1
|
Edhan O, Hellman Z. Game changing mutation. ROYAL SOCIETY OPEN SCIENCE 2025; 12:241951. [PMID: 40309187 PMCID: PMC12041896 DOI: 10.1098/rsos.241951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 02/02/2025] [Indexed: 05/02/2025]
Abstract
We present a model of the effect of mutation on haploid sexually reproducing populations by modelling the reproductive dynamics as occurring in the context of a common interests game played by the loci, with the alleles in the role of pure actions. Absent mutations, the population will deterministically converge to a pure Nash equilibrium of the game. A novel mutation adds new alleles, hence is tantamount to a change of the game by the addition of new actions. If the new game defined by the mutation removes the former pure Nash equilibrium the game changing mutation becomes in addition a Nash equilibrium changing mutation, as the population will then move to a new equilibrium with an increase in fitness. A graph of common interests games is defined, and evolution by mutation is modelled as a path through this graph. We discuss two applications-fitness valley crossing and evolutionary contingency.
Collapse
Affiliation(s)
- Omer Edhan
- Department of Economics, University of Manchester, Manchester, UK
| | - Ziv Hellman
- Department of Economics, Bar-Ilan University Department of Economics, Ramat Gan, Israel
| |
Collapse
|
2
|
Wang S, Li J, Yu P, Guo L, Zhou J, Yang J, Wu W. Convergent evolution in angiosperms adapted to cold climates. PLANT COMMUNICATIONS 2025; 6:101258. [PMID: 39849842 PMCID: PMC11897497 DOI: 10.1016/j.xplc.2025.101258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/29/2024] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
Convergent and parallel evolution occur more frequently than previously thought. Here, we focus on the evolutionary adaptations of angiosperms at sub-zero temperatures. We begin by introducing the history of research on convergent and parallel evolution, defining all independent similarities as convergent evolution. Our analysis reveals that frost zones (periodic or constant), which cover 49.1% of Earth's land surface, host 137 angiosperm families, with over 90% of their species thriving in these regions. In this context, we revisit the global biogeography and evolutionary trajectories of plant traits, such as herbaceous form and deciduous leaves, that are thought to be evasion strategies for frost adaptation. At the physiological and molecular levels, many angiosperms have independently evolved cold acclimation mechanisms through multiple pathways in addition to the well-characterized C-repeat binding factor/dehydration-responsive element binding protein 1 (CBF/DREB1) regulatory pathway. These convergent adaptations have occurred across various molecular levels, including amino acid substitutions and changes in gene duplication and expression within the same or similar functional pathways; however, identical amino acid changes are rare. Our results also highlight the prevalence of polyploidy in frost zones and the occurrence of paleopolyploidization events during global cooling. These patterns suggest repeated evolution in cold climates. Finally, we discuss plant domestication and predict climate zone shifts due to global warming and their effects on plant migration and in situ adaptation. Overall, the integration of ecological and molecular perspectives is essential for understanding and forecasting plant responses to climate change.
Collapse
Affiliation(s)
- Shuo Wang
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China
| | - Jing Li
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China
| | - Ping Yu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Evaluation and Research Center of Daodi Herbs of Jiangxi Province, Ganjiang New District 330000, China
| | - Liangyu Guo
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China
| | - Junhui Zhou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Evaluation and Research Center of Daodi Herbs of Jiangxi Province, Ganjiang New District 330000, China
| | - Jian Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Evaluation and Research Center of Daodi Herbs of Jiangxi Province, Ganjiang New District 330000, China.
| | - Wenwu Wu
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang International Science and Technology Cooperation Base for Plant Germplasm Resources Conservation and Utilization, Zhejiang A&F University, Hangzhou 311300, China; Provincial Key Laboratory for Non-wood Forest and Quality Control and Utilization of Its Products, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
3
|
Boisseau RP, Bradler S, Emlen DJ. Divergence time and environmental similarity predict the strength of morphological convergence in stick and leaf insects. Proc Natl Acad Sci U S A 2025; 122:e2319485121. [PMID: 39715436 PMCID: PMC11725862 DOI: 10.1073/pnas.2319485121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/04/2024] [Indexed: 12/25/2024] Open
Abstract
Independent evolution of similar traits in lineages inhabiting similar environments (convergent or repeated evolution) is often taken as evidence for adaptation by natural selection, and used to illustrate the predictability of evolution. Yet convergence is rarely perfect for two reasons. First, environments may not be as similar as they appear. Second, responses to selection are contingent upon available genetic variation and independent lineages may differ in the alleles, genetic backgrounds, and even the developmental mechanisms responsible for the phenotypes in question. Both impediments to convergence are predicted to increase as the length of time separating two lineages increases, making it difficult to discern their relative importance. We quantified environmental similarity and the extent of convergence to show how habitat and divergence time each contribute to observed patterns of morphological evolution in 212 species of stick and leaf insects (order Phasmatodea). Dozens of phasmid lineages independently colonized similar habitats, repeatedly evolving in parallel directions on a 23-trait morphospace, though the magnitude and direction of these shifts varied. Lineages converging toward more similar environments ended up closer on the morphospace, as did closely related lineages, and closely related lineages followed more parallel evolutionary trajectories to arrive there than more distantly related ones. Remarkably, after accounting for habitat similarity, we show that divergence time reduced the extent of convergence at a constant rate across more than 100 My of separation, suggesting even the magnitude of contingency can be predictable, given sufficient spans of time.
Collapse
Affiliation(s)
- Romain P. Boisseau
- Division of Biological Sciences, University of Montana, Missoula, MT59812
- Department of Ecology and Evolution, University of Lausanne, LausanneCH-1015, Switzerland
| | - Sven Bradler
- Department of Animal Evolution and Biodiversity, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, University of Göttingen, GöttingenD-37073, Germany
| | - Douglas J. Emlen
- Division of Biological Sciences, University of Montana, Missoula, MT59812
| |
Collapse
|
4
|
Owens GL, Caseys C, Mitchell N, Hübner S, Whitney KD, Rieseberg LH. Shared Selection and Genetic Architecture Drive Strikingly Repeatable Evolution in Long-Term Experimental Hybrid Populations. Mol Biol Evol 2025; 42:msaf014. [PMID: 39835697 PMCID: PMC11783286 DOI: 10.1093/molbev/msaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/27/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
The degree to which evolution repeats itself has implications regarding the major forces driving evolution and the potential for evolutionary biology to be a predictive (vs. solely historical) science. To understand the factors that control evolutionary repeatability, we experimentally evolved four replicate hybrid populations of sunflowers at natural sites for up to 14 years and tracked ancestry across the genome. We found that there was very strong negative selection against introgressed ancestry in several chromosomes, but positive selection for introgressed ancestry in one chromosome. Further, the strength of selection was influenced by recombination rate. High recombination regions had lower selection against introgressed ancestry due to more frequent recombination away from incompatible backgrounds. Strikingly, evolution was highly parallel across replicates, with shared selection driving 88% of variance in introgressed allele frequency change. Parallel evolution was driven by both high levels of sustained linkage in introgressed alleles and strong selection on large-effect quantitative trait loci. This work highlights the repeatability of evolution through hybridization and confirms the central roles that natural selection, genomic architecture, and recombination play in the process.
Collapse
Affiliation(s)
- Gregory L Owens
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Celine Caseys
- Department of Plant Science, University of California, Davis, CA, USA
| | - Nora Mitchell
- Department of Biology, University of Wisconsin–Eau Claire, Eau Claire, WI, USA
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Sariel Hübner
- Department of Bioinformatics and Galilee Research Institute (MIGAL), Tel Hai Academic College, Tel Hai, Israel
| | - Kenneth D Whitney
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Loren H Rieseberg
- Department of Botany and Beaty Biodiversity Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
5
|
Vila JA. The origin of mutational epistasis. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2024; 53:473-480. [PMID: 39443382 DOI: 10.1007/s00249-024-01725-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 10/25/2024]
Abstract
The interconnected processes of protein folding, mutations, epistasis, and evolution have all been the subject of extensive analysis throughout the years due to their significance for structural and evolutionary biology. The origin (molecular basis) of epistasis-the non-additive interactions between mutations-is still, nonetheless, unknown. The existence of a new perspective on protein folding, a problem that needs to be conceived as an 'analytic whole', will enable us to shed light on the origin of mutational epistasis at the simplest level-within proteins-while also uncovering the reasons why the genetic background in which they occur, a key component of molecular evolution, could foster changes in epistasis effects. Additionally, because mutations are the source of epistasis, more research is needed to determine the impact of post-translational modifications, which can potentially increase the proteome's diversity by several orders of magnitude, on mutational epistasis and protein evolvability. Finally, a protein evolution thermodynamic-based analysis that does not consider specific mutational steps or epistasis effects will be briefly discussed. Our study explores the complex processes behind the evolution of proteins upon mutations, clearing up some previously unresolved issues, and providing direction for further research.
Collapse
Affiliation(s)
- Jorge A Vila
- IMASL-CONICET, Ejército de Los Andes 950, 5700, San Luis, Argentina.
| |
Collapse
|
6
|
Martinez CM, Corn KA, Williamson S, Satterfield D, Roberts-Hugghis AS, Barley A, Borstein SR, McGee MD, Wainwright PC. Replicated Functional Evolution in Cichlid Adaptive Radiations. Am Nat 2024; 204:242-257. [PMID: 39179237 DOI: 10.1086/731477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
AbstractAdaptive radiations highlight the mechanisms by which species and traits diversify and the extent to which these patterns are predictable. We used 1,110 high-speed videos of suction feeding to study functional and morphological diversification in 300 cichlid species from three African Great Lake radiations of varying ages (Victoria, Malawi, and Tanganyika) and an older, spatially dispersed continental radiation in the Neotropics. Among African radiations, standing diversity was reflective of time. Morphological and functional variance in Lake Victoria, the youngest radiation, was a subset of that within Lake Malawi, which itself was nested within the older Tanganyikan radiation. However, functional diversity in Neotropical cichlids was often lower than that in Lake Tanganyika, despite being much older. These two radiations broadly overlapped, but each diversified into novel trait spaces not found in the youngest lake radiations. Evolutionary rates across radiations were inversely related to age, suggesting extremely rapid trait evolution at early stages, particularly in lake radiations. Despite this support for early bursts, other patterns of trait diversity were inconsistent with expectations of adaptive radiations. This work suggests that cichlid functional evolution has played out in strikingly similar fashion in different radiations, with contingencies eventually resulting in lineage-specific novelties.
