1
|
Reys V, Giulini M, Cojocaru V, Engel A, Xu X, Roel-Touris J, Geng C, Ambrosetti F, Jiménez-García B, Jandova Z, Koukos PI, van Noort C, Teixeira JMC, van Keulen SC, Réau M, Honorato RV, Bonvin AMJJ. Integrative Modeling in the Age of Machine Learning: A Summary of HADDOCK Strategies in CAPRI Rounds 47-55. Proteins 2024. [PMID: 39739354 DOI: 10.1002/prot.26789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025]
Abstract
The HADDOCK team participated in CAPRI rounds 47-55 as server, manual predictor, and scorers. Throughout these CAPRI rounds, we used a plethora of computational strategies to predict the structure of protein complexes. Of the 10 targets comprising 24 interfaces, we achieved acceptable or better models for 3 targets in the human category and 1 in the server category. Our performance in the scoring challenge was slightly better, with our simple scoring protocol being the only one capable of identifying an acceptable model for Target 234. This result highlights the robustness of the simple, fully physics-based HADDOCK scoring function, especially when applied to highly flexible antibody-antigen complexes. Inspired by the significant advances in machine learning for structural biology and the dramatic improvement in our success rates after the public release of Alphafold2, we identify the integration of classical approaches like HADDOCK with AI-driven structure prediction methods as a key strategy for improving the accuracy of model generation and scoring.
Collapse
Affiliation(s)
- Victor Reys
- Bijvoet Centre for Biomolecular Research, Faculty of Science-Chemistry, Utrecht University, Utrecht, The Netherlands
| | - Marco Giulini
- Bijvoet Centre for Biomolecular Research, Faculty of Science-Chemistry, Utrecht University, Utrecht, The Netherlands
| | - Vlad Cojocaru
- Bijvoet Centre for Biomolecular Research, Faculty of Science-Chemistry, Utrecht University, Utrecht, The Netherlands
- STAR-UBB Institute, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Anna Engel
- Bijvoet Centre for Biomolecular Research, Faculty of Science-Chemistry, Utrecht University, Utrecht, The Netherlands
| | - Xiaotong Xu
- Bijvoet Centre for Biomolecular Research, Faculty of Science-Chemistry, Utrecht University, Utrecht, The Netherlands
| | - Jorge Roel-Touris
- Bijvoet Centre for Biomolecular Research, Faculty of Science-Chemistry, Utrecht University, Utrecht, The Netherlands
- IBMB, Barcelona, Spain
| | - Cunliang Geng
- Bijvoet Centre for Biomolecular Research, Faculty of Science-Chemistry, Utrecht University, Utrecht, The Netherlands
| | - Francesco Ambrosetti
- Bijvoet Centre for Biomolecular Research, Faculty of Science-Chemistry, Utrecht University, Utrecht, The Netherlands
- Novartis, Switzerland
| | - Brian Jiménez-García
- Bijvoet Centre for Biomolecular Research, Faculty of Science-Chemistry, Utrecht University, Utrecht, The Netherlands
- ZYMVOL, Barcelona, Spain
| | - Zuzana Jandova
- Bijvoet Centre for Biomolecular Research, Faculty of Science-Chemistry, Utrecht University, Utrecht, The Netherlands
- Boehringer Ingelheim, Vienna, Austria
| | - Panagiotis I Koukos
- Bijvoet Centre for Biomolecular Research, Faculty of Science-Chemistry, Utrecht University, Utrecht, The Netherlands
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Charlotte van Noort
- Bijvoet Centre for Biomolecular Research, Faculty of Science-Chemistry, Utrecht University, Utrecht, The Netherlands
| | - João M C Teixeira
- Bijvoet Centre for Biomolecular Research, Faculty of Science-Chemistry, Utrecht University, Utrecht, The Netherlands
- ZYMVOL, Barcelona, Spain
| | - Siri C van Keulen
- Bijvoet Centre for Biomolecular Research, Faculty of Science-Chemistry, Utrecht University, Utrecht, The Netherlands
- Qubit Pharmaceuticals, Paris, France
| | - Manon Réau
- Bijvoet Centre for Biomolecular Research, Faculty of Science-Chemistry, Utrecht University, Utrecht, The Netherlands
- Qubit Pharmaceuticals, Paris, France
| | - Rodrigo V Honorato
- Bijvoet Centre for Biomolecular Research, Faculty of Science-Chemistry, Utrecht University, Utrecht, The Netherlands
| | - Alexandre M J J Bonvin
- Bijvoet Centre for Biomolecular Research, Faculty of Science-Chemistry, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
2
|
Sieper MH, Gaikwad AS, Fros M, Weber P, Di Persio S, Oud MS, Kliesch S, Neuhaus N, Stallmeyer B, Tüttelmann F, Wyrwoll MJ. Scrutinizing the human TEX genes in the context of human male infertility. Andrology 2024; 12:570-584. [PMID: 37594251 DOI: 10.1111/andr.13511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/12/2023] [Accepted: 08/06/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND Infertility affects around 15% of all couples worldwide and is increasingly linked to variants in genes specifically expressed in the testis. Well-established causes of male infertility include pathogenic variants in the genes TEX11, TEX14, and TEX15, while few studies have recently reported variants in TEX13B, TEX13C, FAM9A (TEX39A), and FAM9B (TEX39B). OBJECTIVES We aimed at screening for novel potential candidate genes among the human TEX ("testis expressed") genes as well as verifying previously described disease associations in this set of genes. MATERIALS AND METHODS To this end, we screened the exome sequencing data of 1305 men, including 1056 crypto- and azoospermic individuals, and determined cell-specific expression by analyzing testis-specific single-cell RNA sequencing data for genes with identified variants. To investigate the overarching role in male fertility, we generated testis-specific knockdown (KD) models of all 10 orthologous TEX genes in Drosophila melanogaster. RESULTS We detected rare potential disease-causing variants in TEX10, TEX13A, TEX13B, TEX13C, TEX13D, ZFAND3 (TEX27), TEX33, FAM9A (TEX39A), and FAM9B (TEX39B), in 28 infertile men, of which 15 men carried variants in TEX10, TEX27, and TEX33. The KD of TEX2, TEX9, TEX10, TEX13, ZFAND3 (TEX27), TEX28, TEX30, NFX1 (TEX42), TEX261, and UTP4 (TEX292) in Drosophila resulted in normal fertility. DISCUSSION Based on our findings, the autosomal dominant predicted genes TEX10 and ZFAND3 (TEX27) and the autosomal recessive predicted gene TEX33, which all three are conceivably required for germ cell maturation, were identified as novel potential candidate genes for human non-obstructive azoospermia. We additionally identified hemizygous loss-of-function (LoF) variants in TEX13B, TEX13C, and FAM9A (TEX39A) as unlikely monogenic culprits of male infertility as LoF variants were also found in control men. CONCLUSION Our findings concerning the X-linked genes TEX13B, TEX13C, and FAM9A (TEX39A) contradict previous reports and will decrease false-positive reports in genetic diagnostics of azoospermic men.
Collapse
Affiliation(s)
- Marie H Sieper
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Avinash S Gaikwad
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Marion Fros
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Philipp Weber
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Sara Di Persio
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, Münster, Germany
| | - Manon S Oud
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sabine Kliesch
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, Münster, Germany
| | - Nina Neuhaus
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, Münster, Germany
| | - Birgit Stallmeyer
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Margot J Wyrwoll
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| |
Collapse
|
3
|
Kursel LE, Martinez JEA, Rog O. A suppressor screen in C. elegans identifies a multiprotein interaction that stabilizes the synaptonemal complex. Proc Natl Acad Sci U S A 2023; 120:e2314335120. [PMID: 38055743 PMCID: PMC10723054 DOI: 10.1073/pnas.2314335120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/23/2023] [Indexed: 12/08/2023] Open
Abstract
Successful chromosome segregation into gametes depends on tightly regulated interactions between the parental chromosomes. During meiosis, chromosomes are aligned end-to-end by an interface called the synaptonemal complex, which also regulates exchanges between them. However, despite the functional and ultrastructural conservation of this essential interface, how protein-protein interactions within the synaptonemal complex regulate chromosomal interactions remains poorly understood. Here, we describe a genetic interaction in the C. elegans synaptonemal complex, comprised of short segments of three proteins, SYP-1, SYP-3, and SYP-4. We identified the interaction through a saturated suppressor screen of a mutant that destabilizes the synaptonemal complex. The specificity and tight distribution of suppressors suggest a charge-based interface that promotes interactions between synaptonemal complex subunits and, in turn, allows intimate interactions between chromosomes. Our work highlights the power of genetic studies to illuminate the mechanisms that underlie meiotic chromosome interactions.
Collapse
Affiliation(s)
- Lisa E. Kursel
- School of Biological Sciences and Center for Cell and Genome Sciences, The University of Utah, Salt Lake City, UT84112
| | - Jesus E. Aguayo Martinez
- School of Biological Sciences and Center for Cell and Genome Sciences, The University of Utah, Salt Lake City, UT84112
| | - Ofer Rog
- School of Biological Sciences and Center for Cell and Genome Sciences, The University of Utah, Salt Lake City, UT84112
| |
Collapse
|
4
|
Bui MD, Luong TLA, Tran HD, Duong TTH, Nguyen TN, Nguyen DT, Nguyen TD, Nong VH. A Novel Frameshift Microdeletion of the TEX12 Gene Caused Infertility in Two Brothers with Nonobstructive Azoospermia. Reprod Sci 2023; 30:2876-2881. [PMID: 37012491 DOI: 10.1007/s43032-023-01226-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/27/2023] [Indexed: 04/05/2023]
Abstract
Male infertility is a growing health problem, which affects approximately 7% of the global male population. Nonobstructive azoospermia (NOA) is one of the most severe forms of male infertility caused by genetic defects, including chromosome structural abnormalities, Y chromosome microdeletions, or single-gene alterations. However, the etiology of up to 40% of NOA cases is unidentified. By whole-exome sequencing, we detected a homozygous 5-bp-deletion variant in exon 4 of the TEX12 gene (c.196-200del, p.L66fs, NM_031275.4) in two brothers with NOA of a nonconsanguineous Vietnamese family. This deletion variant of 5 nucleotides (ATTAG) results in a premature stop codon in exon 4 and truncation of the C-terminal. Segregation analysis by Sanger sequencing confirmed that the deletion variant was inherited in an autosomal recessive pattern. The 1st and 3rd infertile sons were homozygous for the deletion, whereas the 2nd fertile son and both parents were heterozygous. The new deletion mutation identified in TEX12 gene caused loss of function of TEX12 gene. The loss of TEX12 function has already caused infertility in male mice. Therefore, we concluded that the loss of TEX12 function may cause infertility in men. To our knowledge, this is the first case reported so far indicating disruption of human TEX12, which leads to infertility in men.
