1
|
Xu Z, Zhao G, Zhang L, Qiao C, Wang H, Wei H, Liu R, Liu P, Zhang Y, Zhu W, You W. Tong-Xie-Yao-Fang induces mitophagy in colonic epithelial cells to inhibit colitis-associated colorectal cancer. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118541. [PMID: 38992403 DOI: 10.1016/j.jep.2024.118541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/10/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Based on the core pathogenesis of hepatosplenic disorder and qi transformation disorder in ulcerative colitis, Tong-Xie-Yao-Fang (TXYF) is a classical traditional Chinese medicine commonly used to treat ulcerative colitis. Our study revealed that it has the potential to prevent colitis-associated colorectal cancer, which embodies the academic concept in traditional Chinese medicine of treating the disease before it develops. AIM OF THE STUDY This study was aimed at evaluating the therapeutic role of TXYF in treating colitis-associated colorectal cancer and exploring its possible underlying mechanisms. MATERIALS AND METHODS A colitis-associated colorectal cancer model was established in mice using azoxymethane and dextran sulfate sodium salt to examine the therapeutic effect of TXYF. The mouse body weights were observed. Hematoxylin-eosin staining was used to evaluate mouse colon histopathology. Colon cancer cells and colon epithelial cells were used to explore the potential molecular mechanisms. The proliferation and apoptosis of cells were detected by CCK8 and cell colony assays, flow cytometry and western blotting. The epithelial-mesenchymal transition (EMT) and mitophagy markers were examined by immunohistochemistry, western blotting, quantitative real-time PCR and immunofluorescence staining. RESULTS TXYF inhibited the tumorigenesis of mice with colitis-associated colorectal cancer and the growth of inflammatory colon cells. TXYF induced mitophagy in colon cancer cells through the PTEN-induced putative kinase 1 (PINK1)/Parkin pathway to reverse EMT, which was consistent with the results in mice with colitis-associated colorectal cancer. CONCLUSIONS The results of the present study demonstrated that TXYF effectively inhibited the progression of colitis-associated colorectal cancer through the PINK1/Parkin pathway, which provides new evidence for prevention strategies for this disease.
Collapse
Affiliation(s)
- Zitong Xu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China.
| | - Gang Zhao
- Department of Anorectal, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China.
| | - Lize Zhang
- Department of Anorectal, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China.
| | - Cuixia Qiao
- Department of Anorectal, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China.
| | - Hao Wang
- Department of President's Office, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China.
| | - Hongyun Wei
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China.
| | - Ruiqing Liu
- Department of Gastroenterological Surgery, The Affiliated Hospital of Qingdao University, Shandong, 266000, China.
| | - Penglin Liu
- Department of Anorectal, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China.
| | - Yuejuan Zhang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Shandong, 266000, China.
| | - Wei Zhu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Shandong, 266000, China.
| | - Wenli You
- Department of Anorectal, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China.
| |
Collapse
|
2
|
Agarwala S, Dhabal S, Mitra K. Significance of quantitative analyses of the impact of heterogeneity in mitochondrial content and shape on cell differentiation. Open Biol 2024; 14:230279. [PMID: 38228170 PMCID: PMC10791538 DOI: 10.1098/rsob.230279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/15/2023] [Indexed: 01/18/2024] Open
Abstract
Mitochondria, classically known as the powerhouse of cells, are unique double membrane-bound multifaceted organelles carrying a genome. Mitochondrial content varies between cell types and precisely doubles within cells during each proliferating cycle. Mitochondrial content also increases to a variable degree during cell differentiation triggered after exit from the proliferating cycle. The mitochondrial content is primarily maintained by the regulation of mitochondrial biogenesis, while damaged mitochondria are eliminated from the cells by mitophagy. In any cell with a given mitochondrial content, the steady-state mitochondrial number and shape are determined by a balance between mitochondrial fission and fusion processes. The increase in mitochondrial content and alteration in mitochondrial fission and fusion are causatively linked with the process of differentiation. Here, we critically review the quantitative aspects in the detection methods of mitochondrial content and shape. Thereafter, we quantitatively link these mitochondrial properties in differentiating cells and highlight the implications of such quantitative link on stem cell functionality. Finally, we discuss an example of cell size regulation predicted from quantitative analysis of mitochondrial shape and content. To highlight the significance of quantitative analyses of these mitochondrial properties, we propose three independent rationale based hypotheses and the relevant experimental designs to test them.
Collapse
Affiliation(s)
- Swati Agarwala
- Department of Biology, Ashoka University, Delhi (NCR), India
| | - Sukhamoy Dhabal
- Department of Biology, Ashoka University, Delhi (NCR), India
| | - Kasturi Mitra
- Department of Biology, Ashoka University, Delhi (NCR), India
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
3
|
Packer M. Qiliqiangxin: A multifaceted holistic treatment for heart failure or a pharmacological probe for the identification of cardioprotective mechanisms? Eur J Heart Fail 2023; 25:2130-2143. [PMID: 37877337 DOI: 10.1002/ejhf.3068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/10/2023] [Accepted: 10/15/2023] [Indexed: 10/26/2023] Open
Abstract
The active ingredients in many traditional Chinese medicines are isoprene oligomers with a diterpenoid or triterpenoid structure, which exert cardiovascular effects by signalling through nutrient surplus and nutrient deprivation pathways. Qiliqiangxin (QLQX) is a commercial formulation of 11 different plant ingredients, whose active compounds include astragaloside IV, tanshione IIA, ginsenosides (Rb1, Rg1 and Re) and periplocymarin. In the QUEST trial, QLQX reduced the combined risk of cardiovascular death or heart failure hospitalization (hazard ratio 0.78, 95% confidence interval 0.68-0.90), based on 859 events in 3119 patients over a median of 18.2 months; the benefits were seen in patients taking foundational drugs except for sodium-glucose cotransporter 2 (SGLT2) inhibitors. Numerous experimental studies of QLQX in diverse cardiac injuries have yielded highly consistent findings. In marked abrupt cardiac injury, QLQX mitigated cardiac injury by upregulating nutrient surplus signalling through the PI3K/Akt/mTOR/HIF-1α/NRF2 pathway; the benefits of QLQX were abrogated by suppression of PI3K, Akt, mTOR, HIF-1α or NRF2. In contrast, in prolonged measured cardiac stress (as in chronic heart failure), QLQX ameliorated oxidative stress, maladaptive hypertrophy, cardiomyocyte apoptosis, and proinflammatory and profibrotic pathways, while enhancing mitochondrial health and promoting glucose and fatty acid oxidation and ATP production. These effects are achieved by an action of QLQX to upregulate nutrient deprivation signalling through SIRT1/AMPK/PGC-1α and enhanced autophagic flux. In particular, QLQX appears to enhance the interaction of PGC-1α with PPARα, possibly by direct binding to RXRα; silencing of SIRT1, PGC-1α and RXRα abrogated the favourable effects of QLQX in the heart. Since PGC-1α/RXRα is also a downstream effector of Akt/mTOR signalling, the actions of QLQX on PGC-1α/RXRα may explain its favourable effects in both acute and chronic stress. Intriguingly, the individual ingredients in QLQX - astragaloside IV, ginsenosides, and tanshione IIA - share QLQX's effects on PGC-1α/RXRα/PPARα signalling. QXQL also contains periplocymarin, a cardiac glycoside that inhibits Na+ -K+ -ATPase. Taken collectively, these observations support a conceptual framework for understanding the mechanism of action for QLQX in heart failure. The high likelihood of overlap in the mechanism of action of QLQX and SGLT2 inhibitors requires additional experimental studies and clinical trials.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Dallas, TX, USA
- Imperial College, London, UK
| |
Collapse
|
4
|
Somers T, Siddiqi S, Morshuis WJ, Russel FGM, Schirris TJJ. Statins and Cardiomyocyte Metabolism, Friend or Foe? J Cardiovasc Dev Dis 2023; 10:417. [PMID: 37887864 PMCID: PMC10607220 DOI: 10.3390/jcdd10100417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/23/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023] Open
Abstract
Statins inhibit HMG-CoA reductase, the rate-limiting enzyme in cholesterol synthesis, and are the cornerstone of lipid-lowering treatment. They significantly reduce cardiovascular morbidity and mortality. However, musculoskeletal symptoms are observed in 7 to 29 percent of all users. The mechanism underlying these complaints has become increasingly clear, but less is known about the effect on cardiac muscle function. Here we discuss both adverse and beneficial effects of statins on the heart. Statins exert pleiotropic protective effects in the diseased heart that are independent of their cholesterol-lowering activity, including reduction in hypertrophy, fibrosis and infarct size. Adverse effects of statins seem to be associated with altered cardiomyocyte metabolism. In this review we explore the differences in the mechanism of action and potential side effects of statins in cardiac and skeletal muscle and how they present clinically. These insights may contribute to a more personalized treatment strategy.