Collapse
|
7
|
Li B, Jia Y, Xu L, Zhang S, Long Z, Wang R, Guo Y, Zhang W, Jiao C, Li C, Xu Y. Transcriptional convergence after repeated duplication of an amino acid transporter gene leads to the independent emergence of the black husk/pericarp trait in barley and rice. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1282-1298. [PMID: 38124464 PMCID: PMC11022822 DOI: 10.1111/pbi.14264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/09/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023]
Abstract
The repeated emergence of the same trait (convergent evolution) in distinct species is an interesting phenomenon and manifests visibly the power of natural selection. The underlying genetic mechanisms have important implications to understand how the genome evolves under environmental challenges. In cereal crops, both rice and barley can develop black-coloured husk/pericarp due to melanin accumulation. However, it is unclear if this trait shares a common origin. Here, we fine-mapped the barley HvBlp gene controlling the black husk/pericarp trait and confirmed its function by gene silencing. The result was further supported by a yellow husk/pericarp mutant with deletion of the HvBlp gene, derived from gamma ray radiation of the wild-type W1. HvBlp encodes a putative tyrosine transporter homologous to the black husk gene OsBh4 in rice. Surprisingly, synteny and phylogenetic analyses showed that HvBlp and OsBh4 belonged to different lineages resulted from dispersed and tandem duplications, respectively, suggesting that the black husk/pericarp trait has emerged independently. The dispersed duplication (dated at 21.23 MYA) yielding HvBlp occurred exclusively in the common ancestor of Triticeae. HvBlp and OsBh4 displayed converged transcription in husk/pericarp tissues, contributing to the black husk/pericarp trait. Further transcriptome and metabolome data identified critical candidate genes and metabolites related to melanin production in barley. Taken together, our study described a compelling case of convergent evolution resulted from transcriptional convergence after repeated gene duplication, providing valuable genetic insights into phenotypic evolution. The identification of the black husk/pericarp genes in barley also has great potential in breeding for stress-resilient varieties with higher nutritional values.
Collapse
Affiliation(s)
- Bo Li
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement & Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Molecular Breeding, Food Crops InstituteHubei Academy of Agricultural SciencesWuhanChina
| | - Yong Jia
- Western Crop Genetics Alliance, Future Food Institute, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Le Xu
- Hubei Collaborative Innovation Centre for the industrialization of Major Grain Crops, College of AgricultureYangtze UniversityJingzhouChina
| | - Shuo Zhang
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement & Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Molecular Breeding, Food Crops InstituteHubei Academy of Agricultural SciencesWuhanChina
| | - Zhoukai Long
- Hubei Collaborative Innovation Centre for the industrialization of Major Grain Crops, College of AgricultureYangtze UniversityJingzhouChina
| | - Rong Wang
- Hubei Collaborative Innovation Centre for the industrialization of Major Grain Crops, College of AgricultureYangtze UniversityJingzhouChina
| | - Ying Guo
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement & Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Molecular Breeding, Food Crops InstituteHubei Academy of Agricultural SciencesWuhanChina
| | - Wenying Zhang
- Hubei Collaborative Innovation Centre for the industrialization of Major Grain Crops, College of AgricultureYangtze UniversityJingzhouChina
| | - Chunhai Jiao
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement & Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Molecular Breeding, Food Crops InstituteHubei Academy of Agricultural SciencesWuhanChina
| | - Chengdao Li
- Western Crop Genetics Alliance, Future Food Institute, Western Australian State Agricultural Biotechnology Centre, College of Science, Health, Engineering and EducationMurdoch UniversityMurdochWestern AustraliaAustralia
- Department of Primary Industries and Regional DevelopmentSouth PerthWestern AustraliaAustralia
| | - Yanhao Xu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement & Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Molecular Breeding, Food Crops InstituteHubei Academy of Agricultural SciencesWuhanChina
| |
Collapse
|
8
|
Behringer MG, Ho WC, Miller SF, Worthan SB, Cen Z, Stikeleather R, Lynch M. Trade-offs, trade-ups, and high mutational parallelism underlie microbial adaptation during extreme cycles of feast and famine. Curr Biol 2024; 34:1403-1413.e5. [PMID: 38460514 PMCID: PMC11066936 DOI: 10.1016/j.cub.2024.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/12/2023] [Accepted: 02/16/2024] [Indexed: 03/11/2024]
Abstract
Microbes are evolutionarily robust organisms capable of rapid adaptation to complex stress, which enables them to colonize harsh environments. In nature, microbes are regularly challenged by starvation, which is a particularly complex stress because resource limitation often co-occurs with changes in pH, osmolarity, and toxin accumulation created by metabolic waste. Often overlooked are the additional complications introduced by eventual resource replenishment, as successful microbes must withstand rapid environmental shifts before swiftly capitalizing on replenished resources to avoid invasion by competing species. To understand how microbes navigate trade-offs between growth and survival, ultimately adapting to thrive in environments with extreme fluctuations, we experimentally evolved 16 Escherichia coli populations for 900 days in repeated feast/famine conditions with cycles of 100-day starvation before resource replenishment. Using longitudinal population-genomic analysis, we found that evolution in response to extreme feast/famine is characterized by narrow adaptive trajectories with high mutational parallelism and notable mutational order. Genetic reconstructions reveal that early mutations result in trade-offs for biofilm and motility but trade-ups for growth and survival, as these mutations conferred positively correlated advantages during both short-term and long-term culture. Our results demonstrate how microbes can navigate the adaptive landscapes of regularly fluctuating conditions and ultimately follow mutational trajectories that confer benefits across diverse environments.
Collapse
Affiliation(s)
- Megan G Behringer
- Department of Biological Sciences, Vanderbilt University, 21st Avenue S, Nashville, TN 37232, USA; Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, 21st Avenue S, Nashville, TN 37232, USA.
| | - Wei-Chin Ho
- Biodesign Center for Mechanisms of Evolution, Arizona State University, S McAllister Ave., Tempe, AZ 85281, USA; Department of Biology, University of Texas at Tyler, University Blvd., Tyler, TX 75799, USA.
| | - Samuel F Miller
- Biodesign Center for Mechanisms of Evolution, Arizona State University, S McAllister Ave., Tempe, AZ 85281, USA
| | - Sarah B Worthan
- Department of Biological Sciences, Vanderbilt University, 21st Avenue S, Nashville, TN 37232, USA
| | - Zeer Cen
- Department of Biological Sciences, Vanderbilt University, 21st Avenue S, Nashville, TN 37232, USA
| | - Ryan Stikeleather
- Biodesign Center for Mechanisms of Evolution, Arizona State University, S McAllister Ave., Tempe, AZ 85281, USA
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, S McAllister Ave., Tempe, AZ 85281, USA
| |
Collapse
|
9
|
Lau ES, Goodheart JA, Anderson NT, Liu VL, Mukherjee A, Oakley TH. Similar enzymatic functions in distinct bioluminescence systems: Evolutionary recruitment of sulfotransferases in ostracod light organs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.12.536614. [PMID: 37090632 PMCID: PMC10120648 DOI: 10.1101/2023.04.12.536614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Genes from ancient families are sometimes involved in the convergent evolutionary origins of similar traits, even across vast phylogenetic distances. Sulfotransferases are an ancient family of enzymes that transfer sulfate from a donor to a wide variety of substrates, including probable roles in some bioluminescence systems. Here we demonstrate multiple sulfotransferases, highly expressed in light organs of the bioluminescent ostracod Vargula tsujii , transfer sulfate in vivo to the luciferin substrate, vargulin. We find luciferin sulfotransferases of ostracods are not orthologous to known luciferin sulfotransferases of fireflies or sea pansies; animals with distinct and convergently evolved bioluminescence systems compared to ostracods. Therefore, distantly related sulfotransferases were independently recruited at least three times, leading to parallel evolution of luciferin metabolism in three highly diverged organisms. Re-use of homologous genes is surprising in these bioluminescence systems because the other components, including luciferins and luciferases, are completely distinct. Whether convergently evolved traits incorporate ancient genes with similar functions or instead use distinct, often newer, genes may be constrained by how many genetic solutions exist for a particular function. When fewer solutions exist, as in genetic sulfation of small molecules, evolution may be more constrained to use the same genes time and again.
Collapse
|
10
|
Flanagan LM, Horton JS, Taylor TB. Mutational hotspots lead to robust but suboptimal adaptive outcomes in certain environments. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001395. [PMID: 37815519 PMCID: PMC10634368 DOI: 10.1099/mic.0.001395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/19/2023] [Indexed: 10/11/2023]
Abstract
The observed mutational spectrum of adaptive outcomes can be constrained by many factors. For example, mutational biases can narrow the observed spectrum by increasing the rate of mutation at isolated sites in the genome. In contrast, complex environments can shift the observed spectrum by defining fitness consequences of mutational routes. We investigate the impact of different nutrient environments on the evolution of motility in Pseudomonas fluorescens Pf0-2x (an engineered non-motile derivative of Pf0-1) in the presence and absence of a strong mutational hotspot. Previous work has shown that this mutational hotspot can be built and broken via six silent mutations, which provide rapid access to a mutation that rescues swimming motility and confers the strongest swimming phenotype in specific environments. Here, we evolved a hotspot and non-hotspot variant strain of Pf0-2x for motility under nutrient-rich (LB) and nutrient-limiting (M9) environmental conditions. We observed the hotspot strain consistently evolved faster across all environmental conditions and its mutational spectrum was robust to environmental differences. However, the non-hotspot strain had a distinct mutational spectrum that changed depending on the nutrient environment. Interestingly, while alternative adaptive mutations in nutrient-rich environments were equal to, or less effective than, the hotspot mutation, the majority of these mutations in nutrient-limited conditions produced superior swimmers. Our competition experiments mirrored these findings, underscoring the role of environment in defining both the mutational spectrum and the associated phenotype strength. This indicates that while mutational hotspots working in concert with natural selection can speed up access to robust adaptive mutations (which can provide a competitive advantage in evolving populations), they can limit exploration of the mutational landscape, restricting access to potentially stronger phenotypes in specific environments.
Collapse
Affiliation(s)
| | - James S. Horton
- Department of Life Sciences, University of Bath, Bath, BA2 7AY, UK
| | | |
Collapse
|
11
|
Buda K, Miton CM, Fan XC, Tokuriki N. Molecular determinants of protein evolvability. Trends Biochem Sci 2023; 48:751-760. [PMID: 37330341 DOI: 10.1016/j.tibs.2023.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/19/2023]
Abstract
The plethora of biological functions that sustain life is rooted in the remarkable evolvability of proteins. An emerging view highlights the importance of a protein's initial state in dictating evolutionary success. A deeper comprehension of the mechanisms that govern the evolvability of these initial states can provide invaluable insights into protein evolution. In this review, we describe several molecular determinants of protein evolvability, unveiled by experimental evolution and ancestral sequence reconstruction studies. We further discuss how genetic variation and epistasis can promote or constrain functional innovation and suggest putative underlying mechanisms. By establishing a clear framework for these determinants, we provide potential indicators enabling the forecast of suitable evolutionary starting points and delineate molecular mechanisms in need of deeper exploration.
Collapse
Affiliation(s)
- Karol Buda
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - Charlotte M Miton
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - Xingyu Cara Fan
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - Nobuhiko Tokuriki
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
12
|
Pereira AG, Kohlsdorf T. Repeated evolution of similar phenotypes: Integrating comparative methods with developmental pathways. Genet Mol Biol 2023; 46:e20220384. [PMID: 37486083 PMCID: PMC10364090 DOI: 10.1590/1678-4685-gmb-2022-0384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/24/2023] [Indexed: 07/25/2023] Open
Abstract
Repeated phenotypes, often referred to as 'homoplasies' in cladistic analyses, may evolve through changes in developmental processes. Genetic bases of recurrent evolution gained attention and have been studied in the past years using approaches that combine modern analytical phylogenetic tools with the stunning assemblage of new information on developmental mechanisms. In this review, we evaluated the topic under an integrated perspective, revisiting the classical definitions of convergence and parallelism and detailing comparative methods used to evaluate evolution of repeated phenotypes, which include phylogenetic inference, estimates of evolutionary rates and reconstruction of ancestral states. We provide examples to illustrate how a given methodological approach can be used to identify evolutionary patterns and evaluate developmental mechanisms associated with the intermittent expression of a given trait along the phylogeny. Finally, we address why repeated trait loss challenges strict definitions of convergence and parallelism, discussing how changes in developmental pathways might explain the high frequency of repeated trait loss in specific lineages.
