1
|
Migała K, Łupikasza E, Osuch M, Opała-Owczarek M, Owczarek P. Linking drought indices to atmospheric circulation in Svalbard, in the Atlantic sector of the High Arctic. Sci Rep 2024; 14:2160. [PMID: 38272941 PMCID: PMC10810796 DOI: 10.1038/s41598-024-51869-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/10/2024] [Indexed: 01/27/2024] Open
Abstract
Based on long-term climatological data from Ny-Ålesund, Svalbard Airport-Longyearbyen and the Polish Polar Station at Hornsund, we undertook an analysis of drought indices on Spitsbergen Island, Svalbard, for the period 1979-2019. The features and causes of spatiotemporal variability of atmospheric drought in Svalbard were identified, as expressed by the standardized precipitation evapotranspiration index (SPEI). There were several-year periods with SPEI indicating the dominance of drought or wet conditions. The long-term variability in the annual and half-year (May-October) SPEI values showed a prevalence of droughts in the 1980s and the first decade of the twenty-first century, while wet seasons were frequent in the 1990s and in the second decade of the twenty-first century. The seasonal SPEIs were characteristic of interannual variability. In MAM and JJA, droughts were more frequent after 2000; during SON and DJF of the same period, the frequency of wet seasons increased. The most remarkable changes in the scale of the entire research period occurred in autumn when negative values of SPEI occurred more often in the first part of the period, and positive values dominated in the last 20 years. The long-term pattern of the variables in consecutive seasons between 1979 and 2019 indicates relationships between the SPEI and anomalies of precipitable water and somewhat weaker relationships with anomalies of sea level pressure. The three stations are located at distances of more than 200 km from each other in the northern (Ny-Ålesund), central (Longyearbyen) and southern parts of Svalbard (Hornsund), and the most extreme values of drought conditions depended on the atmospheric circulation which could have been modified by local conditions thus droughts developed under various circulation types depending on the station. However, some similarities were identified in the atmospheric circulation patterns favouring drought conditions at Ny-Ålesund and Hornsund, both having more maritime climates than Longyearbyen. Extremely dry seasons were favoured by anticyclonic conditions, particularly a high-pressure ridge (type Ka) centred over Svalbard, air advection from the eastern sector under an influence of cyclone and negative precipitable water anomalies. During wet seasons anomalies of precipitable water were positive and cyclonic conditions dominated. These results were corroborated by the frequency of regional circulation types during JJA and DJF with the lowest and highest values of SPEI.
Collapse
Affiliation(s)
- Krzysztof Migała
- Institute of Geography and Regional Development, University of Wroclaw, Pl. Uniwersytecki 1, 50-138, Wroclaw, Poland.
| | - Ewa Łupikasza
- Institute of Earth Sciences, University of Silesia in Katowice, ul. Będzińska 60, 41-200, Sosnowiec, Poland
| | - Marzena Osuch
- Institute of Geophysics, Polish Academy of Sciences, 64 Księcia Janusza Str., 01-452, Warsaw, Poland
| | - Magdalena Opała-Owczarek
- Institute of Earth Sciences, University of Silesia in Katowice, ul. Będzińska 60, 41-200, Sosnowiec, Poland
| | - Piotr Owczarek
- Institute of Geography and Regional Development, University of Wroclaw, Pl. Uniwersytecki 1, 50-138, Wroclaw, Poland
| |
Collapse
|
2
|
Boyle JS, Angers-Blondin S, Assmann JJ, Myers-Smith IH. Summer temperature—but not growing season length—influences radial growth of Salix arctica in coastal Arctic tundra. Polar Biol 2022. [DOI: 10.1007/s00300-022-03074-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
AbstractArctic climate change is leading to an advance of plant phenology (the timing of life history events) with uncertain impacts on tundra ecosystems. Although the lengthening of the growing season is thought to lead to increased plant growth, we have few studies of how plant phenology change is altering tundra plant productivity. Here, we test the correspondence between 14 years of Salix arctica phenology data and radial growth on Qikiqtaruk–Herschel Island, Yukon Territory, Canada. We analysed stems from 28 individuals using dendroecology and linear mixed-effect models to test the statistical power of growing season length and climate variables to individually predict radial growth. We found that summer temperature best explained annual variation in radial growth. We found no strong evidence that leaf emergence date, earlier leaf senescence date, or total growing season length had any direct or lagged effects on radial growth. Radial growth was also not explained by interannual variation in precipitation, MODIS surface greenness (NDVI), or sea ice concentration. Our results demonstrate that at this site, for the widely distributed species S. arctica, temperature—but not growing season length—influences radial growth. These findings challenge the assumption that advancing phenology and longer growing seasons will increase the productivity of all plant species in Arctic tundra ecosystems.
