1
|
Ladeira B, Gomes M, Wei K, Custódio C, Mano J. Supramolecular assembly of multi-purpose tissue engineering platforms from human extracellular matrix. Biomaterials 2025; 320:123270. [PMID: 40132356 DOI: 10.1016/j.biomaterials.2025.123270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/07/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025]
Abstract
Recapitulating the biophysical and biochemical complexity of the extracellular matrix (ECM) remains a major challenge in tissue engineering. Hydrogels derived from decellularized ECM provide a unique opportunity to replicate the architecture and bioactivity of native ECM, however, they exhibit limited long-term stability and mechanical integrity. In turn, materials assembled through supramolecular interactions have achieved considerable success in replicating the dynamic biophysical properties of the ECM. Here, we merge both methodologies by promoting the supramolecular assembly of decellularized human amniotic membrane (hAM), mediated by host-guest interactions between hAM proteins and acryloyl-β-cyclodextrin (AcβCD). Photopolymerization of the cyclodextrins results in the formation of soft hydrogels that exhibit tunable stress relaxation and strain-stiffening. Disaggregation of bulk hydrogels yields an injectable granular material that self-reconstitutes into shape-adaptable bulk hydrogels, supporting cell delivery and promoting neovascularization. Additionally, cells encapsulated within bulk hydrogels sense and respond to the biophysical properties of the surrounding matrix, as early cell spreading is favored in hydrogels that exhibit greater susceptibility to applied stress, evidencing proper cell-matrix interplay. Thus, this system is shown to be a promising substitute for native ECM in tissue repair and modelling.
Collapse
Affiliation(s)
- Bruno Ladeira
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Maria Gomes
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Kongchang Wei
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biointerfaces, St. Gallen, Switzerland
| | - Catarina Custódio
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - João Mano
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
2
|
Roshanbinfar K, Evans AD, Samanta S, Kolesnik-Gray M, Fiedler M, Krstic V, Engel FB, Oommen OP. Enhancing biofabrication: Shrink-resistant collagen-hyaluronan composite hydrogel for tissue engineering and 3D bioprinting applications. Biomaterials 2025; 318:123174. [PMID: 39951830 DOI: 10.1016/j.biomaterials.2025.123174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/21/2025] [Accepted: 02/05/2025] [Indexed: 02/16/2025]
Abstract
Biofabrication represents a promising technique for creating tissues for regeneration or as models for drug testing. Collagen-based hydrogels are widely used as suitable matrix owing to their biocompatibility and tunable mechanical properties. However, one major challenge is that the encapsulated cells interact with the collagen matrix causing construct shrinkage. Here, we present a hydrogel with high shape fidelity, mimicking the major components of the extracellular matrix. We engineered a composite hydrogel comprising gallic acid (GA)-functionalized hyaluronic acid (HA), collagen I, and HA-coated multiwall carbon nanotubes (MWCNT). This hydrogel supports cell encapsulation, exhibits shear-thinning properties enhancing injectability and printability, and importantly significantly mitigates shrinkage when loaded with human fibroblasts compared to collagen I hydrogels (∼20 % vs. > 90 %). 3D-bioprinted rings utilizing human fibroblast-loaded inks maintain their shape over 7 days in culture. Furthermore, inclusion of HAGA into collagen I hydrogels increases mechanical stiffness, radical scavenging capability, and tissue adhesiveness. Notably, the here developed hydrogel is also suitable for human induced pluripotent stem cell-derived cardiomyocytes and allows printing of functional heart ventricles responsive to pharmacological treatment. Cardiomyocytes behave similar in the newly developed hydrogels compared to collagen I, based on survival, sarcomere appearance, and calcium handling. Collectively, we developed a novel material to overcome the challenge of post-fabrication matrix shrinkage conferring high shape fidelity.
Collapse
Affiliation(s)
- Kaveh Roshanbinfar
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology and Department of Cardiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Austin Donnelly Evans
- Bioengineering and Nanomedicine Group, Faculty of Medicine and Health Technologies, Tampere University, 33720, Tampere, Finland
| | - Sumanta Samanta
- Bioengineering and Nanomedicine Group, Faculty of Medicine and Health Technologies, Tampere University, 33720, Tampere, Finland
| | - Maria Kolesnik-Gray
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstr. 7, 91058, Erlangen, Germany
| | - Maren Fiedler
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology and Department of Cardiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Vojislav Krstic
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstr. 7, 91058, Erlangen, Germany; Department of Physics, Wake-Forest-University, Winston Salem, NC, 27109, USA
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology and Department of Cardiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany.
| | - Oommen P Oommen
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK.
| |
Collapse
|
3
|
Atturu P, Lee SS, Chang PC, Chiou K, Wang CK. Silanized acrylic graphene oxide nanocomposite reinforced mechanically tunable GelMA/HAMA printable bio-ink for adipose-derived stem cells differentiated mature smooth muscle cells. BIOMATERIALS ADVANCES 2025; 171:214226. [PMID: 39983498 DOI: 10.1016/j.bioadv.2025.214226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/21/2025] [Accepted: 02/05/2025] [Indexed: 02/23/2025]
Abstract
Smooth muscle cells (SMCs) phenotype has successfully conserved in the 3D printable GH-ASG bio-inks composed of silanized acrylic graphene oxide nanosheets as a crosslinker (APStriol@GO) comprising of 3-acryloyloxypropyl silanetriol (APStriol) and graphene oxide (GO) reinforced in the hybrid hydrogel consist of methacrylated gelatin (GelMA) and methacrylated hyaluronic acid (HAMA) to develop a photocurable hybrid novel bio-ink (GelMA/HAMA/APStriol@GO) as a component for rabbit adipose-derived stem cells (rADSCs) differentiated SMCs inducing functionalized material in situ. Hybrid GH-ASG hydrogels were evaluated for various physiochemical parameters and chemical modifications. The GH-ASG4 (GelMA/HAMA/APStriol@GO-1 %) bioink exhibited optimal reactive oxygen species scavenging potential, and hemostasis was shown to enhance the viability of rADSCs. Additionally, the morphology and nucleus count for differentiated SMCs were analyzed employing TRAP staining. Moreover, the contractile SMCs phenotype was determined at the transcript level by implementing quantitative RT-PCR using SMCs-specific gene markers (α-SMA and SM-MHC). The protein level of gene expression was assessed through Immunocytochemistry and western blot analysis using SMC-specific antibodies (α-SMA and SM-MHC). GH-ASG4 bio-ink was used for 3D printed tubular and disk scaffold fabrication through extrusion bioprinting with improved biocompatibility, processibility, and higher cell proliferation throughout scaffolds to mimic the SMCs extracellular matrix, crucial for smooth muscle regeneration.
Collapse
Affiliation(s)
- Pavanchandh Atturu
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Su-Shin Lee
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Surgery, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Po-Chih Chang
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Division of Thoracic Surgery, Department of Surgery, Kaohsiung Medical University Hospital/Kaohsiung Medical University, Kaohsiung 80424, Taiwan
| | - Kevin Chiou
- Department of Materials and Optoelectronic Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Chih-Kuang Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
4
|
Bianchi E, Ruggeri M, Vigani B, Aguzzi C, Rossi S, Sandri G. Synthesis and use of thermoplastic polymers for tissue engineering purposes. Int J Pharm X 2025; 9:100313. [PMID: 39807177 PMCID: PMC11729033 DOI: 10.1016/j.ijpx.2024.100313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/27/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
Thermoplastic polymers provide a versatile platform to mimic various aspects of physiological extracellular matrix properties such as chemical composition, stiffness, and topography for use in cell and tissue engineering applications. In this review, we provide a brief overview of the most promising thermoplastic polymers, and in particular the thermoplastic polyesters, such as poly(lactic acid), poly(glycolic acid), and polycaprolactone, and the thermoplastic elastomers, such as polyurethanes, polyhydroxyalkanoates, and poly(butyl cyanoacrylate). A particular focus has been made on the synthesis processes, the processability and the biocompatibility. We also discuss how these materials can be applied in tissue engineering, mimicking tissues' structure and function, and stimulate mesenchymal stem cells differentiation and mechanotransduction.
Collapse
Affiliation(s)
- Eleonora Bianchi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Marco Ruggeri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Carola Aguzzi
- Department of Pharmacy and Pharmaceutical Technology, University of Granada, Cartuja Campus, Granada 18071, Spain
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
5
|
Vanhoeijen R, Okkelman IA, Rogier N, Sedlačík T, Stöbener DD, Devriendt B, Dmitriev RI, Hoogenboom R. Poly(2-alkyl-2-oxazoline) Hydrogels as Synthetic Matrices for Multicellular Spheroid and Intestinal Organoid Cultures. Biomacromolecules 2025; 26:1860-1872. [PMID: 39898884 DOI: 10.1021/acs.biomac.4c01627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The extracellular matrix (ECM) plays a crucial role in organoid cultures by supporting cell proliferation and differentiation. A key feature of the ECM is its mechanical influence on the surrounding cells, directly affecting their behavior. Matrigel, the most commonly used ECM, is limited by its animal-derived origin, batch variability, and uncontrollable mechanical properties, restricting its use in 3D cell-model-based mechanobiological studies. Poly(2-alkyl-2-oxazoline) (PAOx) synthetic hydrogels represent an appealing alternative because of their reproducibility and versatile chemistry, enabling tuning of hydrogel stiffness and functionalization. Here, we studied PAOx hydrogels with differing compressive moduli for their potential to support 3D cell growth. PAOx hydrogels support spheroid and organoid growth over several days without the addition of ECM components. Furthermore, we discovered intestinal organoid epithelial polarity reversion in PAOx hydrogels and demonstrate how the tunable mechanical properties of PAOx can be used to study effects on the morphology and oxygenation of live multicellular spheroids.
Collapse
Affiliation(s)
- Robin Vanhoeijen
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, Ghent 9000, Belgium
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, Ghent 9000, Belgium
| | - Irina A Okkelman
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, Ghent 9000, Belgium
| | - Nette Rogier
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, Ghent 9000, Belgium
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, Ghent 9000, Belgium
| | - Tomáš Sedlačík
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, Ghent 9000, Belgium
- Hydrogel Lab, Department of Polymers, Faculty of Chemical Technology, University of Chemistry and Technology, Technicka 1903/5, Prague 6 166 28, Czech Republic
| | - Daniel D Stöbener
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, Ghent 9000, Belgium
| | - Bert Devriendt
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke 9820, Belgium
| | - Ruslan I Dmitriev
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, Ghent 9000, Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, Ghent 9000, Belgium
| |
Collapse
|
6
|
Hernández-Hatibi S, Borau C, Martínez-Bosch N, Navarro P, García-Aznar JM, Guerrero PE. Quantitative characterization of the 3D self-organization of PDAC tumor spheroids reveals cell type and matrix dependence through advanced microscopy analysis. APL Bioeng 2025; 9:016116. [PMID: 40161492 PMCID: PMC11952832 DOI: 10.1063/5.0242490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/28/2025] [Indexed: 04/02/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by an abundant tumor-associated stroma composed from pancreatic stellate cells, which play a critical role in tumor progression. Developing accurate in vitro models requires understanding the complex interactions between tumor cells and their microenvironment. In this study, we present a quantitative imaging-based characterization of the three dimensional (3D) self-organization of PDAC tumour spheroids using a microfluidic platform that mimics key aspects of the tumor microenvironment. Our model incorporates collagen type I hydrogels to recreate the extracellular matrix, activated human pancreatic stellate cells (HPSCs), and various tumor cell types. Advanced imaging techniques, including Lattice Lightsheet Microscopy, allowed us to analyze the 3D growth and spatial organization of the spheroids, revealing intricate biomechanical interactions. Our results indicate that alterations in matrix properties-such as stiffness, pore size, and hydraulic permeability-due to variations in collagen concentration significantly influence the growth patterns and organization of PDAC spheroids, depending on tumor subtype and epithelial-mesenchymal phenotype. Higher collagen concentrations promoted larger spheroids in epithelial-like cell lines, while mesenchymal-type cells required increased collagen for self-organization into smaller spheroids. Furthermore, coculture with HPSCs affected spheroid formation distinctly based on each PDAC cell line's genetic and phenotypic traits. HPSCs had opposing effects on epithelial-like cell lines: one cell line exhibited enhanced spheroid growth, while another showed inhibited formation, whereas mesenchymal-like spheroids showed minimal impact. These results provide insights into tumor-stroma interactions, emphasizing the importance of the cell-specific and matrix-dependent factors for advancing our understanding of PDAC progression and informing future therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Neus Martínez-Bosch
- Cancer Research Program, Hospital del Mar Research Institute (HMRI), Unidad Asociada IIBB-CSIC, 08003 Barcelona, Spain
| | | | | | | |
Collapse
|
7
|
Zigan C, Benito Alston C, Chatterjee A, Solorio L, Chan DD. Characterization of Composite Agarose-Collagen Hydrogels for Chondrocyte Culture. Ann Biomed Eng 2025; 53:120-132. [PMID: 39277549 PMCID: PMC11782374 DOI: 10.1007/s10439-024-03613-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/01/2024] [Indexed: 09/17/2024]
Abstract
To elucidate the mechanisms of cellular mechanotransduction, it is necessary to employ biomaterials that effectively merge biofunctionality with appropriate mechanical characteristics. Agarose and collagen separately are common biopolymers used in cartilage mechanobiology and mechanotransduction studies but lack features that make them ideal for functional engineered cartilage. In this study, agarose is blended with collagen type I to create hydrogels with final concentrations of 4% w/v or 2% w/v agarose with 2 mg/mL collagen. We hypothesized that the addition of collagen into a high-concentration agarose hydrogel does not diminish mechanical properties. Acellular and cell-laden studies were completed to assess rheologic and compressive properties, contraction, and structural homogeneity in addition to cell proliferation and sulfated glycosaminoglycan production. Over 21 days in culture, cellular 4% agarose-2 mg/mL collagen I hydrogels seeded with primary murine chondrocytes displayed structural and bulk mechanical behaviors that did not significantly alter from 4% agarose-only hydrogels, cell proliferation, and continual glycosaminoglycan production, indicating promise toward the development of an effective hydrogel for chondrocyte mechanotransduction and mechanobiology studies.
Collapse
Affiliation(s)
- Clarisse Zigan
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | | | - Aritra Chatterjee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- Department of Mechanical Engineering, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad, Telangana, India
| | - Luis Solorio
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Deva D Chan
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
8
|
Du C, Liu J, Liu S, Xiao P, Chen Z, Chen H, Huang W, Lei Y. Bone and Joint-on-Chip Platforms: Construction Strategies and Applications. SMALL METHODS 2024; 8:e2400436. [PMID: 38763918 DOI: 10.1002/smtd.202400436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/28/2024] [Indexed: 05/21/2024]
Abstract
Organ-on-a-chip, also known as "tissue chip," is an advanced platform based on microfluidic systems for constructing miniature organ models in vitro. They can replicate the complex physiological and pathological responses of human organs. In recent years, the development of bone and joint-on-chip platforms aims to simulate the complex physiological and pathological processes occurring in human bones and joints, including cell-cell interactions, the interplay of various biochemical factors, the effects of mechanical stimuli, and the intricate connections between multiple organs. In the future, bone and joint-on-chip platforms will integrate the advantages of multiple disciplines, bringing more possibilities for exploring disease mechanisms, drug screening, and personalized medicine. This review explores the construction and application of Organ-on-a-chip technology in bone and joint disease research, proposes a modular construction concept, and discusses the new opportunities and future challenges in the construction and application of bone and joint-on-chip platforms.