Collapse
Affiliation(s)
- Tim Somers
- Department of Cardiothoracic Surgery, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Sailay Siddiqi
- Department of Cardiothoracic Surgery, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Wim J. Morshuis
- Department of Cardiothoracic Surgery, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Frans G. M. Russel
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Tom J. J. Schirris
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
5
|
Petenkova A, Auger SA, Lamb J, Quellier D, Carter C, To OT, Milosevic J, Barghout R, Kugadas A, Lu X, Geddes-McAlister J, Fichorova R, Sykes DB, Distefano MD, Gadjeva M. Prenylcysteine oxidase 1 like protein is required for neutrophil bactericidal activities. Nat Commun 2023; 14:2761. [PMID: 37179332 PMCID: PMC10182992 DOI: 10.1038/s41467-023-38447-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
The bactericidal function of neutrophils is dependent on a myriad of intrinsic and extrinsic stimuli. Using systems immunology approaches we identify microbiome- and infection-induced changes in neutrophils. We focus on investigating the Prenylcysteine oxidase 1 like (Pcyox1l) protein function. Murine and human Pcyox1l proteins share ninety four percent aminoacid homology revealing significant evolutionary conservation and implicating Pcyox1l in mediating important biological functions. Here we show that the loss of Pcyox1l protein results in significant reductions in the mevalonate pathway impacting autophagy and cellular viability under homeostatic conditions. Concurrently, Pcyox1l CRISPRed-out neutrophils exhibit deficient bactericidal properties. Pcyox1l knock-out mice demonstrate significant susceptibility to infection with the gram-negative pathogen Psuedomonas aeruginosa exemplified through increased neutrophil infiltrates, hemorrhaging, and reduced bactericidal functionality. Cumulatively, we ascribe a function to Pcyox1l protein in modulation of the prenylation pathway and suggest connections beween metabolic responses and neutrophil functionality.
Collapse
Affiliation(s)
- Anastasiia Petenkova
- Department of Medicine, Division of Infectious Diseases, Mass General Brigham, Harvard Medical School, Boston, MA, 02115, USA
| | - Shelby A Auger
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jeffrey Lamb
- Department of Medicine, Division of Infectious Diseases, Mass General Brigham, Harvard Medical School, Boston, MA, 02115, USA
| | - Daisy Quellier
- Department of Medicine, Division of Infectious Diseases, Mass General Brigham, Harvard Medical School, Boston, MA, 02115, USA
| | - Cody Carter
- Department of Medicine, Division of Infectious Diseases, Mass General Brigham, Harvard Medical School, Boston, MA, 02115, USA
| | - On Tak To
- Department of Medicine, Division of Infectious Diseases, Mass General Brigham, Harvard Medical School, Boston, MA, 02115, USA
| | - Jelena Milosevic
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Rana Barghout
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Abirami Kugadas
- Department of Medicine, Division of Infectious Diseases, Mass General Brigham, Harvard Medical School, Boston, MA, 02115, USA
| | - Xiaoxiao Lu
- Department of Medicine, Division of Infectious Diseases, Mass General Brigham, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Raina Fichorova
- Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Mark D Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mihaela Gadjeva
- Department of Medicine, Division of Infectious Diseases, Mass General Brigham, Harvard Medical School, Boston, MA, 02115, USA.
- Harvard University, Faculty of Arts and Sciences, Cambridge, MA, 02138, USA.
| |
Collapse
|
6
|
Chlamydia trachomatis Alters Mitochondrial Protein Composition and Secretes Effector Proteins That Target Mitochondria. mSphere 2022; 7:e0042322. [PMID: 36286535 PMCID: PMC9769516 DOI: 10.1128/msphere.00423-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mitochondria are critical cellular organelles that perform a wide variety of functions, including energy production and immune regulation. To perform these functions, mitochondria contain approximately 1,500 proteins, the majority of which are encoded in the nuclear genome, translated in the cytoplasm, and translocated to the mitochondria using distinct mitochondrial targeting sequences (MTS). Bacterial proteins can also contain MTS and localize to the mitochondria. For the obligate intracellular human pathogen Chlamydia trachomatis, interaction with various host cell organelles promotes intracellular replication. However, the extent and mechanisms through which Chlamydia cells interact directly with mitochondria remain unclear. We investigated the presence of MTS in the C. trachomatis genome and discovered 30 genes encoding proteins with around 70% or greater probability of mitochondrial localization. Five are translocated to the mitochondria upon ectopic expression in HeLa cells. Mass spectrometry of isolated mitochondria from infected cells revealed that two of these proteins localize to the mitochondria during infection. Comparison of mitochondria from infected and uninfected cells suggests that chlamydial infection affects the mitochondrial protein composition. Around 125 host proteins were significantly decreased or absent in mitochondria from infected cells. Among these were proapoptotic factors and those related to mitochondrial fission/fusion dynamics. Conversely, 82 host proteins were increased in or specific to mitochondria of infected cells, many of which act as antiapoptotic factors and upregulators of cellular metabolism. These data support the notion that C. trachomatis specifically targets host mitochondria to manipulate cell fate decisions and metabolic function to support pathogen survival and replication. IMPORTANCE Obligate intracellular bacteria have evolved multiple means to promote their intracellular survival and replication within the otherwise harsh environment of the eukaryotic cell. Nutrient acquisition and avoidance of cellular defense mechanisms are critical to an intracellular lifestyle. Mitochondria are critical organelles that produce energy in the form of ATP and regulate programmed cell death responses to invasive pathogenic microbes. Cell death prior to completion of replication would be detrimental to the pathogen. C. trachomatis produces at least two and possibly more proteins that target the mitochondria. Collectively, C. trachomatis infection modulates the mitochondrial protein composition, favoring a profile suggestive of downregulation of apoptosis.