Collapse
|
3
|
Climatic Signals on Growth Ring Variation in Salix herbacea: Comparing Two Contrasting Sites in Iceland. ATMOSPHERE 2022. [DOI: 10.3390/atmos13050718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Salix herbacea, being such an adaptive species, has never been studied for its climatic response. The main purpose of this study is to examine the dendrochronological potential of S. herbacea. Furthermore, it aims to identify the main environmental factors that are influencing its growth. We selected two sampling sites that are different in terms of morphology and climate. Overall, 40 samples of dwarf willow were collected from two research sites and were analyzed by following the standard dendrochronological methods. The ring width chronology of the dwarf willow from the Afrétt site spans 1953–2017, i.e., 64 years. The correlations between air temperature and the ring width of dwarf willow indicate that this species responds positively to spring and summer temperatures for the Myrdal site. For the Afrétt site, this species responds positively to winter and summer precipitation. These effects may be related to tundra browning, a process that has appeared since the beginning of the 21st century. Our work is the first attempt to create a growth ring chronology of S. herbacea and to investigate its climate sensitivity. Despite the differences in local climate in both sites, this species shows its potentiality and a direct imprint of recent environmental changes in its ring width growth pattern.
Collapse
|
4
|
Abstract
Arctic sea ice extent (SIE) is declining at an accelerating rate with a wide range of ecological consequences. However, determining sea ice effects on tundra vegetation remains a challenge. In this study, we examined the universality or lack thereof in tundra shrub growth responses to changes in SIE and summer climate across the Pan-Arctic, taking advantage of 23 tundra shrub-ring chronologies from 19 widely distributed sites (56°N to 83°N). We show a clear divergence in shrub growth responses to SIE that began in the mid-1990s, with 39% of the chronologies showing declines and 57% showing increases in radial growth (decreasers and increasers, respectively). Structural equation models revealed that declining SIE was associated with rising air temperature and precipitation for increasers and with increasingly dry conditions for decreasers. Decreasers tended to be from areas of the Arctic with lower summer precipitation and their growth decline was related to decreases in the standardized precipitation evapotranspiration index. Our findings suggest that moisture limitation, associated with declining SIE, might inhibit the positive effects of warming on shrub growth over a considerable part of the terrestrial Arctic, thereby complicating predictions of vegetation change and future tundra productivity.
Collapse
|
5
|
Berner LT, Massey R, Jantz P, Forbes BC, Macias-Fauria M, Myers-Smith I, Kumpula T, Gauthier G, Andreu-Hayles L, Gaglioti BV, Burns P, Zetterberg P, D'Arrigo R, Goetz SJ. Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nat Commun 2020; 11:4621. [PMID: 32963240 PMCID: PMC7509805 DOI: 10.1038/s41467-020-18479-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 08/25/2020] [Indexed: 11/16/2022] Open
Abstract
Arctic warming can influence tundra ecosystem function with consequences for climate feedbacks, wildlife and human communities. Yet ecological change across the Arctic tundra biome remains poorly quantified due to field measurement limitations and reliance on coarse-resolution satellite data. Here, we assess decadal changes in Arctic tundra greenness using time series from the 30 m resolution Landsat satellites. From 1985 to 2016 tundra greenness increased (greening) at ~37.3% of sampling sites and decreased (browning) at ~4.7% of sampling sites. Greening occurred most often at warm sampling sites with increased summer air temperature, soil temperature, and soil moisture, while browning occurred most often at cold sampling sites that cooled and dried. Tundra greenness was positively correlated with graminoid, shrub, and ecosystem productivity measured at field sites. Our results support the hypothesis that summer warming stimulated plant productivity across much, but not all, of the Arctic tundra biome during recent decades.