Collapse
Affiliation(s)
- Chengcheng Du
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jiacheng Liu
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Senrui Liu
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Pengcheng Xiao
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhuolin Chen
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hong Chen
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wei Huang
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yiting Lei
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
9
|
Harris CG, Semprini L, Rochefort WE, Fogg KC. Statistical optimization of cell-hydrogel interactions for green microbiology - a tutorial review. RSC SUSTAINABILITY 2024; 2:3750-3768. [PMID: 39464839 PMCID: PMC11499971 DOI: 10.1039/d4su00400k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024]
Abstract
In this tutorial mini-review, we explore the application of Design of Experiments (DOE) as a powerful statistical tool in biotechnology. Specifically, we review the optimization of hydrogel materials for diverse microbial applications related to green microbiology, the use of microbes to promote sustainability. Hydrogels, three-dimensional polymers networks with high water retention capabilities, are pivotal in the immobilization of microorganisms and provide a customizable environment essential for directing microbial fate. We focus on the application of DOE to precisely tailor hydrogel compositions for a range of fungi and bacteria either used for the sustainable production of chemical compounds, or the elimination of hazardous substances. We examine a variety of DOE design strategies such as central composite designs, Box-Behnken designs, and optimal designs, and discuss their strategic implementation across diverse hydrogel formulations. Our analysis explores the integral role of DOE in refining hydrogels derived from a spectrum of polymers, including natural and synthetic polymers. We illustrate how DOE facilitates nuanced control over hydrogel properties that cannot be achieved using a standard one factor at a time approach. Furthermore, this review reveals a conserved finding across different materials and applications: there are significant interactions between hydrogel parameters and cell behavior. This highlights the intricacies of cell-hydrogel interactions and the impact on hydrogel material properties and cellular functions. Lastly, this review not only highlights DOE's efficacy in streamlining the optimization of cell-hydrogel processes but also positions it as a critical tool in advancing our understanding of cell-hydrogel dynamics, potentially leading to innovative advancements in biotechnological applications and bioengineering solutions.
Collapse
Affiliation(s)
- Conor G Harris
- School of Chemical, Biological, and Environmental Engineering, Oregon State University Corvallis OR 97331 USA +1 541-737-1777
| | - Lewis Semprini
- School of Chemical, Biological, and Environmental Engineering, Oregon State University Corvallis OR 97331 USA +1 541-737-1777
| | - Willie E Rochefort
- School of Chemical, Biological, and Environmental Engineering, Oregon State University Corvallis OR 97331 USA +1 541-737-1777
| | - Kaitlin C Fogg
- School of Chemical, Biological, and Environmental Engineering, Oregon State University Corvallis OR 97331 USA +1 541-737-1777
| |
Collapse
|
10
|
Pragnere S, Courtial EJ, Dubreuil F, Errazuriz-Cerda E, Marquette C, Petiot E, Pailler-Mattei C. Tuning viscoelasticity and stiffness in bioprinted hydrogels for enhanced 3D cell culture: A multi-scale mechanical analysis. J Mech Behav Biomed Mater 2024; 159:106696. [PMID: 39205347 DOI: 10.1016/j.jmbbm.2024.106696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/26/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Bioprinted hydrogels are extensively studied to provide an artificial matrix for 3D cell culture. The success of bioprinting hydrogels relies on fine-tuning their rheology and composition to achieve shear-thinning behavior. However, a challenge arises from the limited viscoelastic and stiffness range accessible from a single hydrogel formulation. Nevertheless, hydrogel mechanical properties are recognized as essential cues influencing cell phenotype, migration, and differentiation. Thus, it is crucial to develop a system to easily modulate bioprinted hydrogels' mechanical behaviors. In this work, we modulated the viscoelastic properties and stiffness of bioprinted hydrogels composed of fibrinogen, alginate, and gelatin by tuning the crosslinking bath solution. Various concentrations of calcium ionically crosslinked alginate, while transglutaminase crosslinked gelatin. Subsequently, we characterized the mechanical behavior of our bioprinted hydrogels from the nanoscale to the macroscale. This approach enabled the production of diverse bioprinted constructs, either with similar elastic behavior but different elastic moduli or with similar elastic moduli but different viscoelastic behavior from the same hydrogel formulation. Culturing fibroblasts in the hydrogels for 33 days revealed a preference for cell growth and matrix secretion in the viscoelastic hydrogels. This work demonstrates the suitability of the method to decouple the effects of material mechanical from biochemical composition cues on 3D cultured cells.
Collapse
Affiliation(s)
- Sarah Pragnere
- Laboratory of Tribology and System Dynamics UMR-CNRS 5513, Ecole Centrale de, Lyon, France; Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600, MB, Eindhoven, the Netherlands
| | - Edwin-Joffrey Courtial
- 3d.FAB, Univ Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 43, Bd Du 11, Villeurbanne cedex, France
| | - Frédéric Dubreuil
- Laboratory of Tribology and System Dynamics UMR-CNRS 5513, Ecole Centrale de, Lyon, France
| | | | - Christophe Marquette
- 3d.FAB, Univ Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 43, Bd Du 11, Villeurbanne cedex, France
| | - Emma Petiot
- 3d.FAB, Univ Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 43, Bd Du 11, Villeurbanne cedex, France
| | - Cyril Pailler-Mattei
- Laboratory of Tribology and System Dynamics UMR-CNRS 5513, Ecole Centrale de, Lyon, France; University of Lyon, Université Claude Bernard Lyon 1, ISPB-Faculté de Pharmacie de, Lyon, France.
| |
Collapse
|
11
|
Hen N, Josef E, Davidovich-Pinhas M, Levenberg S, Bianco-Peled H. On the Relation between the Viscoelastic Properties of Granular Hydrogels and Their Performance as Support Materials in Embedded Bioprinting. ACS Biomater Sci Eng 2024; 10:6734-6750. [PMID: 39344029 DOI: 10.1021/acsbiomaterials.4c01136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Granular hydrogels, formed by jamming microgels suspension, are promising materials for three-dimensional bioprinting applications. Despite their extensive use as support materials for embedded bioprinting, the influence of the particle's physical properties on the macroscale viscoelasticity on one hand and on the printing performance on the other hand remains unclear. Herein, we investigate the linear and nonlinear rheology of κ-carrageenan granular hydrogel through small- and large-amplitude oscillatory shear measurements. We tuned the granular hydrogel's properties by changing the stiffness (soft, medium, stiff) and the packing density of the individual microgels. Characterizations in the linear viscoelasticity regime revealed that the storage modulus of granular hydrogels is not a simple function of microgel stiffness and depends on the microgel packing density. At larger strains, increasing the microgel stiffness reduced the energy dissipation of the granular beds and increased the solid-fluid transition point. To understand how the different rheological properties of granular support materials influence embedded bioprinting, we examined the printing fidelity and cellular filament shrinkage within the granular beds. We found that microgels with low packing density diminished the printing quality, while stiff microgels promoted filament roughness. In addition, we found that highly packed stiff microgels significantly reduced the postprinting contraction of cellular filaments. Overall, this work provides a comprehensive knowledge of the rheology of granular hydrogels that can be used to rationally design support beds for bioprinting applications with specific characteristics.
Collapse
Affiliation(s)
- Noy Hen
- Department of Chemical Engineering, Technion─Israel Institute of Technology, Haifa 32000, Israel
- The Norman Seiden Multidisciplinary Program for Nanoscience and Nanotechnology, Technion─Israel Institute of Technology, Haifa 32000, Israel
| | - Elinor Josef
- Technion─Israel Institute of Technology, Atlit, 12th Nahal Galim, 3033980, Israel
| | - Maya Davidovich-Pinhas
- Department of Biotechnology and Food Engineering, Technion─Israel Institute of Technology, Haifa 32000, Israel
| | - Shulamit Levenberg
- Department of Biomedical Engineering, Technion─Israel Institute of Technology, Haifa 32000, Israel
| | - Havazelet Bianco-Peled
- Department of Chemical Engineering, Technion─Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
12
|
Widener AE, Roberts A, Phelps EA. Granular Hydrogels for Harnessing the Immune Response. Adv Healthc Mater 2024; 13:e2303005. [PMID: 38145369 PMCID: PMC11196388 DOI: 10.1002/adhm.202303005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/13/2023] [Indexed: 12/26/2023]
Abstract
This review aims to understand the current progress in immune-instructive granular hydrogels and identify the key features used as immunomodulatory strategies. Published work is systematically reviewed and relevant information about granular hydrogels used throughout these studies is collected. The base polymer, microgel generation technique, polymer crosslinking chemistry, particle size and shape, annealing strategy, granular hydrogel stiffness, pore size and void space, degradability, biomolecule presentation, and drug release are cataloged for each work. Several granular hydrogel parameters used for immune modulation: porosity, architecture, bioactivity, drug release, cell delivery, and modularity, are identified. The authors found in this review that porosity is the most significant factor influencing the innate immune response to granular hydrogels, while incorporated bioactivity is more significant in influencing adaptive immune responses. Here, the authors' findings and summarized results from each section are presented and suggestions are made for future studies to better understand the benefits of using immune-instructive granular hydrogels.
Collapse
Affiliation(s)
- Adrienne E Widener
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr., Gainesville, 32611, USA
| | - Abilene Roberts
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr., Gainesville, 32611, USA
| | - Edward A Phelps
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr., Gainesville, 32611, USA
| |
Collapse
|
13
|
Brunel LG, Christakopoulos F, Kilian D, Cai B, Hull SM, Myung D, Heilshorn SC. Embedded 3D Bioprinting of Collagen Inks into Microgel Baths to Control Hydrogel Microstructure and Cell Spreading. Adv Healthc Mater 2024; 13:e2303325. [PMID: 38134346 PMCID: PMC11192865 DOI: 10.1002/adhm.202303325] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/14/2023] [Indexed: 12/24/2023]
Abstract
Microextrusion-based 3D bioprinting into support baths has emerged as a promising technique to pattern soft biomaterials into complex, macroscopic structures. It is hypothesized that interactions between inks and support baths, which are often composed of granular microgels, can be modulated to control the microscopic structure within these macroscopic-printed constructs. Using printed collagen bioinks crosslinked either through physical self-assembly or bioorthogonal covalent chemistry, it is demonstrated that microscopic porosity is introduced into collagen inks printed into microgel support baths but not bulk gel support baths. The overall porosity is governed by the ratio between the ink's shear viscosity and the microgel support bath's zero-shear viscosity. By adjusting the flow rate during extrusion, the ink's shear viscosity is modulated, thus controlling the extent of microscopic porosity independent of the ink composition. For covalently crosslinked collagen, printing into support baths comprised of gelatin microgels (15-50 µm) results in large pores (≈40 µm) that allow human corneal mesenchymal stromal cells (MSCs) to readily spread, while control samples of cast collagen or collagen printed in non-granular support baths do not allow cell spreading. Taken together, these data demonstrate a new method to impart controlled microscale porosity into 3D printed hydrogels using granular microgel support baths.
Collapse
Affiliation(s)
- Lucia G. Brunel
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Fotis Christakopoulos
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - David Kilian
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Betty Cai
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Sarah M. Hull
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - David Myung
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Sarah C. Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
14
|
Chen T, Wen Y, Song X, Zhang Z, Zhu J, Tian X, Zeng S, Li J. Rationally designed β-cyclodextrin-crosslinked polyacrylamide hydrogels for cell spheroid formation and 3D tumor model construction. Carbohydr Polym 2024; 339:122253. [PMID: 38823920 DOI: 10.1016/j.carbpol.2024.122253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 06/03/2024]
Abstract
In vitro tumor models are essential for understanding tumor behavior and evaluating tumor biological properties. Hydrogels that can mimic the tumor extracellular matrix have become popular for creating 3D in vitro tumor models. However, designing biocompatible hydrogels with appropriate chemical and physical properties for constructing tumor models is still a challenge. In this study, we synthesized a series of β-cyclodextrin (β-CD)-crosslinked polyacrylamide hydrogels with different β-CD densities and mechanical properties and evaluated their potential for use in 3D in vitro tumor model construction, including cell capture and spheroid formation. By utilizing a combination of β-CD-methacrylate (CD-MA) and a small amount of N,N'-methylene bisacrylamide (BIS) as hydrogel crosslinkers and optimizing the CD-MA/BIS ratio, the hydrogels performed excellently for tumor cell 3D culture and spheroid formation. Notably, when we co-cultured L929 fibroblasts with HeLa tumor cells on the hydrogel surface, co-cultured spheroids were formed, showing that the hydrogel can mimic the complexity of the tumor extracellular matrix. This comprehensive investigation of the relationship between hydrogel mechanical properties and biocompatibility provides important insights for hydrogel-based in vitro tumor modeling and advances our understanding of the mechanisms underlying tumor growth and progression.
Collapse
Affiliation(s)
- Taili Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China; Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Yuting Wen
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215000, China; National University of Singapore (Chongqing) Research Institute, Yubei District, Chongqing 401120, China.
| | - Xia Song
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Zhongxing Zhang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Jingling Zhu
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore; NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Xuehao Tian
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China.
| | - Jun Li
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, Singapore 119276, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215000, China; National University of Singapore (Chongqing) Research Institute, Yubei District, Chongqing 401120, China; NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore.
| |
Collapse
|
15
|
Younus ZM, Ahmed I, Roach P, Forsyth NR. A phosphate glass reinforced composite acrylamide gradient scaffold for osteochondral interface regeneration. BIOMATERIALS AND BIOSYSTEMS 2024; 15:100099. [PMID: 39221155 PMCID: PMC11364006 DOI: 10.1016/j.bbiosy.2024.100099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/12/2024] [Accepted: 07/20/2024] [Indexed: 09/04/2024] Open
Abstract
The bone-cartilage interface is defined by a unique arrangement of cells and tissue matrix. Injury to the interface can contribute to the development of arthritic joint disease. Attempts to repair osteochondral damage through clinical trials have generated mixed outcomes. Tissue engineering offers the potential of integrated scaffold design with multiregional architecture to assist in tissue regeneration, such as the bone-cartilage interface. Challenges remain in joining distinct materials in a single scaffold mass while maintaining integrity and avoiding delamination. The aim of the current work is to examine the possibility of joining two closely related acrylamide derivatives such as, poly n-isopropyl acrylamide (pNIPAM) and poly n‑tert‑butyl acrylamide (pNTBAM). The target is to produce a single scaffold unit with distinct architectural regions in the favour of regenerating the osteochondral interface. Longitudinal phosphate glass fibres (PGFs) with the formula 50P2O5.30CaO.20Na2O were incorporated to provide additional bioactivity by degradation to release ions such as calcium and phosphate which are considered valuable to assist the mineralization process. Polymers were prepared via atom transfer radical polymerization (ATRP) and solutions cast to ensure the integration of polymers chains. Scaffold was characterized using scanning electron microscope (SEM) and Fourier transform infra-red (FTIR) techniques. The PGF mass degradation pattern was inspected using micro computed tomography (µCT). Biological assessment of primary human osteoblasts (hOBs) and primary human chondrocytes (hCHs) upon scaffolds was performed using alizarin red and colorimetric calcium assay for mineralization assessment; alcian blue staining and dimethyl-methylene blue (DMMB) assay for glycosaminoglycans (GAGs); immunostaining and enzyme-linked immunosorbent assay (ELISA) to detect functional proteins expression by cells such as collagen I, II, and annexin A2. FTIR analysis revealed an intact unit with gradual transformation from pNIPAM to pNTBAM. SEM images showed three distinct architectural regions with mean pore diameter of 54.5 µm (pNIPAM), 16.5 µm (pNTBAM) and 118 µm at the mixed interface. Osteogenic and mineralization potential by cells was observed upon the entire scaffold's regions. Chondrogenic activity was relevant on the pNTBAM side of the scaffold only with minimal evidence in the pNIPAM region. PGFs increased mineralization potential of both hOBs and hCHs, evidenced by elevated collagens I, X, and annexin A2 with reduction of collagen II in PGFs scaffolds. In conclusion, pNIPAM and pNTBAM integration created a multiregional scaffold with distinct architectural regions. Differential chondrogenic, osteogenic, and mineralized cell performance, in addition to the impact of PGF, suggests a potential role for phosphate glass-incorporated, acrylamide-derivative scaffolds in osteochondral interface regeneration.
