1
|
El-Sheikhy R, Al-Khuraif A. Method of understanding for investigation of crack propagation trajectory and fracture aspects in dental cracks on view of fracture mechanics theories. Sci Rep 2024; 14:23462. [PMID: 39379447 PMCID: PMC11461820 DOI: 10.1038/s41598-024-73061-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 09/12/2024] [Indexed: 10/10/2024] Open
Abstract
Current research introduces understanding of dental-cracks mechanistic with fundamental fracture behavior in natural-teeth and orthodontics including mode I crack under both tension and compression, mode II crack under both clockwise-shear and anticlockwise-shear and mixed-mode cracks under both compression-shear and tension-shear. It depends on experimental models of transparent-Plexiglas including pre-cracks of different orientations angle (b) based on fundamental theoretical fracture analysis with comparison. Problem-concept, cracking aspects of fracture-initiation, propagation-direction, fracture-increment length, critical external-load and fracture path are predicted experimentally and theoretically using directional fracture approach and directional strain-energy density theory. Tests are carried out for (36) samples for compression and tension in LEFM. Friction-resistance between crack-surfaces is considered with derivation of equations and charts. Negative stress-intensity factor (-KI) is developed for solving complicated problems of cracks under occlusal compression loads. The occlusal loads are compression and shear producing lateral tensile mixed mode cracks. The critical propagation angle (qc), critical propagation load (sc) and critical propagation envelope of stress intensity factors (KI-KII) are developed with respect to crack orientation angle (b) with comparisons. They are necessary to predict the fracture propagation early before teeth-failure. It helps for prevention and control of dental-cracks, correct-restoration, prosthodontics, orthodontics, and development of new dental-materials and technologies.
Collapse
Affiliation(s)
- Refat El-Sheikhy
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| | - Abdulaziz Al-Khuraif
- Dental Biomaterials Research Chair, Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Singh SA, Elsler A, Stubbs TL, Rayfield EJ, Benton MJ. Predatory synapsid ecomorphology signals growing dynamism of late Palaeozoic terrestrial ecosystems. Commun Biol 2024; 7:201. [PMID: 38368492 PMCID: PMC10874460 DOI: 10.1038/s42003-024-05879-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/01/2024] [Indexed: 02/19/2024] Open
Abstract
Terrestrial ecosystems evolved substantially through the Palaeozoic, especially the Permian, gaining much new complexity, especially among predators. Key among these predators were non-mammalian synapsids. Predator ecomorphology reflect interactions with prey and competitors, which are key controls on carnivore diversity and ecology. Therefore, carnivorous synapsids may offer insight on wider ecological evolution as the first complex, tetrapod-dominated, terrestrial ecosystems formed through the late Palaeozoic. Using morphometric and phylogenetic comparative methods, we chart carnivorous synapsid trophic morphology from the latest Carboniferous to the earliest Triassic (307-251.2 Ma). We find a major morphofunctional shift in synapsid carnivory between the early and middle Permian, via the addition of new feeding modes increasingly specialised for greater biting power or speed that captures the growing antagonism and dynamism of terrestrial tetrapod predator-prey interactions. The further evolution of new hypo- and hypercarnivorous synapsids highlight the nascent intrinsic pressures and complexification of terrestrial ecosystems across the mid-late Permian.
Collapse
Affiliation(s)
- Suresh A Singh
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK.