Collapse
Affiliation(s)
- Anieli Guirro Pereira
- Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Departamento de Biologia, Ribeirão Preto, SP, Brazil
| | - Tiana Kohlsdorf
- Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Departamento de Biologia, Ribeirão Preto, SP, Brazil
| |
Collapse
|
13
|
Venkataram S, Kryazhimskiy S. Evolutionary repeatability of emergent properties of ecological communities. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220047. [PMID: 37004728 PMCID: PMC10067272 DOI: 10.1098/rstb.2022.0047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/07/2022] [Indexed: 04/04/2023] Open
Abstract
Most species belong to ecological communities where their interactions give rise to emergent community-level properties, such as diversity and productivity. Understanding and predicting how these properties change over time has been a major goal in ecology, with important practical implications for sustainability and human health. Less attention has been paid to the fact that community-level properties can also change because member species evolve. Yet, our ability to predict long-term eco-evolutionary dynamics hinges on how repeatably community-level properties change as a result of species evolution. Here, we review studies of evolution of both natural and experimental communities and make the case that community-level properties at least sometimes evolve repeatably. We discuss challenges faced in investigations of evolutionary repeatability. In particular, only a handful of studies enable us to quantify repeatability. We argue that quantifying repeatability at the community level is critical for approaching what we see as three major open questions in the field: (i) Is the observed degree of repeatability surprising? (ii) How is evolutionary repeatability at the community level related to repeatability at the level of traits of member species? (iii) What factors affect repeatability? We outline some theoretical and empirical approaches to addressing these questions. Advances in these directions will not only enrich our basic understanding of evolution and ecology but will also help us predict eco-evolutionary dynamics. This article is part of the theme issue 'Interdisciplinary approaches to predicting evolutionary biology'.
Collapse
Affiliation(s)
- Sandeep Venkataram
- Department of Ecology, Behavior and Evolution, UC San Diego, La Jolla, CA 92093, USA
| | - Sergey Kryazhimskiy
- Department of Ecology, Behavior and Evolution, UC San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
14
|
Wood DP, Holmberg JA, Osborne OG, Helmstetter AJ, Dunning LT, Ellison AR, Smith RJ, Lighten J, Papadopulos AST. Genetic assimilation of ancestral plasticity during parallel adaptation to zinc contamination in Silene uniflora. Nat Ecol Evol 2023; 7:414-423. [PMID: 36702857 PMCID: PMC9998271 DOI: 10.1038/s41559-022-01975-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/12/2022] [Indexed: 01/27/2023]
Abstract
Phenotypic plasticity in ancestral populations is hypothesized to facilitate adaptation, but evidence is piecemeal and often contradictory. Further, whether ancestral plasticity increases the probability of parallel adaptive changes has not been explored. The most general finding is that ancestral responses to a new environment are reversed following adaptation (known as reversion). We investigated the contribution of ancestral plasticity to adaptive evolution of gene expression in two independently evolved lineages of zinc-tolerant Silene uniflora. We found that the general pattern of reversion is driven by the absence of a widespread stress response in zinc-adapted plants compared with zinc-sensitive plants. We show that ancestral plasticity that moves expression closer to the optimum value in the new environment influences the evolution of gene expression among genes that are likely to be involved in adaptation and increases the chance that genes are recruited repeatedly during adaptation. However, despite convergence in gene expression levels between independently adapted lineages, ancestral plasticity does not influence how similar expression values of adaptive genes become. Surprisingly, we also observed that ancestral plasticity that increases fitness often becomes genetically determined and fixed, that is, genetically assimilated. These results emphasize the important role of ancestral plasticity in parallel adaptation.
Collapse
Affiliation(s)
- Daniel P Wood
- Molecular Ecology and Evolution Bangor, School of Natural Sciences, Bangor University, Environment Centre Wales, Bangor, UK
| | - Jon A Holmberg
- Molecular Ecology and Evolution Bangor, School of Natural Sciences, Bangor University, Environment Centre Wales, Bangor, UK
| | - Owen G Osborne
- Molecular Ecology and Evolution Bangor, School of Natural Sciences, Bangor University, Environment Centre Wales, Bangor, UK
| | - Andrew J Helmstetter
- Fondation pour la Recherche sur la Biodiversité - Centre for the Synthesis and Analysis of Biodiversity, Institut Bouisson Bertrand, Montpellier, France
| | - Luke T Dunning
- Ecology and Evolutionary Biology, School of Biosciences, Sheffield, UK
| | - Amy R Ellison
- Molecular Ecology and Evolution Bangor, School of Natural Sciences, Bangor University, Environment Centre Wales, Bangor, UK
| | | | - Jackie Lighten
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Alexander S T Papadopulos
- Molecular Ecology and Evolution Bangor, School of Natural Sciences, Bangor University, Environment Centre Wales, Bangor, UK.
| |
Collapse
|
15
|
Chaturvedi S, Gompert Z, Feder JL, Osborne OG, Muschick M, Riesch R, Soria-Carrasco V, Nosil P. Climatic similarity and genomic background shape the extent of parallel adaptation in Timema stick insects. Nat Ecol Evol 2022; 6:1952-1964. [PMID: 36280782 PMCID: PMC7613875 DOI: 10.1038/s41559-022-01909-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 09/13/2022] [Indexed: 12/15/2022]
Abstract
Evolution can repeat itself, resulting in parallel adaptations in independent lineages occupying similar environments. Moreover, parallel evolution sometimes, but not always, uses the same genes. Two main hypotheses have been put forth to explain the probability and extent of parallel evolution. First, parallel evolution is more likely when shared ecologies result in similar patterns of natural selection in different taxa. Second, parallelism is more likely when genomes are similar because of shared standing variation and similar mutational effects in closely related genomes. Here we combine ecological, genomic, experimental and phenotypic data with Bayesian modelling and randomization tests to quantify the degree of parallelism and its relationship with ecology and genetics. Our results show that the extent to which genomic regions associated with climate are parallel among species of Timema stick insects is shaped collectively by shared ecology and genomic background. Specifically, the extent of genomic parallelism decays with divergence in climatic conditions (that is, habitat or ecological similarity) and genomic similarity. Moreover, we find that climate-associated loci are likely subject to selection in a field experiment, overlap with genetic regions associated with cuticular hydrocarbon traits and are not strongly shaped by introgression between species. Our findings shed light on when evolution is most expected to repeat itself.
Collapse
Affiliation(s)
- Samridhi Chaturvedi
- Department of Integrative Biology, University of California, Berkeley, CA, USA.
- Department of Biology and Ecology Center, Utah State University, Logan, UT, USA.
| | - Zachariah Gompert
- Department of Biology and Ecology Center, Utah State University, Logan, UT, USA.
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Owen G Osborne
- Molecular Ecology and Evolution Bangor, Environment Centre Wales, School of Natural Sciences, Bangor University, Bangor, UK
| | - Moritz Muschick
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Fish Ecology and Evolution, Eawag, Swiss Federal Institute for Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Rüdiger Riesch
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | | | - Patrik Nosil
- Department of Biology and Ecology Center, Utah State University, Logan, UT, USA
- CEFE, Univ. Montpellier, CNRS, EPHE, IRD, Univ. Paul Valéry Montpellier 3, Montpellier, France
| |
Collapse
|
16
|
Mitchell N, Luu H, Owens GL, Rieseberg LH, Whitney KD. Hybrid evolution repeats itself across environmental contexts in Texas sunflowers (Helianthus). Evolution 2022; 76:1512-1528. [PMID: 35665925 PMCID: PMC9544064 DOI: 10.1111/evo.14536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 01/22/2023]
Abstract
To what extent is evolution repeatable? Little is known about whether the evolution of hybrids is more (or less) repeatable than that of nonhybrids. We used field experimental evolution in annual sunflowers (Helianthus) in Texas to ask the extent to which hybrid evolution is repeatable across environments compared to nonhybrid controls. We created hybrids between Helianthus annuus (L.) and H. debilis (Nutt.) and grew plots of both hybrids and nonhybrid controls through eight generations at three sites in Texas. We collected seeds from each generation and grew each generation × treatment × home site combination at two final common gardens. We estimated the strength and direction of evolution in terms of fitness and 24 traits, tested for repeated versus nonrepeated evolution, and assessed overall phenotypic evolution across lineages and in relation to a locally adapted phenotype. Hybrids consistently evolved higher fitness over time, while controls did not, although trait evolution varied in strength across home sites. Repeated evolution was more evident in hybrids versus nonhybrid controls, and hybrid evolution was often in the direction of the locally adapted phenotype. Our findings have implications for both the nature of repeatability in evolution and the contribution of hybridization to evolution across environmental contexts.
Collapse
Affiliation(s)
- Nora Mitchell
- Department of BiologyUniversity of New MexicoAlbuquerqueNew MexicoUSA,Department of BiologyUniversity of Wisconsin – Eau ClaireEau ClaireWisconsinUSA
| | - Hoang Luu
- Department of Environmental and Plant BiologyOhio UniversityAthensOhioUSA
| | - Gregory L. Owens
- Department of BiologyUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Loren H. Rieseberg
- Department of Botany and Biodiversity Research CentreUniversity of British ColumbiaBritish ColumbiaCanada
| | | |
Collapse
|
17
|
Kitano J, Ishikawa A, Ravinet M, Courtier-Orgogozo V. Genetic basis of speciation and adaptation: from loci to causative mutations. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200503. [PMID: 35634921 PMCID: PMC9149796 DOI: 10.1098/rstb.2020.0503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Does evolution proceed in small steps or large leaps? How repeatable is evolution? How constrained is the evolutionary process? Answering these long-standing questions in evolutionary biology is indispensable for both understanding how extant biodiversity has evolved and predicting how organisms and ecosystems will respond to changing environments in the future. Understanding the genetic basis of phenotypic diversification and speciation in natural populations is key to properly answering these questions. The leap forward in genome sequencing technologies has made it increasingly easier to not only investigate the genetic architecture but also identify the variant sites underlying adaptation and speciation in natural populations. Furthermore, recent advances in genome editing technologies are making it possible to investigate the functions of each candidate gene in organisms from natural populations. In this article, we discuss how these recent technological advances enable the analysis of causative genes and mutations and how such analysis can help answer long-standing evolutionary biology questions. This article is part of the theme issue ‘Genetic basis of adaptation and speciation: from loci to causative mutations’.
