo Norway
| | - Maja Puchades
- The Brain and Muscle Energy Group; Department of Anatomy; Institute of Basic Medical Sciences, University of Oslo; Oslo Norway
| | - Signe Holm-Hansen
- Department of Neuroscience and Pharmacology; University of Copenhagen; Copenhagen Denmark
| | - Krister Andersson
- The Brain and Muscle Energy Group; Department of Anatomy; Institute of Basic Medical Sciences, University of Oslo; Oslo Norway
| | - Albert Gjedde
- Department of Neuroscience and Pharmacology; University of Copenhagen; Copenhagen Denmark
| | - Håvard Attramadal
- Institute for Surgical Research, Oslo University Hospital; Oslo Norway
- Center for Heart Failure Research, University of Oslo; Oslo Norway
| | - Jon Storm-Mathisen
- The Brain and Muscle Energy Group; Department of Anatomy; Institute of Basic Medical Sciences, University of Oslo; Oslo Norway
| | - Linda Hildegard Bergersen
- The Brain and Muscle Energy Group; Department of Anatomy; Institute of Basic Medical Sciences, University of Oslo; Oslo Norway
- Department of Neuroscience and Pharmacology; University of Copenhagen; Copenhagen Denmark
- Center for Healthy Aging; Faculty of Health Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
46
|
Bonova P, Gottlieb M. Blood as the carrier of ischemic tolerance in rat brain. J Neurosci Res 2015; 93:1250-7. [PMID: 25787695 DOI: 10.1002/jnr.23580] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/20/2015] [Accepted: 02/09/2015] [Indexed: 11/08/2022]
Abstract
This study provides clear evidence that the factor inducing tolerance to ischemia is transmitted via the circulating blood. By using the remote ischemia and the cross-circulation model, the tolerance to ischemia was transmitted from donor to recipient. For this study, the following experimental groups were designed: I, sham control group; II, group of tolerant hindlimb tourniquet-treated rats; III, positive control group; IV, control for cross-circulation influence; preconditioned animals: V, tolerant animals subjected to middle cerebral artery occlusion (MCAO); VI, tolerant animals cross-circulated with SHC, followed by MCAO; VII, SHC animals cross-circulated with tolerant animals and subsequently subjected to MCAO; VIII, tolerant animals cross-circulated with ischemic rats, followed by MCAO; IX, SHC animals cross-circulated with ischemic animals and subjected to MCAO; postconditioned animals: X, ischemic animals treated with a remote limb tourniquet; XI, ischemic animals cross-circulated with SHC control rats; and XII, ischemic animals cross-circulated with tolerant rats. Results confirmed that remote ischemia induced reduction of infarct volume in the preconditioned (V, 60%) as well as in the postconditioned group (X, 52%). Significant diminution was also observed in group XII (56.6%). In the preconditioned group, decreased infarct volume was detected in groups VI and VII (about 65%) and in group IX (about 50%). The greatest infarct reduction (84%) was induced by the presence of ischemic blood in a tolerant rat before ischemia induction. In summary, the factor inducing tolerance to ischemia is generated by remote ischemia and by ischemia itself; from the site of origin to the rest of the body, it is transported by the systemic blood circulation and can be transferred from animal to animal. The effect of conditioning with two different ischemic events (brain and hindlimb ischemia) led to a cumulative, stronger tolerance response.
Collapse
Affiliation(s)
- Petra Bonova
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovak Republic
| | - Miroslav Gottlieb
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovak Republic
| |
Collapse
|
47
|
Berger MM, Köhne H, Hotz L, Hammer M, Schommer K, Bärtsch P, Mairbäurl H. Remote ischemic preconditioning delays the onset of acute mountain sickness in normobaric hypoxia. Physiol Rep 2015; 3:3/3/e12325. [PMID: 25742960 PMCID: PMC4393159 DOI: 10.14814/phy2.12325] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Acute mountain sickness (AMS) is a neurological disorder occurring when ascending too fast, too high. Remote ischemic preconditioning (RIPC) is a noninvasive intervention protecting remote organs from subsequent hypoxic damage. We hypothesized that RIPC protects against AMS and that this effect is related to reduced oxidative stress. Fourteen subjects were exposed to 18 hours of normoxia (21% oxygen) and 18 h of normobaric hypoxia (12% oxygen, equivalent to 4500 m) on different days in a blinded, randomized order. RIPC consisted of four cycles of lower limb ischemia (5 min) and 5 min of reperfusion, and was performed immediately before the study room was entered. A control group was exposed to hypoxia (12% oxygen, n = 14) without RIPC. AMS was evaluated by the Lake Louise score (LLS) and the AMS-C score of the Environmental Symptom Questionnaire. Plasma concentrations of ascorbate radicals, oxidized sulfhydryl (SH) groups, and electron paramagnetic resonance (EPR) signal intensity were measured as biomarkers of oxidative stress. RIPC reduced AMS scores (LLS: 1.9 ± 0.4 vs. 3.2 ± 0.5; AMS-C score: 0.4 ± 0.1 vs. 0.8 ± 0.2), ascorbate radicals (27 ± 7 vs. 65 ± 18 nmol/L), oxidized SH groups (3.9 ± 1.4 vs. 14.3 ± 4.6 μmol/L), and EPR signal intensity (0.6 ± 0.2 vs. 1.5 ± 0.4 × 10(6)) after 5 h in hypoxia (all P < 0.05). After 18 hours in hypoxia there was no difference in AMS and oxidative stress between RIPC and control. AMS and plasma markers of oxidative stress did not correlate. This study demonstrates that RIPC transiently reduces symptoms of AMS and that this effect is not associated with reduced plasma levels of reactive oxygen species.