Collapse
|
7
|
Devilliers M, Garrido D, Poidevin M, Rubin T, Le Rouzic A, Montagne J. Differential metabolic sensitivity of insulin-like-response- and TORC1-dependent overgrowth in Drosophila fat cells. Genetics 2021; 217:1-12. [PMID: 33683355 DOI: 10.1093/genetics/iyaa010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022] Open
Abstract
Glycolysis and fatty acid (FA) synthesis directs the production of energy-carrying molecules and building blocks necessary to support cell growth, although the absolute requirement of these metabolic pathways must be deeply investigated. Here, we used Drosophila genetics and focus on the TOR (Target of Rapamycin) signaling network that controls cell growth and homeostasis. In mammals, mTOR (mechanistic-TOR) is present in two distinct complexes, mTORC1 and mTORC2; the former directly responds to amino acids and energy levels, whereas the latter sustains insulin-like-peptide (Ilp) response. The TORC1 and Ilp signaling branches can be independently modulated in most Drosophila tissues. We show that TORC1 and Ilp-dependent overgrowth can operate independently in fat cells and that ubiquitous over-activation of TORC1 or Ilp signaling affects basal metabolism, supporting the use of Drosophila as a powerful model to study the link between growth and metabolism. We show that cell-autonomous restriction of glycolysis or FA synthesis in fat cells retrains overgrowth dependent on Ilp signaling but not TORC1 signaling. Additionally, the mutation of FASN (Fatty acid synthase) results in a drop in TORC1 but not Ilp signaling, whereas, at the cell-autonomous level, this mutation affects none of these signals in fat cells. These findings thus reveal differential metabolic sensitivity of TORC1- and Ilp-dependent growth and suggest that cell-autonomous metabolic defects might elicit local compensatory pathways. Conversely, enzyme knockdown in the whole organism results in animal death. Importantly, our study weakens the use of single inhibitors to fight mTOR-related diseases and strengthens the use of drug combination and selective tissue-targeting.
Collapse
Affiliation(s)
- Maelle Devilliers
- Institute for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Saclay, CEA, F-91190 Gif-sur-Yvette, France
| | - Damien Garrido
- Institute for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Saclay, CEA, F-91190 Gif-sur-Yvette, France
| | - Mickael Poidevin
- Institute for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Saclay, CEA, F-91190 Gif-sur-Yvette, France
| | - Thomas Rubin
- Institute for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Saclay, CEA, F-91190 Gif-sur-Yvette, France
| | - Arnaud Le Rouzic
- Laboratoire Evolution, Génomes, Comportement et Ecologie, CNRS, Université Paris-Saclay, UMR 9191, F-91190 Gif-sur-Yvette, France
| | - Jacques Montagne
- Institute for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Saclay, CEA, F-91190 Gif-sur-Yvette, France
| |
Collapse
|
8
|
Lu Q, Wang M, Gui Y, Hou Q, Gu M, Liang Y, Xiao B, Zhao AZ, Dai C. Rheb1 protects against cisplatin-induced tubular cell death and acute kidney injury via maintaining mitochondrial homeostasis. Cell Death Dis 2020; 11:364. [PMID: 32404875 PMCID: PMC7221100 DOI: 10.1038/s41419-020-2539-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 01/14/2023]
Abstract
Ras homolog enriched in brain (Rheb1), a small GTPase, plays a crucial role in regulating cell growth, differentiation, and survival. However, the role and mechanisms for Rheb1 in tubular cell survival and acute kidney injury (AKI) remain unexplored. Here we found that Rheb1 signaling was activated in kidney tubule of AKI patients and cisplatin-treated mice. A mouse model of tubule-specific deletion of Rheb1 (Tubule-Rheb1−/−) was generated. Compared to control littermates, Tubule-Rheb1−/− mice were phenotypically normal within 2 months after birth but developed more severe kidney dysfunction, tubular cell death including apoptosis, necroptosis and ferroptosis, mitochondrial defect and less PGC-1α expression after cisplatin injection. In primary cultured tubular cells, Rheb1 ablation exacerbated cisplatin-induced cell death and mitochondrial defect. Furthermore, haploinsufficiency for Tsc1 in tubular cells led to Rheb1 activation and mitigated cisplatin-induced cell death, mitochondrial defect and AKI. Together, this study uncovers that Rheb1 may protect against cisplatin-induced tubular cell death and AKI through maintaining mitochondrial homeostasis.
Collapse
Affiliation(s)
- Qingmiao Lu
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Mingjie Wang
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Yuan Gui
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Qing Hou
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Mengru Gu
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Yan Liang
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China
| | - Bo Xiao
- Department of Biology, Southern University of Science and Technology, 518000, Shenzhen, P.R. China
| | - Allan Zijian Zhao
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 510515, Guangzhou, P.R. China
| | - Chunsun Dai
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, China.
| |
Collapse
|
9
|
Crewe C, Zhu Y, Paschoal VA, Joffin N, Ghaben AL, Gordillo R, Oh DY, Liang G, Horton JD, Scherer PE. SREBP-regulated adipocyte lipogenesis is dependent on substrate availability and redox modulation of mTORC1. JCI Insight 2019; 5:129397. [PMID: 31310592 DOI: 10.1172/jci.insight.129397] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The synthesis of lipid and sterol species through de novo lipogenesis (DNL) is regulated by two functionally overlapping but distinct transcription factors: the sterol regulatory element-binding proteins (SREBPs) and carbohydrate response element binding protein (ChREBP). ChREBP is considered to be the dominant regulator of DNL in adipose tissue (AT); however, the SREBPs are highly expressed and robustly regulated in adipocytes, suggesting that the model of AT DNL may be incomplete. Here we describe a new mouse model of inducible, adipocyte-specific overexpression of the insulin-induced gene 1 (Insig1), a negative regulator of SREBP transcriptional activity. Contrary to convention, Insig1 overexpression did block AT lipogenic gene expression. However, this was immediately met with a compensatory mechanism triggered by redox activation of mTORC1 to restore SREBP1 DNL gene expression. Thus, we demonstrate that SREBP1 activity sustains adipocyte lipogenesis, a conclusion that has been elusive due to the constitutive nature of current mouse models.
Collapse
Affiliation(s)
| | - Yi Zhu
- Touchstone Diabetes Center
| | | | | | | | | | | | | | - Jay D Horton
- Department of Molecular Genetics, and.,Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | |
Collapse
|
10
|
Watson AR, Dai H, Zheng Y, Nakano R, Giannou AD, Menk AV, Stolz DB, Delgoffe GM, Thomson AW. mTORC2 Deficiency Alters the Metabolic Profile of Conventional Dendritic Cells. Front Immunol 2019; 10:1451. [PMID: 31338091 PMCID: PMC6626913 DOI: 10.3389/fimmu.2019.01451] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 06/10/2019] [Indexed: 12/16/2022] Open
Abstract
In myeloid dendritic cells (DC), deletion of the mechanistic target of rapamycin complex 2 (TORC2) results in an augmented pro-inflammatory phenotype and T cell stimulatory activity; however, the underlying mechanism has not been resolved. Here, we demonstrate that mouse bone marrow-derived TORC2-deficient myeloid DC (TORC2−/− DC) utilize an altered metabolic program, characterized by enhanced baseline glycolytic function compared to wild-type WT control (Ctrl) DC, increased dependence on glycolytic ATP production, elevated lipid content and higher viability following stimulation with LPS. In addition, TORC2−/− DC display an increased spare respiratory capacity (SRC) compared to WT Ctrl DC; this metabolic phenotype corresponds with increased mitochondrial mass and mean mitochondrial DNA copy number, and failure of TORC2−/− DC mitochondria to depolarize following LPS stimulation. Our data suggest that the enhanced metabolic activity of TORC2−/− DC may be due to compensatory TORC1 pathway activity, namely increased expression of multiple genes upstream of Akt/TORC1 activity, including the integrin alpha IIb, protein tyrosine kinase 2/focal adhesion kinase, IL-7R and Janus kinase 1(JAK1), and the activation of downstream targets of TORC1, including p70S6K, eukaryotic translation initiation factor 4E binding protein 1 (4EBP1) and CD36 (fatty acid translocase). These enhanced TORC1 pathway activities may culminate in increased expression of the nuclear receptor peroxisome proliferator-activated receptor γ (Pparγ) that regulates fatty acid storage, and the transcription factor sterol regulatory element-binding transcription factor 1 (Srebf1). Taken together, our data suggest that TORC2 may function to restrain TORC1-driven metabolic activity and mitochondrial regulation in myeloid DC.