Collapse
Affiliation(s)
- Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Asano Ishikawa
- Ecological Genetics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
- Laboratory of Molecular Ecological Genetics, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha 5-1-5, Chiba 277-8562, Japan
| | - Mark Ravinet
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | | |
Collapse
|
18
|
Pentz JT, Lind PA. Forecasting of phenotypic and genetic outcomes of experimental evolution in Pseudomonas protegens. PLoS Genet 2021; 17:e1009722. [PMID: 34351900 PMCID: PMC8370652 DOI: 10.1371/journal.pgen.1009722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/17/2021] [Accepted: 07/16/2021] [Indexed: 11/18/2022] Open
Abstract
Experimental evolution with microbes is often highly repeatable under identical conditions, suggesting the possibility to predict short-term evolution. However, it is not clear to what degree evolutionary forecasts can be extended to related species in non-identical environments, which would allow testing of general predictive models and fundamental biological assumptions. To develop an extended model system for evolutionary forecasting, we used previous data and models of the genotype-to-phenotype map from the wrinkly spreader system in Pseudomonas fluorescens SBW25 to make predictions of evolutionary outcomes on different biological levels for Pseudomonas protegens Pf-5. In addition to sequence divergence (78% amino acid and 81% nucleotide identity) for the genes targeted by mutations, these species also differ in the inability of Pf-5 to make cellulose, which is the main structural basis for the adaptive phenotype in SBW25. The experimental conditions were changed compared to the SBW25 system to test if forecasts were extendable to a non-identical environment. Forty-three mutants with increased ability to colonize the air-liquid interface were isolated, and the majority had reduced motility and was partly dependent on the Pel exopolysaccharide as a structural component. Most (38/43) mutations are expected to disrupt negative regulation of the same three diguanylate cyclases as in SBW25, with a smaller number of mutations in promoter regions, including an uncharacterized polysaccharide synthase operon. A mathematical model developed for SBW25 predicted the order of the three main pathways and the genes targeted by mutations, but differences in fitness between mutants and mutational biases also appear to influence outcomes. Mutated regions in proteins could be predicted in most cases (16/22), but parallelism at the nucleotide level was low and mutational hot spot sites were not conserved. This study demonstrates the potential of short-term evolutionary forecasting in experimental populations and provides testable predictions for evolutionary outcomes in other Pseudomonas species.
Collapse
Affiliation(s)
| | - Peter A. Lind
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
19
|
Xie VC, Pu J, Metzger BP, Thornton JW, Dickinson BC. Contingency and chance erase necessity in the experimental evolution of ancestral proteins. eLife 2021; 10:67336. [PMID: 34061027 PMCID: PMC8282340 DOI: 10.7554/elife.67336] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/30/2021] [Indexed: 12/13/2022] Open
Abstract
The roles of chance, contingency, and necessity in evolution are unresolved because they have never been assessed in a single system or on timescales relevant to historical evolution. We combined ancestral protein reconstruction and a new continuous evolution technology to mutate and select proteins in the B-cell lymphoma-2 (BCL-2) family to acquire protein–protein interaction specificities that occurred during animal evolution. By replicating evolutionary trajectories from multiple ancestral proteins, we found that contingency generated over long historical timescales steadily erased necessity and overwhelmed chance as the primary cause of acquired sequence variation; trajectories launched from phylogenetically distant proteins yielded virtually no common mutations, even under strong and identical selection pressures. Chance arose because many sets of mutations could alter specificity at any timepoint; contingency arose because historical substitutions changed these sets. Our results suggest that patterns of variation in BCL-2 sequences – and likely other proteins, too – are idiosyncratic products of a particular and unpredictable course of historical events. One of the most fundamental and unresolved questions in evolutionary biology is whether the outcomes of evolution are predictable. Is the diversity of life we see today the expected result of organisms adapting to their environment throughout history (also known as natural selection) or the product of random chance? Or did chance events early in history shape the paths that evolution could take next, determining the biological forms that emerged under natural selection much later? These questions are hard to study because evolution happened only once, long ago. To overcome this barrier, Xie, Pu, Metzger et al. developed an experimental approach that can evolve reconstructed ancestral proteins that existed deep in the past. Using this method, it is possible to replay evolution multiple times, from various historical starting points, under conditions similar to those that existed long ago. The end products of the evolutionary trajectories can then be compared to determine how predictable evolution actually is. Xie, Pu, Metzger et al. studied proteins belonging to the BCL-2 family, which originated some 800 million years ago. These proteins have diversified greatly over time in both their genetic sequences and their ability to bind to specific partner proteins called co-regulators. Xie, Pu, Metzger et al. synthesized BCL-2 proteins that existed at various times in the past. Each ancestral protein was then allowed to evolve repeatedly under natural selection to acquire the same co-regulator binding functions that evolved during history. At the end of each evolutionary trajectory, the genetic sequence of the resulting BCL-2 proteins was recorded. This revealed that the outcomes of evolution were almost completely unpredictable: trajectories initiated from the same ancestral protein produced proteins with very different sequences, and proteins launched from different ancestral starting points were even more dissimilar. Further experiments identified the mutations in each trajectory that caused changes in coregulator binding. When these mutations were introduced into other ancestral proteins, they did not yield the same change in function. This suggests that early chance events influenced each protein’s evolution in an unpredictable way by opening and closing the paths available to it in the future. This research expands our understanding of evolution on a molecular level whilst providing a new experimental approach for studying evolutionary drivers in more detail. The results suggest that BCL-2 proteins, in all their various forms, are unique products of a particular, unpredictable course of history set in motion by ancient chance events.
Collapse
Affiliation(s)
| | - Jinyue Pu
- Department of Chemistry, University of Chicago, Chicago, United States
| | - Brian Ph Metzger
- Department of Ecology and Evolution, University of Chicago, Chicago, United States
| | - Joseph W Thornton
- Department of Ecology and Evolution, University of Chicago, Chicago, United States.,Department of Human Genetics, University of Chicago, Chicago, United States
| | - Bryan C Dickinson
- Department of Chemistry, University of Chicago, Chicago, United States
| |
Collapse
|
20
|
To What Inanimate Matter Are We Most Closely Related and Does the Origin of Life Harbor Meaning? PHILOSOPHIES 2021. [DOI: 10.3390/philosophies6020033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The question concerning the meaning of life is important, but it immediately confronts the present authors with insurmountable obstacles from a philosophical standpoint, as it would require us to define not only what we hold to be life, but what we hold to be meaning in addition, requiring us to do both in a properly researched context. We unconditionally surrender to that challenge. Instead, we offer a vernacular, armchair approach to life’s origin and meaning, with some layman’s thoughts on the meaning of origins as viewed from the biologist’s standpoint. One can observe that biologists generally approach the concept of biological meaning in the context of evolution. This is the basis for the broad resonance behind Dobzhansky’s appraisal that “Nothing in biology makes sense except in the light of evolution”. Biologists try to understand living things in the historical context of how they arose, without giving much thought to the definition of what life or living things are, which for a biologist is usually not an interesting question in the practical context of daily dealings with organisms. Do humans generally understand life’s meaning in the context of history? If we consider the problem of life’s origin, the question of what constitutes a living thing becomes somewhat more acute for the biologist, though not more answerable, because it is inescapable that there was a time when there were no organisms on Earth, followed by a time when there were, the latter time having persisted in continuity to the present. This raises the question of where, in that transition, chemicals on Earth became alive, requiring, in turn, a set of premises for how life arose in order to conceptualize the problem in relation to organisms we know today, including ourselves, which brings us to the point of this paper: In the same way that cultural narratives for origins always start with a setting, scientific narratives for origins also always start with a setting, a place on Earth or elsewhere where we can imagine what happened for the sake of structuring both the problem and the narrative for its solution. This raises the question of whether scientific origins settings convey meaning to humans in that they suggest to us from what kind of place and what kinds of chemicals we are descended, that is, to which inanimate things we are most closely related.
Collapse
|
21
|
Saeed M. Fractal genomics of SOD1 evolution. Immunogenetics 2020; 72:439-445. [PMID: 33237378 DOI: 10.1007/s00251-020-01184-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/28/2020] [Indexed: 10/22/2022]
Abstract
To understand the fundamental processes of gene evolution such as the impact of point mutations and segmental duplications on statistical topography, superoxide dismutase-1 (SOD1) orthologous sequences (n = 50) are studied. These demonstrate scale invariant self-similarity patterns and long-range correlations (LRCs) indicating fractal organization. Phylogenetic hierarchies change when SOD1 orthologs are grouped according to fractal measures, indicating that statistical topographies can be used to study gene evolution. Sliding window k-mer analysis show that majority of k-mers across all SOD1 orthologs are unique, with very few duplications. Orthologs from simpler species contribute minimally (< 1% of k-mers) to more complex species. Both simple and complex random processes fail to produce significant matching k-mer sequences for SOD1 orthologs. Point mutations causing amyotrophic lateral sclerosis do not impact the fractal organization of human SOD1. Hence, SOD1 did not evolve by a patchwork of repetitive sequences modified by point mutations. Moreover, fractal and other methods described here can be used to study the origin and evolution of genomes.
Collapse
|
22
|
Szilágyi A, Szabó P, Santos M, Szathmáry E. Phenotypes to remember: Evolutionary developmental memory capacity and robustness. PLoS Comput Biol 2020; 16:e1008425. [PMID: 33253184 PMCID: PMC7703877 DOI: 10.1371/journal.pcbi.1008425] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/06/2020] [Indexed: 12/02/2022] Open
Abstract
There is increased awareness of the possibility of developmental memories resulting from evolutionary learning. Genetic regulatory and neural networks can be modelled by analogous formalism raising the important question of productive analogies in principles, processes and performance. We investigate the formation and persistence of various developmental memories of past phenotypes asking how the number of remembered past phenotypes scales with network size, to what extent memories stored form by Hebbian-like rules, and how robust these developmental "devo-engrams" are against networks perturbations (graceful degradation). The analogy between neural and genetic regulatory networks is not superficial in that it allows knowledge transfer between fields that used to be developed separately from each other. Known examples of spectacular phenotypic radiations could partly be accounted for in such terms.
Collapse
Affiliation(s)
- András Szilágyi
- Institute of Evolution, Centre for Ecological Research, Tihany, Hungary
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Budapest, Hungary
- Center for the Conceptual Foundations of Science, Parmenides Foundation, Pullach/Munich, Germany
| | - Péter Szabó
- Institute of Evolution, Centre for Ecological Research, Tihany, Hungary
- Department of Ecology, Institute for Biology, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Mauro Santos
- Institute of Evolution, Centre for Ecological Research, Tihany, Hungary
- Department de Genètica i de Microbiologia, Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GBBE), Universitat Autonòma de Barcelona, Barcelona, Spain
| | - Eörs Szathmáry
- Institute of Evolution, Centre for Ecological Research, Tihany, Hungary
- Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Budapest, Hungary
- Center for the Conceptual Foundations of Science, Parmenides Foundation, Pullach/Munich, Germany
| |
Collapse
|
23
|
Greenway R, Barts N, Henpita C, Brown AP, Arias Rodriguez L, Rodríguez Peña CM, Arndt S, Lau GY, Murphy MP, Wu L, Lin D, Tobler M, Kelley JL, Shaw JH. Convergent evolution of conserved mitochondrial pathways underlies repeated adaptation to extreme environments. Proc Natl Acad Sci U S A 2020; 117:16424-16430. [PMID: 32586956 PMCID: PMC7368198 DOI: 10.1073/pnas.2004223117] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023] Open
Abstract
Extreme environments test the limits of life; yet, some organisms thrive in harsh conditions. Extremophile lineages inspire questions about how organisms can tolerate physiochemical stressors and whether the repeated colonization of extreme environments is facilitated by predictable and repeatable evolutionary innovations. We identified the mechanistic basis underlying convergent evolution of tolerance to hydrogen sulfide (H2S)-a toxicant that impairs mitochondrial function-across evolutionarily independent lineages of a fish (Poecilia mexicana, Poeciliidae) from H2S-rich springs. Using comparative biochemical and physiological analyses, we found that mitochondrial function is maintained in the presence of H2S in sulfide spring P. mexicana but not ancestral lineages from nonsulfidic habitats due to convergent adaptations in the primary toxicity target and a major detoxification enzyme. Genome-wide local ancestry analyses indicated that convergent evolution of increased H2S tolerance in different populations is likely caused by a combination of selection on standing genetic variation and de novo mutations. On a macroevolutionary scale, H2S tolerance in 10 independent lineages of sulfide spring fishes across multiple genera of Poeciliidae is correlated with the convergent modification and expression changes in genes associated with H2S toxicity and detoxification. Our results demonstrate that the modification of highly conserved physiological pathways associated with essential mitochondrial processes mediates tolerance to physiochemical stress. In addition, the same pathways, genes, and-in some instances-codons are implicated in H2S adaptation in lineages that span 40 million years of evolution.