Collapse
Affiliation(s)
- Minh Duc Bui
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | | | - Huu Dinh Tran
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Thi Thu Ha Duong
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Thy Ngoc Nguyen
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Dang Ton Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Thuy Duong Nguyen
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam.
| | - Van Hai Nong
- Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam.
| |
Collapse
|
5
|
Abstract
In meiosis, homologous chromosome synapsis is mediated by a supramolecular protein structure, the synaptonemal complex (SC), that assembles between homologous chromosome axes. The mammalian SC comprises at least eight largely coiled-coil proteins that interact and self-assemble to generate a long, zipper-like structure that holds homologous chromosomes in close proximity and promotes the formation of genetic crossovers and accurate meiotic chromosome segregation. In recent years, numerous mutations in human SC genes have been associated with different types of male and female infertility. Here, we integrate structural information on the human SC with mouse and human genetics to describe the molecular mechanisms by which SC mutations can result in human infertility. We outline certain themes in which different SC proteins are susceptible to different types of disease mutation and how genetic variants with seemingly minor effects on SC proteins may act as dominant-negative mutations in which the heterozygous state is pathogenic.
Collapse
Affiliation(s)
- Ian R Adams
- Medical Research Council (MRC) Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom;
| | - Owen R Davies
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom;
| |
Collapse
|
6
|
Kursel LE, Martinez JEA, Rog O. A suppressor screen in C. elegans identifies a multi-protein interaction interface that stabilizes the synaptonemal complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.554166. [PMID: 37662357 PMCID: PMC10473659 DOI: 10.1101/2023.08.21.554166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Successful chromosome segregation into gametes depends on tightly-regulated interactions between the parental chromosomes. During meiosis, chromosomes are aligned end-to-end by an interface called the synaptonemal complex, which also regulates exchanges between them. However, despite the functional and ultrastructural conservation of this essential interface, how protein-protein interactions within the synaptonemal complex regulate chromosomal interactions remains poorly understood. Here we describe a novel interaction interface in the C. elegans synaptonemal complex, comprised of short segments of three proteins, SYP-1, SYP-3 and SYP-4. We identified the interface through a saturated suppressor screen of a mutant that destabilizes the synaptonemal complex. The specificity and tight distribution of suppressors point to a charge-based interface that promotes interactions between synaptonemal complex subunits and, in turn, allows intimate interactions between chromosomes. Our work highlights the power of genetic studies to illuminate the mechanisms that underly meiotic chromosome interactions.
Collapse
Affiliation(s)
- Lisa E. Kursel
- School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, United States
| | - Jesus E. Aguayo Martinez
- School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, United States
| | - Ofer Rog
- School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, United States
| |
Collapse
|
7
|
Ozturk S. Genetic variants underlying spermatogenic arrests in men with non-obstructive azoospermia. Cell Cycle 2023; 22:1021-1061. [PMID: 36740861 PMCID: PMC10081088 DOI: 10.1080/15384101.2023.2171544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/29/2022] [Accepted: 01/18/2023] [Indexed: 02/07/2023] Open
Abstract
Spermatogenic arrest is a severe form of non-obstructive azoospermia (NOA), which occurs in 10-15% of infertile men. Interruption in spermatogenic progression at premeiotic, meiotic, or postmeiotic stage can lead to arrest in men with NOA. Recent studies have intensively focused on defining genetic variants underlying these spermatogenic arrests by making genome/exome sequencing. A number of variants were discovered in the genes involving in mitosis, meiosis, germline differentiation and other basic cellular events. Herein, defined variants in NOA cases with spermatogenic arrests and created knockout mouse models for the related genes are comprehensively reviewed. Also, importance of gene panel-based screening for NOA cases was discussed. Screening common variants in these infertile men with spermatogenic arrests may contribute to elucidating the molecular background and designing novel treatment strategies.
Collapse
Affiliation(s)
- Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| |
Collapse
|
8
|
Crichton JH, Dunce JM, Dunne OM, Salmon LJ, Devenney PS, Lawson J, Adams IR, Davies OR. Structural maturation of SYCP1-mediated meiotic chromosome synapsis by SYCE3. Nat Struct Mol Biol 2023; 30:188-199. [PMID: 36635604 PMCID: PMC7614228 DOI: 10.1038/s41594-022-00909-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/06/2022] [Indexed: 01/13/2023]
Abstract
In meiosis, a supramolecular protein structure, the synaptonemal complex (SC), assembles between homologous chromosomes to facilitate their recombination. Mammalian SC formation is thought to involve hierarchical zipper-like assembly of an SYCP1 protein lattice that recruits stabilizing central element (CE) proteins as it extends. Here we combine biochemical approaches with separation-of-function mutagenesis in mice to show that, rather than stabilizing the SYCP1 lattice, the CE protein SYCE3 actively remodels this structure during synapsis. We find that SYCP1 tetramers undergo conformational change into 2:1 heterotrimers on SYCE3 binding, removing their assembly interfaces and disrupting the SYCP1 lattice. SYCE3 then establishes a new lattice by its self-assembly mimicking the role of the disrupted interface in tethering together SYCP1 dimers. SYCE3 also interacts with CE complexes SYCE1-SIX6OS1 and SYCE2-TEX12, providing a mechanism for their recruitment. Thus, SYCE3 remodels the SYCP1 lattice into a CE-binding integrated SYCP1-SYCE3 lattice to achieve long-range synapsis by a mature SC.
Collapse
Affiliation(s)
- James H Crichton
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - James M Dunce
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Orla M Dunne
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Vienna BioCenter Core Facilities GmbH, Vienna, Austria
| | - Lucy J Salmon
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Paul S Devenney
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Jennifer Lawson
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Ian R Adams
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| | - Owen R Davies
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
9
|
Huang L, Zhang J, Zhang P, Huang X, Yang W, Liu R, Sun Q, Lu Y, Zhang M, Fu Q. Single-cell RNA sequencing uncovers dynamic roadmap and cell-cell communication during buffalo spermatogenesis. iScience 2022; 26:105733. [PMID: 36582818 PMCID: PMC9793287 DOI: 10.1016/j.isci.2022.105733] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/24/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Spermatogenesis carries the task of precise intergenerational transmission of genetic information from the paternal genome and involves complex developmental processes regulated by the testicular microenvironment. Studies performed mainly in mouse models have established the theoretical basis for spermatogenesis, yet the wide interspecies differences preclude direct translation of the findings, and farm animal studies are progressing slowly. More than 32,000 cells from prepubertal (3-month-old) and pubertal (24-month-old) buffalo testes were analyzed by using single-cell RNA sequencing (scRNA-seq), and dynamic gene expression roadmaps of germ and somatic cell development were generated. In addition to identifying the dynamic processes of sequential cell fate transitions, the global cell-cell communication essential to maintain regular spermatogenesis in the buffalo testicular microenvironment was uncovered. The findings provide the theoretical basis for establishing buffalo germline stem cells in vitro or culturing organoids and facilitating the expansion of superior livestock breeding.
Collapse
Affiliation(s)
- Liangfeng Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Junjun Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Pengfei Zhang
- Institute of Medical and Health, Guangxi Academy of Sciences, Nanning 530007, China
| | - Xingchen Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Weihan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Runfeng Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Qinqiang Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China,Corresponding author
| | - Ming Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China,Corresponding author
| | - Qiang Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China,Corresponding author
| |
Collapse
|
10
|
A cryo-fixation protocol to study the structure of the synaptonemal complex. Chromosome Res 2022; 30:385-400. [PMID: 35486207 DOI: 10.1007/s10577-022-09689-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/08/2022] [Accepted: 03/28/2022] [Indexed: 01/25/2023]
Abstract
Genetic variability in sexually reproducing organisms results from an exchange of genetic material between homologous chromosomes. The genetic exchange mechanism is dependent on the synaptonemal complex (SC), a protein structure localized between the homologous chromosomes. The current structural models of the mammalian SC are based on electron microscopy, superresolution, and expansion microscopy studies using chemical fixatives and sample dehydration of gonads, which are methodologies known to produce structural artifacts. To further analyze the structure of the SC, without chemical fixation, we have adapted a cryo-fixation method for electron microscopy where pachytene cells are isolated from mouse testis by FACS, followed by cryo-fixation, cryo-substitution, and electron tomography. In parallel, we performed conventional chemical fixation and electron tomography on mouse seminiferous tubules to compare the SC structure obtained with the two fixation methods. We found several differences in the structure and organization of the SC in cryo-fixed samples when compared to chemically preserved samples. We found the central region of the SC to be wider and the transverse filaments to be more densely packed in the central region of the SC.
Collapse
|
11
|
Female Germ Cell Development in Chickens and Humans: The Chicken Oocyte Enriched Genes Convergent and Divergent with the Human Oocyte. Int J Mol Sci 2022; 23:ijms231911412. [PMID: 36232712 PMCID: PMC9570461 DOI: 10.3390/ijms231911412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
The development of germ cells and other physiological events in the differentiated ovary of humans are highly conserved with several mammalian species, except for the differences in timing. However, comparative knowledge on this topic is very scarce with respect to humans and lower vertebrates, such as chickens. In chickens, female germ cells enter into meiosis around embryonic day (E) 15.5 and are arrested in meiotic prophase I as primary oocytes. The oocytes arrested in meiosis I are accumulated in germ-cell cysts; shortly after hatching, they are enclosed by flattened granulosa cells in order to form primordial follicles. In humans, the process of meiotic recombination in female germ cells begins in the 10–11th week of gestation, and primordial follicles are formed at around week 20. In this review, we comprehensively elucidate both the conservation and the species-specific differences between chickens and humans with respect to germ cell, oocyte, and follicle development. Importantly, we provide functional insights into a set of chicken oocyte enriched genes (from E16 to 1 week post-hatch) that show convergent and divergent expression patterns with respect to the human oocyte (from week 11 to 26).
Collapse
|
12
|
Coiled-coil structure of meiosis protein TEX12 and conformational regulation by its C-terminal tip. Commun Biol 2022; 5:921. [PMID: 36071143 PMCID: PMC9452514 DOI: 10.1038/s42003-022-03886-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/24/2022] [Indexed: 11/12/2022] Open
Abstract
Meiosis protein TEX12 is an essential component of the synaptonemal complex (SC), which mediates homologous chromosome synapsis. It is also recruited to centrosomes in meiosis, and aberrantly in certain cancers, leading to centrosome dysfunction. Within the SC, TEX12 forms an intertwined complex with SYCE2 that undergoes fibrous assembly, driven by TEX12’s C-terminal tip. However, we hitherto lack structural information regarding SYCE2-independent functions of TEX12. Here, we report X-ray crystal structures of TEX12 mutants in three distinct conformations, and utilise solution light and X-ray scattering to determine its wild-type dimeric four-helical coiled-coil structure. TEX12 undergoes conformational change upon C-terminal tip mutations, indicating that the sequence responsible for driving SYCE2-TEX12 assembly within the SC also controls the oligomeric state and conformation of isolated TEX12. Our findings provide the structural basis for SYCE2-independent roles of TEX12, including the possible regulation of SC assembly, and its known functions in meiotic centrosomes and cancer. The X-ray crystal structures of C-terminal mutants of the coiled-coil protein cancer testis antigen TEX12 in combination with modeling of the TEX12 wild-type dimer reveal the protein’s control of its oligomeric state, which resembles assembly of its complex with synaptonemal complex central element protein SYCE2.