Collapse
Affiliation(s)
- Alicia R Watson
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Helong Dai
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Urological Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yawen Zheng
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Urological Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ryosuke Nakano
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Anastasios D Giannou
- Section of Molecular Immunology and Gastroenterology, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ashley V Menk
- Tumor Microenvironment Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, United States
| | - Donna B Stolz
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Greg M Delgoffe
- Tumor Microenvironment Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA, United States.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Angus W Thomson
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
11
|
Saxena S, Mathur A, Kakkar P. Critical role of mitochondrial dysfunction and impaired mitophagy in diabetic nephropathy. J Cell Physiol 2019; 234:19223-19236. [DOI: 10.1002/jcp.28712] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/27/2019] [Accepted: 04/10/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Sugandh Saxena
- Herbal Research Laboratory CSIR‐Indian Institute of Toxicology Research (CSIR‐IITR) Lucknow India
- Biological Sciences Academy of Scientific and Innovative Research (AcSIR), CSIR‐IITR Campus Lucknow Uttar Pradesh India
| | - Alpana Mathur
- Herbal Research Laboratory CSIR‐Indian Institute of Toxicology Research (CSIR‐IITR) Lucknow India
- Department of Biochemistry Babu Banarasi Das University Lucknow Uttar Pradesh India
| | - Poonam Kakkar
- Herbal Research Laboratory CSIR‐Indian Institute of Toxicology Research (CSIR‐IITR) Lucknow India
- Biological Sciences Academy of Scientific and Innovative Research (AcSIR), CSIR‐IITR Campus Lucknow Uttar Pradesh India
| |
Collapse
|
12
|
Ma Y, Moors A, Camougrand N, Dokudovskaya S. The SEACIT complex is involved in the maintenance of vacuole-mitochondria contact sites and controls mitophagy. Cell Mol Life Sci 2019; 76:1623-1640. [PMID: 30673821 PMCID: PMC11105764 DOI: 10.1007/s00018-019-03015-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 12/17/2018] [Accepted: 01/15/2019] [Indexed: 12/19/2022]
Abstract
The major signaling pathway that regulates cell growth and metabolism is under the control of the target of rapamycin complex 1 (TORC1). In Saccharomyces cerevisiae the SEA complex is one of the TORC1 upstream regulators involved in amino acid sensing and autophagy. Here, we performed analysis of the expression, interactions and localization of SEA complex proteins under different conditions, varying parameters such as sugar source, nitrogen availability and growth phase. Our results show that the SEA complex promotes mitochondria degradation either by mitophagy or by general autophagy. In addition, the SEACIT subcomplex is involved in the maintenance of the vacuole-mitochondria contact sites. Thus, the SEA complex appears to be an important link between the TORC1 pathway and regulation of mitochondria quality control.
Collapse
Affiliation(s)
- Yinxing Ma
- CNRS, UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805, Villejuif, France
| | - Alexis Moors
- CNRS, UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805, Villejuif, France
| | - Nadine Camougrand
- CNRS, IBGC, UMR 5095, 1, rue Camille Saint-Saens, 33000, Bordeaux, France
- Université de Bordeaux, IBGC, 1, rue Camille Saint-Saens, 33000, Bordeaux, France
| | - Svetlana Dokudovskaya
- CNRS, UMR 8126, Université Paris-Sud 11, Institut Gustave Roussy, 114, rue Edouard Vaillant, 94805, Villejuif, France.
| |
Collapse
|
13
|
A Drosophila genetic screen for suppressors of S6kinase-dependent growth identifies the F-box subunit Archipelago/FBXW7. Mol Genet Genomics 2019; 294:573-582. [PMID: 30656413 DOI: 10.1007/s00438-018-01529-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 12/26/2018] [Indexed: 12/12/2022]
Abstract
This study was designed to identify novel negative regulators of the Drosophila S6kinase (dS6K). S6K is a downstream effector of the growth-regulatory complex mTORC1 (mechanistic-Target-of-Rapamycin complex 1). Nutrients activate mTORC1, which in turn induces the phosphorylation of S6K to promote cell growth, whereas fasting represses mTORC1 activity. Here, we screened 11,000 RNA-interfering (RNAi) lines and retained those that enhanced a dS6K-dependent growth phenotype. Since RNAi induces gene knockdown, enhanced tissue growth supports the idea that the targeted gene acts as a growth suppressor. To validate the resulting candidate genes, we monitored dS6K phosphorylation and protein levels in double-stranded RNAi-treated S2 cells. We identified novel dS6K negative regulators, including gene products implicated in basal cellular functions, suggesting that feedback inputs modulate mTORC1/dS6K signaling. We also identified Archipelago (Ago), the Drosophila homologue of FBXW7, which is an E3-ubiquitin-ligase subunit that loads ubiquitin units onto target substrates for proteasome-mediated degradation. Despite a previous report showing an interaction between Ago/FBXW7 and dS6K in a yeast two-hybrid assay and the presence of an Ago/FBXW7-consensus motif in the dS6K polypeptide, we could not see a direct interaction in immunoprecipitation assay. Nevertheless, we observed that loss-of-ago/fbxw7 in larvae resulted in an increase in dS6K protein levels, but no change in the levels of phosphorylated dS6K or dS6K transcripts, suggesting that Ago/FBXW7 indirectly controls dS6K translation or stability. Through the identification of novel negative regulators of the downstream target, dS6K, our study may help deciphering the underlying mechanisms driving deregulations of mTORC1, which underlies several human diseases.
Collapse
|
14
|
Lee JH, Mand MR, Kao CH, Zhou Y, Ryu SW, Richards AL, Coon JJ, Paull TT. ATM directs DNA damage responses and proteostasis via genetically separable pathways. Sci Signal 2018; 11:eaan5598. [PMID: 29317520 PMCID: PMC5898228 DOI: 10.1126/scisignal.aan5598] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The protein kinase ATM is a master regulator of the DNA damage response but also responds directly to oxidative stress. Loss of ATM causes ataxia telangiectasia, a neurodegenerative disorder with pleiotropic symptoms that include cerebellar dysfunction, cancer, diabetes, and premature aging. We genetically separated the activation of ATM by DNA damage from that by oxidative stress using separation-of-function mutations. We found that deficient activation of ATM by the Mre11-Rad50-Nbs1 complex and DNA double-strand breaks resulted in loss of cell viability, checkpoint activation, and DNA end resection in response to DNA damage. In contrast, loss of oxidative activation of ATM had minimal effects on DNA damage-related outcomes but blocked ATM-mediated initiation of checkpoint responses after oxidative stress and resulted in deficiencies in mitochondrial function and autophagy. In addition, expression of a variant ATM incapable of activation by oxidative stress resulted in widespread protein aggregation. These results indicate a direct relationship between the mechanism of ATM activation and its effects on cellular metabolism and DNA damage responses in human cells and implicate ATM in the control of protein homeostasis.
Collapse
Affiliation(s)
- Ji-Hoon Lee
- Howard Hughes Medical Institute, Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Michael R Mand
- Howard Hughes Medical Institute, Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Chung-Hsuan Kao
- Howard Hughes Medical Institute, Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Yi Zhou
- Howard Hughes Medical Institute, Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Seung W Ryu
- Howard Hughes Medical Institute, Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Alicia L Richards
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Tanya T Paull
- Howard Hughes Medical Institute, Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
15
|
Abstract
The kidney requires a large number of mitochondria to remove waste from the blood and regulate fluid and electrolyte balance. Mitochondria provide the energy to drive these important functions and can adapt to different metabolic conditions through a number of signalling pathways (for example, mechanistic target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) pathways) that activate the transcriptional co-activator peroxisome proliferator-activated receptor-γ co-activator 1α (PGC1α), and by balancing mitochondrial dynamics and energetics to maintain mitochondrial homeostasis. Mitochondrial dysfunction leads to a decrease in ATP production, alterations in cellular functions and structure, and the loss of renal function. Persistent mitochondrial dysfunction has a role in the early stages and progression of renal diseases, such as acute kidney injury (AKI) and diabetic nephropathy, as it disrupts mitochondrial homeostasis and thus normal kidney function. Improving mitochondrial homeostasis and function has the potential to restore renal function, and administering compounds that stimulate mitochondrial biogenesis can restore mitochondrial and renal function in mouse models of AKI and diabetes mellitus. Furthermore, inhibiting the fission protein dynamin 1-like protein (DRP1) might ameliorate ischaemic renal injury by blocking mitochondrial fission.