Collapse
Affiliation(s)
- Ryan Greenway
- Division of Biology, Kansas State University, Manhattan, KS 66506
| | - Nick Barts
- Division of Biology, Kansas State University, Manhattan, KS 66506
| | - Chathurika Henpita
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078
| | - Anthony P Brown
- School of Biological Sciences, Washington State University, Pullman, WA 99163
| | - Lenin Arias Rodriguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, 86150, Mexico
| | - Carlos M Rodríguez Peña
- Instituto de Investigaciones Botánicas y Zoológicas, Universidad Autónoma de Santo Domingo, Santo Domingo, 10105, Dominican Republic
| | - Sabine Arndt
- Medical Research Council - Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, United Kingdom
| | - Gigi Y Lau
- Department of Biosciences, University of Oslo, 0315 Oslo, Norway
| | - Michael P Murphy
- Medical Research Council - Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, United Kingdom
| | - Lei Wu
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078
| | - Dingbo Lin
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078
| | - Michael Tobler
- Division of Biology, Kansas State University, Manhattan, KS 66506;
| | - Joanna L Kelley
- School of Biological Sciences, Washington State University, Pullman, WA 99163;
| | - Jennifer H Shaw
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078;
| |
Collapse
|
24
|
Wong TYW. Evolutionary contingency as non-trivial objective probability: Biological evitability and evolutionary trajectories. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2020; 81:101246. [PMID: 31917084 DOI: 10.1016/j.shpsc.2019.101246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 12/03/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Contingency-theorists have put forth differing accounts of evolutionary contingency. The bulk of these accounts abstractly refer to certain causal structures in which an evolutionarily contingent outcome is supposedly embedded. For example, an outcome is evolutionarily contingent if it is at the end of a 'path-dependent' or 'causally dependent' causal chain. However, this paper argues that many of these proposals fail to include a desideratum - the notion of biological evitability or that evolutionary outcomes could have been otherwise - that for good theoretical reasons ought to be part of an account of evolutionary contingency. Although an inclusion of this desideratum might seem obvious enough, under some existing accounts, an outcome can be contingent yet inevitable all the same. In my diagnosis of this issue, I develop the idea of trajectory propensity to highlight the fact that there are plausible biological scenarios in which causal structures, alone, fail to exhaustively determine the biological evitability of evolutionary forms. In the second half of the paper, I present two additional desiderata of an account of evolutionary contingency and, subsequently, proffer a novel account of evolutionary contingency as non-trivial objective probability, which overcomes the shortcomings of some previous proposals. According to this outcome-based account, contingency claims are probabilistic statements about an evolutionary outcome's objective probability of evolution within a specifically defined modal range: an outcome, O, is evolutionarily contingent in modal range, R, to the degree of objective probability, P (where P is in between 1 and 0).
Collapse
Affiliation(s)
- T Y William Wong
- Department of History and Philosophy of Science, University of Cambridge, CB2 3RH, United Kingdom.
| |
Collapse
|
25
|
Larter M, Dunbar-Wallis A, Berardi AE, Smith SD. Convergent Evolution at the Pathway Level: Predictable Regulatory Changes during Flower Color Transitions. Mol Biol Evol 2020; 35:2159-2169. [PMID: 29878153 DOI: 10.1093/molbev/msy117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The predictability of evolution, or whether lineages repeatedly follow the same evolutionary trajectories during phenotypic convergence remains an open question of evolutionary biology. In this study, we investigate evolutionary convergence at the biochemical pathway level and test the predictability of evolution using floral anthocyanin pigmentation, a trait with a well-understood genetic and regulatory basis. We reconstructed the evolution of floral anthocyanin content across 28 species of the Andean clade Iochrominae (Solanaceae) and investigated how shifts in pigmentation are related to changes in expression of seven key anthocyanin pathway genes. We used phylogenetic multivariate analysis of gene expression to test for phenotypic and developmental convergence at a macroevolutionary scale. Our results show that the four independent losses of the ancestral pigment delphinidin involved convergent losses of expression of the three late pathway genes (F3'5'h, Dfr, and Ans). Transitions between pigment types affecting floral hue (e.g., blue to red) involve changes to the expression of branching genes F3'h and F3'5'h, while the expression levels of early steps of the pathway are strongly conserved in all species. These patterns support the idea that the macroevolution of floral pigmentation follows predictable evolutionary trajectories to reach convergent phenotype space, repeatedly involving regulatory changes. This is likely driven by constraints at the pathway level, such as pleiotropy and regulatory structure.
Collapse
Affiliation(s)
- Maximilian Larter
- Department of Ecology and Evolutionary Biology, University of Colorado-Boulder, Boulder, CO
| | - Amy Dunbar-Wallis
- Department of Ecology and Evolutionary Biology, University of Colorado-Boulder, Boulder, CO
| | - Andrea E Berardi
- Department of Ecology and Evolutionary Biology, University of Colorado-Boulder, Boulder, CO.,Department of Biology, Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Stacey D Smith
- Department of Ecology and Evolutionary Biology, University of Colorado-Boulder, Boulder, CO
| |
Collapse
|
26
|
Nonoyama T, Chiba S. Phenotypic determinism and contingency in the evolution of hypothetical tree-like organisms. PLoS One 2019; 14:e0211671. [PMID: 31671104 PMCID: PMC6822745 DOI: 10.1371/journal.pone.0211671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 10/01/2019] [Indexed: 11/19/2022] Open
Abstract
Whether evolutionary history is mostly contingent or deterministic has been given much focus in the field of evolutionary biology. Studies addressing this issue have been conducted theoretically, based on models, and experimentally, based on microcosms. It has been argued that the shape of the adaptive landscape and mutation rate are major determinants of replicated phenotypic evolution. In the present study, to incorporate the effects of phenotypic plasticity, we constructed a model using tree-like organisms. In this model, the basic rules used to develop trees are genetically determined, but tree shape (described by the number and aspect ratio of the branches) is determined by both genetic components and plasticity. The results of the simulation show that the tree shapes become more deterministic under higher mutation rates. However, the tree shape became most contingent and diverse at the lower mutation rate. In this situation, the variances of the genetically determinant characters were low, but the variance of the tree shape is rather high, suggesting that phenotypic plasticity results in this contingency and diversity of tree shape. The present findings suggest that plasticity cannot be ignored as a factor that increases contingency and diversity of evolutionary outcomes.
Collapse
Affiliation(s)
- Tomonobu Nonoyama
- Graduate School of Life Sciences, Tohoku University, Katahira, Aoba-ku, Sendai, Japan
- * E-mail:
| | - Satoshi Chiba
- Graduate School of Life Sciences, Tohoku University, Katahira, Aoba-ku, Sendai, Japan
- Center for Northeast Asian Studies, Tohoku University, Kawauchi, Aoba-ku, Sendai, Japan
| |
Collapse
|
27
|
Simões P, Fragata I, Santos J, Santos MA, Santos M, Rose MR, Matos M. How phenotypic convergence arises in experimental evolution. Evolution 2019; 73:1839-1849. [DOI: 10.1111/evo.13806] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/12/2019] [Accepted: 06/15/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Pedro Simões
- cE3c—Centre for Ecology, Evolution and Environmental Changes, Faculdade de CiênciasUniversidade de Lisboa Campo Grande 1749‐016 Lisboa Portugal
| | - Inês Fragata
- cE3c—Centre for Ecology, Evolution and Environmental Changes, Faculdade de CiênciasUniversidade de Lisboa Campo Grande 1749‐016 Lisboa Portugal
| | - Josiane Santos
- cE3c—Centre for Ecology, Evolution and Environmental Changes, Faculdade de CiênciasUniversidade de Lisboa Campo Grande 1749‐016 Lisboa Portugal
| | - Marta A. Santos
- cE3c—Centre for Ecology, Evolution and Environmental Changes, Faculdade de CiênciasUniversidade de Lisboa Campo Grande 1749‐016 Lisboa Portugal
| | - Mauro Santos
- Departament de Genètica i de Microbiologia, Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GGBE)Universitat Autonòma de Barcelona 08193 Barcelona Spain
| | - Michael R. Rose
- Department of Ecology and Evolutionary BiologyUniversity of California, Irvine Irvine California 92697
| | - Margarida Matos
- cE3c—Centre for Ecology, Evolution and Environmental Changes, Faculdade de CiênciasUniversidade de Lisboa Campo Grande 1749‐016 Lisboa Portugal
| |
Collapse
|
28
|
Abstract
MOTIVATION How predictable is the evolution of cancer? This fundamental question is of immense relevance for the diagnosis, prognosis and treatment of cancer. Evolutionary biologists have approached the question of predictability based on the underlying fitness landscape. However, empirical fitness landscapes of tumor cells are impossible to determine in vivo. Thus, in order to quantify the predictability of cancer evolution, alternative approaches are required that circumvent the need for fitness landscapes. RESULTS We developed a computational method based on conjunctive Bayesian networks (CBNs) to quantify the predictability of cancer evolution directly from mutational data, without the need for measuring or estimating fitness. Using simulated data derived from >200 different fitness landscapes, we show that our CBN-based notion of evolutionary predictability strongly correlates with the classical notion of predictability based on fitness landscapes under the strong selection weak mutation assumption. The statistical framework enables robust and scalable quantification of evolutionary predictability. We applied our approach to driver mutation data from the TCGA and the MSK-IMPACT clinical cohorts to systematically compare the predictability of 15 different cancer types. We found that cancer evolution is remarkably predictable as only a small fraction of evolutionary trajectories are feasible during cancer progression. AVAILABILITY AND IMPLEMENTATION https://github.com/cbg-ethz/predictability\_of\_cancer\_evolution. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sayed-Rzgar Hosseini
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Ramon Diaz-Uriarte
- Department of Biochemistry, Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas “Alberto Sols (UAM-CSIC)”, Madrid, Spain
| | - Florian Markowetz
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
29
|
Aguilera G, Terán GE, Mirande JM, Alonso F, Rometsch S, Meyer A, Torres-Dowdall J. Molecular and morphological convergence to sulfide-tolerant fishes in a new species of Jenynsia (Cyprinodontiformes: Anablepidae), the first extremophile member of the family. PLoS One 2019; 14:e0218810. [PMID: 31291282 PMCID: PMC6619989 DOI: 10.1371/journal.pone.0218810] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/05/2019] [Indexed: 12/16/2022] Open
Abstract
Freshwater sulfide springs have extreme environmental conditions that only few vertebrate species can tolerate. These species often develop a series of morphological and molecular adaptations to cope with the challenges of life under the toxic and hypoxic conditions of sulfide springs. In this paper, we described a new fish species of the genus Jenynsia, Anablepidae, from a sulfide spring in Northwestern Argentina, the first in the family known from such extreme environment. Jenynsia sulfurica n. sp. is diagnosable by the lack of scales on the pre-pelvic area or the presence of a single row of scales, continuous or not, from the isthmus to the bases of the pelvic fins. Additionally, it presents a series of morphological and molecular characteristics that appear convergent with those seen in other fish species (e.g., Poeciliids) inhabiting sulfide springs. Most notably, J. sulfurica has an enlarged head and postorbital area compared to other fish of the genus and a prognathous lower jaw with a hypertrophied lip, thought to facilitate respiration at the air-water interface. Analyses of cox1 sequence showed that J. sulfurica has two unique mutations resulting in amino acid substitutions convergent to those seen in Poeciliids from sulfide springs and known to provide a physiological mechanism related to living in sulfide environments. A phylogenetic analysis, including molecular and morphological characters, placed J. sulfurica as sister taxa to J. alternimaculata, a species found in nearby, non-sulfide habitats directly connected to the sulfide springs. Thus, it can be inferred that the selection imposed by the presence of H2S has resulted in the divergence between these two species and has potentially served as a barrier to gene flow.