Collapse
|
13
|
Nabi S, Askari M, Rezaei-Gazik M, Salehi N, Almadani N, Tahamtani Y, Totonchi M. A rare frameshift mutation in SYCP1 is associated with human male infertility. Mol Hum Reprod 2022; 28:6563198. [PMID: 35377450 DOI: 10.1093/molehr/gaac009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/14/2022] [Indexed: 11/12/2022] Open
Abstract
Proper assembly of the synaptonemal complex is essential for successful meiosis, and impairments in the process lead to infertility. Meiotic transverse filament proteins encoded by the SYCP1 (synaptonemal complex protein 1) gene are one of the main components of the synaptonemal complex and play an important role in correct synapsis and recombination. Family-based whole exome sequencing revealed a rare homozygous SYCP1 frameshift mutation (c.2892delA: p.K967Nfs*1) in two men with severe oligozoospermia, followed by validation and segregation through Sanger sequencing. This single nucleotide deletion not only changes lysine 967 (K) into asparagine (N) but also causes a premature stop codon, which leads to deletion of 968-976 residues from the end of the C-tail region of the SYCP1 protein. Although, sycp1 knockout male mice are reported to be sterile with a complete lack of spermatids and spermatozoa, to date no SYCP1 variant has been associated with human oligozoospermia. HADDOCK analysis indicated that this mutation decreases the ability of the truncated SYCP1 protein to bind DNA. Immunodetection of ϒH2AX signal, in SYCP1 mutant semen cells and a 40% DNA fragmentation index might indicate that a small number of DNA double-strand breaks, which require SYCP1 and/or synapsis to be repaired, are not efficiently repaired, resulting in defects in differentiation of germline cells and appearance of the oligozoospermia phenotype. To our knowledge, this is the first report of homozygous SYCP1 mutation that decreases sperm count. Further studies are required to determine the function of the SYCP1 mutation, which is potentially associated with human oligozoospermia.
Collapse
Affiliation(s)
- Soheila Nabi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Masomeh Askari
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.,Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases,Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rezaei-Gazik
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Najmeh Salehi
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Navid Almadani
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Yaser Tahamtani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mehdi Totonchi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.,School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
14
|
Pyatnitskaya A, Andreani J, Guérois R, De Muyt A, Borde V. The Zip4 protein directly couples meiotic crossover formation to synaptonemal complex assembly. Genes Dev 2022; 36:53-69. [PMID: 34969823 PMCID: PMC8763056 DOI: 10.1101/gad.348973.121] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/08/2021] [Indexed: 11/24/2022]
Abstract
Meiotic recombination is triggered by programmed double-strand breaks (DSBs), a subset of these being repaired as crossovers, promoted by eight evolutionarily conserved proteins, named ZMM. Crossover formation is functionally linked to synaptonemal complex (SC) assembly between homologous chromosomes, but the underlying mechanism is unknown. Here we show that Ecm11, a SC central element protein, localizes on both DSB sites and sites that attach chromatin loops to the chromosome axis, which are the starting points of SC formation, in a way that strictly requires the ZMM protein Zip4. Furthermore, Zip4 directly interacts with Ecm11, and point mutants that specifically abolish this interaction lose Ecm11 binding to chromosomes and exhibit defective SC assembly. This can be partially rescued by artificially tethering interaction-defective Ecm11 to Zip4. Mechanistically, this direct connection ensuring SC assembly from CO sites could be a way for the meiotic cell to shut down further DSB formation once enough recombination sites have been selected for crossovers, thereby preventing excess crossovers. Finally, the mammalian ortholog of Zip4, TEX11, also interacts with the SC central element TEX12, suggesting a general mechanism.
Collapse
Affiliation(s)
- Alexandra Pyatnitskaya
- Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, Dynamics of Genetic Information, UMR3244, Centre National de la Recherche Scientifique (CNRS), Paris 75248, France
| | - Jessica Andreani
- Université Paris-Saclay, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette 91198, France
| | - Raphaël Guérois
- Université Paris-Saclay, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette 91198, France
| | - Arnaud De Muyt
- Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, Dynamics of Genetic Information, UMR3244, Centre National de la Recherche Scientifique (CNRS), Paris 75248, France
| | - Valérie Borde
- Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, Dynamics of Genetic Information, UMR3244, Centre National de la Recherche Scientifique (CNRS), Paris 75248, France
| |
Collapse
|
15
|
Sandhu S, Sou IF, Hunter JE, Salmon L, Wilson CL, Perkins ND, Hunter N, Davies OR, McClurg UL. Centrosome dysfunction associated with somatic expression of the synaptonemal complex protein TEX12. Commun Biol 2021; 4:1371. [PMID: 34880391 PMCID: PMC8654964 DOI: 10.1038/s42003-021-02887-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 11/12/2021] [Indexed: 12/22/2022] Open
Abstract
The synaptonemal complex (SC) is a supramolecular protein scaffold that mediates chromosome synapsis and facilitates crossing over during meiosis. In mammals, SC proteins are generally assumed to have no other function. Here, we show that SC protein TEX12 also localises to centrosomes during meiosis independently of chromosome synapsis. In somatic cells, ectopically expressed TEX12 similarly localises to centrosomes, where it is associated with centrosome amplification, a pathology correlated with cancer development. Indeed, TEX12 is identified as a cancer-testis antigen and proliferation of some cancer cells is TEX12-dependent. Moreover, somatic expression of TEX12 is aberrantly activated via retinoic acid signalling, which is commonly disregulated in cancer. Structure-function analysis reveals that phosphorylation of TEX12 on tyrosine 48 is important for centrosome amplification but not for recruitment of TEX12 to centrosomes. We conclude that TEX12 normally localises to meiotic centrosomes, but its misexpression in somatic cells can contribute to pathological amplification and dysfunction of centrosomes in cancers. Sandhu et al. report that the synaptonemal complex (SC) protein, TEX12, localises to centrosomes independently of the SC during meiosis. They also show that it provokes centrosome amplification in somatic cells, a pathology associated with cancer development.
Collapse
Affiliation(s)
- Sumit Sandhu
- Howard Hughes Medical Institute, Department of Microbiology and Molecular Genetics, University of California, Davis, CA, 95616, USA
| | - Ieng F Sou
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Jill E Hunter
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Lucy Salmon
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Caroline L Wilson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Neil D Perkins
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Neil Hunter
- Howard Hughes Medical Institute, Department of Microbiology and Molecular Genetics, University of California, Davis, CA, 95616, USA.
| | - Owen R Davies
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK. .,Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, EH9 3BF, UK.
| | - Urszula L McClurg
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| |
Collapse
|
16
|
Li J, Gao J, Wang R. Control of Chromatin Organization and Chromosome Behavior during the Cell Cycle through Phase Separation. Int J Mol Sci 2021; 22:ijms222212271. [PMID: 34830152 PMCID: PMC8621359 DOI: 10.3390/ijms222212271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 01/02/2023] Open
Abstract
Phase-separated condensates participate in various biological activities. Liquid-liquid phase separation (LLPS) can be driven by collective interactions between multivalent and intrinsically disordered proteins. The manner in which chromatin-with various morphologies and activities-is organized in a complex and small nucleus still remains to be fully determined. Recent findings support the claim that phase separation is involved in the regulation of chromatin organization and chromosome behavior. Moreover, phase separation also influences key events during mitosis and meiosis. This review elaborately dissects how phase separation regulates chromatin and chromosome organization and controls mitotic and meiotic chromosome behavior.
Collapse
|
17
|
Abstract
The specialized two-stage meiotic cell division program halves a cell's chromosome complement in preparation for sexual reproduction. This reduction in ploidy requires that in meiotic prophase, each pair of homologous chromosomes (homologs) identify one another and form physical links through DNA recombination. Here, we review recent advances in understanding the complex morphological changes that chromosomes undergo during meiotic prophase to promote homolog identification and crossing over. We focus on the structural maintenance of chromosomes (SMC) family cohesin complexes and the meiotic chromosome axis, which together organize chromosomes and promote recombination. We then discuss the architecture and dynamics of the conserved synaptonemal complex (SC), which assembles between homologs and mediates local and global feedback to ensure high fidelity in meiotic recombination. Finally, we discuss exciting new advances, including mechanisms for boosting recombination on particular chromosomes or chromosomal domains and the implications of a new liquid crystal model for SC assembly and structure. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sarah N Ur
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA; ,
| | - Kevin D Corbett
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA; , .,Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
18
|
Zhuang XJ, Feng X, Tang WH, Zhu JL, Li M, Li JS, Zheng XY, Li R, Liu P, Qiao J. FAM9B serves as a novel meiosis-related protein localized in meiotic chromosome cores and is associated with human gametogenesis. PLoS One 2021; 16:e0257248. [PMID: 34507348 PMCID: PMC8432983 DOI: 10.1371/journal.pone.0257248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/26/2021] [Indexed: 01/10/2023] Open
Abstract
Meiosis is a complex process involving the expression and interaction of numerous genes in a series of highly orchestrated molecular events. Fam9b localized in Xp22.3 has been found to be expressed in testes. However, FAM9B expression, localization, and its role in meiosis have not been previously reported. In this study, FAM9B expression was evaluated in the human testes and ovaries by RT-PCR, qPCR, and western blotting. FAM9B was found in the nuclei of primary spermatocytes in testes and specifically localized in the synaptonemal complex (SC) region of spermatocytes. FAM9B was also evident in the follicle cell nuclei and diffusely dispersed in the granular cell cytoplasm. FAM9B was partly co-localized with SYCP3, which is essential for both formation and maintenance of lateral SC elements. In addition, FAM9B had a similar distribution pattern and co-localization as γH2AX, which is a novel biomarker for DNA double-strand breaks during meiosis. All results indicate that FAM9B is a novel meiosis-associated protein that is co-localized with SYCP3 and γH2AX and may play an important role in SC formation and DNA recombination during meiosis. These findings offer a new perspective for understanding the molecular mechanisms involved in meiosis of human gametogenesis.