Collapse
Affiliation(s)
- Zaid M. Younus
- School of Pharmacy and Bioengineering, Keele University, Keele, UK
- College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Ifty Ahmed
- Faculty of Engineering, Advanced Materials Research Group, University of Nottingham, Nottingham, UK
| | - Paul Roach
- Department of Chemistry, School of Science, Loughborough University, Leicestershire, UK
| | - Nicholas R. Forsyth
- School of Pharmacy and Bioengineering, Keele University, Keele, UK
- Vice principals’ office, King's College, University of Aberdeen, Aberdeen, AB24 3FX, UK
| |
Collapse
|
16
|
Moreno Valtierra M, Urue Corral A, Jiménez-Avalos JA, Barbosa Avalos E, Dávila-Rodríguez J, Morales Hernández N, Comas-García M, Toriz González G, Oceguera-Villanueva A, Cruz-Ramos JA, Hernández Gutiérrez R, Martínez Velázquez M, García Carvajal ZY. Patterned PVA Hydrogels with 3D Petri Dish ® Micro-Molds of Varying Topography for Spheroid Formation of HeLa Cancer Cells: In Vitro Assessment. Gels 2024; 10:518. [PMID: 39195047 DOI: 10.3390/gels10080518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024] Open
Abstract
Cell spheroids are an important three-dimensional (3D) model for in vitro testing and are gaining interest for their use in clinical applications. More natural 3D cell culture environments that support cell-cell interactions have been created for cancer drug discovery and therapy applications, such as the scaffold-free 3D Petri Dish® technology. This technology uses reusable and autoclavable silicone micro-molds with different topographies, and it conventionally uses gelled agarose for hydrogel formation to preserve the topography of the selected micro-mold. The present study investigated the feasibility of using a patterned Poly(vinyl alcohol) hydrogel using the circular topography 12-81 (9 × 9 wells) micro-mold to form HeLa cancer cell spheroids and compare them with the formed spheroids using agarose hydrogels. PVA hydrogels showed a slightly softer, springier, and stickier texture than agarose hydrogels. After preparation, Fourier transform infrared (FTIR) spectra showed chemical interactions through hydrogen bonding in the PVA and agarose hydrogels. Both types of hydrogels favor the formation of large HeLa spheroids with an average diameter of around 700-800 µm after 72 h. However, the PVA spheroids are more compact than those from agarose, suggesting a potential influence of micro-mold surface chemistry on cell behavior and spheroid formation. This was additionally confirmed by evaluating the spheroid size, morphology, integrity, as well as E-cadherin and Ki67 expression. The results suggest that PVA promotes stronger cell-to-cell interactions in the spheroids. Even the integrity of PVA spheroids was maintained after exposure to the drug cisplatin. In conclusion, the patterned PVA hydrogels were successfully prepared using the 3D Petri Dish® micro-molds, and they could be used as suitable platforms for studying cell-cell interactions in cancer drug therapy.
Collapse
Affiliation(s)
- Maira Moreno Valtierra
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Av. Normalistas # 800, Col. Colinas de la Normal, Guadalajara 44270, Mexico
| | - Adriana Urue Corral
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Av. Normalistas # 800, Col. Colinas de la Normal, Guadalajara 44270, Mexico
| | - Jorge Armando Jiménez-Avalos
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Av. Normalistas # 800, Col. Colinas de la Normal, Guadalajara 44270, Mexico
- Centro de Investigación y Desarrollo Oncológico, S.A. de C.V. (CIDO), Av. Palmira # 600-A, Col. Villas del Pedregal, San Luis Potosí 78218, Mexico
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Parque Chapultepec # 1570, San Luis Potosí 78210, Mexico
| | - Erika Barbosa Avalos
- Laboratorio de Anatomía Patológica, Hospital Civil Viejo Fray Antonio Alcalde, Coronel Calderón #777, El Retiro, Guadalajara 44280, Mexico
| | - Judith Dávila-Rodríguez
- Laboratorio de Anatomía Patológica, Hospital Civil Viejo Fray Antonio Alcalde, Coronel Calderón #777, El Retiro, Guadalajara 44280, Mexico
| | - Norma Morales Hernández
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Camino Arenero # 1227, Col. El Bajío del Arenal, Zapopan 45019, Mexico
| | - Mauricio Comas-García
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, Av. Parque Chapultepec # 1570, San Luis Potosí 78210, Mexico
- Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Sierra Leona # 550 Lomas de San Luis, San Luis Potosí 78210, Mexico
| | - Guillermo Toriz González
- Departamento de Madera, Celulosa y Papel, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Carretera Guadalajara-Nogales km 15.5, Zapopan 45220, Mexico
| | - Antonio Oceguera-Villanueva
- Instituto Jalisciense de Cancerología, Secretaría de Salud Jalisco, 715 Coronel Calderón St., El Retiro, Guadalajara 44280, Mexico
| | - José Alfonso Cruz-Ramos
- Instituto Jalisciense de Cancerología, Secretaría de Salud Jalisco, 715 Coronel Calderón St., El Retiro, Guadalajara 44280, Mexico
| | - Rodolfo Hernández Gutiérrez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Av. Normalistas # 800, Col. Colinas de la Normal, Guadalajara 44270, Mexico
| | - Moisés Martínez Velázquez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Av. Normalistas # 800, Col. Colinas de la Normal, Guadalajara 44270, Mexico
| | - Zaira Yunuen García Carvajal
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Av. Normalistas # 800, Col. Colinas de la Normal, Guadalajara 44270, Mexico
| |
Collapse
|
17
|
Kripamol R, Velayudhan S, Anil Kumar PR. Evaluation of allylated gelatin as a bioink supporting spontaneous spheroid formation of HepG2 cells. Int J Biol Macromol 2024; 274:133259. [PMID: 38908647 DOI: 10.1016/j.ijbiomac.2024.133259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/23/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
The spheroid culture system has gained significant attention as an effective in vitro model to mimic the in vivo microenvironment. Even though numerous studies were focused on developing spheroids, the structural organization of encapsulated cells within hydrogels remains a challenge. Allylated gelatin or GelAGE is used as a bioink due to its excellent physicochemical properties. In this study, GelAGE was evaluated for its capacity to induce spontaneous spheroid formation in encapsulated HepG2 cells. GelAGE was synthesized and characterized using 1HNMR spectroscopy and ninhydrin assay. Then the physicochemical and biological attributes of GelAGE hydrogel was examined. The results demonstrate that GelAGE has remarkable ability to induce the encapsulated cells to self-organize into spheroids.
Collapse
Affiliation(s)
- R Kripamol
- Division of Tissue Culture, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Shiny Velayudhan
- Division of Dental Products, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - P R Anil Kumar
- Division of Tissue Culture, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
18
|
Guo Y, Stampoultzis T, Karami P, Nasrollahzadeh N, Rana VK, Pioletti DP. HSP70-A key regulator in chondrocyte homeostasis under naturally coupled hydrostatic pressure-thermal stimuli. Osteoarthritis Cartilage 2024; 32:896-908. [PMID: 38679285 DOI: 10.1016/j.joca.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/15/2024] [Accepted: 04/21/2024] [Indexed: 05/01/2024]
Abstract
OBJECTIVE During physical activities, chondrocytes experience coupled stimulation of hydrostatic pressure (HP) and a transient increase in temperature (T), with the latter varying within a physiological range from 32.5 °C to 38.7 °C. Previous short-term in vitro studies have demonstrated that the combined hydrostatic pressure-thermal (HP-T) stimuli more significantly enhance chondroinduction and chondroprotection of chondrocytes than isolated applications. Interestingly, this combined benefit is associated with a corresponding increase in HSP70 levels when HP and T are combined. The current study therefore explored the indispensable role of HSP70 in mediating the combined effects of HP-T stimuli on chondrocytes. DESIGN In this mid-long-term study of in vitro engineered cartilage constructs, we assessed chondrocyte responses to HP-T stimuli using customized bioreactor in standard and HSP70-inhibited cultures. RESULTS Surprisingly, under HSP70-inhibited conditions, the usually beneficial HP-T stimuli, especially its thermal component, exerted detrimental effects on chondrocyte homeostasis, showing a distinct and unfavorable shift in gene and protein expression patterns compared to non-HSP70-inhibited settings. Such effects were corroborated through mechanical testing and confirmed using a secondary cell source. A proteomic-based mechanistic analysis revealed a disruption in the balance between biosynthesis and fundamental cellular structural components in HSP70-inhibited conditions under HP-T stimuli. CONCLUSIONS Our results highlight the critical role of sufficient HSP70 induction in mediating the beneficial effects of coupled HP-T stimulation on chondrocytes. These findings help pave the way for new therapeutic approaches to enhance physiotherapy outcomes and potentially shed light on the elusive mechanisms underlying the onset of cartilage degeneration, a long-standing enigma in orthopedics.
Collapse
Affiliation(s)
- Yanheng Guo
- Laboratory of Biomechanical Orthopedics, Institute of Bioengineering, EPFL, Switzerland
| | | | - Peyman Karami
- Laboratory of Biomechanical Orthopedics, Institute of Bioengineering, EPFL, Switzerland
| | - Naser Nasrollahzadeh
- Laboratory of Biomechanical Orthopedics, Institute of Bioengineering, EPFL, Switzerland
| | - Vijay K Rana
- Laboratory of Biomechanical Orthopedics, Institute of Bioengineering, EPFL, Switzerland
| | - Dominique P Pioletti
- Laboratory of Biomechanical Orthopedics, Institute of Bioengineering, EPFL, Switzerland.
| |
Collapse
|
19
|
Ferjaoui Z, López-Muñoz R, Akbari S, Chandad F, Mantovani D, Rouabhia M, D. Fanganiello R. Design of Alginate/Gelatin Hydrogels for Biomedical Applications: Fine-Tuning Osteogenesis in Dental Pulp Stem Cells While Preserving Other Cell Behaviors. Biomedicines 2024; 12:1510. [PMID: 39062083 PMCID: PMC11274465 DOI: 10.3390/biomedicines12071510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Alginate/gelatin (Alg-Gel) hydrogels have been used experimentally, associated with mesenchymal stromal/stem cells (MSCs), to guide bone tissue formation. One of the main challenges for clinical application is optimizing Alg-Gel stiffness to guide osteogenesis. In this study, we investigated how Alg-Gel stiffness could modulate the dental pulp stem cell (DPSC) attachment, morphology, proliferation, and osteogenic differentiation, identifying the optimal conditions to uncouple osteogenesis from the other cell behaviors. An array of Alg-Gel hydrogels was prepared by casting different percentages of alginate and gelatin cross-linked with 2% CaCl2. We have selected two hydrogels: one with a stiffness of 11 ± 1 kPa, referred to as "low-stiffness hydrogel", formed by 2% alginate and 8% gelatin, and the other with a stiffness of 55 ± 3 kPa, referred to as "high-stiffness hydrogel", formed by 8% alginate and 12% gelatin. Hydrogel analyses showed that the average swelling rates were 20 ± 3% for the low-stiffness hydrogels and 35 ± 2% for the high-stiffness hydrogels. The degradation percentage was 47 ± 5% and 18 ± 2% for the low- and high-stiffness hydrogels, respectively. Both hydrogel types showed homogeneous surface shape and protein (Alg-Gel) interaction with CaCl2 as assessed by physicochemical characterization. Cell culture showed good adhesion of the DPSCs to the hydrogels and proliferation. Furthermore, better osteogenic activity, determined by ALP activity and ARS staining, was obtained with high-stiffness hydrogels (8% alginate and 12% gelatin). In summary, this study confirms the possibility of characterizing and optimizing the stiffness of Alg-Gel gel to guide osteogenesis in vitro without altering the other cellular properties of DPSCs.
Collapse
Affiliation(s)
- Zied Ferjaoui
- Oral Ecology Research Group (GREB), Faculté de Médecine Dentaire, Université Laval, Québec City, QC G1V 0A6, Canada; (F.C.); (M.R.); (R.D.F.)
| | - Roberto López-Muñoz
- Laboratory for Biomaterials and Bioengineering, (CRC-Tier I), Department of Min-Met-Materials Eng and Regenerative Medicine, CHU de Quebec, Laval University, Quebec City, QC G1V 0A6, Canada; (R.L.-M.); (D.M.)
| | - Soheil Akbari
- Département de Génie Chimique, Université Laval, Québec City, QC G1V 0A6, Canada;
| | - Fatiha Chandad
- Oral Ecology Research Group (GREB), Faculté de Médecine Dentaire, Université Laval, Québec City, QC G1V 0A6, Canada; (F.C.); (M.R.); (R.D.F.)
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, (CRC-Tier I), Department of Min-Met-Materials Eng and Regenerative Medicine, CHU de Quebec, Laval University, Quebec City, QC G1V 0A6, Canada; (R.L.-M.); (D.M.)
| | - Mahmoud Rouabhia
- Oral Ecology Research Group (GREB), Faculté de Médecine Dentaire, Université Laval, Québec City, QC G1V 0A6, Canada; (F.C.); (M.R.); (R.D.F.)
| | - Roberto D. Fanganiello
- Oral Ecology Research Group (GREB), Faculté de Médecine Dentaire, Université Laval, Québec City, QC G1V 0A6, Canada; (F.C.); (M.R.); (R.D.F.)
| |
Collapse
|
20
|
Echrish J, Pasca MI, Cabrera D, Yang Y, Harper AGS. Developing a Biomimetic 3D Neointimal Layer as a Prothrombotic Substrate for a Humanized In Vitro Model of Atherothrombosis. Biomimetics (Basel) 2024; 9:372. [PMID: 38921252 PMCID: PMC11201422 DOI: 10.3390/biomimetics9060372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Acute cardiovascular events result from clots caused by the rupture and erosion of atherosclerotic plaques. This paper aimed to produce a functional biomimetic hydrogel of the neointimal layer of the atherosclerotic plaque that can support thrombogenesis upon exposure to human blood. A biomimetic hydrogel of the neointima was produced by culturing THP-1-derived foam cells within 3D collagen hydrogels in the presence or absence of atorvastatin. Prothrombin time and platelet aggregation onset were measured after exposure of the neointimal models to platelet-poor plasma and washed platelet suspensions prepared from blood of healthy, medication-free volunteers. Activity of the extrinsic coagulation pathway was measured using the fluorogenic substrate SN-17. Foam cell formation was observed following preincubation of the neointimal biomimetic hydrogels with oxidized LDL, and this was inhibited by pretreatment with atorvastatin. The neointimal biomimetic hydrogel was able to trigger platelet aggregation and blood coagulation upon exposure to human blood products. Atorvastatin pretreatment of the neointimal biomimetic layer significantly reduced its pro-aggregatory and pro-coagulant properties. In the future, this 3D neointimal biomimetic hydrogel can be incorporated as an additional layer within our current thrombus-on-a-chip model to permit the study of atherosclerosis development and the screening of anti-thrombotic drugs as an alternative to current animal models.