| | - Armin Elsler
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Thomas L Stubbs
- School of Life, Health and Chemical Sciences, Open University, Milton Keynes, MK7 6AE, UK
| | - Emily J Rayfield
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Michael J Benton
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
3
|
Brandon AA, Almeida D, Powder KE. Neural crest cells as a source of microevolutionary variation. Semin Cell Dev Biol 2023; 145:42-51. [PMID: 35718684 PMCID: PMC10482117 DOI: 10.1016/j.semcdb.2022.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 05/03/2022] [Accepted: 06/03/2022] [Indexed: 11/28/2022]
Abstract
Vertebrates have some of the most complex and diverse features in animals, from varied craniofacial morphologies to colorful pigmentation patterns and elaborate social behaviors. All of these traits have their developmental origins in a multipotent embryonic lineage of neural crest cells. This "fourth germ layer" is a vertebrate innovation and the source of a wide range of adult cell types. While others have discussed the role of neural crest cells in human disease and animal domestication, less is known about their role in contributing to adaptive changes in wild populations. Here, we review how variation in the development of neural crest cells and their derivatives generates considerable phenotypic diversity in nature. We focus on the broad span of traits under natural and sexual selection whose variation may originate in the neural crest, with emphasis on behavioral factors such as intraspecies communication that are often overlooked. In all, we encourage the integration of evolutionary ecology with developmental biology and molecular genetics to gain a more complete understanding of the role of this single cell type in trait covariation, evolutionary trajectories, and vertebrate diversity.
Collapse
Affiliation(s)
- A Allyson Brandon
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Daniela Almeida
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Kara E Powder
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
4
|
Erasha AM, Nazih M, Ali S, Alsafy M, El-Gendy S, Sayed RKA. Morphological and radiological mapping of dental cusps in relation to spatial constraints on tooth shape of one humped camel (Camelus dromedarius). ZOOLOGICAL LETTERS 2023; 9:14. [PMID: 37337240 PMCID: PMC10278341 DOI: 10.1186/s40851-023-00213-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
A significant extent of researches in veterinary study have been focused on dental structure; however, there are scanty ones on the orientation and identification of their cusps. Therefore, the present article aimed to spot a light on arrangement pattern of dental cusps in the camel as a folivorous and graminivorous animal. This study was conducted on eight heads of adult, healthy camel of both sexes, collected from slaughter houses. To perform exact orientation of cusps of molar teeth, additional radiological and CT scans were performed on the mandible as a landmark that should facilitate the reading of cusps map. It was evident that, the cusps are arranged in crescentic appearance, seledontal form, with two cusps on each side, paracone and hypocone on the lingual surface and protocone and metacone on the vestibular aspect. Thus, camels cannot wear bite like equines, which would interfere with their constant chewing method. The camels' dental cusps provide some of the finest examples of convergent evolution, which offer insights both into correlates between form and function, and into how the ability of euthomorphic cusps in intrapability and stabilization of food items and its comminution between formidable cusps and occlusal spillway in between. Further studies should be done on the brachydontteeth and tropospheric cusps to fill the functional anatomy gap of teeth, in addition to diversity of cusps form. This study is considered a basic comparative anatomical study for normal healthy dentition and forensic practice, in addition to its importance in detection of local aspects of dental problems in camels.
Collapse
Affiliation(s)
- Atef M Erasha
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat City, Sadat, Egypt
| | - Mohammed Nazih
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, New Valley University, New Valley, Egypt
| | - Safwat Ali
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Minia University, Minia, Egypt
| | - Mohamed Alsafy
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Samir El-Gendy
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Ramy K A Sayed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt.
| |
Collapse
|
5
|
Sender RS, Strait DS. The biomechanics of tooth strength: testing the utility of simple models for predicting fracture in geometrically complex teeth. J R Soc Interface 2023; 20:20230195. [PMID: 37376873 PMCID: PMC10300505 DOI: 10.1098/rsif.2023.0195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Teeth must fracture foods while avoiding being fractured themselves. This study evaluated dome biomechanical models used to describe tooth strength. Finite-element analysis (FEA) tested whether the predictions of the dome models applied to the complex geometry of an actual tooth. A finite-element model was built from microCT scans of a human M3. The FEA included three loading regimes simulating contact between (i) a hard object and a single cusp tip, (ii) a hard object and all major cusp tips and (iii) a soft object and the entire occlusal basin. Our results corroborate the dome models with respect to the distribution and orientation of tensile stresses, but document heterogeneity of stress orientation across the lateral enamel. This implies that high stresses might not cause fractures to fully propagate between cusp tip and cervix under certain loading conditions. The crown is most at risk of failing during hard object biting on a single cusp. Geometrically simple biomechanical models are valuable tools for understanding tooth function but do not fully capture aspects of biomechanical performance in actual teeth whose complex geometries may reflect adaptations for strength.