Collapse
Affiliation(s)
- Xin-jie Zhuang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Haidian District, Beijing, PR China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Haidian District, Beijing, PR China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Haidian District, Beijing, PR China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Haidian District, Beijing, PR China
- * E-mail: (PL); (XJZ)
| | - Xue Feng
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Haidian District, Beijing, PR China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Haidian District, Beijing, PR China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Haidian District, Beijing, PR China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Haidian District, Beijing, PR China
| | - Wen-hao Tang
- Department of Urology, The Third Hospital of Peking University, Beijing, China
| | - Jin-liang Zhu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Haidian District, Beijing, PR China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Haidian District, Beijing, PR China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Haidian District, Beijing, PR China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Haidian District, Beijing, PR China
| | - Ming Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Haidian District, Beijing, PR China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Haidian District, Beijing, PR China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Haidian District, Beijing, PR China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Haidian District, Beijing, PR China
| | - Jun-sheng Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Haidian District, Beijing, PR China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Haidian District, Beijing, PR China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Haidian District, Beijing, PR China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Haidian District, Beijing, PR China
| | - Xiao-ying Zheng
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Haidian District, Beijing, PR China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Haidian District, Beijing, PR China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Haidian District, Beijing, PR China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Haidian District, Beijing, PR China
| | - Rong Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Haidian District, Beijing, PR China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Haidian District, Beijing, PR China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Haidian District, Beijing, PR China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Haidian District, Beijing, PR China
| | - Ping Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Haidian District, Beijing, PR China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Haidian District, Beijing, PR China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Haidian District, Beijing, PR China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Haidian District, Beijing, PR China
- * E-mail: (PL); (XJZ)
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Haidian District, Beijing, PR China
- Key Laboratory of Assisted Reproduction, Peking University, Ministry of Education, Haidian District, Beijing, PR China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Haidian District, Beijing, PR China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Haidian District, Beijing, PR China
| |
Collapse
|
19
|
Structural basis of meiotic chromosome synaptic elongation through hierarchical fibrous assembly of SYCE2-TEX12. Nat Struct Mol Biol 2021; 28:681-693. [PMID: 34373646 PMCID: PMC7612376 DOI: 10.1038/s41594-021-00636-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/30/2021] [Indexed: 01/16/2023]
Abstract
The synaptonemal complex (SC) is a supramolecular protein assembly that mediates synapsis between homologous chromosomes during meiosis. SC elongation along the chromosome length (up to 24 μm) depends on its midline α-fibrous component SYCE2-TEX12. Here, we report X-ray crystal structures of human SYCE2-TEX12 as an individual building-block and upon assembly within a fibrous lattice. We combine these structures with mutagenesis, biophysics and electron microscopy to reveal the hierarchical mechanism of SYCE2-TEX12 fibre assembly. SYCE2-TEX12’s building-blocks are 2:2 coiled-coils which dimerise into 4:4 hetero-oligomers and interact end-to-end and laterally to form 10-nm fibres, which intertwine within 40-nm bundled micrometre-long fibres that define the SC’s midline structure. This assembly mechanism bears striking resemblance with intermediate filament proteins vimentin, lamin and keratin. Thus, SYCE2-TEX12 exhibits behaviour typical of cytoskeletal proteins to provide an α-fibrous SC backbone that structurally underpins synaptic elongation along meiotic chromosomes.
Collapse
|
20
|
Huang C, Guo T, Qin Y. Meiotic Recombination Defects and Premature Ovarian Insufficiency. Front Cell Dev Biol 2021; 9:652407. [PMID: 33763429 PMCID: PMC7982532 DOI: 10.3389/fcell.2021.652407] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
Premature ovarian insufficiency (POI) is the depletion of ovarian function before 40 years of age due to insufficient oocyte formation or accelerated follicle atresia. Approximately 1–5% of women below 40 years old are affected by POI. The etiology of POI is heterogeneous, including genetic disorders, autoimmune diseases, infection, iatrogenic factors, and environmental toxins. Genetic factors account for 20–25% of patients. However, more than half of the patients were idiopathic. With the widespread application of next-generation sequencing (NGS), the genetic spectrum of POI has been expanded, especially the latest identification in meiosis and DNA repair-related genes. During meiotic prophase I, the key processes include DNA double-strand break (DSB) formation and subsequent homologous recombination (HR), which are essential for chromosome segregation at the first meiotic division and genome diversity of oocytes. Many animal models with defective meiotic recombination present with meiotic arrest, DSB accumulation, and oocyte apoptosis, which are similar to human POI phenotype. In the article, based on different stages of meiotic recombination, including DSB formation, DSB end processing, single-strand invasion, intermediate processing, recombination, and resolution and essential proteins involved in synaptonemal complex (SC), cohesion complex, and fanconi anemia (FA) pathway, we reviewed the individual gene mutations identified in POI patients and the potential candidate genes for POI pathogenesis, which will shed new light on the genetic architecture of POI and facilitate risk prediction, ovarian protection, and early intervention for POI women.
Collapse
Affiliation(s)
- Chengzi Huang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China
| | - Ting Guo
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China
| | - Yingying Qin
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China
| |
Collapse
|
21
|
Zhang Z, Xie S, Wang R, Guo S, Zhao Q, Nie H, Liu Y, Zhang F, Chen M, Liu L, Meng X, Liu M, Zhao L, Colaiácovo MP, Zhou J, Gao J. Multivalent weak interactions between assembly units drive synaptonemal complex formation. J Cell Biol 2021; 219:151585. [PMID: 32211900 PMCID: PMC7199860 DOI: 10.1083/jcb.201910086] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/22/2020] [Accepted: 02/26/2020] [Indexed: 12/28/2022] Open
Abstract
The synaptonemal complex (SC) is an ordered but highly dynamic structure assembled between homologous chromosomes to control interhomologous crossover formation, ensuring accurate meiotic chromosome segregation. However, the mechanisms regulating SC assembly and dynamics remain unclear. Here, we identified two new SC components, SYP-5 and SYP-6, in Caenorhabditis elegans that have distinct expression patterns and form distinct SC assembly units with other SYPs through stable interactions. SYP-5 and SYP-6 exhibit diverse in vivo SC regulatory functions and distinct phase separation properties in cells. Charge-interacting elements (CIEs) are enriched in SC intrinsically disordered regions (IDRs), and IDR deletion or CIE removal confirmed a requirement for these elements in SC regulation. Our data support the theory that multivalent weak interactions between the SC units drive SC formation and that CIEs confer multivalency to the assembly units.
Collapse
Affiliation(s)
- Zhenguo Zhang
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Songbo Xie
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Ruoxi Wang
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Shuqun Guo
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Qiuchen Zhao
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Hui Nie
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Yuanyuan Liu
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Fengguo Zhang
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Miao Chen
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Libo Liu
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Xiaoqian Meng
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Min Liu
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Li Zhao
- Department of Pathology, Harvard Medical School, Dana-Farber/Harvard Cancer Center, Boston, MA.,Department of Laboratory Medicine, Children's Hospital Boston, Boston, MA
| | | | - Jun Zhou
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China.,State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jinmin Gao
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| |
Collapse
|
22
|
Hosoya N, Miyagawa K. Synaptonemal complex proteins modulate the level of genome integrity in cancers. Cancer Sci 2021; 112:989-996. [PMID: 33382503 PMCID: PMC7935773 DOI: 10.1111/cas.14791] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 01/09/2023] Open
Abstract
The synaptonemal complex (SC) is a proteinaceous structure that is transiently formed during meiosis to promote homologous recombination between maternal and paternal chromosomes. As this structure is required only for meiotic recombination, the proteins constituting the complex are almost undetectable in normal somatic cells, but they can be expressed under the conditions in which the transcriptional machinery is deregulated. Accumulating evidence indicates that they are epigenetically expressed in cancers of various origin. Not surprisingly, in contrast to their meiotic roles, the somatic roles of the SC proteins remain to be investigated. However, it has recently been reported that SYCP3 and SYCE2 control DNA double‐strand break repair negatively and positively, respectively, suggesting that the ectopic expression of the SC proteins in somatic cells could be associated with the maintenance of genomic instability. Thus, it is highly likely that the investigation of the somatic roles of the SC proteins would improve our understanding of the mechanisms underlying tumor development.
Collapse
Affiliation(s)
- Noriko Hosoya
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Miyagawa
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
23
|
Sánchez-Sáez F, Gómez-H L, Dunne OM, Gallego-Páramo C, Felipe-Medina N, Sánchez-Martín M, Llano E, Pendas AM, Davies OR. Meiotic chromosome synapsis depends on multivalent SYCE1-SIX6OS1 interactions that are disrupted in cases of human infertility. SCIENCE ADVANCES 2020; 6:6/36/eabb1660. [PMID: 32917591 PMCID: PMC7467691 DOI: 10.1126/sciadv.abb1660] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/17/2020] [Indexed: 05/14/2023]
Abstract
Meiotic reductional division depends on the synaptonemal complex (SC), a supramolecular protein assembly that mediates homologous chromosomes synapsis and promotes crossover formation. The mammalian SC has eight structural components, including SYCE1, the only central element protein with known causative mutations in human infertility. We combine mouse genetics, cellular, and biochemical studies to reveal that SYCE1 undergoes multivalent interactions with SC component SIX6OS1. The N terminus of SIX6OS1 binds and disrupts SYCE1's core dimeric structure to form a 1:1 complex, while their downstream sequences provide a distinct second interface. These interfaces are separately disrupted by SYCE1 mutations associated with nonobstructive azoospermia and premature ovarian failure (POF), respectively. Mice harboring SYCE1's POF mutation and a targeted deletion within SIX6OS1's N terminus are infertile with failure of chromosome synapsis. We conclude that both SYCE1-SIX6OS1 binding interfaces are essential for SC assembly, thus explaining how SYCE1's reported clinical mutations give rise to human infertility.
Collapse
Affiliation(s)
- Fernando Sánchez-Sáez
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Laura Gómez-H
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Orla M Dunne
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Cristina Gallego-Páramo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Natalia Felipe-Medina
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | | | - Elena Llano
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain
| | - Alberto M Pendas
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain.
| | - Owen R Davies
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
24
|
Prior C, Davies OR, Bruce D, Pohl E. Obtaining Tertiary Protein Structures by the ab Initio Interpretation of Small Angle X-ray Scattering Data. J Chem Theory Comput 2020; 16:1985-2001. [PMID: 32023061 PMCID: PMC7145352 DOI: 10.1021/acs.jctc.9b01010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Small angle X-ray scattering (SAXS)
is an important tool for investigating
the structure of proteins in solution. We present a novel ab initio
method representing polypeptide chains as discrete curves used to
derive a meaningful three-dimensional model from only the primary sequence and SAXS data. High resolution structures were
used to generate probability density functions for each common secondary
structural element found in proteins, which are used to place realistic
restraints on the model curve’s geometry. This is coupled with
a novel explicit hydration shell model in order to derive physically
meaningful three-dimensional models by optimizing against experimental
SAXS data. The efficacy of this model is verified on an established
benchmark protein set, and then it is used to predict the lysozyme
structure using only its primary sequence and SAXS data. The method
is used to generate a biologically plausible model of the coiled-coil
component of the human synaptonemal complex central element protein.