Collapse
Affiliation(s)
| | | | - David Cabrera
- School of Pharmacy and Bioengineering, Keele University, Keele ST5 5BG, UK; (D.C.); (Y.Y.)
| | - Ying Yang
- School of Pharmacy and Bioengineering, Keele University, Keele ST5 5BG, UK; (D.C.); (Y.Y.)
| | | |
Collapse
|
21
|
Min K, Karuppannan SK, Tae G. The impact of matrix stiffness on hepatic cell function, liver fibrosis, and hepatocellular carcinoma-Based on quantitative data. BIOPHYSICS REVIEWS 2024; 5:021306. [PMID: 38846007 PMCID: PMC11151446 DOI: 10.1063/5.0197875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024]
Abstract
Over the past few decades, extensive research has explored the development of supportive scaffold materials for in vitro hepatic cell culture, to effectively mimic in vivo microenvironments. It is crucial for hepatic disease modeling, drug screening, and therapeutic evaluations, considering the ethical concerns and practical challenges associated with in vivo experiments. This review offers a comprehensive perspective on hepatic cell culture using bioscaffolds by encompassing all stages of hepatic diseases-from a healthy liver to fibrosis and hepatocellular carcinoma (HCC)-with a specific focus on matrix stiffness. This review begins by providing physiological and functional overviews of the liver. Subsequently, it explores hepatic cellular behaviors dependent on matrix stiffness from previous reports. For hepatic cell activities, softer matrices showed significant advantages over stiffer ones in terms of cell proliferation, migration, and hepatic functions. Conversely, stiffer matrices induced myofibroblastic activation of hepatic stellate cells, contributing to the further progression of fibrosis. Elevated matrix stiffness also correlates with HCC by increasing proliferation, epithelial-mesenchymal transition, metastasis, and drug resistance of HCC cells. In addition, we provide quantitative information on available data to offer valuable perspectives for refining the preparation and development of matrices for hepatic tissue engineering. We also suggest directions for further research on this topic.
Collapse
Affiliation(s)
- Kiyoon Min
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Sathish Kumar Karuppannan
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
22
|
Wilby AJ, Cabral S, Zoghi N, Howell SJ, Farnie G, Harrison H. A novel preclinical model of the normal human breast. J Mammary Gland Biol Neoplasia 2024; 29:9. [PMID: 38695983 PMCID: PMC11065935 DOI: 10.1007/s10911-024-09562-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
Improved screening and treatment have decreased breast cancer mortality, although incidence continues to rise. Women at increased risk of breast cancer can be offered risk reducing treatments, such as tamoxifen, but this has not been shown to reduce breast cancer mortality. New, more efficacious, risk-reducing agents are needed. The identification of novel candidates for prevention is hampered by a lack of good preclinical models. Current patient derived in vitro and in vivo models cannot fully recapitulate the complexities of the human tissue, lacking human extracellular matrix, stroma, and immune cells, all of which are known to influence therapy response. Here we describe a normal breast explant model utilising a tuneable hydrogel which maintains epithelial proliferation, hormone receptor expression, and residency of T cells and macrophages over 7 days. Unlike other organotypic tissue cultures which are often limited by hyper-proliferation, loss of hormone signalling, and short treatment windows (< 48h), our model shows that tissue remains viable over 7 days with none of these early changes. This offers a powerful and unique opportunity to model the normal breast and study changes in response to various risk factors, such as breast density and hormone exposure. Further validation of the model, using samples from patients undergoing preventive therapies, will hopefully confirm this to be a valuable tool, allowing us to test novel agents for breast cancer risk reduction preclinically.
Collapse
Affiliation(s)
- Anthony J Wilby
- Division of Cancer Sciences, Manchester Cancer Research Centre, University of Manchester, Oglesby Cancer Research Building, Wilmslow Road, Manchester, M20 4GJ, United Kingdom
- Manchester Breast Centre, University of Manchester, Wilmslow Road, Manchester, M20 4GJ, United Kingdom
| | - Sara Cabral
- Division of Cancer Sciences, Manchester Cancer Research Centre, University of Manchester, Oglesby Cancer Research Building, Wilmslow Road, Manchester, M20 4GJ, United Kingdom
- Manchester Breast Centre, University of Manchester, Wilmslow Road, Manchester, M20 4GJ, United Kingdom
- Henry Royce Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Nastaran Zoghi
- Department of Materials & Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Sacha J Howell
- Division of Cancer Sciences, Manchester Cancer Research Centre, University of Manchester, Oglesby Cancer Research Building, Wilmslow Road, Manchester, M20 4GJ, United Kingdom
- Manchester Breast Centre, University of Manchester, Wilmslow Road, Manchester, M20 4GJ, United Kingdom
- NIHR Manchester Biomedical Research Centre, Manchester Academic Health Science Centre, Central Manchester University Hospitals NHS Foundation Trust, 29 Grafton St, Manchester, M13 9WU, United Kingdom
- The Nightingale and Prevent Breast Cancer Centre, Manchester University NHS Foundation Trust, Manchester, M23 9LT, United Kingdom
| | - Gillian Farnie
- Cancer Research Horizons, The Francis Crick Institute, 1 Midland Road, Manchester, NW1 1AT, United Kingdom
| | - Hannah Harrison
- Division of Cancer Sciences, Manchester Cancer Research Centre, University of Manchester, Oglesby Cancer Research Building, Wilmslow Road, Manchester, M20 4GJ, United Kingdom.
- Manchester Breast Centre, University of Manchester, Wilmslow Road, Manchester, M20 4GJ, United Kingdom.
| |
Collapse
|
23
|
Wiebe-Ben Zakour KE, Kaya S, Grumm L, Matros J, Hacker MC, Geerling G, Witt J. Modulation of Decellularized Lacrimal Gland Hydrogel Biodegradation by Genipin Crosslinking. Invest Ophthalmol Vis Sci 2024; 65:24. [PMID: 38748430 PMCID: PMC11098053 DOI: 10.1167/iovs.65.5.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
Purpose Hydrogels derived from decellularized tissues are promising biomaterials in tissue engineering, but their rapid biodegradation can hinder in vitro cultivation. This study aimed to retard biodegradation of a hydrogel derived from porcine decellularized lacrimal glands (dLG-HG) by crosslinking with genipin to increase the mechanical stability without affecting the function and viability of lacrimal gland (LG)-associated cells. Methods The effect of different genipin concentrations on dLG-HG stiffness was measured rheologically. Cell-dependent biodegradation was quantified over 10 days, and the impact on matrix metalloproteinase (MMP) activity was quantified by gelatin and collagen zymography. The viability of LG epithelial cells (EpCs), mesenchymal stem cells (MSCs), and endothelial cells (ECs) cultured on genipin-crosslinked dLG-HG was assessed after 10 days, and EpC secretory activity was analyzed by β-hexosaminidase assay. Results The 0.5-mM genipin increased the stiffness of dLG-HG by about 46%, and concentrations > 0.25 mM caused delayed cell-dependent biodegradation and reduced MMP activity. The viability of EpCs, MSCs, and ECs was not affected by genipin concentrations of up to 0.5 mM after 10 days. Moreover, up to 0.5-mM genipin did not negatively affect EpC secretory activity compared to control groups. Conclusions A concentration of 0.5-mM genipin increased dLG-HG stiffness, and 0.25-mM genipin was sufficient to prevent MMP-dependent degradation. Importantly, concentrations of up to 0.5-mM genipin did not compromise the viability of LG-associated cells or the secretory activity of EpCs. Thus, crosslinking with genipin improves the properties of dLG-HG for use as a substrate in LG tissue engineering.
Collapse
Affiliation(s)
| | - Sema Kaya
- Department of Ophthalmology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Luis Grumm
- Department of Ophthalmology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julia Matros
- Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael C. Hacker
- Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gerd Geerling
- Department of Ophthalmology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Joana Witt
- Department of Ophthalmology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
24
|
Klimovič Š, Beckerová D, Věžník J, Kabanov D, Lacina K, Jelinkova S, Gumulec J, Rotrekl V, Přibyl J. Hyaluronic acid-based hydrogels with tunable mechanics improved structural and contractile properties of cells. BIOMATERIALS ADVANCES 2024; 159:213819. [PMID: 38430724 DOI: 10.1016/j.bioadv.2024.213819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Extracellular matrix (ECM) regulates cellular responses through mechanotransduction. The standard approach of in vitro culturing on plastic surfaces overlooks this phenomenon, so there is a need for biocompatible materials that exhibit adjustable mechanical and structural properties, promote cell adhesion and proliferation at low cost and for use in 2D or 3D cell cultures. This study presents a new tunable hydrogel system prepared from high-molecular hyaluronic acid (HA), Bovine serum albumin (BSA), and gelatin cross-linked using EDC/NHS. Hydrogels with Young's moduli (E) ranging from subunit to units of kilopascals were prepared by gradually increasing HA and BSA concentrations. Concentrated high-molecular HA network led to stiffer hydrogel with lower cluster size and swelling capacity. Medium and oxygen diffusion capability of all hydrogels showed they are suitable for 3D cell cultures. Mechanical and structural changes of mouse embryonic fibroblasts (MEFs) on hydrogels were compared with cells on standard cultivation surfaces. Experiments showed that hydrogels have suitable mechanical and cell adhesion capabilities, resulting in structural changes of actin filaments. Lastly, applying hydrogel for a more complex HL-1 cell line revealed improved mechanical and electrophysiological contractile properties.
Collapse
Affiliation(s)
- Šimon Klimovič
- CEITEC, Masaryk University, Brno, Czech Republic; Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Deborah Beckerová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; ICRC, St. Anne's University Hospital, Brno, Czech Republic
| | - Jakub Věžník
- CEITEC, Masaryk University, Brno, Czech Republic; Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Daniil Kabanov
- CEITEC, Masaryk University, Brno, Czech Republic; Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Karel Lacina
- CEITEC, Masaryk University, Brno, Czech Republic
| | - Sarka Jelinkova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jaromír Gumulec
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Vladimír Rotrekl
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; ICRC, St. Anne's University Hospital, Brno, Czech Republic
| | - Jan Přibyl
- CEITEC, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
25
|
Ramzan F, Khalid S, Ekram S, Salim A, Frazier T, Begum S, Mohiuddin OA, Khan I. 3D bio scaffold support osteogenic differentiation of mesenchymal stem cells. Cell Biol Int 2024; 48:594-609. [PMID: 38321826 DOI: 10.1002/cbin.12131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 12/08/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024]
Abstract
The regeneration of osteochondral lesions by tissue engineering techniques is challenging due to the lack of physicochemical characteristics and dual-lineage (osteogenesis and chondrogenesis). A scaffold with better mechanical properties and dual lineage capability is required for the regeneration of osteochondral defects. In this study, a hydrogel prepared from decellularized human umbilical cord tissue was developed and evaluated for osteochondral regeneration. Mesenchymal stem cells (MSCs) isolated from the umbilical cord were seeded with hydrogel for 28 days, and cell-hydrogel composites were cultured in basal and osteogenic media. Alizarin red staining, quantitative polymerase chain reaction, and immunofluorescent staining were used to confirm that the hydrogel was biocompatible and capable of inducing osteogenic differentiation in umbilical cord-derived MSCs. The findings demonstrate that human MSCs differentiated into an osteogenic lineage following 28 days of cultivation in basal and osteoinductive media. The expression was higher in the cell-hydrogel composites cultured in osteoinductive media, as evidenced by increased levels of messenger RNA and protein expression of osteogenic markers as compared to basal media cultured cell-hydrogel composites. Additionally, calcium deposits were also observed, which provide additional evidence of osteogenic differentiation. The findings demonstrate that the hydrogel is biocompatible with MSCs and possesses osteoinductive capability in vitro. It may be potentially useful for osteochondral regeneration.
Collapse
Affiliation(s)
- Faiza Ramzan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Shumaila Khalid
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Sobia Ekram
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | | | - Sumreen Begum
- Stem Cell Research Laboratory (SCRL), Sindh Institute of Urology and Transplantation (SIUT), Karachi, Pakistan
| | - Omair A Mohiuddin
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Irfan Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
26
|
Wu J, Xue W, Yun Z, Liu Q, Sun X. Biomedical applications of stimuli-responsive "smart" interpenetrating polymer network hydrogels. Mater Today Bio 2024; 25:100998. [PMID: 38390342 PMCID: PMC10882133 DOI: 10.1016/j.mtbio.2024.100998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
In recent years, owing to the ongoing advancements in polymer materials, hydrogels have found increasing applications in the biomedical domain, notably in the realm of stimuli-responsive "smart" hydrogels. Nonetheless, conventional single-network stimuli-responsive "smart" hydrogels frequently exhibit deficiencies, including low mechanical strength, limited biocompatibility, and extended response times. In response, researchers have addressed these challenges by introducing a second network to create stimuli-responsive "smart" Interpenetrating Polymer Network (IPN) hydrogels. The mechanical strength of the material can be significantly improved due to the topological entanglement and physical interactions within the interpenetrating structure. Simultaneously, combining different network structures enhances the biocompatibility and stimulus responsiveness of the gel, endowing it with unique properties such as cell adhesion, conductivity, hemostasis/antioxidation, and color-changing capabilities. This article primarily aims to elucidate the stimulus-inducing factors in stimuli-responsive "smart" IPN hydrogels, the impact of the gels on cell behaviors and their biomedical application range. Additionally, we also offer an in-depth exposition of their categorization, mechanisms, performance characteristics, and related aspects. This review furnishes a comprehensive assessment and outlook for the advancement of stimuli-responsive "smart" IPN hydrogels within the biomedical arena. We believe that, as the biomedical field increasingly demands novel materials featuring improved mechanical properties, robust biocompatibility, and heightened stimulus responsiveness, stimuli-responsive "smart" IPN hydrogels will hold substantial promise for wide-ranging applications in this domain.
Collapse
Affiliation(s)
- Jiuping Wu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Wu Xue
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Zhihe Yun
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Qinyi Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Xinzhi Sun
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
27
|
Xie C, Liu G, Wang L, Yang Q, Liao F, Yang X, Xiao B, Duan L. Synthesis and Properties of Injectable Hydrogel for Tissue Filling. Pharmaceutics 2024; 16:430. [PMID: 38543325 PMCID: PMC10975320 DOI: 10.3390/pharmaceutics16030430] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 01/06/2025] Open
Abstract
Hydrogels with injectability have emerged as the focal point in tissue filling, owing to their unique properties, such as minimal adverse effects, faster recovery, good results, and negligible disruption to daily activities. These hydrogels could attain their injectability through chemical covalent crosslinking, physical crosslinking, or biological crosslinking. These reactions allow for the formation of reversible bonds or delayed gelatinization, ensuring a minimally invasive approach for tissue filling. Injectable hydrogels facilitate tissue augmentation and tissue regeneration by offering slow degradation, mechanical support, and the modulation of biological functions in host cells. This review summarizes the recent advancements in synthetic strategies for injectable hydrogels and introduces their application in tissue filling. Ultimately, we discuss the prospects and prevailing challenges in developing optimal injectable hydrogels for tissue augmentation, aiming to chart a course for future investigations.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bo Xiao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China (F.L.); (X.Y.)
| | - Lian Duan
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China (F.L.); (X.Y.)
| |
Collapse
|
28
|
Kwon H, Lee S, Byun H, Huh SJ, Lee E, Kim E, Lee J, Shin H. Engineering pre-vascularized 3D tissue and rapid vascular integration with host blood vessels via co-cultured spheroids-laden hydrogel. Biofabrication 2024; 16:025029. [PMID: 38447223 DOI: 10.1088/1758-5090/ad30c6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/06/2024] [Indexed: 03/08/2024]
Abstract
Recent advances in regenerative medicine and tissue engineering have enabled the biofabrication of three-dimensional (3D) tissue analogues with the potential for use in transplants and disease modeling. However, the practical use of these biomimetic tissues has been hindered by the challenge posed by reconstructing anatomical-scale micro-vasculature tissues. In this study, we suggest that co-cultured spheroids within hydrogels hold promise for regenerating highly vascularized and innervated tissues, bothin vitroandin vivo. Human adipose-derived stem cells (hADSCs) and human umbilical vein cells (HUVECs) were prepared as spheroids, which were encapsulated in gelatin methacryloyl hydrogels to fabricate a 3D pre-vascularized tissue. The vasculogenic responses, extracellular matrix production, and remodeling depending on parameters like co-culture ratio, hydrogel strength, and pre-vascularization time forin vivointegration with native vessels were then delicately characterized. The co-cultured spheroids with 3:1 ratio (hADSCs/HUVECs) within the hydrogel and with a pliable storage modulus showed the greatest vasculogenic potential, and ultimately formedin vitroarteriole-scale vasculature with a longitudinal lumen structure and a complex vascular network after long-term culturing. Importantly, the pre-vascularized tissue also showed anastomotic vascular integration with host blood vessels after transplantation, and successful vascularization that was positive for both CD31 and alpha-smooth muscle actin covering 18.6 ± 3.6μm2of the luminal area. The described co-cultured spheroids-laden hydrogel can therefore serve as effective platform for engineering 3D vascularized complex tissues.