Collapse
Affiliation(s)
- Gastón Aguilera
- Fundación Miguel Lillo - Unidad Ejecutora Lillo (CONICET), San Miguel de Tucumán, Tucumán, Argentina
| | - Guillermo Enrique Terán
- Fundación Miguel Lillo - Unidad Ejecutora Lillo (CONICET), San Miguel de Tucumán, Tucumán, Argentina
| | - Juan Marcos Mirande
- Fundación Miguel Lillo - Unidad Ejecutora Lillo (CONICET), San Miguel de Tucumán, Tucumán, Argentina
| | - Felipe Alonso
- Instituto de Bio y Geociencias del NOA (IBIGEO-CONICET), Rosario de Lerma, Salta, Argentina
| | - Sina Rometsch
- Chair of Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
- Hector Fellow Academy, Karlsruhe, Germany
| | - Axel Meyer
- Chair of Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
- Hector Fellow Academy, Karlsruhe, Germany
| | - Julian Torres-Dowdall
- Chair of Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
30
|
Young RL, Ferkin MH, Ockendon-Powell NF, Orr VN, Phelps SM, Pogány Á, Richards-Zawacki CL, Summers K, Székely T, Trainor BC, Urrutia AO, Zachar G, O'Connell LA, Hofmann HA. Conserved transcriptomic profiles underpin monogamy across vertebrates. Proc Natl Acad Sci U S A 2019; 116:1331-1336. [PMID: 30617061 PMCID: PMC6347671 DOI: 10.1073/pnas.1813775116] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Social monogamy, typically characterized by the formation of a pair bond, increased territorial defense, and often biparental care, has independently evolved multiple times in animals. Despite the independent evolutionary origins of monogamous mating systems, several homologous brain regions and neuropeptides and their receptors have been shown to play a conserved role in regulating social affiliation and parental care, but little is known about the neuromolecular mechanisms underlying monogamy on a genomic scale. Here, we compare neural transcriptomes of reproductive males in monogamous and nonmonogamous species pairs of Peromyscus mice, Microtus voles, parid songbirds, dendrobatid frogs, and Xenotilapia species of cichlid fishes. We find that, while evolutionary divergence time between species or clades did not explain gene expression similarity, characteristics of the mating system correlated with neural gene expression patterns, and neural gene expression varied concordantly across vertebrates when species transition to monogamy. Our study provides evidence of a universal transcriptomic mechanism underlying the evolution of monogamy in vertebrates.
Collapse
Affiliation(s)
- Rebecca L Young
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712;
- Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX 78712
| | - Michael H Ferkin
- Department of Biological Sciences, The University of Memphis, Memphis, TN 38111
| | | | - Veronica N Orr
- Department of Psychology, University of California, Davis, CA 95616
| | - Steven M Phelps
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712
| | - Ákos Pogány
- Department of Ethology, Eötvös Loránd University, Budapest H-1117, Hungary
| | | | - Kyle Summers
- Department of Biology, East Carolina University, Greenville, NC 27858
| | - Tamás Székely
- Life Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom
- Milner Centre for Evolution, University of Bath, Bath BA2 7AY, United Kingdom
- Centre for Networks and Collective Behaviour, University of Bath, Bath BA2 7AY, United Kingdom
| | - Brian C Trainor
- Department of Psychology, University of California, Davis, CA 95616
| | - Araxi O Urrutia
- Milner Centre for Evolution, University of Bath, Bath BA2 7AY, United Kingdom
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Gergely Zachar
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Budapest H-1094, Hungary
| | | | - Hans A Hofmann
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712;
- Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX 78712
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
31
|
Lind PA, Libby E, Herzog J, Rainey PB. Predicting mutational routes to new adaptive phenotypes. eLife 2019; 8:e38822. [PMID: 30616716 PMCID: PMC6324874 DOI: 10.7554/elife.38822] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 11/27/2018] [Indexed: 12/21/2022] Open
Abstract
Predicting evolutionary change poses numerous challenges. Here we take advantage of the model bacterium Pseudomonas fluorescens in which the genotype-to-phenotype map determining evolution of the adaptive 'wrinkly spreader' (WS) type is known. We present mathematical descriptions of three necessary regulatory pathways and use these to predict both the rate at which each mutational route is used and the expected mutational targets. To test predictions, mutation rates and targets were determined for each pathway. Unanticipated mutational hotspots caused experimental observations to depart from predictions but additional data led to refined models. A mismatch was observed between the spectra of WS-causing mutations obtained with and without selection due to low fitness of previously undetected WS-causing mutations. Our findings contribute toward the development of mechanistic models for forecasting evolution, highlight current limitations, and draw attention to challenges in predicting locus-specific mutational biases and fitness effects.
Collapse
Affiliation(s)
- Peter A Lind
- New Zealand Institute for Advanced StudyMassey University at AlbanyAucklandNew Zealand
- Department of Molecular BiologyUmeå UniversityUmeåSweden
| | - Eric Libby
- New Zealand Institute for Advanced StudyMassey University at AlbanyAucklandNew Zealand
- Santa Fe InstituteNew MexicoUnited States
- Department of MathematicsUmeå UniversityUmeåSweden
| | - Jenny Herzog
- New Zealand Institute for Advanced StudyMassey University at AlbanyAucklandNew Zealand
| | - Paul B Rainey
- New Zealand Institute for Advanced StudyMassey University at AlbanyAucklandNew Zealand
- Department of Microbial Population BiologyMax Planck Institute for Evolutionary BiologyPlönGermany
- Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris, ESPCI Paris-TechCNRS UMR 8231, PSL Research UniversityParisFrance
| |
Collapse
|
32
|
Ceccarelli FS, Koch NM, Soto EM, Barone ML, Arnedo MA, Ramírez MJ. The Grass was Greener: Repeated Evolution of Specialized Morphologies and Habitat Shifts in Ghost Spiders Following Grassland Expansion in South America. Syst Biol 2019; 68:63-77. [PMID: 29669028 DOI: 10.1093/sysbio/syy028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 04/10/2018] [Indexed: 11/13/2022] Open
Abstract
While grasslands, one of Earth's major biomes, are known for their close evolutionary ties with ungulate grazers, these habitats are also paramount to the origins and diversification of other animals. Within the primarily South American spider subfamily Amaurobioidinae (Anyphaenidae), several species are found living in the continent's grasslands, with some displaying putative morphological adaptations to dwelling unnoticed in the grass blades. Herein, a dated molecular phylogeny provides the backbone for analyses revealing the ecological and morphological processes behind these spiders' grassland adaptations. The multiple switches from Patagonian forests to open habitats coincide with the expansion of South America's grasslands during the Miocene, while the specialized morphology of several grass-dwelling spiders originated at least three independent times and is best described as the result of different selective regimes operating on macroevolutionary timescales. Although grass-adapted lineages evolved towards different peaks in adaptive landscape, they all share one characteristic: an anterior narrowing of the prosoma allowing spiders to extend the first two pairs of legs, thus maintaining a slender resting posture in the grass blade. By combining phylogenetic, morphological, and biogeographic perspectives we disentangle multiple factors determining the evolution of a clade of terrestrial invertebrate predators alongside their biomes.
Collapse
Affiliation(s)
- F Sara Ceccarelli
- División de Aracnología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Av. Angel Gallardo 470, C1405DJR, Buenos Aires, Argentina.,Departamento de Biología de la Conservación, CONACYT-Centro de Investigación Científica y de Educación Superior de Ensenada, Carr Tijuana-Ensenada 3918, 22860 Ensenada, B.C., Mexico
| | - Nicolás Mongiardino Koch
- Department of Geology & Geophysics, Yale University, 210 Whitney Avenue, New Haven, CT 06511, USA
| | - Eduardo M Soto
- Departamento de Ecología, Genética y Evolución, IEGEBA (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Ciudad Universitaria, Pabellón II (C1428 EHA), Buenos Aires, Argentina
| | - Mariana L Barone
- División de Aracnología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Av. Angel Gallardo 470, C1405DJR, Buenos Aires, Argentina
| | - Miquel A Arnedo
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals & Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Av. Diagonal 645, E-8028 Barcelona, Spain
| | - Martín J Ramírez
- División de Aracnología, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Av. Angel Gallardo 470, C1405DJR, Buenos Aires, Argentina
| |
Collapse
|
33
|
Aguilar‐Puntriano C, Avila LJ, De la Riva I, Johnson L, Morando M, Troncoso‐Palacios J, Wood PL, Sites JW. The shadow of the past: Convergence of young and old South American desert lizards as measured by head shape traits. Ecol Evol 2018; 8:11399-11409. [PMID: 30598744 PMCID: PMC6303702 DOI: 10.1002/ece3.4548] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/31/2018] [Accepted: 08/07/2018] [Indexed: 11/17/2022] Open
Abstract
Convergence is a pervasive phenomenon in the Tree of Life, and evolution of similar phenotypes sharing the same environmental conditions is expected in phylogenetically closely related species. In contrast, contingent factors are probably more influential in shaping phenotypic diversity for distantly related taxa. Here, we test putative convergent evolution of lizard head morphologies among relatively closely related desert dwelling Liolaemus species, and the very distantly related Ctenoblepharys adspersa. We estimated a multilocus time-calibrated phylogeny of 57 species of South American liolaemus lizards, based on seven molecular markers. We collected head shape data for 468 specimens, and used three phylogenetic comparative methods (SURFACE, CONVEVOL, and WHEATSHEAF index) to test for and estimate the strength of convergence. We found strong evidence for convergence among Pacific desert lizard C. adspersa, Liolaemus audivetulatus, Liolaemus insolitus, Liolaemus poconchilensis, Liolaemus stolzmanni, and a candidate species (Liolaemus "Moquegua"). Our results suggest that, despite the long divergence and phylogenetic distance of C. adspersa with respect to convergent Liolaemus species, natural selection was probably more important than historical contingency in shaping phenotypic evolution in these desert lizards.