Collapse
Affiliation(s)
- Logan T Berner
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, 86011, USA.
| | - Richard Massey
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Patrick Jantz
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Bruce C Forbes
- Arctic Centre, University of Lapland, 96101, Rovaniemi, Finland
| | - Marc Macias-Fauria
- School of Geography and the Environment, University of Oxford, Oxford, OX1 3QF, UK
| | - Isla Myers-Smith
- School of GeoSciences, University of Edinburgh, Edinburgh, EH9 3FF, UK
| | - Timo Kumpula
- Department of Geographical and Historical Studies, University of Eastern Finland, 80101, Joensuu, Finland
| | - Gilles Gauthier
- Department of Biology and Centre d'études nordiques, Université Laval, Quebec City, QC, G1V0A6, Canada
| | - Laia Andreu-Hayles
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, 10964, USA
| | - Benjamin V Gaglioti
- Water and Environment Research Center, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - Patrick Burns
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Pentti Zetterberg
- Department of Forest Sciences, University of Eastern Finland, 80101, Joensuu, Finland
| | - Rosanne D'Arrigo
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, 10964, USA
| | - Scott J Goetz
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, 86011, USA
| |
Collapse
|
6
|
Le Moullec M, Sandal L, Grøtan V, Buchwal A, Hansen BB. Climate synchronises shrub growth across a high‐arctic archipelago: contrasting implications of summer and winter warming. OIKOS 2020. [DOI: 10.1111/oik.07059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Mathilde Le Moullec
- Centre for Biodiversity Dynamics, Dept of Biology, Norwegian Univ. of Science and Technology Högskoleringen 5 NO‐7491 Trondheim Norway
| | - Lisa Sandal
- Centre for Biodiversity Dynamics, Dept of Biology, Norwegian Univ. of Science and Technology Högskoleringen 5 NO‐7491 Trondheim Norway
| | - Vidar Grøtan
- Centre for Biodiversity Dynamics, Dept of Biology, Norwegian Univ. of Science and Technology Högskoleringen 5 NO‐7491 Trondheim Norway
| | - Agata Buchwal
- Dept of Biological Sciences, Univ. of Alaska Anchorage AK USA
- Inst. of Geoecology and Geoinformation, Adam Mickiewicz Univ. Poznan Wielkopolskie Poland
| | - Brage Bremset Hansen
- Centre for Biodiversity Dynamics, Dept of Biology, Norwegian Univ. of Science and Technology Högskoleringen 5 NO‐7491 Trondheim Norway
| |
Collapse
|
7
|
Post E, Alley RB, Christensen TR, Macias-Fauria M, Forbes BC, Gooseff MN, Iler A, Kerby JT, Laidre KL, Mann ME, Olofsson J, Stroeve JC, Ulmer F, Virginia RA, Wang M. The polar regions in a 2°C warmer world. SCIENCE ADVANCES 2019; 5:eaaw9883. [PMID: 31840060 PMCID: PMC6892626 DOI: 10.1126/sciadv.aaw9883] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 09/26/2019] [Indexed: 05/21/2023]
Abstract
Over the past decade, the Arctic has warmed by 0.75°C, far outpacing the global average, while Antarctic temperatures have remained comparatively stable. As Earth approaches 2°C warming, the Arctic and Antarctic may reach 4°C and 2°C mean annual warming, and 7°C and 3°C winter warming, respectively. Expected consequences of increased Arctic warming include ongoing loss of land and sea ice, threats to wildlife and traditional human livelihoods, increased methane emissions, and extreme weather at lower latitudes. With low biodiversity, Antarctic ecosystems may be vulnerable to state shifts and species invasions. Land ice loss in both regions will contribute substantially to global sea level rise, with up to 3 m rise possible if certain thresholds are crossed. Mitigation efforts can slow or reduce warming, but without them northern high latitude warming may accelerate in the next two to four decades. International cooperation will be crucial to foreseeing and adapting to expected changes.