Collapse
Affiliation(s)
- Hyunseok Kwon
- Department of Bioengineering, Hanyang University, Seoul 04763, Republic of Korea
- BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul 04763, Republic of Korea
| | - Sangmin Lee
- Department of Bioengineering, Hanyang University, Seoul 04763, Republic of Korea
- BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul 04763, Republic of Korea
| | - Hayeon Byun
- Department of Bioengineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Seung Jae Huh
- Department of Bioengineering, Hanyang University, Seoul 04763, Republic of Korea
- BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul 04763, Republic of Korea
| | - Eunjin Lee
- Department of Bioengineering, Hanyang University, Seoul 04763, Republic of Korea
- BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul 04763, Republic of Korea
| | - Eunhyung Kim
- Department of Bioengineering, Hanyang University, Seoul 04763, Republic of Korea
- BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul 04763, Republic of Korea
| | - Jinkyu Lee
- Department of Bioengineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, Seoul 04763, Republic of Korea
- BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul 04763, Republic of Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
29
|
Mbitta Akoa D, Sicard L, Hélary C, Torrens C, Baroukh B, Poliard A, Coradin T. Role of Physico-Chemical and Cellular Conditions on the Bone Repair Potential of Plastically Compressed Collagen Hydrogels. Gels 2024; 10:130. [PMID: 38391460 PMCID: PMC10887598 DOI: 10.3390/gels10020130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
Since their first description nearly 20 years ago, dense collagen hydrogels obtained by plastic compression have become popular scaffolds in tissue engineering. In particular, when seeded with dental pulp stem cells, they have demonstrated a great in vivo potential in cranial bone repair. Here, we investigated how physico-chemical and cell-seeding conditions could influence the formation and in vitro mineralization of these cellularized scaffolds. A qualitative assessment demonstrated that the gel stability before and after compression was highly sensitive to the conditions of fibrillogenesis, especially initial acid acetic and buffer concentrations. Gels with similar rheological properties but different fibrillar structures that exhibited different stabilities when used for the 3D culture of Stem cells from Human Exfoliated Deciduous teeth (SHEDs) could be prepared. Finally, in our optimal physico-chemical conditions, mineralization could be achieved only using human dental pulp stem cells (hDPSCs) at a high cell density. These results highlight the key role of fibrillogenic conditions and cell type/density on the bone repair potential of cell-laden plastically compressed collagen hydrogels.
Collapse
Affiliation(s)
- Daline Mbitta Akoa
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, 75005 Paris, France
| | - Ludovic Sicard
- Université de Paris, UR2496 Pathologies, Imagerie et Biothérapies Orofaciales, FHU-DDS-Net, Dental School, 92120 Montrouge, France
- AP-HP Service de Médecine Bucco-Dentaire, Hôpital Bretonneau, 75018 Paris, France
| | - Christophe Hélary
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, 75005 Paris, France
| | - Coralie Torrens
- Université de Paris, UR2496 Pathologies, Imagerie et Biothérapies Orofaciales, FHU-DDS-Net, Dental School, 92120 Montrouge, France
| | - Brigitte Baroukh
- Université de Paris, UR2496 Pathologies, Imagerie et Biothérapies Orofaciales, FHU-DDS-Net, Dental School, 92120 Montrouge, France
| | - Anne Poliard
- Université de Paris, UR2496 Pathologies, Imagerie et Biothérapies Orofaciales, FHU-DDS-Net, Dental School, 92120 Montrouge, France
| | - Thibaud Coradin
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, 75005 Paris, France
| |
Collapse
|
30
|
Wiebe-Ben Zakour KE, Kaya S, Matros JC, Hacker MC, Cheikh-Rouhou A, Spaniol K, Geerling G, Witt J. Enhancement of lacrimal gland cell function by decellularized lacrimal gland derived hydrogel. Biofabrication 2024; 16:025008. [PMID: 38241707 DOI: 10.1088/1758-5090/ad2082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/19/2024] [Indexed: 01/21/2024]
Abstract
Sustainable treatment of aqueous deficient dry eye (ADDE) represents an unmet medical need and therefore requires new curative and regenerative approaches based on appropriatein vitromodels. Tissue specific hydrogels retain the individual biochemical composition of the extracellular matrix and thus promote the inherent cell´s physiological function. Hence, we created a decellularized lacrimal gland (LG) hydrogel (dLG-HG) meeting the requirements for a bioink as the basis of a LG model with potential forin vitroADDE studies. Varying hydrolysis durations were compared to obtain dLG-HG with best possible physical and ultrastructural properties while preserving the original biochemical composition. A particular focus was placed on dLG-HG´s impact on viability and functionality of LG associated cell types with relevance for a futurein vitromodel in comparison to the unspecific single component hydrogel collagen type-I (Col) and the common cell culture substrate Matrigel. Proliferation of LG epithelial cells (EpC), LG mesenchymal stem cells, and endothelial cells cultured on dLG-HG was enhanced compared to culture on Matrigel. Most importantly with respect to a functionalin vitromodel, the secretion capacity of EpC cultured on dLG-HG was higher than that of EpC cultured on Col or Matrigel. In addition to these promising cell related properties, a rapid matrix metalloproteinase-dependent biodegradation was observed, which on the one hand suggests a lively cell-matrix interaction, but on the other hand limits the cultivation period. Concluding, dLG-HG possesses decisive properties for the tissue engineering of a LGin vitromodel such as cytocompatibility and promotion of secretion, making it superior to unspecific cell culture substrates. However, deceleration of biodegradation should be addressed in future experiments.
Collapse
Affiliation(s)
- Katharina E Wiebe-Ben Zakour
- Department of Ophthalmology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Sema Kaya
- Department of Ophthalmology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Julia C Matros
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Michael C Hacker
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Amina Cheikh-Rouhou
- Department of Ophthalmology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Kristina Spaniol
- Department of Ophthalmology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Gerd Geerling
- Department of Ophthalmology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Joana Witt
- Department of Ophthalmology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
31
|
Li J, Shangguan Z, Ye X, Wang Z, Liu W, Chen G. Modified FGF Hydrogel for Effective Axon Formation by Enhanced Regeneration of Myelin Sheath of Schwann Cells Using Rat Model. Int J Nanomedicine 2023; 18:7225-7236. [PMID: 38076728 PMCID: PMC10710222 DOI: 10.2147/ijn.s417723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction An acute spinal cord injury (SCI) is a debilitating event for which there is no targeted or effective treatment. Previous studies have shown that fibroblast growth factor (bFGF) and Schwann cells (SC) exert a protective effect on the injured tissues. Because of their easy injectability and strength, hydrogels are considered to be ideal candidates for creating loadable tissues. However, the application and mechanism of bFGF-hydrogels have not been explored. Methods We synthesized a new class of bFGF-hydrosol and evaluated its safety and biocompatibility in vitro and in vivo. Next, an SCI rat model was established to evaluate the effect of the hydrosol on an SCI by detecting various pro-inflammatory markers and evaluating the injury. The ability of hydrosol to promote axon formation was evaluated by detecting corresponding indexes, and its ability to promote remyelination was evaluated by detecting the corresponding indexes in Schwann cells. Results A novel in situ injectable hydrogel containing bFGF (HA-bFGF) was synthesized and found to have better biocompatibility than other gels. HA-bFGF helped to repair tissue damage after an SCI in vivo. Our mechanistic investigation also showed that HA-bFGF improved axon formation after an SCI by facilitating the regeneration of myelin sheath of Schwann cells. Conclusion In this study, we found that HA-bFGF could promote neural restoration and tissue recovery after an SCI. Our results indicate that hydrogels loaded with bFGF can alleviate a spinal cord injury by promoting the remyelination of Schwann cells, reducing inflammation at the injured site, and ultimately promoting axon generation.
Collapse
Affiliation(s)
- Jiandong Li
- Department of Orthopaedics, Fujian Medical University Union Hospital, Fuzhou, China
- Union Clinical College, Fujian Medical University, Fuzhou, China
| | - Zhitao Shangguan
- Department of Orthopaedics, Fujian Medical University Union Hospital, Fuzhou, China
- Union Clinical College, Fujian Medical University, Fuzhou, China
| | - Xiaoqing Ye
- Department of Orthopaedics, Fujian Medical University Union Hospital, Fuzhou, China
- Union Clinical College, Fujian Medical University, Fuzhou, China
| | - Zhenyu Wang
- Department of Orthopaedics, Fujian Medical University Union Hospital, Fuzhou, China
- Union Clinical College, Fujian Medical University, Fuzhou, China
| | - Wenge Liu
- Department of Orthopaedics, Fujian Medical University Union Hospital, Fuzhou, China
- Union Clinical College, Fujian Medical University, Fuzhou, China
| | - Gang Chen
- Department of Orthopaedics, Fujian Medical University Union Hospital, Fuzhou, China
- Union Clinical College, Fujian Medical University, Fuzhou, China
| |
Collapse
|
32
|
Lewns FK, Tsigkou O, Cox LR, Wildman RD, Grover LM, Poologasundarampillai G. Hydrogels and Bioprinting in Bone Tissue Engineering: Creating Artificial Stem-Cell Niches for In Vitro Models. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301670. [PMID: 37087739 PMCID: PMC11478930 DOI: 10.1002/adma.202301670] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Advances in bioprinting have enabled the fabrication of complex tissue constructs with high speed and resolution. However, there remains significant structural and biological complexity within tissues that bioprinting is unable to recapitulate. Bone, for example, has a hierarchical organization ranging from the molecular to whole organ level. Current bioprinting techniques and the materials employed have imposed limits on the scale, speed, and resolution that can be achieved, rendering the technique unable to reproduce the structural hierarchies and cell-matrix interactions that are observed in bone. The shift toward biomimetic approaches in bone tissue engineering, where hydrogels provide biophysical and biochemical cues to encapsulated cells, is a promising approach to enhancing the biological function and development of tissues for in vitro modeling. A major focus in bioprinting of bone tissue for in vitro modeling is creating dynamic microenvironmental niches to support, stimulate, and direct the cellular processes for bone formation and remodeling. Hydrogels are ideal materials for imitating the extracellular matrix since they can be engineered to present various cues whilst allowing bioprinting. Here, recent advances in hydrogels and 3D bioprinting toward creating a microenvironmental niche that is conducive to tissue engineering of in vitro models of bone are reviewed.
Collapse
Affiliation(s)
| | - Olga Tsigkou
- Department of MaterialsUniversity of ManchesterManchesterM1 5GFUK
| | - Liam R. Cox
- School of ChemistryUniversity of BirminghamBirminghamB15 2TTUK
| | - Ricky D. Wildman
- Faculty of EngineeringUniversity of NottinghamNottinghamNG7 2RDUK
| | - Liam M. Grover
- Healthcare Technologies InstituteSchool of Chemical EngineeringUniversity of BirminghamBirminghamB15 2TTUK
| | | |
Collapse
|
33
|
Thongrom B, Tang P, Arora S, Haag R. Polyglycerol-Based Hydrogel as Versatile Support Matrix for 3D Multicellular Tumor Spheroid Formation. Gels 2023; 9:938. [PMID: 38131924 PMCID: PMC10742718 DOI: 10.3390/gels9120938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023] Open
Abstract
Hydrogel-based artificial scaffolds are essential for advancing cell culture models from 2D to 3D, enabling a more realistic representation of physiological conditions. These hydrogels can be customized through crosslinking to mimic the extracellular matrix. While the impact of extracellular matrix scaffolds on cell behavior is widely acknowledged, mechanosensing has become a crucial factor in regulating various cellular functions. cancer cells' malignant properties depend on mechanical cues from their microenvironment, including factors like stiffness, shear stress, and pressure. Developing hydrogels capable of modulating stiffness holds great promise for better understanding cell behavior under distinct mechanical stress stimuli. In this study, we aim to 3D culture various cancer cell lines, including MCF-7, HT-29, HeLa, A549, BT-474, and SK-BR-3. We utilize a non-degradable hydrogel formed from alpha acrylate-functionalized dendritic polyglycerol (dPG) and thiol-functionalized 4-arm polyethylene glycol (PEG) via the thiol-Michael click reaction. Due to its high multivalent hydroxy groups and bioinert ether backbone, dPG polymer was an excellent alternative as a crosslinking hub and is highly compatible with living microorganisms. The rheological viscoelasticity of the hydrogels is tailored to achieve a mechanical stiffness of approximately 1 kPa, suitable for cell growth. Cancer cells are in situ encapsulated within these 3D network hydrogels and cultured with cell media. The grown tumor spheroids were characterized by fluorescence and confocal microscopies. The average grown size of all tumoroid types was ca. 150 µm after 25 days of incubation. Besides, the stability of a swollen gel remains constant after 2 months at physiological conditions, highlighting the nondegradable potential. The successful formation of multicellular tumor spheroids (MCTSs) for all cancer cell types demonstrates the versatility of our hydrogel platform in 3D cell growth.
Collapse
Affiliation(s)
| | | | - Smriti Arora
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany (P.T.)
| | - Rainer Haag
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany (P.T.)
| |
Collapse
|
34
|
Capanema NSV, Mansur AAP, Carvalho SM, Martins T, Gonçalves MS, Andrade RS, Dorneles EMS, Lima LCD, de Alvarenga ÉLFC, da Fonseca EVB, de Sá MA, Lage AP, Lobato ZIP, Mansur HS. Nanosilver-Functionalized Hybrid Hydrogels of Carboxymethyl Cellulose/Poly(Vinyl Alcohol) with Antibacterial Activity for Prevention and Therapy of Infections of Diabetic Chronic Wounds. Polymers (Basel) 2023; 15:4542. [PMID: 38231902 PMCID: PMC10708083 DOI: 10.3390/polym15234542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024] Open
Abstract
Diabetic foot ulcers (DFUs) are considered one of the most severe chronic complications of diabetes and can lead to amputation in severe cases. In addition, bacterial infections in diabetic chronic wounds aggravate this scenario by threatening human health. Wound dressings made of polymer matrices with embedded metal nanoparticles can inhibit microorganism growth and promote wound healing, although the current clinical treatments for diabetic chronic wounds remain unsatisfactory. In this view, this research reports the synthesis and characterization of innovative hybrid hydrogels made of carboxymethyl cellulose (CMC) and poly(vinyl alcohol) (PVA) chemically crosslinked by citric acid (CA) functionalized with silver nanoparticles (AgNPs) generated in situ using an eco-friendly aqueous process. The results assessed through comprehensive in vitro and in vivo assays demonstrated that these hybrid polymer hydrogels functionalized with AgNPs possess physicochemical properties, cytocompatibility, hemocompatibility, bioadhesion, antibacterial activity, and biocompatibility suitable for wound dressings to support chronic wound healing process as well as preventing and treating bacterial infections. Hence, it can be envisioned that, with further research and development, these polymer-based hybrid nanoplatforms hold great potential as an important tool for creating a new generation of smart dressings for treating chronic diabetic wounds and opportunistic bacterial infections.