Collapse
|
16
|
Rheb1 deletion in myeloid cells aggravates OVA-induced allergic inflammation in mice. Sci Rep 2017; 7:42655. [PMID: 28225024 PMCID: PMC5320517 DOI: 10.1038/srep42655] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 01/12/2017] [Indexed: 12/28/2022] Open
Abstract
The small GTPase ras homolog enriched in brain (Rheb) is a downstream target of tuberous sclerosis complex 1/2 (TSC1/2) and an upstream activator of the mechanistic target of rapamycin complex 1 (mTORC1), the emerging essential modulator of M1/M2 balance in macrophages. However, the role and regulatory mechanisms of Rheb in macrophage polarization and allergic asthma are not known. In the present study, we utilized a mouse model with myeloid cell-specific deletion of the Rheb1 gene and an ovalbumin (OVA)-induced allergic asthma model to investigate the role of Rheb1 in allergic asthma and macrophage polarization. Increased activity of Rheb1 and mTORC1 was observed in myeloid cells of C57BL/6 mice with OVA-induced asthma. In an OVA-induced asthma model, Rheb1-KO mice demonstrated a more serious inflammatory response, more mucus production, enhanced airway hyper-responsiveness, and greater eosinophil numbers in bronchoalveolar lavage fluid (BALF). They also showed increased numbers of bone marrow macrophages and BALF myeloid cells, elevated M2 polarization and reduced M1 polarization of macrophages. Thus, we have established that Rheb1 is critical for the polarization of macrophages and inhibition of allergic asthma. Deletion of Rheb1 enhances M2 polarization but decreases M1 polarization in alveolar macrophages, leading to the aggravation of OVA-induced allergic asthma.
Collapse
|
17
|
TSC2 Deficiency Unmasks a Novel Necrosis Pathway That Is Suppressed by the RIP1/RIP3/MLKL Signaling Cascade. Cancer Res 2016; 76:7130-7139. [DOI: 10.1158/0008-5472.can-16-1052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 09/09/2016] [Accepted: 10/07/2016] [Indexed: 11/16/2022]
|
18
|
Kumar B, Arora S, Ahmed S, Banerjea AC. Hyperactivation of mammalian target of rapamycin complex 1 by HIV-1 is necessary for virion production and latent viral reactivation. FASEB J 2016; 31:180-191. [PMID: 27702769 DOI: 10.1096/fj.201600813r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/16/2016] [Indexed: 01/03/2023]
Abstract
Generation of new HIV-1 virions requires the constant supply of proteins, nucleotides, and energy; however, it is not known which cellular pathways are perturbed and what molecular mechanisms are employed. We hypothesized that HIV-1 may regulate pathways that control synthesis of biomolecules in the cell. In this study, we provide evidence that HIV-1 hyperactivates mammalian target of rapamycin complex 1 (mTORC1), the central regulator of biosynthesis. Mechanistically, we identify the viral regulatory gene tat (transactivator) as being responsible for increasing mTORC1 activity in a PI3K-dependent manner. Furthermore, we show that hyperactivation of mTORC1 leads to activation of the enzyme, carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, dihydroorotase, and repression of initiation factor 4E-binding protein 1 activity. These are regulators of nucleotide biogenesis and protein translation, respectively. Moreover, we are able to replicate these results in HIV-1 latent cell line models. Finally, we show that inhibition of mTORC1 or PI3K inhibits viral replication and viral reactivation as a result of a decrease in biosynthesis. Overall, our study identifies a new avenue in HIV-1 biology that can lead to development of novel therapeutic targets.-Kumar, B., Arora, S., Ahmed, S., Banerjea, A. C. Hyperactivation of mammalian target of rapamycin complex 1 by HIV-1 is necessary for virion production and latent viral reactivation.
Collapse
Affiliation(s)
- Binod Kumar
- Laboratory of Virology, National Institute of Immunology, New Delhi, India
| | - Sakshi Arora
- Laboratory of Virology, National Institute of Immunology, New Delhi, India
| | - Shaista Ahmed
- Laboratory of Virology, National Institute of Immunology, New Delhi, India
| | - Akhil C Banerjea
- Laboratory of Virology, National Institute of Immunology, New Delhi, India
| |
Collapse
|
19
|
Peña S, Sherman T, Brookes PS, Nehrke K. The Mitochondrial Unfolded Protein Response Protects against Anoxia in Caenorhabditis elegans. PLoS One 2016; 11:e0159989. [PMID: 27459203 PMCID: PMC4961406 DOI: 10.1371/journal.pone.0159989] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/27/2016] [Indexed: 02/06/2023] Open
Abstract
The mitochondrial unfolded protein response (UPRmt) is a surveillance pathway that defends proteostasis in the “powerhouse” of the cell. Activation of the UPRmt protects against stresses imposed by reactive oxygen species, respiratory chain deficits, and pathologic bacteria. Consistent with the UPRmt’s role in adaption, we found that either its pharmacological or genetic activation by ethidium bromide (EtBr) or RNAi of the mitochondrial AAA-protease spg-7 was sufficient to reduce death in an anoxia-based Caenorhabditis elegans model of ischemia-reperfusion injury. The UPRmt-specific transcription factor atfs-1 was necessary for protection and atfs-1 gain-of-function (gf) mutants were endogenously protected from both death and dysfunction. Neurons exhibited less axonal degeneration following non-lethal anoxia-reperfusion (A-R) when the UPRmt was pre-activated, and consistent with the concept of mitochondrial stress leading to cell non-autonomous (ie. “remote”) effects, we found that restricted activation of the UPRmt in neurons decreased A-R death. However, expression of the atfs-1(gf) mutant in neurons, which resulted in a robust activation of a neuronal UPRmt, did not upregulate the UPRmt in distal tissues, nor did it protect the worms from A-R toxicity. These findings suggest that remote signaling requires additional component(s) acting downstream of de facto mitochondrial stress.
Collapse
Affiliation(s)
- Salvador Peña
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Teresa Sherman
- Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Paul S. Brookes
- Department of Anesthesiology, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Keith Nehrke
- Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
20
|
Fan B, Li FQ, Zuo L, Li GY. mTOR inhibition attenuates glucose deprivation-induced death in photoreceptors via suppressing a mitochondria-dependent apoptotic pathway. Neurochem Int 2016; 99:178-186. [PMID: 27401903 DOI: 10.1016/j.neuint.2016.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/06/2016] [Accepted: 07/06/2016] [Indexed: 12/21/2022]
Abstract
Acute energy depletion contributes to ischemia-induced retinal neuronal injury, causing photoreceptor death and subsequent vision loss. The mTOR pathway is a crucial cellular signaling hub modulating RNA transcription, protein synthesis, and metabolic balance. Thus, we mimicked acute energy depletion in photoreceptor cells (661W cells) with glucose deprivation and investigated neuroprotective mechanisms of mTOR inhibition. We found that treatment with rapamycin, an mTOR-specific inhibitor, reduced intracellular ROS, maintained the mitochondrial membrane potential and restored mitochondrial dysfunction. In addition, inhibiting the mTOR signal suppressed DRP1 translocation to the mitochondria, pro-apoptotic mitochondrial protein release, and caspase 3 activation when glucose was deprived. Inhibition of mTOR offers significant neuroprotection against glucose deprivation-induced injury in 661W cells, chiefly via suppressing mitochondrial-dependent pathways. These observations may shed light on treating ischemia-related retinal diseases.