Collapse
Affiliation(s)
- Christopher Prior
- Department of Mathematical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Owen R Davies
- Institute for Cell and Molecular Bioscience, Medical School, University of Newcastle, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Daniel Bruce
- Department of Biosciences Durham University, Durham DH1 3LE, United Kingdom.,Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Ehmke Pohl
- Department of Biosciences Durham University, Durham DH1 3LE, United Kingdom.,Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
25
|
Pashaei M, Rahimi Bidgoli MM, Zare-Abdollahi D, Najmabadi H, Haji-Seyed-Javadi R, Fatehi F, Alavi A. The second mutation of SYCE1 gene associated with autosomal recessive nonobstructive azoospermia. J Assist Reprod Genet 2020; 37:451-458. [PMID: 31916078 DOI: 10.1007/s10815-019-01660-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/12/2019] [Indexed: 10/25/2022] Open
Abstract
PURPOSE It is estimated that 40-50% of infertility among human couples is due to male infertility. Azoospermia is estimated to occur in 1% of all men and to be the cause of 10-20% of male infertility. Genetic defects, including single gene effects, maybe cause of azoospermia in 20-30% of affected males. Here, we aim to identify the genetic cause of azoospermia in a man who is also affected by hereditary spastic paraplegia. METHODS The proband was subjected to whole-exome sequencing, followed by a comprehensive in silico analysis to identify the azoospermia causative gene. RESULTS A novel splice site mutation c.375-2A > G in SYCE1 that is thought to be the cause of azoospermia was identified. This variant co-segregated with azoospermia status in the family that has three additional affected males. CONCLUSION SYCE1 gene encodes synaptonemal complex (SC) central element 1 protein which contributes to the formation of the synaptonemal complex during meiosis. Syce1 null male and female mice have been shown to be infertile. There have only been two reports on the effects of SYCE1 mutations in humans; it was shown as the cause of primary ovarian failure (POI) in one and as the cause of nonobstructive azoospermia (NOA) in another. We suggest that the mutation 375-2A > G, which affects the acceptor splice site within intron 6 of SYCE1, is the likely cause of azoospermia and subsequent infertility in the family studied. The finding constitutes the third report of SYCE1mutations that affect infertility in humans and further supports its contribution to this condition.
Collapse
Affiliation(s)
- Mahdieh Pashaei
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | - Davood Zare-Abdollahi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Ramona Haji-Seyed-Javadi
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Farzad Fatehi
- Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Afagh Alavi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Liu H, Huang T, Li M, Li M, Zhang C, Jiang J, Yu X, Yin Y, Zhang F, Lu G, Luo MC, Zhang LR, Li J, Liu K, Chen ZJ. SCRE serves as a unique synaptonemal complex fastener and is essential for progression of meiosis prophase I in mice. Nucleic Acids Res 2019; 47:5670-5683. [PMID: 30949703 PMCID: PMC6582318 DOI: 10.1093/nar/gkz226] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 12/02/2022] Open
Abstract
Meiosis is a specialized cell division for producing haploid gametes from diploid germ cells. During meiosis, synaptonemal complex (SC) mediates the alignment of homologs and plays essential roles in homologous recombination and therefore in promoting accurate chromosome segregation. In this study, we have identified a novel protein SCRE (synaptonemal complex reinforcing element) as a key molecule in maintaining the integrity of SC during meiosis prophase I in mice. Deletion of Scre (synaptonemal complex reinforcing element) caused germ cell death in both male and female mice, resulting in infertility. Our mechanistic studies showed that the synapses and SCs in Scre knockout mice were unstable due to the lack of the SC reinforcing function of SCRE, which is sparsely localized as discrete foci along the central elements in normal synaptic homologous chromosomes. The lack of Scre leads to meiosis collapse at the late zygotene stage. We further showed that SCRE interacts with synaptonemal complex protein 1 (SYCP1) and synaptonemal complex central element 3 (SYCE3). We conclude that the function of SCRE is to reinforce the integrity of the central elements, thereby stabilizing the SC and ensuring meiotic cell cycle progression. Our study identified SCRE as a novel SC fastener protein that is distinct from other known SC proteins.
Collapse
Affiliation(s)
- Hongbin Liu
- Center for Reproductive Medicine, Shandong University, Jinan, China; The Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China.,CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Tao Huang
- Center for Reproductive Medicine, Shandong University, Jinan, China; The Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Mengjing Li
- Center for Reproductive Medicine, Shandong University, Jinan, China; The Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Miao Li
- Center for Reproductive Medicine, Shandong University, Jinan, China; The Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Chuanxin Zhang
- Center for Reproductive Medicine, Shandong University, Jinan, China; The Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Jing Jiang
- Genome Tagging Project (GTP) Center, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaochen Yu
- Center for Reproductive Medicine, Shandong University, Jinan, China; The Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Yingying Yin
- Center for Reproductive Medicine, Shandong University, Jinan, China; The Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Fan Zhang
- Genome Tagging Project (GTP) Center, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Meng-Cheng Luo
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, China, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Liang-Ran Zhang
- Center for Reproductive Medicine, Shandong University, Jinan, China; The Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Jinsong Li
- Genome Tagging Project (GTP) Center, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Kui Liu
- Center for Reproductive Medicine, Shandong University, Jinan, China; The Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China.,Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong - Shenzhen Hospital, Haiyuan First Road 1, Shenzhen 518053, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan, China; The Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| |
Collapse
|
27
|
Quantitative basis of meiotic chromosome synapsis analyzed by electron tomography. Sci Rep 2019; 9:16102. [PMID: 31695079 PMCID: PMC6834585 DOI: 10.1038/s41598-019-52455-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 10/16/2019] [Indexed: 11/08/2022] Open
Abstract
The synaptonemal complex is a multiprotein complex, which mediates the synapsis and recombination between homologous chromosomes during meiosis. The complex is comprised of two lateral elements and a central element connected by perpendicular transverse filaments (TFs). A 3D model based on actual morphological data of the SC is missing. Here, we applied electron tomography (ET) and manual feature extraction to generate a quantitative 3D model of the murine SC. We quantified the length (90 nm) and width (2 nm) of the TFs. Interestingly, the 80 TFs/µm are distributed asymmetrically in the central region of the SC challenging available models of SC organization. Furthermore, our detailed 3D topological analysis does not support a bilayered organization of the central region as proposed earlier. Overall, our quantitative analysis is relevant to understand the functions and dynamics of the SC and provides the basis for analyzing multiprotein complexes in their morphological context using ET.
Collapse
|
28
|
The PSMA8 subunit of the spermatoproteasome is essential for proper meiotic exit and mouse fertility. PLoS Genet 2019; 15:e1008316. [PMID: 31437213 PMCID: PMC6726247 DOI: 10.1371/journal.pgen.1008316] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 09/04/2019] [Accepted: 07/17/2019] [Indexed: 01/01/2023] Open
Abstract
The ubiquitin proteasome system regulates meiotic recombination in yeast through its association with the synaptonemal complex, a ‘zipper’-like structure that holds homologous chromosome pairs in synapsis during meiotic prophase I. In mammals, the proteasome activator subunit PA200 targets acetylated histones for degradation during somatic DNA double strand break repair and during histone replacement during spermiogenesis. We investigated the role of the testis-specific proteasomal subunit α4s (PSMA8) during spermatogenesis, and found that PSMA8 was localized to and dependent on the central region of the synaptonemal complex. Accordingly, synapsis-deficient mice show delocalization of PSMA8. Moreover, though Psma8-deficient mice are proficient in meiotic homologous recombination, there are alterations in the proteostasis of several key meiotic players that, in addition to the known substrate acetylated histones, have been shown by a proteomic approach to interact with PSMA8, such as SYCP3, SYCP1, CDK1 and TRIP13. These alterations lead to an accumulation of spermatocytes in metaphase I and II which either enter massively into apoptosis or give rise to a low number of aberrant round spermatids that apoptose before histone replacement takes place. Proteins within the cells that are unnecessary or damaged are degraded by a large protein complex named the proteasome. The proteins to be degraded are marked by a small protein called ubiquitin. The addition of a small modification (acetyl group) to some proteins also promotes their degradation by the proteasome. Proteasomal degradation of proteins is an essential mechanism for many developmental programs including gametogenesis, a process whereby a diploid cell produces a haploid cell or gamete (sperm or egg). The mechanism by which this genome reduction occurs is called meiosis. Here, we report the study of a protein, named PSMA8 that is specific for the testis proteasome in vertebrates. Using the mouse as a model, we show that loss of PSMA8 leads to infertility in males. By co-immunoprecipitation-coupled mass spectroscopy we identified a large list of novel PSMA8 interacting proteins. We focused our functional analysis on several key meiotic proteins which were accumulated such as SYCP3, SYCP1, CDK1 and TRIP13 in addition to the known substrate of the spermatoproteasome, the acetylated histones. We suggest that the altered accumulation of these important proteins causes a disequilibrium of the meiotic division that produces apoptotic spermatocytes in metaphase I and II and also early spermatids that die soon after reaching this stage.
Collapse
|
29
|
Dunne OM, Davies OR. A molecular model for self-assembly of the synaptonemal complex protein SYCE3. J Biol Chem 2019; 294:9260-9275. [PMID: 31023827 PMCID: PMC6556580 DOI: 10.1074/jbc.ra119.008404] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/23/2019] [Indexed: 11/19/2022] Open
Abstract
The synaptonemal complex (SC) is a supramolecular protein assembly that mediates homologous chromosome synapsis during meiosis. This zipper-like structure assembles in a continuous manner between homologous chromosome axes, enforcing a 100-nm separation along their entire length and providing the necessary three-dimensional framework for cross-over formation. The mammalian SC comprises eight components-synaptonemal complex protein 1-3 (SYCP1-3), synaptonemal complex central element protein 1-3 (SYCE1-3), testis-expressed 12 (TEX12), and six6 opposite strand transcript 1 (SIX6OS1)-arranged in transverse and longitudinal structures. These largely α-helical, coiled-coil proteins undergo heterotypic interactions, coupled with recursive self-assembly of SYCP1, SYCE2-TEX12, and SYCP2-SYCP3, to achieve the vast supramolecular SC structure. Here, we report a novel self-assembly mechanism of the SC central element component SYCE3, identified through multi-angle light scattering and small-angle X-ray scattering (SAXS) experiments. These analyses revealed that SYCE3 adopts a dimeric four-helical bundle structure that acts as the building block for concentration-dependent self-assembly into a series of discrete higher-order oligomers. We observed that this is achieved through staggered lateral interactions between self-assembly surfaces of SYCE3 dimers and through end-on interactions that likely occur through intermolecular domain swapping between dimer folds. These mechanisms are combined to achieve potentially limitless SYCE3 assembly, particularly favoring formation of dodecamers of three laterally associated end-on tetramers. Our findings extend the family of self-assembling proteins within the SC and reveal additional means for structural stabilization of the SC central element.