Collapse
Affiliation(s)
- Nádia S. V. Capanema
- Center of Nanoscience, Nanotechnology, and Innovation—CeNanoI, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil; (N.S.V.C.); (A.A.P.M.); (S.M.C.); (T.M.)
| | - Alexandra A. P. Mansur
- Center of Nanoscience, Nanotechnology, and Innovation—CeNanoI, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil; (N.S.V.C.); (A.A.P.M.); (S.M.C.); (T.M.)
| | - Sandhra M. Carvalho
- Center of Nanoscience, Nanotechnology, and Innovation—CeNanoI, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil; (N.S.V.C.); (A.A.P.M.); (S.M.C.); (T.M.)
| | - Talita Martins
- Center of Nanoscience, Nanotechnology, and Innovation—CeNanoI, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil; (N.S.V.C.); (A.A.P.M.); (S.M.C.); (T.M.)
| | - Maysa S. Gonçalves
- Departamento de Medicina Veterinária, Universidade Federal de Lavras, UFLA, Lavras 37200-000, Brazil; (M.S.G.); (R.S.A.); (E.M.S.D.)
| | - Rafaella S. Andrade
- Departamento de Medicina Veterinária, Universidade Federal de Lavras, UFLA, Lavras 37200-000, Brazil; (M.S.G.); (R.S.A.); (E.M.S.D.)
| | - Elaine M. S. Dorneles
- Departamento de Medicina Veterinária, Universidade Federal de Lavras, UFLA, Lavras 37200-000, Brazil; (M.S.G.); (R.S.A.); (E.M.S.D.)
| | - Letícia C. D. Lima
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil; (L.C.D.L.); (M.A.d.S.)
| | - Érika L. F. C. de Alvarenga
- Department of Natural Sciences, Universidade Federal de São João Del-Rei, UFSJ, São João Del-Rei 36301-160, Brazil; (É.L.F.C.d.A.); (E.V.B.d.F.)
| | - Emanuel V. B. da Fonseca
- Department of Natural Sciences, Universidade Federal de São João Del-Rei, UFSJ, São João Del-Rei 36301-160, Brazil; (É.L.F.C.d.A.); (E.V.B.d.F.)
| | - Marcos Augusto de Sá
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil; (L.C.D.L.); (M.A.d.S.)
| | - Andrey P. Lage
- Departamento de Medicina Veterinária Preventiva, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil; (A.P.L.); (Z.I.P.L.)
| | - Zelia I. P. Lobato
- Departamento de Medicina Veterinária Preventiva, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil; (A.P.L.); (Z.I.P.L.)
| | - Herman S. Mansur
- Center of Nanoscience, Nanotechnology, and Innovation—CeNanoI, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil; (N.S.V.C.); (A.A.P.M.); (S.M.C.); (T.M.)
| |
Collapse
|
35
|
Choi CE, Chakraborty A, Adzija H, Shamiya Y, Hijazi K, Coyle A, Rizkalla A, Holdsworth DW, Paul A. Metal Organic Framework-Incorporated Three-Dimensional (3D) Bio-Printable Hydrogels to Facilitate Bone Repair: Preparation and In Vitro Bioactivity Analysis. Gels 2023; 9:923. [PMID: 38131909 PMCID: PMC10742699 DOI: 10.3390/gels9120923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/15/2023] [Accepted: 11/18/2023] [Indexed: 12/23/2023] Open
Abstract
Hydrogels are three-dimensional (3D) water-swellable polymeric matrices that are used extensively in tissue engineering and drug delivery. Hydrogels can be conformed into any desirable shape using 3D bio-printing, making them suitable for personalized treatment. Among the different 3D bio-printing techniques, digital light processing (DLP)-based printing offers the advantage of quickly fabricating high resolution structures, reducing the chances of cell damage during the printing process. Here, we have used DLP to 3D bio-print biocompatible gelatin methacrylate (GelMA) scaffolds intended for bone repair. GelMA is biocompatible, biodegradable, has integrin binding motifs that promote cell adhesion, and can be crosslinked easily to form hydrogels. However, GelMA on its own is incapable of promoting bone repair and must be supplemented with pharmaceutical molecules or growth factors, which can be toxic or expensive. To overcome this limitation, we introduced zinc-based metal-organic framework (MOF) nanoparticles into GelMA that can promote osteogenic differentiation, providing safer and more affordable alternatives to traditional methods. Incorporation of this nanoparticle into GelMA hydrogel has demonstrated significant improvement across multiple aspects, including bio-printability, and favorable mechanical properties (showing a significant increase in the compressive modulus from 52.14 ± 19.42 kPa to 128.13 ± 19.46 kPa with the addition of ZIF-8 nanoparticles). The designed nanocomposite hydrogels can also sustain drug (vancomycin) release (maximum 87.52 ± 1.6% cumulative amount) and exhibit a remarkable ability to differentiate human adipose-derived mesenchymal stem cells toward the osteogenic lineage. Furthermore, the formulated MOF-integrated nanocomposite hydrogel offers the unique capability to coat metallic implants intended for bone healing. Overall, the remarkable printability and coating ability displayed by the nanocomposite hydrogel presents itself as a promising candidate for drug delivery, cell delivery and bone tissue engineering applications.
Collapse
Affiliation(s)
- Cho-E Choi
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Aishik Chakraborty
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
- Collaborative Specialization in Musculoskeletal Health Research and Bone and Joint Institute, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Hailey Adzija
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Yasmeen Shamiya
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Khaled Hijazi
- Collaborative Specialization in Musculoskeletal Health Research and Bone and Joint Institute, The University of Western Ontario, London, ON N6A 5B9, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Ali Coyle
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Amin Rizkalla
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
- Collaborative Specialization in Musculoskeletal Health Research and Bone and Joint Institute, The University of Western Ontario, London, ON N6A 5B9, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
- Department of Medical Biophysics, The University of Western Ontario, London, ON N6A 5B9, Canada
- Dentistry, The University of Western Ontario, London, ON N5A 5B9, Canada
| | - David W. Holdsworth
- Department of Medical Biophysics, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Arghya Paul
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
- Collaborative Specialization in Musculoskeletal Health Research and Bone and Joint Institute, The University of Western Ontario, London, ON N6A 5B9, Canada
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B9, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| |
Collapse
|
36
|
Hamilton M, Wang J, Dhar P, Stehno-Bittel L. Controlled-Release Hydrogel Microspheres to Deliver Multipotent Stem Cells for Treatment of Knee Osteoarthritis. Bioengineering (Basel) 2023; 10:1315. [PMID: 38002439 PMCID: PMC10669156 DOI: 10.3390/bioengineering10111315] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/03/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Osteoarthritis (OA) is the most common form of joint disease affecting articular cartilage and peri-articular tissues. Traditional treatments are insufficient, as they are aimed at mitigating symptoms. Multipotent Stromal Cell (MSC) therapy has been proposed as a treatment capable of both preventing cartilage destruction and treating symptoms. While many studies have investigated MSCs for treating OA, therapeutic success is often inconsistent due to low MSC viability and retention in the joint. To address this, biomaterial-assisted delivery is of interest, particularly hydrogel microspheres, which can be easily injected into the joint. Microspheres composed of hyaluronic acid (HA) were created as MSC delivery vehicles. Microrheology measurements indicated that the microspheres had structural integrity alongside sufficient permeability. Additionally, encapsulated MSC viability was found to be above 70% over one week in culture. Gene expression analysis of MSC-identifying markers showed no change in CD29 levels, increased expression of CD44, and decreased expression of CD90 after one week of encapsulation. Analysis of chondrogenic markers showed increased expressions of aggrecan (ACAN) and SRY-box transcription factor 9 (SOX9), and decreased expression of osteogenic markers, runt-related transcription factor 2 (RUNX2), and alkaline phosphatase (ALPL). In vivo analysis revealed that HA microspheres remained in the joint for up to 6 weeks. Rats that had undergone destabilization of the medial meniscus and had overt OA were treated with empty HA microspheres, MSC-laden microspheres, MSCs alone, or a control vehicle. Pain measurements taken before and after the treatment illustrated temporarily decreased pain in groups treated with encapsulated cells. Finally, the histopathological scoring of each group illustrated significantly less OA damage in those treated with encapsulated cells compared to controls. Overall, these studies demonstrate the potential of using HA-based hydrogel microspheres to enhance the therapeutic efficacy of MSCs in treating OA.
Collapse
Affiliation(s)
- Megan Hamilton
- Bioengineering Program, School of Engineering, University of Kansas, Lawrence, KS 66045, USA;
- Likarda, Kansas City, MO 64137, USA;
| | - Jinxi Wang
- Department of Orthopedic Surgery and Sport Medicine, School of Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Prajnaparamita Dhar
- Bioengineering Program, School of Engineering, University of Kansas, Lawrence, KS 66045, USA;
| | - Lisa Stehno-Bittel
- Likarda, Kansas City, MO 64137, USA;
- Department of Orthopedic Surgery and Sport Medicine, School of Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| |
Collapse
|
37
|
Bagdasarian IA, Tonmoy TI, Park BH, Morgan JT. In vitro formation and extended culture of highly metabolically active and contractile tissues. PLoS One 2023; 18:e0293609. [PMID: 37910543 PMCID: PMC10619834 DOI: 10.1371/journal.pone.0293609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023] Open
Abstract
3D cell culture models have gained popularity in recent years as an alternative to animal and 2D cell culture models for pharmaceutical testing and disease modeling. Polydimethylsiloxane (PDMS) is a cost-effective and accessible molding material for 3D cultures; however, routine PDMS molding may not be appropriate for extended culture of contractile and metabolically active tissues. Failures can include loss of culture adhesion to the PDMS mold and limited culture surfaces for nutrient and waste diffusion. In this study, we evaluated PDMS molding materials and surface treatments for highly contractile and metabolically active 3D cell cultures. PDMS functionalized with polydopamine allowed for extended culture duration (14.8 ± 3.97 days) when compared to polyethylamine/glutaraldehyde functionalization (6.94 ± 2.74 days); Additionally, porous PDMS extended culture duration (16.7 ± 3.51 days) compared to smooth PDMS (6.33 ± 2.05 days) after treatment with TGF-β2 to increase culture contraction. Porous PDMS additionally allowed for large (13 mm tall × 8 mm diameter) constructs to be fed by diffusion through the mold, resulting in increased cell density (0.0210 ± 0.0049 mean nuclear fraction) compared to controls (0.0045 ± 0.0016 mean nuclear fraction). As a practical demonstration of the flexibility of porous PDMS, we engineered a vascular bioartificial muscle model (VBAM) and demonstrated extended culture of VBAMs anchored with porous PDMS posts. Using this model, we assessed the effect of feeding frequency on VBAM cellularity. Feeding 3×/week significantly increased nuclear fraction at multiple tissue depths relative to 2×/day. VBAM maturation was similarly improved in 3×/week feeding as measured by nuclear alignment (23.49° ± 3.644) and nuclear aspect ratio (2.274 ± 0.0643) relative to 2x/day (35.93° ± 2.942) and (1.371 ± 0.1127), respectively. The described techniques are designed to be simple and easy to implement with minimal training or expense, improving access to dense and/or metabolically active 3D cell culture models.
Collapse
Affiliation(s)
- Isabella A. Bagdasarian
- Department of Bioengineering, University of California, Riverside, CA, United States of America
| | - Thamidul Islam Tonmoy
- Department of Bioengineering, University of California, Riverside, CA, United States of America
| | - B. Hyle Park
- Department of Bioengineering, University of California, Riverside, CA, United States of America
| | - Joshua T. Morgan
- Department of Bioengineering, University of California, Riverside, CA, United States of America
| |
Collapse
|
38
|
Ranjan P, Colin K, Dutta RK, Verma SK. Challenges and future scope of exosomes in the treatment of cardiovascular diseases. J Physiol 2023; 601:4873-4893. [PMID: 36398654 PMCID: PMC10192497 DOI: 10.1113/jp282053] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/21/2022] [Indexed: 07/28/2023] Open
Abstract
Exosomes are nanosized vesicles that carry biologically diverse molecules for intercellular communication. Researchers have been trying to engineer exosomes for therapeutic purposes by using different approaches to deliver biologically active molecules to the various target cells efficiently. Recent technological advances may allow the biodistribution and pharmacokinetics of exosomes to be modified to meet scientific needs with respect to specific diseases. However, it is essential to determine an exosome's optimal dosage and potential side effects before its clinical use. Significant breakthroughs have been made in recent decades concerning exosome labelling and imaging techniques. These tools provide in situ monitoring of exosome biodistribution and pharmacokinetics and pinpoint targetability. However, because exosomes are nanometres in size and vary significantly in contents, a deeper understanding is required to ensure accurate monitoring before they can be applied in clinical settings. Different research groups have established different approaches to elucidate the roles of exosomes and visualize their spatial properties. This review covers current and emerging strategies for in vivo and in vitro exosome imaging and tracking for potential studies.
Collapse
Affiliation(s)
- Prabhat Ranjan
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL-35233
| | - Karen Colin
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL-35233
- UAB School of Health Professions, The University of Alabama at Birmingham, Birmingham, AL
| | - Roshan Kumar Dutta
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL-35233
| | - Suresh Kumar Verma
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL-35233
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
39
|
Zeiringer S, Wiltschko L, Glader C, Reiser M, Absenger-Novak M, Fröhlich E, Roblegg E. Development and Characterization of an In Vitro Intestinal Model Including Extracellular Matrix and Macrovascular Endothelium. Mol Pharm 2023; 20:5173-5184. [PMID: 37677739 PMCID: PMC10548470 DOI: 10.1021/acs.molpharmaceut.3c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023]
Abstract
In vitro intestinal models are used to study biological processes, drug and food absorption, or cytotoxicity, minimizing the use of animals in the laboratory. They usually consist of enterocytes and mucus-producing cells cultured for 3 weeks, e.g., on Transwells, to obtain a fully differentiated cell layer simulating the human epithelium. Other important components are the extracellular matrix (ECM) and strong vascularization. The former serves as structural support for cells and promotes cellular processes such as differentiation, migration, and growth. The latter includes endothelial cells, which coordinate vascularization and immune cell migration and facilitate the transport of ingested substances or drugs to the liver. In most cases, animal-derived hydrogels such as Matrigel or collagen are used as ECM in in vitro intestinal models, and endothelial cells are only partially considered, if at all. However, it is well-known that animal-derived products can lead to altered cell behavior and incorrect results. To circumvent these limitations, synthetic and modifiable hydrogels (Peptigel and Vitrogel) were studied here to mimic xenofree ECM, and the data were compared with Matrigel. Careful rheological characterization was performed, and the effect on cell proliferation was investigated. The results showed that Vitrogel exhibited shear-thinning behavior with an internal structure recovery of 78.9 ± 11.2%, providing the best properties among the gels investigated. Therefore, a coculture of Caco-2 and HT29-MTX cells (ratio 7:3) was grown on Vitrogel, while simultaneously endothelial cells were cultured on the basolateral side by inverse cultivation. The model was characterized in terms of cell proliferation, differentiation, and drug permeability. It was found that the cells cultured on Vitrogel induced a 1.7-fold increase in cell proliferation and facilitated the formation of microvilli and tight junctions after 2 weeks of cultivation. At the same time, the coculture showed full differentiation indicated by high alkaline phosphatase release of Caco-2 cells (95.0 ± 15.9%) and a mucus layer produced by HT29-MTX cells. Drug tests led to ex vivo comparable permeability coefficients (Papp) (i.e., Papp; antipyrine = (33.64 ± 5.13) × 10-6 cm/s, Papp; atenolol = (0.59 ± 0.16) × 10-6 cm/s). These results indicate that the newly developed intestinal model can be used for rapid and efficient assessment of drug permeability, excluding unexpected results due to animal-derived materials.