Collapse
Affiliation(s)
- César Aguilar‐Puntriano
- Departamento de HerpetologíaMuseo de Historia Natural de San Marcos (MUSM)LimaPerú
- Instituto Antonio Raimondi, Facultad de Ciencias BiológicasUniversidad Nacional Mayor de San Marcos (UNMSM)LimaPerú
| | - Luciano J. Avila
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC‐CONICET)Puerto Madryn, ChubutArgentina
| | | | - Leigh Johnson
- Department of Biology, M. L. Bean Life Science MuseumBrigham Young University (BYU)ProvoUtah
| | - Mariana Morando
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC‐CONICET)Puerto Madryn, ChubutArgentina
| | - Jaime Troncoso‐Palacios
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de MedicinaUniversidad de ChileSantiagoChile
| | - Perry L. Wood
- Biodiversity Institute, Department of Ecology and Evolutionary BiologyThe University of KansasLawrenceKansas
| | - Jack W. Sites
- Department of Biology, M. L. Bean Life Science MuseumBrigham Young University (BYU)ProvoUtah
| |
Collapse
|
34
|
Predicting the evolution of Escherichia coli by a data-driven approach. Nat Commun 2018; 9:3562. [PMID: 30177705 PMCID: PMC6120903 DOI: 10.1038/s41467-018-05807-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 06/12/2018] [Indexed: 12/31/2022] Open
Abstract
A tantalizing question in evolutionary biology is whether evolution can be predicted from past experiences. To address this question, we created a coherent compendium of more than 15,000 mutation events for the bacterium Escherichia coli under 178 distinct environmental settings. Compendium analysis provides a comprehensive view of the explored environments, mutation hotspots and mutation co-occurrence. While the mutations shared across all replicates decrease with the number of replicates, our results argue that the pairwise overlapping ratio remains the same, regardless of the number of replicates. An ensemble of predictors trained on the mutation compendium and tested in forward validation over 35 evolution replicates achieves a 49.2 ± 5.8% (mean ± std) precision and 34.5 ± 5.7% recall in predicting mutation targets. This work demonstrates how integrated datasets can be harnessed to create predictive models of evolution at a gene level and elucidate the effect of evolutionary processes in well-defined environments. How reproducible evolutionary processes are remains an important question in evolutionary biology. Here, the authors compile a compendium of more than 15,000 mutation events for Escherichia coli under 178 distinct environmental settings, and develop an ensemble of predictors to predict evolution at a gene level.
Collapse
|
35
|
Härer A, Meyer A, Torres‐Dowdall J. Convergent phenotypic evolution of the visual system via different molecular routes: How Neotropical cichlid fishes adapt to novel light environments. Evol Lett 2018; 2:341-354. [PMID: 30283686 PMCID: PMC6121847 DOI: 10.1002/evl3.71] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 06/21/2018] [Accepted: 06/21/2018] [Indexed: 12/17/2022] Open
Abstract
How predictable is evolution? This remains a fundamental but contested issue in evolutionary biology. When independent lineages colonize the same environment, we are presented with a natural experiment that allows us to ask if genetic and ecological differences promote species-specific evolutionary outcomes or whether species phenotypically evolve in a convergent manner in response to shared selection pressures. If so, are the molecular mechanisms underlying phenotypic convergence the same? In Nicaragua, seven species of cichlid fishes concurrently colonized two novel photic environments. Hence, their visual system represents a compelling model to address these questions, particularly since the adaptive value of phenotypic changes is well-understood. By analyzing retinal transcriptomes, we found that differential expression of genes responsible for color vision (cone opsins and cyp27c1) produced rapid and mostly convergent changes of predicted visual sensitivities. Notably, these changes occurred in the same direction in all species although there were differences in underlying gene expression patterns illustrating nonconvergence at the molecular level. Adaptive phenotypes evolved deterministically, even when species differ substantially in ecology and genetic variation. This provides strong evidence that phenotypic evolution of the visual system occurred in response to similar selective forces of the photic environment.
Collapse
Affiliation(s)
- Andreas Härer
- Zoology and Evolutionary Biology, Department of BiologyUniversity of KonstanzGermany
| | - Axel Meyer
- Zoology and Evolutionary Biology, Department of BiologyUniversity of KonstanzGermany
- Radcliffe Institute for Advanced StudyHarvard UniversityCambridgeMassachusetts02138
| | - Julián Torres‐Dowdall
- Zoology and Evolutionary Biology, Department of BiologyUniversity of KonstanzGermany
- Zukunftskolleg, University of KonstanzKonstanzGermany
| |
Collapse
|
36
|
San-Jose LM, Roulin A. Toward Understanding the Repeated Occurrence of Associations between Melanin-Based Coloration and Multiple Phenotypes. Am Nat 2018; 192:111-130. [PMID: 30016163 DOI: 10.1086/698010] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Melanin is the most widespread pigment in organisms. Melanin-based coloration has been repeatedly observed to be associated with the same traits and in the same direction in different vertebrate and insect species. However, whether any factors that are common to different taxa account for the repeated evolution of melanin-phenotype associations remains unclear. We propose to approach this question from the perspective of convergent and parallel evolution to clarify to what extent different species have evolved the same associations owing to a shared genetic basis and being subjected to similar selective pressures. Our current understanding of the genetic basis of melanin-phenotype associations allows for both convergent and parallel evolution, but this understanding is still limited. Further research is needed to clarify the generality and interdependencies of the different proposed mechanisms (supergenes, pleiotropy based on hormones, or neural crest cells). The general ecological scenarios whereby melanin-based coloration is under selection-protection from ultraviolet radiation, thermoregulation in cold environments, or as a signal of social status-offer a good opportunity to study how melanin-phenotype associations evolve. Reviewing these scenarios shows that some traits associated with melanin-based coloration might be selected together with coloration by also favoring adaptation but that other associated traits might impede adaptation, which may be indicative of genetic constraints. We therefore encourage further research on the relative roles that selection and genetic constraints play in shaping multiple melanin-phenotype associations. Placed into a phylogenetic context, this will help clarify to what extent these associations result from convergent or parallel evolutionary processes and why melanin-phenotype associations are so common across the tree of life.
Collapse
|
37
|
Fragata I, Simões P, Matos M, Szathmáry E, Santos M. Playing evolution in the laboratory: From the first major evolutionary transition to global warming. ACTA ACUST UNITED AC 2018. [DOI: 10.1209/0295-5075/122/38001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Erwin DH. The topology of evolutionary novelty and innovation in macroevolution. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0422. [PMID: 29061895 PMCID: PMC5665810 DOI: 10.1098/rstb.2016.0422] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2017] [Indexed: 12/30/2022] Open
Abstract
Sewall Wright's fitness landscape introduced the concept of evolutionary spaces in 1932. George Gaylord Simpson modified this to an adaptive, phenotypic landscape in 1944 and since then evolutionary spaces have played an important role in evolutionary theory through fitness and adaptive landscapes, phenotypic and functional trait spaces, morphospaces and related concepts. Although the topology of such spaces is highly variable, from locally Euclidean to pre-topological, evolutionary change has often been interpreted as a search through a pre-existing space of possibilities, with novelty arising by accessing previously inaccessible or difficult to reach regions of a space. Here I discuss the nature of evolutionary novelty and innovation within the context of evolutionary spaces, and argue that the primacy of search as a conceptual metaphor ignores the generation of new spaces as well as other changes that have played important evolutionary roles.This article is part of the themed issue 'Process and pattern in innovations from cells to societies'.
Collapse
Affiliation(s)
- Douglas H Erwin
- Department of Paleobiology MRC-121, National Museum of Natural History, Smithsonian Institution, PO Box 37012, DC 20013-7012, USA .,Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
39
|
Chaturvedi S, Lucas LK, Nice CC, Fordyce JA, Forister ML, Gompert Z. The predictability of genomic changes underlying a recent host shift in Melissa blue butterflies. Mol Ecol 2018; 27:2651-2666. [DOI: 10.1111/mec.14578] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/05/2018] [Accepted: 02/09/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Samridhi Chaturvedi
- Department of Biology Utah State University Logan Utah
- Ecology Center Utah State University Logan Utah
| | | | | | | | | | - Zachariah Gompert
- Department of Biology Utah State University Logan Utah
- Ecology Center Utah State University Logan Utah
| |
Collapse
|
40
|
Ćirković MM. Woodpeckers and Diamonds: Some Aspects of Evolutionary Convergence in Astrobiology. ASTROBIOLOGY 2018; 18:491-502. [PMID: 29676927 DOI: 10.1089/ast.2017.1741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Jared Diamond's argument against extraterrestrial intelligence from evolutionary contingency is subjected to critical scrutiny. As with the earlier arguments of George Gaylord Simpson, it contains critical loopholes that lead to its unraveling. From the point of view of the contemporary debates about biological evolution, perhaps the most contentious aspect of such arguments is their atemporal and gradualist usage of the space of all possible biological forms (morphospace). Such usage enables the translation of the adaptive value of a trait into the probability of its evolving. This procedure, it is argued, is dangerously misleading. Contra Diamond, there are reasons to believe that convergence not only plays an important role in the history of life, but also profoundly improves the prospects for search for extraterrestrial intelligence success. Some further considerations about the role of observation selection effects and our scaling of complexity in the great debate about contingency and convergence are given. Taken together, these considerations militate against the pessimism of Diamond's conclusion, and suggest that the search for traces and manifestations of extraterrestrial intelligences is far from forlorn. Key Words: Astrobiology-Evolution-Contingency-Convergence-Complex life-SETI-Major evolutionary transitions-Selection effects-Jared Diamond. Astrobiology 18, 491-502.
Collapse
|
41
|
Markovitch O, Krasnogor N. Predicting species emergence in simulated complex pre-biotic networks. PLoS One 2018; 13:e0192871. [PMID: 29447212 PMCID: PMC5813963 DOI: 10.1371/journal.pone.0192871] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/31/2018] [Indexed: 12/23/2022] Open
Abstract
An intriguing question in evolution is what would happen if one could "replay" life's tape. Here, we explore the following hypothesis: when replaying the tape, the details ("decorations") of the outcomes would vary but certain "invariants" might emerge across different life-tapes sharing similar initial conditions. We use large-scale simulations of an in silico model of pre-biotic evolution called GARD (Graded Autocatalysis Replication Domain) to test this hypothesis. GARD models the temporal evolution of molecular assemblies, governed by a rates matrix (i.e. network) that biases different molecules' likelihood of joining or leaving a dynamically growing and splitting assembly. Previous studies have shown the emergence of so called compotypes, i.e., species capable of replication and selection response. Here, we apply networks' science to ascertain the degree to which invariants emerge across different life-tapes under GARD dynamics and whether one can predict these invariant from the chemistry specification alone (i.e. GARD's rates network representing initial conditions). We analysed the (complex) rates' network communities and asked whether communities are related (and how) to the emerging species under GARD's dynamic, and found that the communities correspond to the species emerging from the simulations. Importantly, we show how to use the set of communities detected to predict species emergence without performing any simulations. The analysis developed here may impact complex systems simulations in general.