Collapse
Affiliation(s)
- Rachel S. Sender
- Department of Anthropology, Washington University in St Louis, St Louis, MO 63013, USA
| | - David S. Strait
- Department of Anthropology, Washington University in St Louis, St Louis, MO 63013, USA
- Paleo-Research Institute, University of Johannesburg, Auckland Park, Gauteng 2092, South Africa
| |
Collapse
|
6
|
Mathematical tools for recovery of the load on the fissure according to the micro-CT results. J Mech Behav Biomed Mater 2023; 138:105625. [PMID: 36623401 DOI: 10.1016/j.jmbbm.2022.105625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
In the present paper X-ray microtomographic research of a molar tooth was conducted. The study revealed regions with a reduced mineral density in the vicinity of the fissure tip. The basic assumption investigated is that corrosion induced enamel mineral density decrease is enhanced by high tensile stresses generated by mechanical load on the occlusal surface of the tooth during crushing of food. Magnitude and location of tensile stress concentration occurs at the fissure tip and may be determined by solving the problem of the stress-strain state of the tooth crown enamel with a wedge-shaped notch. The study of stresses in the vicinity of fissure tip make it possible to construct the boundaries of enhanced enamel virtual fracture. Comparison of the sizes and locations of areas with a reduced enamel mineral density with the sizes and locations of areas of virtual enamel fracture made it possible to establish their approximate congruence. This circumstance made it possible to recreate by mathematical means the nature and magnitude of the force load on the lateral surface of the fissure. Degree of influence of the main parameters of the fissure on the geometrical characteristics of the virtual fracture, such as its area and diameters, were determined.
Collapse
|
7
|
Berthaume MA, Kramer PA. Anthroengineering: an independent interdisciplinary field. Interface Focus 2021; 11:20200056. [PMID: 34938428 PMCID: PMC8361575 DOI: 10.1098/rsfs.2020.0056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2021] [Indexed: 12/31/2022] Open
Abstract
In recent decades, funding agencies, institutes and professional bodies have recognized the profound benefits of transdisciplinarity in tackling targeted research questions. However, once questions are answered, the previously abundant support often dissolves. As such, the long-term benefits of these transdisciplinary approaches are never fully achieved. Over the last several decades, the integration of anthropology and engineering through inter- and multidisciplinary work has led to advances in fields such as design, human evolution and medical technologies. The lack of formal recognition, however, of this transdisciplinary approach as a unique entity rather than a useful tool or a subfield makes it difficult for researchers to establish laboratories, secure permanent jobs, fund long-term research programmes and train students in this approach. To facilitate the growth and development and witness the long-term benefits of this approach, we propose the integration of anthropology and engineering be recognized as a new, independent field known as anthroengineering. We present a working definition for anthroengineering and examples of how anthroengineering has been used. We discuss the necessity of recognizing anthroengineering as a unique field and explore potential novel applications. Finally, we discuss the future of anthroengineering, highlighting avenues for moving the field forward.