Collapse
Affiliation(s)
- Scarlett Zeiringer
- University
of Graz, Institute of Pharmaceutical
Sciences, Pharmaceutical Technology and Biopharmacy, Universitätsplatz 1, 8010 Graz, Austria
| | - Laura Wiltschko
- University
of Graz, Institute of Pharmaceutical
Sciences, Pharmaceutical Technology and Biopharmacy, Universitätsplatz 1, 8010 Graz, Austria
- Joanneum
Research-Health, Neue Stiftingtalstraße 2, 8010 Graz, Austria
| | - Christina Glader
- University
of Graz, Institute of Pharmaceutical
Sciences, Pharmaceutical Technology and Biopharmacy, Universitätsplatz 1, 8010 Graz, Austria
- Research
Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Martin Reiser
- University
of Graz, Institute of Pharmaceutical
Sciences, Pharmaceutical Technology and Biopharmacy, Universitätsplatz 1, 8010 Graz, Austria
| | - Markus Absenger-Novak
- Center
for Medical Research, Medical University
of Graz, Stiftingtalstraße 24, 8010 Graz, Austria
| | - Eleonore Fröhlich
- Center
for Medical Research, Medical University
of Graz, Stiftingtalstraße 24, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Eva Roblegg
- University
of Graz, Institute of Pharmaceutical
Sciences, Pharmaceutical Technology and Biopharmacy, Universitätsplatz 1, 8010 Graz, Austria
- Research
Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
40
|
Gudde A, van Velthoven MJJ, Türkel B, Kouwer PHJ, Roovers JPWR, Guler Z. Vaginal Fibroblast Behavior as a Function of Stiffness Changes in a Polyisocyanide Hydrogel for Prolapse Repair. ACS APPLIED BIO MATERIALS 2023; 6:3759-3767. [PMID: 37589427 PMCID: PMC10521013 DOI: 10.1021/acsabm.3c00433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/03/2023] [Indexed: 08/18/2023]
Abstract
There is an urgent need for improved outcomes in the treatment of pelvic organ prolapse (POP). Success of primary surgery relies on the load bearing capacity of plicated connective tissue underneath the vaginal wall, which is compromised due to an altered vaginal fibroblast function and collagen composition. There is an important factor in connective tissue repair that relates to changes in stiffness of the vaginal fibroblast microenvironment, which influences cell activity through cellular mechanosensing. The aim of this study is to investigate the effect of stiffness changes on vaginal fibroblast functions that relate to connective tissue healing in prolapse repair. The substrate stiffness was controlled by changing the polymer concentration in the fibrous and strongly biomimetic polyisocyanide (PIC) hydrogel. We analyzed stiffness during cell culture and assessed the consequential fibroblast proliferation, morphology, collagen deposition, and contraction. Our results show that increasing stiffness coincides with vaginal fibroblast alignment, promotes collagen deposition, and inhibits PIC gel contraction. These findings suggest that the matrix stiffness directly influences vaginal fibroblast functionality. Moreover, we observed a buildup in stiffness and collagen, with an enhanced fibroblast and collagen organization on the PIC-substrate, which indicate an enhanced structural integrity of the hydrogel-cell construct. An improved tissue structure during healing is relevant in the functional repair of POP. Therefore, this study encourages future research in the use of PIC gels as a supplement in prolapse surgery, whereby the hydrogel stiffness should be considered.
Collapse
Affiliation(s)
- Aksel
N. Gudde
- Department
of Obstetrics and Gynecology, Amsterdam
University Medical Center−location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Reproductive
Biology Laboratory, Amsterdam Reproduction and Development, Amsterdam University Medical Center−location
AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Melissa J. J. van Velthoven
- Department
of Urology, Radboud Institute for Molecular
Life Sciences, Radboud University Medical Centre, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Betül Türkel
- Department
of Obstetrics and Gynecology, Amsterdam
University Medical Center−location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Reproductive
Biology Laboratory, Amsterdam Reproduction and Development, Amsterdam University Medical Center−location
AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Paul H. J. Kouwer
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Jan-Paul W. R. Roovers
- Department
of Obstetrics and Gynecology, Amsterdam
University Medical Center−location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Reproductive
Biology Laboratory, Amsterdam Reproduction and Development, Amsterdam University Medical Center−location
AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Zeliha Guler
- Department
of Obstetrics and Gynecology, Amsterdam
University Medical Center−location AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Reproductive
Biology Laboratory, Amsterdam Reproduction and Development, Amsterdam University Medical Center−location
AMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
41
|
Kutluk H, Bastounis EE, Constantinou I. Integration of Extracellular Matrices into Organ-on-Chip Systems. Adv Healthc Mater 2023; 12:e2203256. [PMID: 37018430 PMCID: PMC11468608 DOI: 10.1002/adhm.202203256] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/20/2023] [Indexed: 04/07/2023]
Abstract
The extracellular matrix (ECM) is a complex, dynamic network present within all tissues and organs that not only acts as a mechanical support and anchorage point but can also direct fundamental cell behavior, function, and characteristics. Although the importance of the ECM is well established, the integration of well-controlled ECMs into Organ-on-Chip (OoC) platforms remains challenging and the methods to modulate and assess ECM properties on OoCs remain underdeveloped. In this review, current state-of-the-art design and assessment of in vitro ECM environments is discussed with a focus on their integration into OoCs. Among other things, synthetic and natural hydrogels, as well as polydimethylsiloxane (PDMS) used as substrates, coatings, or cell culture membranes are reviewed in terms of their ability to mimic the native ECM and their accessibility for characterization. The intricate interplay among materials, OoC architecture, and ECM characterization is critically discussed as it significantly complicates the design of ECM-related studies, comparability between works, and reproducibility that can be achieved across research laboratories. Improving the biomimetic nature of OoCs by integrating properly considered ECMs would contribute to their further adoption as replacements for animal models, and precisely tailored ECM properties would promote the use of OoCs in mechanobiology.
Collapse
Affiliation(s)
- Hazal Kutluk
- Institute of Microtechnology (IMT)Technical University of BraunschweigAlte Salzdahlumer Str. 20338124BraunschweigGermany
- Center of Pharmaceutical Engineering (PVZ)Technical University of BraunschweigFranz‐Liszt‐Str. 35a38106BraunschweigGermany
| | - Effie E. Bastounis
- Institute of Microbiology and Infection Medicine (IMIT)Eberhard Karls University of TübingenAuf der Morgenstelle 28, E872076TübingenGermany
- Cluster of Excellence “Controlling Microbes to Fight Infections” EXC 2124Eberhard Karls University of TübingenAuf der Morgenstelle 2872076TübingenGermany
| | - Iordania Constantinou
- Institute of Microtechnology (IMT)Technical University of BraunschweigAlte Salzdahlumer Str. 20338124BraunschweigGermany
- Center of Pharmaceutical Engineering (PVZ)Technical University of BraunschweigFranz‐Liszt‐Str. 35a38106BraunschweigGermany
| |
Collapse
|
42
|
Merkher Y, Kontareva E, Bogdan E, Achkasov K, Maximova K, Grolman JM, Leonov S. Encapsulation and adhesion of nanoparticles as a potential biomarker for TNBC cells metastatic propensity. Sci Rep 2023; 13:12289. [PMID: 37516753 PMCID: PMC10387085 DOI: 10.1038/s41598-023-33540-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 04/14/2023] [Indexed: 07/31/2023] Open
Abstract
Metastasis is the main cause of cancer-related mortality; therefore, the ability to predict its propensity can remarkably affect survival rate. Metastasis development is predicted nowadays by lymph-node status, tumor size, histopathology, and genetic testing. However, all these methods may have inaccuracies, and some require weeks to complete. Identifying novel prognostic markers will open an essential source for risk prediction, possibly guiding to elevated patient treatment by personalized strategies. Cancer cell invasion is a critical step in metastasis. The cytoskeletal mechanisms used by metastatic cells for the invasion process are very similar to the utilization of actin cytoskeleton in the endocytosis process. In the current study, the adhesion and encapsulation efficiency of low-cost carboxylate-modified fluorescent nanoparticles by breast cancer cells with high (HM) and low metastatic potential (LM) have been evaluated; benign cells were used as control. Using high-content fluorescence imaging and analysis, we have revealed (within a short time of 1 h), that efficiency of nanoparticles adherence and encapsulation is sufficiently higher in HM cells compared to LM cells, while benign cells are not encapsulating or adhering the particles during experiment time at all. We have utilized custom-made automatic image analysis algorithms to find quantitative co-localization (Pearson's coefficients) of the nanoparticles with the imaged cells. The method proposed here is straightforward; it does not require especial equipment or expensive materials nor complicated cell manipulations, it may be potentially applicable for various cells, including patient-derived cells. Effortless and quantitative determination of the metastatic likelihood has the potential to be performed using patient-specific biopsy/surgery sample, which will directly influence the choice of protocols for cancer patient's treatment and, as a result, increase their life expectancy.
Collapse
Affiliation(s)
- Yulia Merkher
- Laboratory of Innovative Medicine and Agrobiotechnology, Moscow Institute of Physics and Technology (MIPT), Dolgoprudny, Moscow Region, Russia.
| | - Elizaveta Kontareva
- Laboratory of Innovative Medicine and Agrobiotechnology, Moscow Institute of Physics and Technology (MIPT), Dolgoprudny, Moscow Region, Russia
| | - Elizaveta Bogdan
- Laboratory of Innovative Medicine and Agrobiotechnology, Moscow Institute of Physics and Technology (MIPT), Dolgoprudny, Moscow Region, Russia
| | - Konstantin Achkasov
- Laboratory of Innovative Medicine and Agrobiotechnology, Moscow Institute of Physics and Technology (MIPT), Dolgoprudny, Moscow Region, Russia
| | - Ksenia Maximova
- Laboratory of Innovative Medicine and Agrobiotechnology, Moscow Institute of Physics and Technology (MIPT), Dolgoprudny, Moscow Region, Russia
| | - Joshua M Grolman
- The Biomechanic Materials Lab, Technion Israel Institute of Technology, Haifa, Israel
| | - Sergey Leonov
- Laboratory of Innovative Medicine and Agrobiotechnology, Moscow Institute of Physics and Technology (MIPT), Dolgoprudny, Moscow Region, Russia.
| |
Collapse
|
43
|
Shou Y, Teo XY, Wu KZ, Bai B, Kumar ARK, Low J, Le Z, Tay A. Dynamic Stimulations with Bioengineered Extracellular Matrix-Mimicking Hydrogels for Mechano Cell Reprogramming and Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300670. [PMID: 37119518 PMCID: PMC10375194 DOI: 10.1002/advs.202300670] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/10/2023] [Indexed: 06/19/2023]
Abstract
Cells interact with their surrounding environment through a combination of static and dynamic mechanical signals that vary over stimulus types, intensity, space, and time. Compared to static mechanical signals such as stiffness, porosity, and topography, the current understanding on the effects of dynamic mechanical stimulations on cells remains limited, attributing to a lack of access to devices, the complexity of experimental set-up, and data interpretation. Yet, in the pursuit of emerging translational applications (e.g., cell manufacturing for clinical treatment), it is crucial to understand how cells respond to a variety of dynamic forces that are omnipresent in vivo so that they can be exploited to enhance manufacturing and therapeutic outcomes. With a rising appreciation of the extracellular matrix (ECM) as a key regulator of biofunctions, researchers have bioengineered a suite of ECM-mimicking hydrogels, which can be fine-tuned with spatiotemporal mechanical cues to model complex static and dynamic mechanical profiles. This review first discusses how mechanical stimuli may impact different cellular components and the various mechanobiology pathways involved. Then, how hydrogels can be designed to incorporate static and dynamic mechanical parameters to influence cell behaviors are described. The Scopus database is also used to analyze the relative strength in evidence, ranging from strong to weak, based on number of published literatures, associated citations, and treatment significance. Additionally, the impacts of static and dynamic mechanical stimulations on clinically relevant cell types including mesenchymal stem cells, fibroblasts, and immune cells, are evaluated. The aim is to draw attention to the paucity of studies on the effects of dynamic mechanical stimuli on cells, as well as to highlight the potential of using a cocktail of various types and intensities of mechanical stimulations to influence cell fates (similar to the concept of biochemical cocktail to direct cell fate). It is envisioned that this progress report will inspire more exciting translational development of mechanoresponsive hydrogels for biomedical applications.
Collapse
Affiliation(s)
- Yufeng Shou
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
| | - Xin Yong Teo
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Kenny Zhuoran Wu
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Bingyu Bai
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Arun R. K. Kumar
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
| | - Jessalyn Low
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Zhicheng Le
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
| | - Andy Tay
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
- NUS Tissue Engineering ProgramNational University of SingaporeSingapore117510Singapore
| |
Collapse
|
44
|
Kurian AG, Mandakhbayar N, Singh RK, Lee JH, Jin G, Kim HW. Multifunctional dendrimer@nanoceria engineered GelMA hydrogel accelerates bone regeneration through orchestrated cellular responses. Mater Today Bio 2023; 20:100664. [PMID: 37251417 PMCID: PMC10209037 DOI: 10.1016/j.mtbio.2023.100664] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023] Open
Abstract
Bone defects in patients entail the microenvironment that needs to boost the functions of stem cells (e.g., proliferation, migration, and differentiation) while alleviating severe inflammation induced by high oxidative stress. Biomaterials can help to shift the microenvironment by regulating these multiple events. Here we report multifunctional composite hydrogels composed of photo-responsive Gelatin Methacryloyl (GelMA) and dendrimer (G3)-functionalized nanoceria (G3@nCe). Incorporation of G3@nCe into GelMA could enhance the mechanical properties of hydrogels and their enzymatic ability to clear reactive oxygen species (ROS). The G3@nCe/GelMA hydrogels supported the focal adhesion of mesenchymal stem cells (MSCs) and further increased their proliferation and migration ability (vs. pristine GelMA and nCe/GelMA). Moreover, the osteogenic differentiation of MSCs was significantly stimulated upon the G3@nCe/GelMA hydrogels. Importantly, the capacity of G3@nCe/GelMA hydrogels to scavenge extracellular ROS enabled MSCs to survive against H2O2-induced high oxidative stress. Transcriptome analysis by RNA sequencing identified the genes upregulated and the signalling pathways activated by G3@nCe/GelMA that are associated with cell growth, migration, osteogenesis, and ROS-metabolic process. When implanted subcutaneously, the hydrogels exhibited excellent tissue integration with a sign of material degradation while the inflammatory response was minimal. Furthermore, G3@nCe/GelMA hydrogels demonstrated effective bone regeneration capacity in a rat critical-sized bone defect model, possibly due to an orchestrated capacity of enhancing cell proliferation, motility and osteogenesis while alleviating oxidative stress.
Collapse
Affiliation(s)
- Amal George Kurian
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Rajendra K. Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Gangshi Jin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| |
Collapse
|
45
|
González-Lana S, Randelovic T, Ciriza J, López-Valdeolivas M, Monge R, Sánchez-Somolinos C, Ochoa I. Surface modifications of COP-based microfluidic devices for improved immobilisation of hydrogel proteins: long-term 3D culture with contractile cell types and ischaemia model. LAB ON A CHIP 2023; 23:2434-2446. [PMID: 37013698 DOI: 10.1039/d3lc00075c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The tissue microenvironment plays a crucial role in tissue homeostasis and disease progression. However, the in vitro simulation has been limited by the lack of adequate biomimetic models in the last decades. Thanks to the advent of microfluidic technology for cell culture applications, these complex microenvironments can be recreated by combining hydrogels, cells and microfluidic devices. Nevertheless, this advance has several limitations. When cultured in three-dimensional (3D) hydrogels inside microfluidic devices, contractile cells may exert forces that eventually collapse the 3D structure. Disrupting the compartmentalisation creates an obstacle to long-term or highly cell-concentrated assays, which are extremely relevant for multiple applications such as fibrosis or ischaemia. Therefore, we tested surface treatments on cyclic-olefin polymer-based microfluidic devices (COP-MD) to promote the immobilisation of collagen as a 3D matrix protein. Thus, we compared three surface treatments in COP devices for culturing human cardiac fibroblasts (HCF) embedded in collagen hydrogels. We determined the immobilisation efficiency of collagen hydrogel by quantifying the hydrogel transversal area within the devices at the studied time points. Altogether, our results indicated that surface modification with polyacrylic acid photografting (PAA-PG) of COP-MD is the most effective treatment to avoid the quick collapse of collagen hydrogels. As a proof-of-concept experiment, and taking advantage of the low-gas permeability properties of COP-MD, we studied the application of PAA-PG pre-treatment to generate a self-induced ischaemia model. Different necrotic core sizes were developed depending on initial HCF density seeding with no noticeable gel collapse. We conclude that PAA-PG allows long-term culture, gradient generation and necrotic core formation of contractile cell types such as myofibroblasts. This novel approach will pave the way for new relevant in vitro co-culture models where fibroblasts play a key role such as wound healing, tumour microenvironment and ischaemia within microfluidic devices.