Collapse
Affiliation(s)
- Orla M Dunne
- From the Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Owen R Davies
- From the Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| |
Collapse
|
30
|
Sciurano RB, Pigozzi MI, Benavente R. Disassembly of the synaptonemal complex in chicken oocytes analyzed by super-resolution microscopy. Chromosoma 2019; 128:443-451. [PMID: 30793238 DOI: 10.1007/s00412-019-00693-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/11/2019] [Accepted: 02/11/2019] [Indexed: 12/27/2022]
Abstract
The synaptonemal complex is an evolutionarily conserved, supramolecular structure that holds the homologous chromosomes together during the pachytene stage of the first meiotic prophase. Among vertebrates, synaptonemal complex dynamics has been analyzed in mouse spermatocytes following the assembly of its components from leptotene to pachytene stages. With few exceptions, a detailed study of the disassembly of SCs and the behavior of SC components at recombination sites at the onset of diplotene has not been accomplished. Here, we describe for the first time the progressive disassembly of the SC in chicken oocytes during the initial steps of desynapsis using immunolocalization of specific SC proteins and super-resolution microscopy. We found that transverse filament protein SYCP1 and central element component SYCE3 remain associated with the lateral elements at the beginning of chromosomal axis separation. As the separation between lateral elements widens, these proteins eventually disappear, without any evidence of subsequent association. Our observations support the idea that post-translational modifications of the central region components have a role at the initial phases of the SC disassembly. At the crossover sites, signaled by persistent MLH1 foci, the central region proteins are no longer detected when the SYCP3-positive lateral elements are widely separated. These findings are indicative that SC disassembly follows a general pattern along the desynaptic bivalents. The present work shows that the use of avian oocytes at prophase I provides a valuable model to explore the time course and chromosomal localization of SC proteins and its relationship with local changes along meiotic bivalents.
Collapse
Affiliation(s)
- Roberta B Sciurano
- 2da. U.A. Biología Celular, Histología, Embriología y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
- CONICET, Buenos Aires, Argentina
| | - María Inés Pigozzi
- Instituto de Investigaciones Biomédicas, INBIOMED, CONICET-Universidad de Buenos Aires, Paraguay 2155, piso 10, C1121ABG, Buenos Aires, Argentina.
| | - Ricardo Benavente
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074, Würzburg, Germany.
| |
Collapse
|
31
|
West AMV, Rosenberg SC, Ur SN, Lehmer MK, Ye Q, Hagemann G, Caballero I, Usón I, MacQueen AJ, Herzog F, Corbett KD. A conserved filamentous assembly underlies the structure of the meiotic chromosome axis. eLife 2019; 8:e40372. [PMID: 30657449 PMCID: PMC6349405 DOI: 10.7554/elife.40372] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 01/18/2019] [Indexed: 11/30/2022] Open
Abstract
The meiotic chromosome axis plays key roles in meiotic chromosome organization and recombination, yet the underlying protein components of this structure are highly diverged. Here, we show that 'axis core proteins' from budding yeast (Red1), mammals (SYCP2/SYCP3), and plants (ASY3/ASY4) are evolutionarily related and play equivalent roles in chromosome axis assembly. We first identify 'closure motifs' in each complex that recruit meiotic HORMADs, the master regulators of meiotic recombination. We next find that axis core proteins form homotetrameric (Red1) or heterotetrameric (SYCP2:SYCP3 and ASY3:ASY4) coiled-coil assemblies that further oligomerize into micron-length filaments. Thus, the meiotic chromosome axis core in fungi, mammals, and plants shares a common molecular architecture, and likely also plays conserved roles in meiotic chromosome axis assembly and recombination control.
Collapse
Affiliation(s)
- Alan MV West
- Biomedical Sciences Graduate ProgramUniversity of California, San DiegoLa JollaUnited States
- Department of Cellular and Molecular MedicineUniversity of California, San DiegoLa JollaUnited States
| | - Scott C Rosenberg
- Department of ChemistryUniversity of California, San DiegoLa JollaUnited States
| | - Sarah N Ur
- Biomedical Sciences Graduate ProgramUniversity of California, San DiegoLa JollaUnited States
| | - Madison K Lehmer
- Department of Cellular and Molecular MedicineUniversity of California, San DiegoLa JollaUnited States
| | - Qiaozhen Ye
- Department of Cellular and Molecular MedicineUniversity of California, San DiegoLa JollaUnited States
| | - Götz Hagemann
- Gene Center and Department of BiochemistryLudwig-Maximilians-Universität MünchenMunichGermany
| | - Iracema Caballero
- Crystallographic MethodsInstitute of Molecular Biology of Barcelona (IBMB-CSIC)BarcelonaSpain
| | - Isabel Usón
- Crystallographic MethodsInstitute of Molecular Biology of Barcelona (IBMB-CSIC)BarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | - Amy J MacQueen
- Department of Molecular Biology and BiochemistryWesleyan UniversityMiddletownUnited States
| | - Franz Herzog
- Gene Center and Department of BiochemistryLudwig-Maximilians-Universität MünchenMunichGermany
| | - Kevin D Corbett
- Department of Cellular and Molecular MedicineUniversity of California, San DiegoLa JollaUnited States
- Department of ChemistryUniversity of California, San DiegoLa JollaUnited States
- Ludwig Institute for Cancer ResearchLa JollaUnited States
| |
Collapse
|
32
|
Dunne OM, Davies OR. Molecular structure of human synaptonemal complex protein SYCE1. Chromosoma 2019; 128:223-236. [PMID: 30607510 PMCID: PMC6823292 DOI: 10.1007/s00412-018-00688-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/07/2018] [Accepted: 12/13/2018] [Indexed: 12/21/2022]
Abstract
The reduction in chromosome number during meiosis is essential for the production of haploid germ cells and thereby fertility. To achieve this, homologous chromosomes are first synapsed together by a protein assembly, the synaptonemal complex (SC), which permits genetic exchange by crossing over and the subsequent accurate segregation of homologues. The mammalian SC is formed of a zipper-like array of SYCP1 molecules that bind together homologous chromosomes through self-assembly in the midline that is structurally supported by the central element. The SC central element contains five proteins—SYCE1, SYCE3, SIX6OS1, and SYCE2-TEX12—that permit SYCP1 assembly to extend along the chromosome length to achieve full synapsis. Here, we report the structure of human SYCE1 through solution biophysical methods including multi-angle light scattering and small-angle X-ray scattering. The structural core of SYCE1 is formed by amino acids 25–179, within the N-terminal half of the protein, which mediates SYCE1 dimerization. This α-helical core adopts a curved coiled-coil structure of 20-nm length in which the two chains are arranged in an anti-parallel configuration. This structure is retained within full-length SYCE1, in which long C-termini adopt extended conformations to achieve an elongated molecule of over 50 nm in length. The SYCE1 structure is compatible with it functioning as a physical strut that tethers other components to achieve structural stability of the SC central element.
Collapse
Affiliation(s)
- Orla M Dunne
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Owen R Davies
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
33
|
Dunce JM, Dunne OM, Ratcliff M, Millán C, Madgwick S, Usón I, Davies OR. Structural basis of meiotic chromosome synapsis through SYCP1 self-assembly. Nat Struct Mol Biol 2018; 25:557-569. [PMID: 29915389 DOI: 10.1038/s41594-018-0078-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/25/2018] [Indexed: 11/10/2022]
Abstract
Meiotic chromosomes adopt unique structures in which linear arrays of chromatin loops are bound together in homologous chromosome pairs by a supramolecular protein assembly, the synaptonemal complex. This three-dimensional scaffold provides the essential structural framework for genetic exchange by crossing over and subsequent homolog segregation. The core architecture of the synaptonemal complex is provided by SYCP1. Here we report the structure and self-assembly mechanism of human SYCP1 through X-ray crystallographic and biophysical studies. SYCP1 has an obligate tetrameric structure in which an N-terminal four-helical bundle bifurcates into two elongated C-terminal dimeric coiled-coils. This building block assembles into a zipper-like lattice through two self-assembly sites. N-terminal sites undergo cooperative head-to-head assembly in the midline, while C-terminal sites interact back to back on the chromosome axis. Our work reveals the underlying molecular structure of the synaptonemal complex in which SYCP1 self-assembly generates a supramolecular lattice that mediates meiotic chromosome synapsis.
Collapse
Affiliation(s)
- James M Dunce
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Orla M Dunne
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Matthew Ratcliff
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK.,Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Claudia Millán
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Suzanne Madgwick
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Isabel Usón
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB-CSIC), Barcelona, Spain.,ICREA, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Owen R Davies
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
34
|
Bollschweiler D, Radu L, Pellegrini L. Cryo-electron tomography of SYCP3 fibers under native conditions. Methods Cell Biol 2018; 145:347-371. [PMID: 29957214 DOI: 10.1016/bs.mcb.2018.03.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The synaptonemal complex (SC) forms during the early stages of meiotic prophase I, when it mediates the pairing of homologous chromosomes. Despite the crucial role of the SC in chromosome synapsis and genetic recombination, the molecular details of its function are still unclear. High-resolution information on the structure of SC proteins would be very valuable to elucidate the molecular basis of their function in meiosis. Here we show how cryo-electron tomography and subtomographic averaging can be usefully applied to provide insights into the structure of the helical SYCP3 protein in its filamentous state. The establishment of such method should prove of use for structural studies of other SC proteins, such as SYCP1 and the TEX12-SYCE2 complex, which can form physiologically relevant filamentous assemblies, and ultimately for the structural analysis of the SC.