Collapse
Affiliation(s)
- Marc M Berger
- Department of Anesthesiology, University of Heidelberg, Heidelberg, Germany Department of Anesthesiology, Perioperative and General Critical Care Medicine, Salzburg General Hospital Paracelsus Medical University, Salzburg, Austria
| | - Hannah Köhne
- Department of Anesthesiology, University of Heidelberg, Heidelberg, Germany
| | - Lorenz Hotz
- Department of Anesthesiology, University of Heidelberg, Heidelberg, Germany Department of Anesthesiology, Perioperative and General Critical Care Medicine, Salzburg General Hospital Paracelsus Medical University, Salzburg, Austria
| | - Moritz Hammer
- Department of Internal Medicine VII, Division of Sports Medicine, University of Heidelberg, Heidelberg, Germany
| | - Kai Schommer
- Department of Internal Medicine VII, Division of Sports Medicine, University of Heidelberg, Heidelberg, Germany
| | - Peter Bärtsch
- Department of Internal Medicine VII, Division of Sports Medicine, University of Heidelberg, Heidelberg, Germany
| | - Heimo Mairbäurl
- Department of Internal Medicine VII, Division of Sports Medicine, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
48
|
Gasparovic H, Kopjar T, Rados M, Anticevic A, Rados M, Malojcic B, Ivancan V, Fabijanic T, Cikes M, Milicic D, Gasparovic V, Biocina B. Impact of remote ischemic preconditioning preceding coronary artery bypass grafting on inducing neuroprotection (RIPCAGE): study protocol for a randomized controlled trial. Trials 2014; 15:414. [PMID: 25348157 PMCID: PMC4223850 DOI: 10.1186/1745-6215-15-414] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/15/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Neurological complications after cardiac surgery have a profound impact on postoperative survival and quality of life. The increasing importance of strategies designed to improve neurological outcomes mirrors the growing risk burden of the contemporary cardiac surgical population. Remote ischemic preconditioning (RIPC) reduces adverse sequelae of ischemia in vulnerable organs by subjecting tissues with high ischemic tolerance to brief periods of hypoperfusion. This trial will evaluate the neuroprotective effect of RIPC in the cardiac surgical arena, by employing magnetic resonance imaging (MRI) and neurocognitive testing. METHODS Patients scheduled for elective coronary artery bypass grafting with the use of cardiopulmonary bypass will be screened for the study. Eligible patients will be randomized to undergo either a validated RIPC protocol or a sham procedure. The RIPC will be induced by inflation of a blood pressure cuff to 200 mmHg for 5 minutes, followed by a 5-minute reperfusion period. Three sequences of interchanging cuff inflations and deflations will be employed. Neurocognitive testing and MRI imaging will be performed preoperatively and on postoperative day 7. Paired pre- and postoperative neurocognitive and neuroimaging data will then be compared. The primary composite outcome measure will consist of new ischemic lesions on brain MRI, postprocedural impairment in brain connectivity on resting-state functional MRI (rs-fMRI), and significant new declines in neurocognitive performance. The secondary endpoint measures will be the individual components of the primary endpoint measures, expressed as continuous variables, troponin T release on postoperative day 1 and the incidence of major adverse cardiovascular events at 3 months postoperatively. Major adverse cardiovascular events, including accumulating cardiovascular mortality, stroke, nonfatal myocardial infarction, and rehospitalization for ischemia, will form a composite endpoint measure. DISCUSSION This trial will aim to assess whether RIPC in patients subjected to surgical myocardial revascularization employing cardiopulmonary bypass initiates a neuroprotective response. Should the results of this trial indicate that RIPC is effective in reducing the incidence of adverse neurological events in patients undergoing coronary artery bypass grafting, it could impact on the current standard of care. TRIAL REGISTRATION ClinicalTrials.gov NCT02177981.