Collapse
Affiliation(s)
- Bin Fan
- Department of Ophthalmology, Second Hospital of Jilin University, ChangChun 130041, China
| | - Fu-Qaing Li
- Department of Ophthalmology, Second Hospital of Jilin University, ChangChun 130041, China
| | - Ling Zuo
- Department of Ophthalmology, Second Hospital of Jilin University, ChangChun 130041, China
| | - Guang-Yu Li
- Department of Ophthalmology, Second Hospital of Jilin University, ChangChun 130041, China.
| |
Collapse
|
21
|
Pinto-Leite R, Arantes-Rodrigues R, Sousa N, Oliveira PA, Santos L. mTOR inhibitors in urinary bladder cancer. Tumour Biol 2016; 37:11541-11551. [PMID: 27235118 DOI: 10.1007/s13277-016-5083-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/15/2016] [Indexed: 02/07/2023] Open
Abstract
Despite the great scientific advances that have been made in cancer treatment, there is still much to do, particularly with regard to urinary bladder cancer. Some of the drugs used in urinary bladder cancer treatment have been in use for more than 30 years and show reduced effectiveness and high recurrence rates. There have been several attempts to find new and more effective drugs, to be used alone or in combination with the drugs already in use, in order to overcome this situation.The biologically important mammalian target of rapamycin (mTOR) pathway is altered in cancer and mTOR inhibitors have raised many expectations as potentially important anticancer drugs. In this article, the authors will review the mTOR pathway and present their experiences of the use of some mTOR inhibitors, sirolimus, everolimus and temsirolimus, in isolation and in conjunction with non-mTOR inhibitors cisplatin and gemcitabine, on urinary bladder tumour cell lines. The non-muscle-invasive cell line, 5637, is the only one that exhibits a small alteration in the mTOR and AKT phosphorylation after rapalogs exposure. Also, there was a small inhibition of cell proliferation. With gemcitabine plus everolimus or temsirolimus, the results were encouraging as a more effective response was noticed with both combinations, especially in the 5637 and T24 cell lines. Cisplatin associated with everolimus or temsirolimus also gave promising results, as an antiproliferative effect was observed when the drugs were associated, in particular on the 5637 and HT1376 cell lines. Everolimus or temsirolimus in conjunction with gemcitabine or cisplatin could have an important role to play in urinary bladder cancer treatment, depending on the tumour grading.
Collapse
Affiliation(s)
- R Pinto-Leite
- Genetic Service, Cytogenetic Laboratory, Hospital Center of Trás-os-Montes and Alto Douro, Vila Real, Portugal. .,Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.
| | - R Arantes-Rodrigues
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,QOPNA, Mass Spectrometry Center, Department of Chemistry, University of Aveiro, Aveiro, Portugal.,Institute for Research and Innovation in Health (I3S), Porto, Portugal
| | - Nuno Sousa
- Health School, University Fernando Pessoa, Porto, Portugal
| | - P A Oliveira
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
| | - L Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Health School, University Fernando Pessoa, Porto, Portugal.,Medical Oncology Department, Portuguese Institute of Oncology, Porto, Portugal
| |
Collapse
|
22
|
Kobayashi S. Choose Delicately and Reuse Adequately: The Newly Revealed Process of Autophagy. Biol Pharm Bull 2016; 38:1098-103. [PMID: 26235572 DOI: 10.1248/bpb.b15-00096] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autophagy is a degradation system for intracellular components. One of the roles of autophagy is the prompt removal of damaged organelles. Another unique role is to supply resources that maintain metabolism in response to the cellular nutritional state. Precise management of all the components in the autophagic system is essential for cellular health. Especially important are the selectivity of target cargos for autophagy, and the coordination of autophagy with the lysosomal catabolic process. This review outlines our current understanding of autophagy and discusses potential therapeutic perspectives. Emphasis will be given to lysosomal function as a central controller of metabolism, and to selective autophagy as a key mechanism for the efficient removal of dysfunctional organelles.
Collapse
Affiliation(s)
- Satoru Kobayashi
- Department of Biomedical Sciences, New York Institute of Technology College of
Osteopathic Medicine
| |
Collapse
|
23
|
Abstract
The small GTPases from the rat sarcoma (Ras) superfamily are a heterogeneous group of proteins of about 21 kDa that act as molecular switches, modulating cell signaling pathways and controlling diverse cellular processes. They are active when bound to guanosine triphosphate (GTP) and inactive when bound to guanosine diphosphate (GDP). Ras homolog enriched in brain (Rheb) is a member of the Ras GTPase superfamily and a key activator of the mammalian/mechanistic target of rapamycin complex 1 (mTORC1). We recently determined that microspherule protein 1 (MCRS1) maintains Rheb at lysosomal surfaces in an amino acid-dependent manner. MCRS1 depletion promotes the formation of the GDP-bound form of Rheb, which is then delocalized from the lysosomal platform and transported to endocytic recycling vesicles, leading to mTORC1 inactivation. During this delocalization process, Rheb-GDP remains farnesylated and associated with cellular endomembranes. These findings provide new insights into the regulation of small GTPases, whose activity depends on both their GTP/GDP switch state and their capacity to move between different cellular membrane-bound compartments. Dynamic spatial transport between compartments makes it possible to alter the proximity of small GTPases to their activatory sites depending on the prevailing physiological and cellular conditions.
Collapse
Affiliation(s)
- Amanda Garrido
- a Cancer Cell Biology Program, Growth Factors, Nutrients and Cancer Group , Centro Nacional de Investigaciones Oncológicas , CNIO , Madrid , Spain
| | - Marta Brandt
- a Cancer Cell Biology Program, Growth Factors, Nutrients and Cancer Group , Centro Nacional de Investigaciones Oncológicas , CNIO , Madrid , Spain
| | - Nabil Djouder
- a Cancer Cell Biology Program, Growth Factors, Nutrients and Cancer Group , Centro Nacional de Investigaciones Oncológicas , CNIO , Madrid , Spain
| |
Collapse
|
24
|
Abstract
TOR (target of rapamycin) and its mammalian ortholog mTOR have been discovered in an effort to understand the mechanisms of action of the immunosuppressant drug rapamycin extracted from a bacterium of the Easter Island (Rapa Nui) soil. mTOR is a serine/threonine kinase found in two functionally distinct complexes, mTORC1 and mTORC2, which are differentially regulated by a great number of nutrients such as glucose and amino acids, energy (oxygen and ATP/AMP content), growth factors, hormones, and neurotransmitters. mTOR controls many basic cellular functions such as protein synthesis, energy metabolism, cell size, lipid metabolism, autophagy, mitochondria, and lysosome biogenesis. In addition, mTOR-controlled signaling pathways regulate many integrated physiological functions of the nervous system including neuronal development, synaptic plasticity, memory storage, and cognition. Thus it is not surprising that deregulation of mTOR signaling is associated with many neurological and psychiatric disorders. Preclinical and preliminary clinical studies indicate that inhibition of mTORC1 can be beneficial for some pathological conditions such as epilepsy, cognitive impairment, and brain tumors, whereas stimulation of mTORC1 (direct or indirect) can be beneficial for other pathologies such as depression or axonal growth and regeneration.