Collapse
Affiliation(s)
- Michael A. Berthaume
- Division of Mechanical Engineering and Design, London South Bank University, London SE1 0AA, UK
| | - Patricia Ann Kramer
- Department of Anthropology, University of Washington, Seattle, WA 98195-3100, USA
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA 98195-3100, USA
| |
Collapse
|
8
|
Borrero-Lopez O, Rodriguez-Rojas F, Constantino PJ, Lawn BR. Fundamental mechanics of tooth fracture and wear: implications for humans and other primates. Interface Focus 2021; 11:20200070. [PMID: 34938431 DOI: 10.1098/rsfs.2020.0070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2021] [Indexed: 12/15/2022] Open
Abstract
Until recently, there had been little attempt in the literature to identify and quantify the underlying mechanics of tooth durability in terms of materials engineering concepts. In humans and most mammals, teeth must endure a lifetime of sustained occlusal mastication-they have to resist fracture and wear. It is well documented that teeth are resilient, but what are the unique features that make this possible? The present article surveys recent materials engineering research aimed at addressing this fundamental question. Elements that determine the mechanics and micromechanics of tooth fracture and wear are analysed: at the macrostructural level, the geometry of the enamel shell and cuspal configuration; and at the microstructural level, interfacial weakness and property gradients. Inferences concerning dietary history in relation to evolutionary pressures are discussed.
Collapse
Affiliation(s)
- Oscar Borrero-Lopez
- Departamento de Ingeniería Mecánica, Energética y de los Materiales, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Fernando Rodriguez-Rojas
- Departamento de Ingeniería Mecánica, Energética y de los Materiales, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Paul J Constantino
- Department of Biology, Saint Michael's College, Colchester, VT 05439, USA
| | - Brian R Lawn
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
9
|
Crofts SB, Smith SM, Anderson PSL. Beyond Description: The Many Facets of Dental Biomechanics. Integr Comp Biol 2020; 60:594-607. [DOI: 10.1093/icb/icaa103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Synopsis
Teeth lie at the interface between an animal and its environment and, with some exceptions, act as a major component of resource procurement through food acquisition and processing. Therefore, the shape of a tooth is closely tied to the type of food being eaten. This tight relationship is of use to biologists describing the natural history of species and given the high instance of tooth preservation in the fossil record, is especially useful for paleontologists. However, correlating gross tooth morphology to diet is only part of the story, and much more can be learned through the study of dental biomechanics. We can explore the mechanics of how teeth work, how different shapes evolved, and the underlying forces that constrain tooth shape. This review aims to provide an overview of the research on dental biomechanics, in both mammalian and non-mammalian teeth, and to synthesize two main approaches to dental biomechanics to develop an integrative framework for classifying and evaluating dental functional morphology. This framework relates food material properties to the dynamics of food processing, in particular how teeth transfer energy to food items, and how these mechanical considerations may have shaped the evolution of tooth morphology. We also review advances in technology and new techniques that have allowed more in-depth studies of tooth form and function.
Collapse
Affiliation(s)
- S B Crofts
- Department of Evolution, Ecology, and Behavior, University of Illinois, 515 Morrill Hall, 505 S. Goodwin Avenue, Urbana, IL 61801, USA
| | - S M Smith
- Field Museum of Natural History, Negaunee Integrative Research Center, 1400 South Lake Shore Drive, Chicago, IL 60605-2496, USA
| | - P S L Anderson
- Department of Evolution, Ecology, and Behavior, University of Illinois, 515 Morrill Hall, 505 S. Goodwin Avenue, Urbana, IL 61801, USA
| |
Collapse
|
10
|
Jose EA, Palathingal P, Mathew MG, Khan MM. Ten-cusped primary molar tooth: A rare entity with literature review. J Oral Maxillofac Pathol 2020; 24:176-178. [PMID: 32508470 PMCID: PMC7269274 DOI: 10.4103/jomfp.jomfp_131_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 05/09/2019] [Indexed: 12/02/2022] Open
Abstract
Teeth arise by complex and progressive interactions between the ectoderm, oral epithelium and underlying mesenchyme. However, it may show variations and changes in morphological structure. A 6-year-old female child patient came for the treatment of her carious tooth. Intraoral examination revealed supernumerary cusp on occlusal surface of the maxillary right second primary molar. Incidence of supernumerary cusp is a rare condition formed by abnormal proliferation and folding of inner enamel epithelium during morphodifferentiation stage of the tooth development. Conservative cavity preparation and restorative treatment protocol were carried out to treat this case. Early diagnosis, management and timely recall of these rare anomalies will help to avoid potential complications, resulting from faster carious progression in these teeth due to the presence of many fissures and early pulpal extensions into the cuspal area.