Collapse
Affiliation(s)
- Omer Markovitch
- Interdisciplinary Computing and Complex Bio-Systems research group, School of Computing Science, Newcastle University, Newcastle upon Tyne, United-Kingdom
| | - Natalio Krasnogor
- Interdisciplinary Computing and Complex Bio-Systems research group, School of Computing Science, Newcastle University, Newcastle upon Tyne, United-Kingdom
| |
Collapse
|
42
|
.Rainey PB, Remigi P, Farr AD, Lind PA. Darwin was right: where now for experimental evolution? Curr Opin Genet Dev 2017; 47:102-109. [DOI: 10.1016/j.gde.2017.09.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 01/02/2023]
|
43
|
Seabra SG, Fragata I, Antunes MA, Faria GS, Santos MA, Sousa VC, Simões P, Matos M. Different Genomic Changes Underlie Adaptive Evolution in Populations of Contrasting History. Mol Biol Evol 2017; 35:549-563. [PMID: 29029198 DOI: 10.1093/molbev/msx247] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Experimental evolution is a powerful tool to understand the adaptive potential of populations under environmental change. Here, we study the importance of the historical genetic background in the outcome of evolution at the genome-wide level. Using the natural clinal variation of Drosophila subobscura, we sampled populations from two contrasting latitudes (Adraga, Portugal and Groningen, Netherlands) and introduced them in a new common environment in the laboratory. We characterized the genome-wide temporal changes underlying the evolutionary dynamics of these populations, which had previously shown fast convergence at the phenotypic level, but not at chromosomal inversion frequencies. We found that initially differentiated populations did not converge either at genome-wide level or at candidate SNPs with signs of selection. In contrast, populations from Portugal showed convergence to the control population that derived from the same geographical origin and had been long-established in the laboratory. Candidate SNPs showed a variety of different allele frequency change patterns across generations, indicative of an underlying polygenic basis. We did not detect strong linkage around candidate SNPs, but rather a small but long-ranging effect. In conclusion, we found that history played a major role in genomic variation and evolution, with initially differentiated populations reaching the same adaptive outcome through different genetic routes.
Collapse
Affiliation(s)
- Sofia G Seabra
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Inês Fragata
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Marta A Antunes
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Gonçalo S Faria
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Marta A Santos
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.,CEDOC - Centro de Estudos de Doenças Crónicas, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Vitor C Sousa
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Simões
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Margarida Matos
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
44
|
Hope EA, Amorosi CJ, Miller AW, Dang K, Heil CS, Dunham MJ. Experimental Evolution Reveals Favored Adaptive Routes to Cell Aggregation in Yeast. Genetics 2017; 206:1153-1167. [PMID: 28450459 PMCID: PMC5499169 DOI: 10.1534/genetics.116.198895] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/06/2017] [Indexed: 02/02/2023] Open
Abstract
Yeast flocculation is a community-building cell aggregation trait that is an important mechanism of stress resistance and a useful phenotype for brewers; however, it is also a nuisance in many industrial processes, in clinical settings, and in the laboratory. Chemostat-based evolution experiments are impaired by inadvertent selection for aggregation, which we observe in 35% of populations. These populations provide a testing ground for understanding the breadth of genetic mechanisms Saccharomyces cerevisiae uses to flocculate, and which of those mechanisms provide the biggest adaptive advantages. In this study, we employed experimental evolution as a tool to ask whether one or many routes to flocculation are favored, and to engineer a strain with reduced flocculation potential. Using a combination of whole genome sequencing and bulk segregant analysis, we identified causal mutations in 23 independent clones that had evolved cell aggregation during hundreds of generations of chemostat growth. In 12 of those clones, we identified a transposable element insertion in the promoter region of known flocculation gene FLO1, and, in an additional five clones, we recovered loss-of-function mutations in transcriptional repressor TUP1, which regulates FLO1 and other related genes. Other causal mutations were found in genes that have not been previously connected to flocculation. Evolving a flo1 deletion strain revealed that this single deletion reduces flocculation occurrences to 3%, and demonstrated the efficacy of using experimental evolution as a tool to identify and eliminate the primary adaptive routes for undesirable traits.
Collapse
Affiliation(s)
- Elyse A Hope
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| | - Clara J Amorosi
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| | - Aaron W Miller
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| | - Kolena Dang
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| | - Caiti Smukowski Heil
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, Washington 98195
| |
Collapse
|
45
|
Predictable phenotypic, but not karyotypic, evolution of populations with contrasting initial history. Sci Rep 2017; 7:913. [PMID: 28424494 PMCID: PMC5430419 DOI: 10.1038/s41598-017-00968-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 03/21/2017] [Indexed: 02/07/2023] Open
Abstract
The relative impact of selection, chance and history will determine the predictability of evolution. There is a lack of empirical research on this subject, particularly in sexual organisms. Here we use experimental evolution to test the predictability of evolution. We analyse the real-time evolution of Drosophila subobscura populations derived from contrasting European latitudes placed in a novel laboratory environment. Each natural population was sampled twice within a three-year interval. We study evolutionary responses at both phenotypic (life-history, morphological and physiological traits) and karyotypic levels for around 30 generations of laboratory culture. Our results show (1) repeatable historical effects between years in the initial state, at both phenotypic and karyotypic levels; (2) predictable phenotypic evolution with general convergence except for body size; and (3) unpredictable karyotypic evolution. We conclude that the predictability of evolution is contingent on the trait and level of organization, highlighting the importance of studying multiple biological levels with respect to evolutionary patterns.
Collapse
|
46
|
Maruyama M, Parker J. Deep-Time Convergence in Rove Beetle Symbionts of Army Ants. Curr Biol 2017; 27:920-926. [PMID: 28285995 DOI: 10.1016/j.cub.2017.02.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/29/2017] [Accepted: 02/13/2017] [Indexed: 12/19/2022]
Abstract
Recent adaptive radiations provide striking examples of convergence [1-4], but the predictability of evolution over much deeper timescales is controversial, with a scarcity of ancient clades exhibiting repetitive patterns of phenotypic evolution [5, 6]. Army ants are ecologically dominant arthropod predators of the world's tropics, with large nomadic colonies housing diverse communities of socially parasitic myrmecophiles [7]. Remarkable among these are many species of rove beetle (Staphylinidae) that exhibit ant-mimicking "myrmecoid" body forms and are behaviorally accepted into their aggressive hosts' societies: emigrating with colonies and inhabiting temporary nest bivouacs, grooming and feeding with workers, but also consuming the brood [8-11]. Here, we demonstrate that myrmecoid rove beetles are strongly polyphyletic, with this adaptive morphological and behavioral syndrome having evolved at least 12 times during the evolution of a single staphylinid subfamily, Aleocharinae. Each independent myrmecoid clade is restricted to one zoogeographic region and highly host specific on a single army ant genus. Dating estimates reveal that myrmecoid clades are separated by substantial phylogenetic distances-as much as 105 million years. All such groups arose in parallel during the Cenozoic, when army ants diversified into modern genera [12] and rose to ecological dominance [13, 14]. This work uncovers a rare example of an ancient system of complex morphological and behavioral convergence, with replicate beetle lineages following a predictable phenotypic trajectory during their parasitic adaptation to host colonies.
Collapse
Affiliation(s)
- Munetoshi Maruyama
- The Kyushu University Museum, Hakozaki 6-10-1, Fukuoka-shi, Fukuoka 812-8581, Japan
| | - Joseph Parker
- Department of Genetics and Development, Columbia University, 701 West 168(th) Street, New York, NY 10032, USA; Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA.
| |
Collapse
|
47
|
|
48
|
Lind PA, Farr AD, Rainey PB. Evolutionary convergence in experimental Pseudomonas populations. ISME JOURNAL 2016; 11:589-600. [PMID: 27911438 DOI: 10.1038/ismej.2016.157] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/05/2016] [Accepted: 09/28/2016] [Indexed: 11/09/2022]
Abstract
Model microbial systems provide opportunity to understand the genetic bases of ecological traits, their evolution, regulation and fitness contributions. Experimental populations of Pseudomonas fluorescens rapidly diverge in spatially structured microcosms producing a range of surface-colonising forms. Despite divergent molecular routes, wrinkly spreader (WS) niche specialist types overproduce a cellulosic polymer allowing mat formation at the air-liquid interface and access to oxygen. Given the range of ways by which cells can form mats, such phenotypic parallelism is unexpected. We deleted the cellulose-encoding genes from the ancestral genotype and asked whether this mutant could converge on an alternate phenotypic solution. Two new traits were discovered. The first involved an exopolysaccharide encoded by pgaABCD that functions as cell-cell glue similar to cellulose. The second involved an activator of an amidase (nlpD) that when defective causes cell chaining. Both types form mats, but were less fit in competition with cellulose-based WS types. Surprisingly, diguanylate cyclases linked to cellulose overexpression underpinned evolution of poly-beta-1,6-N-acetyl-d-glucosamine (PGA)-based mats. This prompted genetic analyses of the relationships between the diguanylate cyclases WspR, AwsR and MwsR, and both cellulose and PGA. Our results suggest that c-di-GMP regulatory networks may have been shaped by evolution to accommodate loss and gain of exopolysaccharide modules facilitating adaptation to new environments.
Collapse
Affiliation(s)
- Peter A Lind
- New Zealand Institute for Advanced Study and Allan Wilson Centre for Molecular Ecology and Evolution, Massey University at Albany, Auckland, New Zealand.,Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Andrew D Farr
- New Zealand Institute for Advanced Study and Allan Wilson Centre for Molecular Ecology and Evolution, Massey University at Albany, Auckland, New Zealand
| | - Paul B Rainey
- New Zealand Institute for Advanced Study and Allan Wilson Centre for Molecular Ecology and Evolution, Massey University at Albany, Auckland, New Zealand.,Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany.,Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris-Tech), PSL Research University, Paris, France
| |
Collapse
|
49
|
Blount ZD. A case study in evolutionary contingency. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2016; 58:82-92. [PMID: 26787098 DOI: 10.1016/j.shpsc.2015.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/11/2015] [Indexed: 06/05/2023]
Abstract
Biological evolution is a fundamentally historical phenomenon in which intertwined stochastic and deterministic processes shape lineages with long, continuous histories that exist in a changing world that has a history of its own. The degree to which these characteristics render evolution historically contingent, and evolutionary outcomes thereby unpredictably sensitive to history has been the subject of considerable debate in recent decades. Microbial evolution experiments have proven among the most fruitful means of empirically investigating the issue of historical contingency in evolution. One such experiment is the Escherichia coli Long-Term Evolution Experiment (LTEE), in which twelve populations founded from the same clone of E. coli have evolved in parallel under identical conditions. Aerobic growth on citrate (Cit(+)), a novel trait for E. coli, evolved in one of these populations after more than 30,000 generations. Experimental replays of this population's evolution from various points in its history showed that the Cit(+) trait was historically contingent upon earlier mutations that potentiated the trait by rendering it mutationally accessible. Here I review this case of evolutionary contingency and discuss what it implies about the importance of historical contingency arising from the core processes of evolution.
Collapse
Affiliation(s)
- Zachary D Blount
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI, USA; Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
50
|
Heterozygote Advantage Is a Common Outcome of Adaptation in Saccharomyces cerevisiae. Genetics 2016; 203:1401-13. [PMID: 27194750 DOI: 10.1534/genetics.115.185165] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 05/15/2016] [Indexed: 12/31/2022] Open
Abstract
Adaptation in diploids is predicted to proceed via mutations that are at least partially dominant in fitness. Recently, we argued that many adaptive mutations might also be commonly overdominant in fitness. Natural (directional) selection acting on overdominant mutations should drive them into the population but then, instead of bringing them to fixation, should maintain them as balanced polymorphisms via heterozygote advantage. If true, this would make adaptive evolution in sexual diploids differ drastically from that of haploids. The validity of this prediction has not yet been tested experimentally. Here, we performed four replicate evolutionary experiments with diploid yeast populations (Saccharomyces cerevisiae) growing in glucose-limited continuous cultures. We sequenced 24 evolved clones and identified initial adaptive mutations in all four chemostats. The first adaptive mutations in all four chemostats were three copy number variations, all of which proved to be overdominant in fitness. The fact that fitness overdominant mutations were always the first step in independent adaptive walks supports the prediction that heterozygote advantage can arise as a common outcome of directional selection in diploids and demonstrates that overdominance of de novo adaptive mutations in diploids is not rare.
Collapse
|