Collapse
Affiliation(s)
- Joël Bockaert
- Centre National de la Recherche Scientifique, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France; Institut National de la Santé et de la Recherche Médicale U1191, Montpellier, France; and Université de Montpellier, UMR-5203, Montpellier, France
| | - Philippe Marin
- Centre National de la Recherche Scientifique, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France; Institut National de la Santé et de la Recherche Médicale U1191, Montpellier, France; and Université de Montpellier, UMR-5203, Montpellier, France
| |
Collapse
|
25
|
Meijer AJ, Lorin S, Blommaart EF, Codogno P. Regulation of autophagy by amino acids and MTOR-dependent signal transduction. Amino Acids 2015; 47:2037-63. [PMID: 24880909 PMCID: PMC4580722 DOI: 10.1007/s00726-014-1765-4] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 05/12/2014] [Indexed: 01/05/2023]
Abstract
Amino acids not only participate in intermediary metabolism but also stimulate insulin-mechanistic target of rapamycin (MTOR)-mediated signal transduction which controls the major metabolic pathways. Among these is the pathway of autophagy which takes care of the degradation of long-lived proteins and of the elimination of damaged or functionally redundant organelles. Proper functioning of this process is essential for cell survival. Dysregulation of autophagy has been implicated in the etiology of several pathologies. The history of the studies on the interrelationship between amino acids, MTOR signaling and autophagy is the subject of this review. The mechanisms responsible for the stimulation of MTOR-mediated signaling, and the inhibition of autophagy, by amino acids have been studied intensively in the past but are still not completely clarified. Recent developments in this field are discussed.
Collapse
Affiliation(s)
- Alfred J Meijer
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands.
| | - Séverine Lorin
- UPRES EA4530, Université Paris-Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92296, Châtenay-Malabry Cedex, France
| | - Edward F Blommaart
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Patrice Codogno
- INSERM U1151-CNRS UMR 8253, Université Paris Descartes, 14 rue Maria Helena Vieira Da Silva CS61431, 75993, Paris Cedex 14, France
| |
Collapse
|
26
|
Ruetenik A, Barrientos A. Dietary restriction, mitochondrial function and aging: from yeast to humans. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1434-47. [PMID: 25979234 DOI: 10.1016/j.bbabio.2015.05.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 04/30/2015] [Accepted: 05/05/2015] [Indexed: 12/20/2022]
Abstract
Dietary restriction (DR) attenuates many detrimental effects of aging and consequently promotes health and increases longevity across organisms. While over the last 15 years extensive research has been devoted towards understanding the biology of aging, the precise mechanistic aspects of DR are yet to be settled. Abundant experimental evidence indicates that the DR effect on stimulating health impinges several metabolic and stress-resistance pathways. Downstream effects of these pathways include a reduction in cellular damage induced by oxidative stress, enhanced efficiency of mitochondrial functions and maintenance of mitochondrial dynamics and quality control, thereby attenuating age-related declines in mitochondrial function. However, the literature also accumulates conflicting evidence regarding how DR ameliorates mitochondrial performance and whether that is enough to slow age-dependent cellular and organismal deterioration. Here, we will summarize the current knowledge about how and to which extent the influence of different DR regimes on mitochondrial biogenesis and function contribute to postpone the detrimental effects of aging on health-span and lifespan. This article is part of a Special Issue entitled: Mitochondrial Dysfunction in Aging.
Collapse
Affiliation(s)
| | - Antoni Barrientos
- Neuroscience Graduate Program; Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
27
|
Integrated genomic characterization of papillary thyroid carcinoma. Cell 2015; 159:676-90. [PMID: 25417114 DOI: 10.1016/j.cell.2014.09.050] [Citation(s) in RCA: 2150] [Impact Index Per Article: 215.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 09/16/2014] [Accepted: 09/23/2014] [Indexed: 02/07/2023]
Abstract
Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer. Here, we describe the genomic landscape of 496 PTCs. We observed a low frequency of somatic alterations (relative to other carcinomas) and extended the set of known PTC driver alterations to include EIF1AX, PPM1D, and CHEK2 and diverse gene fusions. These discoveries reduced the fraction of PTC cases with unknown oncogenic driver from 25% to 3.5%. Combined analyses of genomic variants, gene expression, and methylation demonstrated that different driver groups lead to different pathologies with distinct signaling and differentiation characteristics. Similarly, we identified distinct molecular subgroups of BRAF-mutant tumors, and multidimensional analyses highlighted a potential involvement of oncomiRs in less-differentiated subgroups. Our results propose a reclassification of thyroid cancers into molecular subtypes that better reflect their underlying signaling and differentiation properties, which has the potential to improve their pathological classification and better inform the management of the disease.
Collapse
Affiliation(s)
-
- Cancer Genome Atlas Program Office, National Cancer Institute at NIH, 31 Center Drive, Bldg. 31, Suite 3A20, Bethesda MD 20892, USA.
| |
Collapse
|
28
|
Doi A, Fujimoto A, Sato S, Uno T, Kanda Y, Asami K, Tanaka Y, Kita A, Satoh R, Sugiura R. Chemical genomics approach to identify genes associated with sensitivity to rapamycin in the fission yeastSchizosaccharomyces pombe. Genes Cells 2015; 20:292-309. [DOI: 10.1111/gtc.12223] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/13/2014] [Indexed: 02/02/2023]
Affiliation(s)
- Akira Doi
- Laboratory of Molecular Pharmacogenomics; School of Pharmaceutical Sciences; Kinki University; Kowakae 3-4-1 Higashi-Osaka 577-8502 Japan
- Japan Society for the Promotion of Science; 1-8 Chiyoda-ku Tokyo 102-8472 Japan
| | - Ayumi Fujimoto
- Laboratory of Molecular Pharmacogenomics; School of Pharmaceutical Sciences; Kinki University; Kowakae 3-4-1 Higashi-Osaka 577-8502 Japan
| | - Shun Sato
- Laboratory of Molecular Pharmacogenomics; School of Pharmaceutical Sciences; Kinki University; Kowakae 3-4-1 Higashi-Osaka 577-8502 Japan
| | - Takaya Uno
- Laboratory of Molecular Pharmacogenomics; School of Pharmaceutical Sciences; Kinki University; Kowakae 3-4-1 Higashi-Osaka 577-8502 Japan
| | - Yuki Kanda
- Laboratory of Molecular Pharmacogenomics; School of Pharmaceutical Sciences; Kinki University; Kowakae 3-4-1 Higashi-Osaka 577-8502 Japan
| | - Keita Asami
- Laboratory of Molecular Pharmacogenomics; School of Pharmaceutical Sciences; Kinki University; Kowakae 3-4-1 Higashi-Osaka 577-8502 Japan
| | - Yuriko Tanaka
- Laboratory of Molecular Pharmacogenomics; School of Pharmaceutical Sciences; Kinki University; Kowakae 3-4-1 Higashi-Osaka 577-8502 Japan
| | - Ayako Kita
- Laboratory of Molecular Pharmacogenomics; School of Pharmaceutical Sciences; Kinki University; Kowakae 3-4-1 Higashi-Osaka 577-8502 Japan
| | - Ryosuke Satoh
- Laboratory of Molecular Pharmacogenomics; School of Pharmaceutical Sciences; Kinki University; Kowakae 3-4-1 Higashi-Osaka 577-8502 Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics; School of Pharmaceutical Sciences; Kinki University; Kowakae 3-4-1 Higashi-Osaka 577-8502 Japan
| |
Collapse
|
29
|
Rai PK, Russell OM, Lightowlers RN, Turnbull DM. Potential compounds for the treatment of mitochondrial disease. Br Med Bull 2015; 116:5-18. [PMID: 26590387 DOI: 10.1093/bmb/ldv046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/07/2015] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Mitochondrial diseases are a group of heterogeneous disorders for which no curative therapy is currently available. Several drugs are currently being pursued as candidates to correct the underlying biochemistry that causes mitochondrial dysfunction. SOURCES OF DATA A systematic review of pharmacological therapeutics tested using in vitro, in vivo models and clinical trials. Results presented from database searches undertaken to ascertain compounds currently being pioneered to treat mitochondrial disease. AREAS OF AGREEMENT Previous clinical research has been hindered by poorly designed trials that have shown some evidence in enhancing mitochondrial function but without significant results. AREAS OF CONTROVERSY Several compounds under investigation display poor pharmacokinetic profiles or numerous off target effects. GROWING POINTS Drug development teams should continue to screen existing and novel compound libraries for therapeutics that can enhance mitochondrial function. Therapies for mitochondrial disorders could hold potential cures for a myriad of other ailments associated with mitochondrial dysfunction such as neurodegenerative diseases.