Collapse
Affiliation(s)
- Eric Post
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, Davis, CA 95616, USA
| | - Richard B. Alley
- Department of Geosciences, and Earth and Environmental Systems Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Torben R. Christensen
- Department of Bioscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Marc Macias-Fauria
- School of Geography and the Environment, University of Oxford, Oxford OX1 3QY, UK
| | - Bruce C. Forbes
- Arctic Centre, University of Lapland, Box 122, FI-96101 Rovaniemi, Finland
| | - Michael N. Gooseff
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO 80303, USA
| | - Amy Iler
- Chicago Botanic Garden, 1000 Lake Cook Road, Glencoe, IL 60022, USA
| | - Jeffrey T. Kerby
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, Davis, CA 95616, USA
- Neukom Institute for Computational Science, Institute of Arctic Studies, and Environmental Studies Program, Dartmouth College, Hanover, NH 03755, USA
| | - Kristin L. Laidre
- Polar Science Center, Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle, WA 98105, USA
| | - Michael E. Mann
- Department of Meteorology and Atmospheric Science and Department of Geosciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Johan Olofsson
- Department of Ecology and Environmental Science, Umeå University, S-901 87 Umeå, Sweden
| | - Julienne C. Stroeve
- University College London, Bloomsbury, London, UK
- National Snow and Ice Data Center, Boulder, CO 80303, USA
| | - Fran Ulmer
- Chair, U.S. Arctic Research Commission, 420 L Street, Suite 315 Anchorage, AK 99501, USA
- Chair, U.S. Artic Research Commission, 4350 N. Fairfax Drive, Suite 510, Arlington, VA 22203, USA
- Belfer Center for Science and International Affairs John F. Kennedy School of Government, Harvard University, Cambridge, MA 02138, USA
| | - Ross A. Virginia
- Institute of Arctic Studies, and Environmental Studies Program, Dartmouth College, Hanover, NH 03755, USA
| | - Muyin Wang
- Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Seattle, WA 98195, USA
- National Oceanic and Atmospheric Administration Pacific Marine Environmental Laboratory, Seattle, WA 98115, USA
| |
Collapse
|
8
|
Assmann JJ, Myers-Smith IH, Phillimore AB, Bjorkman AD, Ennos RE, Prevéy JS, Henry GHR, Schmidt NM, Hollister RD. Local snow melt and temperature-but not regional sea ice-explain variation in spring phenology in coastal Arctic tundra. GLOBAL CHANGE BIOLOGY 2019; 25:2258-2274. [PMID: 30963662 DOI: 10.1111/gcb.14639] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/18/2019] [Accepted: 03/03/2019] [Indexed: 06/09/2023]
Abstract
The Arctic is undergoing dramatic environmental change with rapidly rising surface temperatures, accelerating sea ice decline and changing snow regimes, all of which influence tundra plant phenology. Despite these changes, no globally consistent direction of trends in spring phenology has been reported across the Arctic. While spring has advanced at some sites, spring has delayed or not changed at other sites, highlighting substantial unexplained variation. Here, we test the relative importance of local temperatures, local snow melt date and regional spring drop in sea ice extent as controls of variation in spring phenology across different sites and species. Trends in long-term time series of spring leaf-out and flowering (average span: 18 years) were highly variable for the 14 tundra species monitored at our four study sites on the Arctic coasts of Alaska, Canada and Greenland, ranging from advances of 10.06 days per decade to delays of 1.67 days per decade. Spring temperatures and the day of spring drop in sea ice extent advanced at all sites (average 1°C per decade and 21 days per decade, respectively), but only those sites with advances in snow melt (average 5 days advance per decade) also had advancing phenology. Variation in spring plant phenology was best explained by snow melt date (mean effect: 0.45 days advance in phenology per day advance snow melt) and, to a lesser extent, by mean spring temperature (mean effect: 2.39 days advance in phenology per °C). In contrast to previous studies examining sea ice and phenology at different spatial scales, regional spring drop in sea ice extent did not predict spring phenology for any species or site in our analysis. Our findings highlight that tundra vegetation responses to global change are more complex than a direct response to warming and emphasize the importance of snow melt as a local driver of tundra spring phenology.