Collapse
Affiliation(s)
- Sandra González-Lana
- Tissue Microenvironment (TME) Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, C/ Mariano Esquillor s/n, 500018 Zaragoza, Spain.
- BEONCHIP S.L., CEMINEM, Campus Río Ebro. C/ Mariano Esquillor Gómez s/n, 50018 Zaragoza, Spain
| | - Teodora Randelovic
- Tissue Microenvironment (TME) Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, C/ Mariano Esquillor s/n, 500018 Zaragoza, Spain.
- Institute for Health Research Aragón (IIS Aragón), Paseo de Isabel La Católica 1-3, 50009 Zaragoza, Spain
- CIBER in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Jesús Ciriza
- Tissue Microenvironment (TME) Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, C/ Mariano Esquillor s/n, 500018 Zaragoza, Spain.
- Institute for Health Research Aragón (IIS Aragón), Paseo de Isabel La Católica 1-3, 50009 Zaragoza, Spain
| | - María López-Valdeolivas
- Aragón Institute of Nanoscience and Materials (INMA), Department of Condensed Matter Physics (Faculty of Science), CSIC-University of Zaragoza, C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Rosa Monge
- BEONCHIP S.L., CEMINEM, Campus Río Ebro. C/ Mariano Esquillor Gómez s/n, 50018 Zaragoza, Spain
| | - Carlos Sánchez-Somolinos
- CIBER in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Aragón Institute of Nanoscience and Materials (INMA), Department of Condensed Matter Physics (Faculty of Science), CSIC-University of Zaragoza, C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Ignacio Ochoa
- Tissue Microenvironment (TME) Lab. Aragón Institute of Engineering Research (I3A), University of Zaragoza, C/ Mariano Esquillor s/n, 500018 Zaragoza, Spain.
- Institute for Health Research Aragón (IIS Aragón), Paseo de Isabel La Católica 1-3, 50009 Zaragoza, Spain
- CIBER in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
46
|
Khan MA, Stojanović GM, Hassan R, Anand TJS, Al-Ejji M, Hasan A. Role of Graphene Oxide in Bacterial Cellulose-Gelatin Hydrogels for Wound Dressing Applications. ACS OMEGA 2023; 8:15909-15919. [PMID: 37179612 PMCID: PMC10173314 DOI: 10.1021/acsomega.2c07279] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/01/2023] [Indexed: 05/15/2023]
Abstract
Biopolymer-based hydrogels have several advantages, including robust mechanical tunability, high biocompatibility, and excellent optical properties. These hydrogels can be ideal wound dressing materials and advantageous to repair and regenerate skin wounds. In this work, we prepared composite hydrogels by blending gelatin and graphene oxide-functionalized bacterial cellulose (GO-f-BC) with tetraethyl orthosilicate (TEOS). The hydrogels were characterized using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), atomic force microscope (AFM), and water contact angle analyses to explore functional groups and their interactions, surface morphology, and wetting behavior, respectively. The swelling, biodegradation, and water retention were tested to respond to the biofluid. Maximum swelling was exhibited by GBG-1 (0.01 mg GO amount) in all media (aqueous = 1902.83%, PBS = 1546.63%, and electrolyte = 1367.32%). All hydrogels were hemocompatible, as their hemolysis was less than 0.5%, and blood coagulation time decreased as the hydrogel concentration and GO amount increased under in vitro standard conditions. These hydrogels exhibited unusual antimicrobial activities against Gram-positive and Gram-negative bacterial strains. The cell viability and proliferation were increased with an increased GO amount, and maximum values were found for GBG-4 (0.04 mg GO amount) against fibroblast (3T3) cell lines. The mature and well-adhered cell morphology of 3T3 cells was found for all hydrogel samples. Based on all findings, these hydrogels would be a potential wound dressing skin material for wound healing applications.
Collapse
Affiliation(s)
- Muhammad
Umar Aslam Khan
- Biomedical
Research Center, Qatar University, Doha 2713, Qatar
- Department
of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
| | - Goran M. Stojanović
- Faculty
of Technical Sciences, University of Novi
Sad, T. Dositeja Obradovi’ca 6, 21000 Novi Sad, Serbia
| | - Rozita Hassan
- Orthodontic
Unit, School of Dental Science, Universiti
Sains Malaysia, Kubang
Kerian, Kelantan 16150, Malaysia
| | - T. Joseph Sahaya Anand
- Sustainable
and Responsive Manufacturing Group, Faculty of Mechanical and Manufacturing
Engineering Technology, Universiti Teknikal
Malaysia Melaka, Hang Tuah Jaya, Melaka 76100, Malacca, Malaysia
| | - Maryam Al-Ejji
- Center for
Advanced Materials, Qatar University, Doha 2713, Qatar
| | - Anwarul Hasan
- Biomedical
Research Center, Qatar University, Doha 2713, Qatar
- Department
of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
| |
Collapse
|
47
|
Sumini M, Souza CRD, Andrade GJS, Oliveira IRC, Scandorieiro S, Tischer CA, Kobayashi RKT, Nakazato G. Cellulose Hydrogel with Hyaluronic Acid and Silver Nanoparticles: Sustained-Release Formulation with Antibacterial Properties against Pseudomonas aeruginosa. Antibiotics (Basel) 2023; 12:antibiotics12050873. [PMID: 37237777 DOI: 10.3390/antibiotics12050873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Pathogenic bacteria resistant to conventional antibiotics represent a global challenge and justify the need for new antimicrobials capable of combating bacterial multidrug resistance. This study describes the development of a topical hydrogel in a formulation composed of cellulose, hyaluronic acid (HA), and silver nanoparticles (AgNPs) against strains of Pseudomonas aeruginosa. AgNPs as an antimicrobial agent were synthesized by a new method based on green chemistry, using arginine as a reducing agent and potassium hydroxide as a carrier. Scanning electron microscopy showed the formation of a composite between cellulose and HA in a three-dimensional network of cellulose fibrils, with thickening of the fibrils and filling of spaces by HA with the presence of pores. Ultraviolet-visible spectroscopy (UV-vis) and particle size distribution for dynamic light scattering (DLS) confirmed the formation of AgNPs with peak absorption at ~430 nm and 57.88 nm. AgNPs dispersion showed a minimum inhibitory concentration (MIC) of 1.5 µg/mL. The time-kill assay showed that after 3 h of exposure to the hydrogel containing AgNPs, there were no viable cells, corresponding to a bactericidal efficacy of 99.999% in the 95% confidence level. We obtained a hydrogel that is easy to apply, with sustained release and bactericidal properties against strains of Pseudomonas aeruginosa at low concentrations of the agent.
Collapse
Affiliation(s)
- Mirian Sumini
- Department of Microbiology, Biological Sciences Center, Londrina State University, Londrina 86057-970, Paraná, Brazil
| | - Clara Ruiz de Souza
- Department of Pharmacy, Health Sciences Center, Londrina State University, Londrina 86057-970, Paraná, Brazil
| | - Gabriel Jonathan Sousa Andrade
- Department of Biochemistry and Biotechnology, Exact Sciences Center, Londrina State University, Londrina 86057-970, Paraná, Brazil
| | - Igor Roberto Cabral Oliveira
- Department of Civil Engineering, Faculty of Technology, Federal University of Amazonas, Manaus 69077-000, Amazonas, Brazil
| | - Sara Scandorieiro
- Department of Microbiology, Biological Sciences Center, Londrina State University, Londrina 86057-970, Paraná, Brazil
| | - Cesar Augusto Tischer
- Department of Biochemistry and Biotechnology, Exact Sciences Center, Londrina State University, Londrina 86057-970, Paraná, Brazil
| | | | - Gerson Nakazato
- Department of Microbiology, Biological Sciences Center, Londrina State University, Londrina 86057-970, Paraná, Brazil
| |
Collapse
|
48
|
Mansur AAP, Rodrigues MA, Capanema NSV, Carvalho SM, Gomes DA, Mansur HS. Functionalized bioadhesion-enhanced carboxymethyl cellulose/polyvinyl alcohol hybrid hydrogels for chronic wound dressing applications. RSC Adv 2023; 13:13156-13168. [PMID: 37124005 PMCID: PMC10140670 DOI: 10.1039/d3ra01519j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/21/2023] [Indexed: 05/02/2023] Open
Abstract
Wounds produced by trauma, burns, and chronic diseases cause millions of patients to suffer discomfort, pain, and, in many cases, disability and death, leading to enormous health, social and financial impacts globally. Regrettably, current clinical treatments for chronic wounds remain unsatisfactory. Thus, this study reports for the first time the design, development, and synthesis of chemically biofunctionalized hybrid hydrogels made of carboxymethyl cellulose (CMC) and poly(vinyl alcohol) (PVA) crosslinked by citric acid using an entirely biocompatible and green process. They demonstrated suitable physicochemical properties, cytocompatibility, and hemocompatibility to be applied as a smart wound dressing for skin tissue engineering. These novel hybrids were biofunctionalized with l-arginine and RGD peptide through carbodiimide mediated-amide formation to promote bioadhesion of fibroblast and keratinocyte cells as a potential enhancement for wound healing and skin tissue engineering applications.
Collapse
Affiliation(s)
- A A P Mansur
- Department of Metallurgical and Materials Engineering, Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Federal University of Minas Gerais Av. Antônio Carlos 6627 - Escola de Engenharia, Bloco 2 - Sala 2233, 31.270-901 Belo Horizonte MG Brazil +55-31-34091843
| | - M A Rodrigues
- Department of Biochemistry and Immunology, Federal University of Minas Gerais Brazil
| | - N S V Capanema
- Department of Metallurgical and Materials Engineering, Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Federal University of Minas Gerais Av. Antônio Carlos 6627 - Escola de Engenharia, Bloco 2 - Sala 2233, 31.270-901 Belo Horizonte MG Brazil +55-31-34091843
| | - S M Carvalho
- Department of Metallurgical and Materials Engineering, Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Federal University of Minas Gerais Av. Antônio Carlos 6627 - Escola de Engenharia, Bloco 2 - Sala 2233, 31.270-901 Belo Horizonte MG Brazil +55-31-34091843
| | - D A Gomes
- Department of Biochemistry and Immunology, Federal University of Minas Gerais Brazil
| | - H S Mansur
- Department of Metallurgical and Materials Engineering, Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Federal University of Minas Gerais Av. Antônio Carlos 6627 - Escola de Engenharia, Bloco 2 - Sala 2233, 31.270-901 Belo Horizonte MG Brazil +55-31-34091843
| |
Collapse
|
49
|
Feura ES, Maloney SE, Conlon IL, Broberg CA, Yang F, Schoenfisch MH. Injectable polysaccharide hydrogels as localized nitric oxide delivery formulations. ADVANCED MATERIALS TECHNOLOGIES 2023; 8:2201529. [PMID: 39211298 PMCID: PMC11361346 DOI: 10.1002/admt.202201529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Indexed: 09/04/2024]
Abstract
A series of injectable polysaccharide hydrogels were prepared with oxidized dextran and diethylenetriamine-modified carboxymethylcellulose or hyaluronic acid. Rheological evaluation revealed that carboxymethylcellulose-based hydrogels achieved the largest storage moduli (>1 kPa) when prepared from 5 wt. % solutions. However, carboxymethylcellulose-based hydrogels with storage moduli >100 Pa were prepared from solutions with concentrations as low as 2 wt. %. Hyaluronic acid-based hydrogels demonstrated smaller storage moduli but had swelling ratios more than four times that of the carboxymethylcellulose systems at the same polymer concentrations. The incorporation of N-diazeniumdiolate NO donors into the hydrogels resulted in reduced hydrogel storage moduli as a function of NO donor concentration. The impact of the hydrogel architecture on NO-release kinetics proved dependent on the identity of the NO donor. Hydrogel degradation over 14 d was measured at pH 5.4 and 7.4 and indicated that hyaluronic acid-based hydrogels degraded more rapidly than carboxymethylcellulose hydrogels and that the addition of NO to the hydrogels increased the rate at which they degraded. In vitro cytotoxicity of hydrogel extracts was evaluated against five cell lines, with no observed toxicity except for that of hyaluronic acid-based hydrogel extracts against human gingival fibroblasts. The diverse properties, versatility, and non-toxic characteristics of these injectable hydrogels should facilitate local delivery of nitric oxide for a range of biomedical applications.
Collapse
Affiliation(s)
- Evan S. Feura
- Department of Chemistry, University of North Carolina at Chapel Hill CB 3290, Chapel Hill, NC 27599
| | - Sara E. Maloney
- Department of Chemistry, University of North Carolina at Chapel Hill CB 3290, Chapel Hill, NC 27599
| | - Ivie L. Conlon
- Department of Chemistry, University of North Carolina at Chapel Hill CB 3290, Chapel Hill, NC 27599
| | - Christopher A. Broberg
- Department of Chemistry, University of North Carolina at Chapel Hill CB 3290, Chapel Hill, NC 27599
| | - Feichen Yang
- Department of Chemistry, University of North Carolina at Chapel Hill CB 3290, Chapel Hill, NC 27599
| | - Mark H. Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill CB 3290, Chapel Hill, NC 27599
| |
Collapse
|
50
|
Simaan-Yameen H, Bar-Am O, Saar G, Seliktar D. Methacrylated Fibrinogen Hydrogels for 3D Cell Culture and Delivery. Acta Biomater 2023; 164:94-110. [PMID: 37030621 DOI: 10.1016/j.actbio.2023.03.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023]
Abstract
Methacrylation was performed on fibrinogen to design a new biomedical hydrogel for 3D cell culture or as a biodegradable delivery matrix for in vivo implantation. The methacrylation of denatured fibrinogen in solution was performed using methacrylic anhydride (MAA). The extent of fibrinogen methacrylation was quantified by proton NMR and controlled using stochiometric quantities of MAA during the reaction. The methacrylated fibrinogen (FibMA) hydrogels were formed by light-activated free-radical polymerization in the presence of macromolecular cross-linking polymers made from acrylated poly(ethylene glycol) (PEG). The biocompatibility and biodegradability of the FibMA hydrogels were characterized by in vitro assays and in vivo implantation experiments using quantitative magnetic resonance imaging (MRI) of the implant volume. The FibMA supported the growth and metabolic activity of human dermal fibroblasts in both 2D and 3D cultures. The methacrylation did not alter important biological attributes of the fibrinogen, including the ability to support cell adhesion and 3D cell culture, as well as to undergo proteolysis. Animal experiments confirmed the biodegradability of the FibMA for potential use as a scaffold in tissue engineering, as a bioink for 3D printing, or as a biodegradable matrix for in vivo sustained delivery of bioactive factors. STATEMENT OF SIGNIFICANCE: : This paper describes methacrylated fibrinogen (FibMA) and the formation of a biomedical hydrogel from FibMA for cell culture and other biomedical applications. Inspired from methacrylated gelatin (GelMA), the FibMA is made from blood-derived fibrinogen which is more suitable for clinical use. Sharing similar properties to other hydrogels made from methacrylated proteins, the FibMA has yet to be reported in the literature. In this manuscript, we provide the methodology to produce the FibMA hydrogels, we document the mechanical versatility of this new biomaterial, and we show the biocompatibility using 3D cell culture studies and in vivo implantations.
Collapse
|