Collapse
Affiliation(s)
- Hrvoje Gasparovic
- />Department of Cardiac Surgery, University Hospital Center Zagreb, University of Zagreb, Kispaticeva 12, 10 000 Zagreb, Croatia
| | - Tomislav Kopjar
- />Department of Cardiac Surgery, University Hospital Center Zagreb, University of Zagreb, Kispaticeva 12, 10 000 Zagreb, Croatia
| | - Milan Rados
- />Croatian Institute for Brain Research, School of Medicine University of Zagreb, Zagreb, Croatia
| | - Alan Anticevic
- />Departments of Psychiatry and Psychology, Yale University School of Medicine, New Haven, USA
| | - Marko Rados
- />Department of Radiology, University Hospital Center Zagreb, University of Zagreb, Zagreb, Croatia
| | - Branko Malojcic
- />Department of Neurology, University Hospital Center Zagreb, University of Zagreb, Zagreb, Croatia
| | - Visnja Ivancan
- />Department of Cardiac Surgery, University Hospital Center Zagreb, University of Zagreb, Kispaticeva 12, 10 000 Zagreb, Croatia
| | - Tea Fabijanic
- />Department of Cardiac Surgery, University Hospital Center Zagreb, University of Zagreb, Kispaticeva 12, 10 000 Zagreb, Croatia
| | - Maja Cikes
- />Departments of Cardiology and Internal Medicine, University Hospital Center Zagreb, University of Zagreb, Zagreb, Croatia
| | - Davor Milicic
- />Departments of Cardiology and Internal Medicine, University Hospital Center Zagreb, University of Zagreb, Zagreb, Croatia
| | - Vladimir Gasparovic
- />Departments of Cardiology and Internal Medicine, University Hospital Center Zagreb, University of Zagreb, Zagreb, Croatia
| | - Bojan Biocina
- />Department of Cardiac Surgery, University Hospital Center Zagreb, University of Zagreb, Kispaticeva 12, 10 000 Zagreb, Croatia
| |
Collapse
|
49
|
Agrawal T, Gupta GK, Rai V, Carroll JD, Hamblin MR. Pre-conditioning with low-level laser (light) therapy: light before the storm. Dose Response 2014; 12:619-49. [PMID: 25552961 DOI: 10.2203/dose-response.14-032.agrawal] [Citation(s) in RCA: 273] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Pre-conditioning by ischemia, hyperthermia, hypothermia, hyperbaric oxygen (and numerous other modalities) is a rapidly growing area of investigation that is used in pathological conditions where tissue damage may be expected. The damage caused by surgery, heart attack, or stroke can be mitigated by pre-treating the local or distant tissue with low levels of a stress-inducing stimulus, that can induce a protective response against subsequent major damage. Low-level laser (light) therapy (LLLT) has been used for nearly 50 years to enhance tissue healing and to relieve pain, inflammation and swelling. The photons are absorbed in cytochrome(c) oxidase (unit four in the mitochondrial respiratory chain), and this enzyme activation increases electron transport, respiration, oxygen consumption and ATP production. A complex signaling cascade is initiated leading to activation of transcription factors and up- and down-regulation of numerous genes. Recently it has become apparent that LLLT can also be effective if delivered to normal cells or tissue before the actual insult or trauma, in a pre-conditioning mode. Muscles are protected, nerves feel less pain, and LLLT can protect against a subsequent heart attack. These examples point the way to wider use of LLLT as a pre-conditioning modality to prevent pain and increase healing after surgical/medical procedures and possibly to increase athletic performance.
Collapse
Affiliation(s)
- Tanupriya Agrawal
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114; ; Department of Dermatology, Harvard Medical School, Boston, MA 02115
| | - Gaurav K Gupta
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114; ; Department of Dermatology, Harvard Medical School, Boston, MA 02115; ; Department of Pathology and Laboratory Medicine, Tufts Medical Center, Boston, MA, 02111
| | - Vikrant Rai
- Wilf Family Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461
| | - James D Carroll
- THOR Photomedicine Ltd, 18A East Street, Chesham, HP5 1HQ, UK
| | - Michael R Hamblin
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114; ; Department of Dermatology, Harvard Medical School, Boston, MA 02115; ; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139
| |
Collapse
|
50
|
3-Nitropropionic acid-induced ischemia tolerance in the rat brain is mediated by reduced metabolic activity and cerebral blood flow. J Cereb Blood Flow Metab 2014; 34:1522-30. [PMID: 24938399 PMCID: PMC4158668 DOI: 10.1038/jcbfm.2014.112] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/28/2014] [Accepted: 05/29/2014] [Indexed: 12/26/2022]
Abstract
Tissue tolerance to ischemia can be achieved by noxious stimuli that are below a threshold to cause irreversible damage ('preconditioning'). Understanding the mechanisms underlying preconditioning may lead to the identification of novel therapeutic targets for diseases such as stroke. We here used the oxidative chain inhibitor 3-nitropropionic acid (NPA) to induce ischemia tolerance in a rat middle cerebral artery occlusion (MCAO) stroke model. Cerebral blood flow (CBF) and structural integrity were characterized by longitudinal magnetic resonance imaging (MRI) in combination with behavioral, histologic, and biochemical assessment of NPA-preconditioned animals and controls. Using this approach we show that the ischemia-tolerant state is characterized by a lower energy charge potential and lower CBF, indicating a reduced baseline metabolic demand, and therefore a cellular mechanism of neural protection. Blood vessel density and structural integrity were not altered by NPA treatment. When subjected to MCAO, preconditioned animals had a characteristic MRI signature consisting of enhanced CBF maintenance within the ischemic territory and intraischemic reversal of the initial cytotoxic edema, resulting in reduced infarct volumes. Thus, our data show that tissue protection through preconditioning occurs early during ischemia and indicate that a reduced cellular metabolism is associated with tissue tolerance to ischemia.
Collapse
|