Collapse
Affiliation(s)
| | - Laura Radu
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Luca Pellegrini
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
35
|
Gao J, Colaiácovo MP. Zipping and Unzipping: Protein Modifications Regulating Synaptonemal Complex Dynamics. Trends Genet 2017; 34:232-245. [PMID: 29290403 DOI: 10.1016/j.tig.2017.12.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/28/2017] [Accepted: 12/01/2017] [Indexed: 12/23/2022]
Abstract
The proteinaceous zipper-like structure known as the synaptonemal complex (SC), which forms between pairs of homologous chromosomes during meiosis from yeast to humans, plays important roles in promoting interhomolog crossover formation, regulating cessation of DNA double-strand break (DSB) formation following crossover designation, and ensuring accurate meiotic chromosome segregation. Recent studies are starting to reveal critical roles for different protein modifications in regulating SC dynamics. Protein SUMOylation, N-terminal acetylation, and phosphorylation have been shown to be essential for the regulated assembly and disassembly of the SC. Moreover, phosphorylation of specific SC components has been found to link changes in SC dynamics with meiotic recombination. This review highlights the latest findings on how protein modifications regulate SC dynamics and functions.
Collapse
Affiliation(s)
- Jinmin Gao
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, 250014, China; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
36
|
Regulating the construction and demolition of the synaptonemal complex. Nat Struct Mol Biol 2017; 23:369-77. [PMID: 27142324 DOI: 10.1038/nsmb.3208] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/18/2016] [Indexed: 01/11/2023]
Abstract
The synaptonemal complex (SC) is a meiosis-specific scaffold that links homologous chromosomes from end to end during meiotic prophase and is required for the formation of meiotic crossovers. Assembly of SC components is regulated by a combination of associated nonstructural proteins and post-translational modifications, such as SUMOylation, which together coordinate the timing between homologous chromosome pairing, double-strand-break formation and recombination. In addition, transcriptional and translational control mechanisms ensure the timely disassembly of the SC after crossover resolution and before chromosome segregation at anaphase I.
Collapse
|
37
|
Gómez-H L, Felipe-Medina N, Sánchez-Martín M, Davies OR, Ramos I, García-Tuñón I, de Rooij DG, Dereli I, Tóth A, Barbero JL, Benavente R, Llano E, Pendas AM. C14ORF39/SIX6OS1 is a constituent of the synaptonemal complex and is essential for mouse fertility. Nat Commun 2016; 7:13298. [PMID: 27796301 PMCID: PMC5095591 DOI: 10.1038/ncomms13298] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/19/2016] [Indexed: 11/16/2022] Open
Abstract
Meiotic recombination generates crossovers between homologous chromosomes that are essential for genome haploidization. The synaptonemal complex is a ‘zipper'-like protein assembly that synapses homologue pairs together and provides the structural framework for processing recombination sites into crossovers. Humans show individual differences in the number of crossovers generated across the genome. Recently, an anonymous gene variant in C14ORF39/SIX6OS1 was identified that influences the recombination rate in humans. Here we show that C14ORF39/SIX6OS1 encodes a component of the central element of the synaptonemal complex. Yeast two-hybrid analysis reveals that SIX6OS1 interacts with the well-established protein synaptonemal complex central element 1 (SYCE1). Mice lacking SIX6OS1 are defective in chromosome synapsis at meiotic prophase I, which provokes an arrest at the pachytene-like stage and results in infertility. In accordance with its role as a modifier of the human recombination rate, SIX6OS1 is essential for the appropriate processing of intermediate recombination nodules before crossover formation. The synaptonemal complex is a meiosis-specific proteinaceous structure that supports homologous chromosome pairs during meiosis. Here, the authors show that SIX6OS1 (of previously unknown function) is part of the synaptonemal complex central element and upon deletion in mice, causes defective chromosome synapsis and infertility.
Collapse
Affiliation(s)
- Laura Gómez-H
- Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), 37007 Salamanca, Spain
| | - Natalia Felipe-Medina
- Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), 37007 Salamanca, Spain
| | - Manuel Sánchez-Martín
- Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain.,Transgenic Facility, Nucleus platform, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Owen R Davies
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Isabel Ramos
- Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), 37007 Salamanca, Spain
| | - Ignacio García-Tuñón
- Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), 37007 Salamanca, Spain
| | - Dirk G de Rooij
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3584CM Utrecht, The Netherlands
| | - Ihsan Dereli
- Institute of Physiological Chemistry, Medical Faculty of TU Dresden, Fiedlerstrasse 42, 01307 Dresden, Germany
| | - Attila Tóth
- Institute of Physiological Chemistry, Medical Faculty of TU Dresden, Fiedlerstrasse 42, 01307 Dresden, Germany
| | - José Luis Barbero
- Departamento de Biología Celular y Molecular, Centro de Investigaciones Biológicas (CSIC), Madrid 28040, Spain
| | - Ricardo Benavente
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, D-97074 Würzburg, Germany
| | - Elena Llano
- Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), 37007 Salamanca, Spain.,Departamento de Fisiología y Farmacología, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Alberto M Pendas
- Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), 37007 Salamanca, Spain
| |
Collapse
|
38
|
Crystal Structure of C-Terminal Coiled-Coil Domain of SYCP1 Reveals Non-Canonical Anti-Parallel Dimeric Structure of Transverse Filament at the Synaptonemal Complex. PLoS One 2016; 11:e0161379. [PMID: 27548613 PMCID: PMC4993509 DOI: 10.1371/journal.pone.0161379] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 08/04/2016] [Indexed: 11/19/2022] Open
Abstract
The synaptonemal complex protein 1 (SYCP1) is the main structural element of transverse filaments (TFs) of the synaptonemal complex (SC), which is a meiosis-specific complex structure formed at the synapse of homologue chromosomes to hold them together. The N-terminal domain of SYCP1 is known to be located within the central elements (CEs), whereas the C-terminal domain is located toward lateral elements (LEs). SYCP1 is a well-known meiosis marker that is also known to be a prognostic marker in the early stage of several cancers including breast, gliomas, and ovarian cancers. The structure of SC, especially the TF structure formed mainly by SYCP1, remains unclear without any structural information. To elucidate a molecular basis of SC formation and function, we first solved the crystal structure of C-terminal coiled-coil domain of SYCP1. The coiled-coil domain of SYCP1 forms asymmetric, anti-parallel dimers in solution.
Collapse
|
39
|
Hernández-Hernández A, Masich S, Fukuda T, Kouznetsova A, Sandin S, Daneholt B, Höög C. The central element of the synaptonemal complex in mice is organized as a bilayered junction structure. J Cell Sci 2016; 129:2239-49. [PMID: 27103161 DOI: 10.1242/jcs.182477] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 04/14/2016] [Indexed: 01/25/2023] Open
Abstract
The synaptonemal complex transiently stabilizes pairing interactions between homologous chromosomes during meiosis. Assembly of the synaptonemal complex is mediated through integration of opposing transverse filaments into a central element, a process that is poorly understood. We have, here, analyzed the localization of the transverse filament protein SYCP1 and the central element proteins SYCE1, SYCE2 and SYCE3 within the central region of the synaptonemal complex in mouse spermatocytes using immunoelectron microscopy. Distribution of immuno-gold particles in a lateral view of the synaptonemal complex, supported by protein interaction data, suggest that the N-terminal region of SYCP1 and SYCE3 form a joint bilayered central structure, and that SYCE1 and SYCE2 localize in between the two layers. We find that disruption of SYCE2 and TEX12 (a fourth central element protein) localization to the central element abolishes central alignment of the N-terminal region of SYCP1. Thus, our results show that all four central element proteins, in an interdependent manner, contribute to stabilization of opposing N-terminal regions of SYCP1, forming a bilayered transverse-filament-central-element junction structure that promotes synaptonemal complex formation and synapsis.
Collapse
Affiliation(s)
| | - Sergej Masich
- Department of Cell and Molecular Biology, Karolinska Institutet Berzelius väg 35, Stockholm 171 77, Sweden
| | - Tomoyuki Fukuda
- Department of Cell and Molecular Biology, Karolinska Institutet Berzelius väg 35, Stockholm 171 77, Sweden Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Anna Kouznetsova
- Department of Cell and Molecular Biology, Karolinska Institutet Berzelius väg 35, Stockholm 171 77, Sweden
| | - Sara Sandin
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Bertil Daneholt
- Department of Cell and Molecular Biology, Karolinska Institutet Berzelius väg 35, Stockholm 171 77, Sweden
| | - Christer Höög
- Department of Cell and Molecular Biology, Karolinska Institutet Berzelius väg 35, Stockholm 171 77, Sweden
| |
Collapse
|
40
|
Fraune J, Brochier-Armanet C, Alsheimer M, Volff JN, Schücker K, Benavente R. Evolutionary history of the mammalian synaptonemal complex. Chromosoma 2016; 125:355-60. [PMID: 26968413 DOI: 10.1007/s00412-016-0583-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/03/2016] [Accepted: 03/07/2016] [Indexed: 12/29/2022]
Abstract
The synaptonemal complex (SC), a key structure of meiosis that assembles during prophase I, has been initially described 60 years ago. Since then, the structure has been described in many sexually reproducing organisms. However, the SC protein components were characterized in only few model organisms. Surprisingly, they lacked an apparent evolutionary relationship despite the conserved structural organization of the SC. For better understanding of this obvious discrepancy, the evolutionary history of the SC and its individual components has been investigated in Metazoa in detail. The results are consistent with the notion of a single origin of the metazoan SC and provide evidence for a dynamic evolutionary history of the SC components. In this mini review, we recapitulate and discuss new insights into metazoan SC evolution.
Collapse
Affiliation(s)
- Johanna Fraune
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Céline Brochier-Armanet
- Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, 43 bd du 11 novembre 1918, Villeurbanne, 69622, France
| | - Manfred Alsheimer
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, CNRS, Université Lyon 1, Lyon, France
| | - Katharina Schücker
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Ricardo Benavente
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074, Würzburg, Germany.
| |
Collapse
|
41
|
Zickler D, Kleckner N. Recombination, Pairing, and Synapsis of Homologs during Meiosis. Cold Spring Harb Perspect Biol 2015; 7:cshperspect.a016626. [PMID: 25986558 DOI: 10.1101/cshperspect.a016626] [Citation(s) in RCA: 543] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recombination is a prominent feature of meiosis in which it plays an important role in increasing genetic diversity during inheritance. Additionally, in most organisms, recombination also plays mechanical roles in chromosomal processes, most notably to mediate pairing of homologous chromosomes during prophase and, ultimately, to ensure regular segregation of homologous chromosomes when they separate at the first meiotic division. Recombinational interactions are also subject to important spatial patterning at both early and late stages. Recombination-mediated processes occur in physical and functional linkage with meiotic axial chromosome structure, with interplay in both directions, before, during, and after formation and dissolution of the synaptonemal complex (SC), a highly conserved meiosis-specific structure that links homolog axes along their lengths. These diverse processes also are integrated with recombination-independent interactions between homologous chromosomes, nonhomology-based chromosome couplings/clusterings, and diverse types of chromosome movement. This review provides an overview of these diverse processes and their interrelationships.