Collapse
Affiliation(s)
- Ej Akhil Jose
- Department of Pedodontics and Preventive Dentistry, PSM College of Dental Science and Research, Thrissur, Kerala, India
| | - Plato Palathingal
- Department of Periodontics, PSM College of Dental Science and Research, Thrissur, Kerala, India
| | - Mebin George Mathew
- Department of Pedodontics and Preventive Dentistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, Tamil Nadu, India
| | - Md Muzammil Khan
- Department of Pedodontics and Preventive Dentistry, Bapuji Dental College, Davangere, Karnataka, India
| |
Collapse
|
11
|
Huang JD, Motani R, Jiang DY, Ren XX, Tintori A, Rieppel O, Zhou M, Hu YC, Zhang R. Repeated evolution of durophagy during ichthyosaur radiation after mass extinction indicated by hidden dentition. Sci Rep 2020; 10:7798. [PMID: 32385319 PMCID: PMC7210957 DOI: 10.1038/s41598-020-64854-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/17/2020] [Indexed: 01/19/2023] Open
Abstract
Marine tetrapods quickly diversified and were established as marine top predators after the end-Permian Mass extinction (EPME). Ichthyosaurs were the forerunner of this rapid radiation but the main drivers of the diversification are poorly understood. Cartorhynchus lenticarpus is a basal ichthyosauriform with the least degree of aquatic adaptation, holding a key to identifying such a driver. The unique specimen appeared edentulous based on what was exposed but a CT scanning revealed that the species indeed had rounded teeth that are nearly perpendicular to the jaw rami, and thus completely concealed in lateral view. There are three dental rows per jaw ramus, and the root lacks infoldings of the dentine typical of ichthyopterygians. The well-developed and worn molariform dentition with three tooth rows supports the previous inference that the specimen is not of a juvenile. The premaxilla and the corresponding part of the dentary are edentulous. Molariform dentition evolved three to five times independently within Ichthyosauriformes in the Early and Middle Triassic. Convergent exploitation of hard-shelled invertebrates by different subclades of ichthyosauriforms likely fueled the rapid taxonomic diversification of the group after EPME.
Collapse
Affiliation(s)
- Jian-Dong Huang
- Department of Research, Anhui Geological Museum, Jiahe Road 999, Hefei, Anhui, 230031, China
| | - Ryosuke Motani
- Department of Earth and Planetary Sciences, University of California, One Shields Avenue, 95616, Davis, California, USA.
| | - Da-Yong Jiang
- Department of Geology and Geological Museum, Peking University, Yiheyuan Street. 5, Beijing, 100871, P.R. China.,State Key Laboratory of Palaeobiology and Stratigraphy (Nanjing Institute of Geology and Palaeontology), Chinese Academy of Science, Nanjing, 210008, P. R. China
| | - Xin-Xin Ren
- Department of Research, Anhui Geological Museum, Jiahe Road 999, Hefei, Anhui, 230031, China
| | - Andrea Tintori
- Dipartimento di Scienze della Terra, Università degli Studi di Milano, Via Mangiagalli 34-20133, Milano, Italy
| | - Olivier Rieppel
- Center of Integrative Research, The Field Museum, Chicago, IL, 60605-2496, USA
| | - Min Zhou
- Department of Geology and Geological Museum, Peking University, Yiheyuan Street. 5, Beijing, 100871, P.R. China
| | - Yuan-Chao Hu
- Department of Research, Anhui Geological Museum, Jiahe Road 999, Hefei, Anhui, 230031, China
| | - Rong Zhang
- Department of Research, Anhui Geological Museum, Jiahe Road 999, Hefei, Anhui, 230031, China
| |
Collapse
|
12
|
Calamari ZT, Kuang-Hsien Hu J, Klein OD. Tissue Mechanical Forces and Evolutionary Developmental Changes Act Through Space and Time to Shape Tooth Morphology and Function. Bioessays 2018; 40:e1800140. [PMID: 30387177 PMCID: PMC6516060 DOI: 10.1002/bies.201800140] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/06/2018] [Indexed: 12/24/2022]
Abstract
Efforts from diverse disciplines, including evolutionary studies and biomechanical experiments, have yielded new insights into the genetic, signaling, and mechanical control of tooth formation and functions. Evidence from fossils and non-model organisms has revealed that a common set of genes underlie tooth-forming potential of epithelia, and changes in signaling environments subsequently result in specialized dentitions, maintenance of dental stem cells, and other phenotypic adaptations. In addition to chemical signaling, tissue forces generated through epithelial contraction, differential growth, and skeletal constraints act in parallel to shape the tooth throughout development. Here recent advances in understanding dental development from these studies are reviewed and important gaps that can be filled through continued application of evolutionary and biomechanical approaches are discussed.