Collapse
Affiliation(s)
| | | | | | - Anne D Bjorkman
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany
| | | | - Janet S Prevéy
- Pacific Northwest Research Station, Department of Agriculture - Forest Service, Olympia, Washington
| | | | - Niels M Schmidt
- Arctic Research Centre, Aarhus University, Roskilde, Denmark
| | | |
Collapse
|
9
|
Macias-Fauria M, Post E. Effects of sea ice on Arctic biota: an emerging crisis discipline. Biol Lett 2019; 14:rsbl.2017.0702. [PMID: 29563280 DOI: 10.1098/rsbl.2017.0702] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/22/2018] [Indexed: 11/12/2022] Open
Abstract
The rapid decline in Arctic sea ice (ASI) extent, area and volume during recent decades is occurring before we can understand many of the mechanisms through which ASI interacts with biological processes both at sea and on land. As a consequence, our ability to predict and manage the effects of this enormous environmental change is limited, making this a crisis discipline Here, we propose a framework to study these effects, defining direct effects as those acting on life-history events of Arctic biota, and indirect effects, where ASI acts upon biological systems through chains of events, normally involving other components of the physical system and/or biotic interactions. Given the breadth and complexity of ASI's effects on Arctic biota, Arctic research requires a truly multidisciplinary approach to address this issue. In the absence of effective global efforts to tackle anthropogenic global warming, ASI will likely continue to decrease, compromising the conservation of many ASI-related taxonomic groups and ecosystems. Mitigation actions will rely heavily on the knowledge acquired on the mechanisms and components involved with the biological effects of ASI.
Collapse
Affiliation(s)
- Marc Macias-Fauria
- School of Geography and the Environment, University of Oxford, Oxford OX1 3QY, UK
| | - Eric Post
- Department of Wildlife, Fish and Conservation Biology, University of California, Davis, CA 95616-8571, USA
| |
Collapse
|
10
|
Forchhammer M. Sea-ice induced growth decline in Arctic shrubs. Biol Lett 2017; 13:rsbl.2017.0122. [PMID: 28835469 DOI: 10.1098/rsbl.2017.0122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/12/2017] [Indexed: 11/12/2022] Open
Abstract
Measures of increased tundra plant productivity have been associated with the accelerating retreat of the Arctic sea-ice. Emerging studies document opposite effects, advocating for a more complex relationship between the shrinking sea-ice and terrestrial plant productivity. I introduce an autoregressive plant growth model integrating effects of biological and climatic conditions for analysing individual ring-width growth time series. Using 128 specimens of Salix arctica, S. glauca and Betula nana sampled across Greenland to Svalbard, an overall negative effect of the retreating June sea-ice extent was found on the annual growth. The negative effect of the retreating June sea-ice was observed for younger individuals with large annual growth allocations and with little or no trade-off between previous and current year's growth.
Collapse
Affiliation(s)
- Mads Forchhammer
- Department of Arctic Biology, The University Centre in Svalbard, Longyearbyen, Norway .,Center for Macroecology, Evolution and Climate and Greenland Perspective, Natural History Museum of Denmark, University of Copenhagen, Denmark
| |
Collapse
|