Collapse
Affiliation(s)
- Denise Zickler
- Institut de Génétique et Microbiologie, UMR 8621, Université Paris-Sud, 91405 Orsay, France
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
42
|
Lu J, Gu Y, Feng J, Zhou W, Yang X, Shen Y. Structural insight into the central element assembly of the synaptonemal complex. Sci Rep 2014; 4:7059. [PMID: 25394919 PMCID: PMC4231325 DOI: 10.1038/srep07059] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 10/29/2014] [Indexed: 11/25/2022] Open
Abstract
The key step in meiosis is synaptonemal complex formation, which mediates homologous chromosome alignment and synapsis. False pairing between homologous chromosomes produces infertility. Here, we present a crystal structure of the mouse meiosis-specific protein SYCE3, which is a component of the synaptonemal complex central element. Our studies show that functional SYCE3 most likely forms a dimer or higher order oligomer in cells. Furthermore, we demonstrate that the SYCE3 N-helix interacts with the SYCE1 C-helix, which is another central element component. Our results suggest that helical packing may mediate intra- or inter-association of each central element protein component, thereby playing an essential role in forming the synaptonemal complex central elements.
Collapse
Affiliation(s)
- Jing Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, China
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Yanling Gu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, China
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Jianrong Feng
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, China
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Weihong Zhou
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xue Yang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Yuequan Shen
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, 94 Weijin Road, Tianjin 300071, China
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
- Synergetic Innovation Center of Chemical Science and Engineering, 94 Weijin Road, Tianjin 300071, China
| |
Collapse
|
43
|
Syrjänen JL, Pellegrini L, Davies OR. A molecular model for the role of SYCP3 in meiotic chromosome organisation. eLife 2014; 3. [PMID: 24950965 PMCID: PMC4102245 DOI: 10.7554/elife.02963] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/18/2014] [Indexed: 12/11/2022] Open
Abstract
The synaptonemal complex (SC) is an evolutionarily-conserved protein assembly that holds together homologous chromosomes during prophase of the first meiotic division. Whilst essential for meiosis and fertility, the molecular structure of the SC has proved resistant to elucidation. The SC protein SYCP3 has a crucial but poorly understood role in establishing the architecture of the meiotic chromosome. Here we show that human SYCP3 forms a highly-elongated helical tetramer of 20 nm length. N-terminal sequences extending from each end of the rod-like structure bind double-stranded DNA, enabling SYCP3 to link distant sites along the sister chromatid. We further find that SYCP3 self-assembles into regular filamentous structures that resemble the known morphology of the SC lateral element. Together, our data form the basis for a model in which SYCP3 binding and assembly on meiotic chromosomes leads to their organisation into compact structures compatible with recombination and crossover formation. DOI:http://dx.doi.org/10.7554/eLife.02963.001 When a sperm cell and an egg cell unite, each contributes half of the genetic material needed for the fertilised egg to develop. This creates opportunities for new and beneficial genetic combinations to arise. To ensure that each new sperm or egg has half a set of chromosomes, reproductive cells undergo a special type of division called meiosis. During the early stages of meiosis, copies of each chromosome—one inherited from the mother, the other from the father—are paired up along the midline of the dividing cell. A protein complex known as the synaptonemal complex acts as a ‘zipper’, pulling the chromosomes in each pair closer together. The arms of the maternal chromosome and the paternal chromosome are so close that they sometimes cross over and swap a section of DNA. These crossovers perform two critical functions. First, they recombine the genetic information of a cell, so that offspring can benefit from new gene combinations. Second, they help to hold the chromosomes together at a key point of meiosis, reducing the chances that the wrong number of chromosomes ends up in a sperm or egg cell. The zipper structure is essential for meiosis. Disrupting its formation causes infertility and miscarriage in humans and mice, as well as chromosomal disorders like Down's syndrome. Scientists have known about this zipper structure and its importance since 1956, yet limited information is available about its shape and how it works. Syrjänen et al. used X-ray crystallography to take images of the part of the zipper structure that interacts with the chromosomes. These images, combined with the results of biochemical and biophysical experiments, show that rod-like structures on the zipper link together sites within each chromosome. This not only allows the paired chromosomes to be held together by the zipper, but also compacts them so it's easier for them to cross over and swap genetic information. DOI:http://dx.doi.org/10.7554/eLife.02963.002
Collapse
Affiliation(s)
| | - Luca Pellegrini
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Owen Richard Davies
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
44
|
Fraune J, Wiesner M, Benavente R. The synaptonemal complex of basal metazoan hydra: more similarities to vertebrate than invertebrate meiosis model organisms. J Genet Genomics 2014; 41:107-15. [PMID: 24656231 DOI: 10.1016/j.jgg.2014.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/18/2013] [Accepted: 01/20/2014] [Indexed: 11/17/2022]
Abstract
The synaptonemal complex (SC) is an evolutionarily well-conserved structure that mediates chromosome synapsis during prophase of the first meiotic division. Although its structure is conserved, the characterized protein components in the current metazoan meiosis model systems (Drosophila melanogaster, Caenorhabditis elegans, and Mus musculus) show no sequence homology, challenging the question of a single evolutionary origin of the SC. However, our recent studies revealed the monophyletic origin of the mammalian SC protein components. Many of them being ancient in Metazoa and already present in the cnidarian Hydra. Remarkably, a comparison between different model systems disclosed a great similarity between the SC components of Hydra and mammals while the proteins of the ecdysozoan systems (D. melanogaster and C. elegans) differ significantly. In this review, we introduce the basal-branching metazoan species Hydra as a potential novel invertebrate model system for meiosis research and particularly for the investigation of SC evolution, function and assembly. Also, available methods for SC research in Hydra are summarized.
Collapse
Affiliation(s)
- Johanna Fraune
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, D-97074 Würzburg, Germany.
| | - Miriam Wiesner
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, D-97074 Würzburg, Germany
| | - Ricardo Benavente
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, D-97074 Würzburg, Germany.
| |
Collapse
|
45
|
Voelkel-Meiman K, Taylor LF, Mukherjee P, Humphryes N, Tsubouchi H, MacQueen AJ. SUMO localizes to the central element of synaptonemal complex and is required for the full synapsis of meiotic chromosomes in budding yeast. PLoS Genet 2013; 9:e1003837. [PMID: 24098146 PMCID: PMC3789832 DOI: 10.1371/journal.pgen.1003837] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 08/13/2013] [Indexed: 11/29/2022] Open
Abstract
The synaptonemal complex (SC) is a widely conserved structure that mediates the intimate alignment of homologous chromosomes during meiotic prophase and is required for proper homolog segregation at meiosis I. However, fundamental details of SC architecture and assembly remain poorly understood. The coiled-coil protein, Zip1, is the only component whose arrangement within the mature SC of budding yeast has been extensively characterized. It has been proposed that the Small Ubiquitin-like MOdifier, SUMO, plays a role in SC assembly by linking chromosome axes with Zip1's C termini. The role of SUMO in SC structure has not been directly tested, however, because cells lacking SUMO are inviable. Here, we provide direct evidence for SUMO's function in SC assembly. A meiotic smt3 reduction-of-function strain displays reduced sporulation, abnormal levels of crossover recombination, and diminished SC assembly. SC structures are nearly absent when induced at later meiotic time points in the smt3 reduction-of-function background. Using Structured Illumination Microscopy we furthermore determine the position of SUMO within budding yeast SC structure. In contrast to previous models that positioned SUMO near Zip1's C termini, we demonstrate that SUMO lies at the midline of SC central region proximal to Zip1's N termini, within a subdomain called the “central element”. The recently identified SUMOylated SC component, Ecm11, also localizes to the SC central element. Finally, we show that SUMO, Ecm11, and even unSUMOylatable Ecm11 exhibit Zip1-like ongoing incorporation into previously established SCs during meiotic prophase and that the relative abundance of SUMO and Ecm11 correlates with Zip1's abundance within SCs of varying Zip1 content. We discuss a model in which central element proteins are core building blocks that stabilize the architecture of SC near Zip1's N termini, and where SUMOylation may occur subsequent to the incorporation of components like Ecm11 into an SC precursor structure. The meiotic cell cycle enables sexually reproducing organisms to generate reproductive cells with half their chromosome complement. Chromosome ploidy is reduced during meiosis by virtue of prior associations established between homologous chromosomes (homologs). Such associations, which are ultimately secured by crossover recombination events, allow homologs to achieve an opposing orientation and segregate from one another at meiosis I. A multimeric protein structure, the synaptonemal complex (SC), mediates the intimate, lengthwise alignment of homologs during meiotic prophase and forms the context in which crossovers mature. The SC's tripartite structure is widely conserved but its composition and architecture remain incompletely understood in any organism. The Small Ubiquitin-like MOdifier (SUMO) localizes to SC in budding yeast. We show that SUMO is required for assembling mature SC and we furthermore demonstrate that SUMO and the recently identified SUMOylated protein, Ecm11, are components of the central element substructure of the budding yeast SC. Our findings suggest that SUMO and Ecm11 are core building blocks of SC, yet our data also suggest that SUMOylation may occur subsequent to Ecm11's incorporation into the SC structure. Finally, our study highlights Structured Illumination as a powerful tool for mapping the fine structure of budding yeast SC.
Collapse
Affiliation(s)
- Karen Voelkel-Meiman
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| | - Louis F. Taylor
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| | - Pritam Mukherjee
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| | - Neil Humphryes
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Hideo Tsubouchi
- MRC Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Amy J. MacQueen
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
46
|
Phylogenies of central element proteins reveal the dynamic evolutionary history of the mammalian synaptonemal complex: ancient and recent components. Genetics 2013; 195:781-93. [PMID: 24026100 DOI: 10.1534/genetics.113.156679] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During meiosis, the stable pairing of the homologous chromosomes is mediated by the assembly of the synaptonemal complex (SC). Its tripartite structure is well conserved in Metazoa and consists of two lateral elements (LEs) and a central region (CR) that in turn is formed by several transverse filaments (TFs) and a central element (CE). In a previous article, we have shown that not only the structure, but also the major structural proteins SYCP1 (TFs) and SYCP3 (LEs) of the mammalian SC are conserved in metazoan evolution. In continuation of this work, we now investigated the evolution of the mammalian CE-specific proteins using phylogenetic and biochemical/cytological approaches. In analogy to the observations made for SYCP1 and SYCP3, we did not detect homologs of the mammalian CE proteins in insects or nematodes, but in several other metazoan clades. We were able to identify homologs of three mammalian CE proteins in several vertebrate and invertebrate species, for two of these proteins down to the basal-branching phylum of Cnidaria. Our approaches indicate that the SC arose only once, but evolved dynamically during diversification of Metazoa. Certain proteins appear to be ancient in animals, but successive addition of further components as well as protein loss and/or replacements have also taken place in some lineages.
Collapse
|