Collapse
Affiliation(s)
- Zachary T. Calamari
- Department of Natural Sciences, Baruch College, City University of New York, New York City, New York, 10010, USA
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, California, 94143, USA
| | - Jimmy Kuang-Hsien Hu
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, California, 94143, USA
| | - Ophir D. Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, California, 94143, USA
- Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, San Francisco, California, 94143, USA
| |
Collapse
|
13
|
Couve E, Schmachtenberg O. Schwann Cell Responses and Plasticity in Different Dental Pulp Scenarios. Front Cell Neurosci 2018; 12:299. [PMID: 30233330 PMCID: PMC6133954 DOI: 10.3389/fncel.2018.00299] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 08/17/2018] [Indexed: 12/29/2022] Open
Abstract
Mammalian teeth have evolved as dentin units that enclose a complex system of sensory innervation to protect and preserve their structure and function. In human dental pulp (DP), mechanosensory and nociceptive fibers form a dense meshwork of nerve endings at the coronal dentin-pulp interface, which arise from myelinated and non-myelinated axons of the Raschkow plexus (RP). Schwann cells (SCs) play a crucial role in the support, maintenance and regeneration after injury of these fibers. We have recently characterized two SC phenotypes hierarchically organized within the coronal and radicular DP in human teeth. Myelinating and non-myelinating SCs (nmSCs) display a high degree of plasticity associated with nociceptive C-fiber sprouting and axonal degeneration in response to DP injuries from dentin caries or physiological root resorption (PRR). By comparative immunolabeling, confocal and electron microscopy, we have characterized short-term adaptive responses of SC phenotypes to nerve injuries, and long-term changes related to aging. An increase of SCs characterizes the early responses to caries progression in association with axonal sprouting in affected DP domains. Moreover, during PRR, the formation of bands of Büngner is observed as part of SC repair tracks functions. On the other hand, myelinated axon density is significantly reduced with tooth age, as part of a gradual decrease in DP defense and repair capacities. The remarkable plasticity and capacity of SCs to preserve DP innervation in different dental scenarios constitutes a fundamental aspect to improve clinical treatments. This review article discusses the central role of myelinating and non-mSCs in long-term tooth preservation and homeostasis.
Collapse
Affiliation(s)
- Eduardo Couve
- Laboratorio de Microscopía Electrónica, Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Oliver Schmachtenberg
- Centro Interdisciplinario de Neurociencias de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
14
|
Constantino PJ, Borrero‐Lopez O, Lawn BR. Mechanisms of tooth damage and
Paranthropus
dietary reconstruction. BIOSURFACE AND BIOTRIBOLOGY 2018. [DOI: 10.1049/bsbt.2018.0017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
| | - Oscar Borrero‐Lopez
- Departamento de Ingeniería Mecánica, Energética y de los MaterialesUniversidad de Extremadura06006BadajozSpain
| | - Brian R. Lawn
- Materials Measurement LaboratoryNational Institute of Standards and TechnologyGaithersburgMD20899USA
| |
Collapse
|