Collapse
Affiliation(s)
- P K Rai
- Wellcome Trust Centre for Mitochondrial Research, Institutes of Neuroscience and Cellular and Molecular Bioscience, Newcastle University Medical School, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | - O M Russell
- Wellcome Trust Centre for Mitochondrial Research, Institutes of Neuroscience and Cellular and Molecular Bioscience, Newcastle University Medical School, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | - R N Lightowlers
- Wellcome Trust Centre for Mitochondrial Research, Institutes of Neuroscience and Cellular and Molecular Bioscience, Newcastle University Medical School, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| | - D M Turnbull
- Wellcome Trust Centre for Mitochondrial Research, Institutes of Neuroscience and Cellular and Molecular Bioscience, Newcastle University Medical School, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
| |
Collapse
|
30
|
Menendez JA, Joven J. Energy metabolism and metabolic sensors in stem cells: the metabostem crossroads of aging and cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 824:117-40. [PMID: 25038997 DOI: 10.1007/978-3-319-07320-0_10] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We are as old as our adult stem cells are; therefore, stem cell exhaustion is considered a hallmark of aging. Our tumors are as aggressive as the number of cancer stem cells (CSCs) they bear because CSCs can survive treatments with hormones, radiation, chemotherapy, and molecularly targeted drugs, thus increasing the difficulty of curing cancer. Not surprisingly, interest in stem cell research has never been greater among members of the public, politicians, and scientists. But how can we slow the rate at which our adult stem cells decline over our lifetime, reducing the regenerative potential of tissues, while efficiently eliminating the aberrant, life-threatening activity of "selfish", immortal, and migrating CSCs? Frustrated by the gene-centric limitations of conventional approaches to aging diseases, our group and other groups have begun to appreciate that bioenergetic metabolism, i.e., the production of fuel & building blocks for growth and division, and autophagy/mitophagy, i.e., the quality-control, self-cannibalistic system responsible for "cleaning house" and "recycling the trash", can govern the genetic and epigenetic networks that facilitate stem cell behaviors. Indeed, it is reasonable to suggest the existence of a "metabostem" infrastructure that operates as a shared hallmark of aging and cancer, thus making it physiologically plausible to maintain or even increase the functionality of adult stem cells while reducing the incidence of cancer and extending the lifespan. This "metabostemness" property could lead to the discovery of new drugs that reprogram cell metabotypes to increase the structural and functional integrity of adult stem cells and positively influence their lineage determination, while preventing the development and aberrant function of stem cells in cancer tissues. While it is obvious that the antifungal antibiotic rapamycin, the polyphenol resveratrol, and the biguanide metformin already belong to this new family of metabostemness-targeting drugs, we can expect a rapid identification of new drug candidates (e.g., polyphenolic xenohormetins) that reverse or postpone "geroncogenesis", i.e., aging-induced metabolic decline as a driver of tumorigenesis, at the stem cell level.
Collapse
Affiliation(s)
- Javier A Menendez
- Metabolism & Cancer Group, Translational Research Laboratory, Catalan Institute of Oncology, Girona, Spain,
| | | |
Collapse
|
31
|
Ranji P, Rauthan M, Pitot C, Pilon M. Loss of HMG-CoA reductase in C. elegans causes defects in protein prenylation and muscle mitochondria. PLoS One 2014; 9:e100033. [PMID: 24918786 PMCID: PMC4053411 DOI: 10.1371/journal.pone.0100033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/21/2014] [Indexed: 01/14/2023] Open
Abstract
HMG-CoA reductase is the rate-limiting enzyme in the mevalonate pathway and the target of cholesterol-lowering statins. We characterized the C. elegans hmgr-1(tm4368) mutant, which lacks HMG-CoA reductase, and show that its phenotypes recapitulate that of statin treatment, though in a more severe form. Specifically, the hmgr-1(tm4368) mutant has defects in growth, reproduction and protein prenylation, is rescued by exogenous mevalonate, exhibits constitutive activation of the UPRer and requires less mevalonate to be healthy when the UPRmt is activated by a constitutively active form of ATFS-1. We also show that different amounts of mevalonate are required for different physiological processes, with reproduction requiring the highest levels. Finally, we provide evidence that the mevalonate pathway is required for the activation of the UPRmt.
Collapse
Affiliation(s)
- Parmida Ranji
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Manish Rauthan
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Christophe Pitot
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Marc Pilon
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
32
|
Recent progress in the study of the Rheb family GTPases. Cell Signal 2014; 26:1950-7. [PMID: 24863881 DOI: 10.1016/j.cellsig.2014.05.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 05/15/2014] [Indexed: 11/20/2022]
Abstract
In this review we highlight recent progress in the study of Rheb family GTPases. Structural studies using X-ray crystallography and NMR have given us insight into unique features of this GTPase. Combined with mutagenesis studies, these works have expanded our understanding of residues that affect Rheb GTP/GDP bound ratios, effector protein interactions, and stimulation of mTORC1 signaling. Analysis of cancer genome databases has revealed that several human carcinomas contain activating mutations of the protein. Rheb's role in activating mTORC1 signaling at the lysosome in response to stimuli has been further elucidated. Rheb has also been suggested to play roles in other cellular pathways including mitophagy and peroxisomal ROS response. A number of studies in mice have demonstrated the importance of Rheb in development, as well as in a variety of functions including cardiac protection and myelination. We conclude with a discussion of future prospects in the study of Rheb family GTPases.
Collapse
|
33
|
Mitochondrial EF4 links respiratory dysfunction and cytoplasmic translation in Caenorhabditis elegans. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1674-83. [PMID: 24837196 DOI: 10.1016/j.bbabio.2014.05.353] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 05/08/2014] [Accepted: 05/09/2014] [Indexed: 12/21/2022]
Abstract
How animals coordinate cellular bioenergetics in response to stress conditions is an essential question related to aging, obesity and cancer. Elongation factor 4 (EF4/LEPA) is a highly conserved protein that promotes protein synthesis under stress conditions, whereas its function in metazoans remains unknown. Here, we show that, in Caenorhabditis elegans, the mitochondria-localized CeEF4 (referred to as mtEF4) affects mitochondrial functions, especially at low temperature (15°C). At worms' optimum growing temperature (20°C), mtef4 deletion leads to self-brood size reduction, growth delay and mitochondrial dysfunction. Transcriptomic analyses show that mtef4 deletion induces retrograde pathways, including mitochondrial biogenesis and cytoplasmic translation reorganization. At low temperature (15°C), mtef4 deletion reduces mitochondrial translation and disrupts the assembly of respiratory chain supercomplexes containing complex IV. These observations are indicative of the important roles of mtEF4 in mitochondrial functions and adaptation to stressful conditions.
Collapse
|
34
|
Runkel ED, Baumeister R, Schulze E. Mitochondrial stress: balancing friend and foe. Exp Gerontol 2014; 56:194-201. [PMID: 24603155 DOI: 10.1016/j.exger.2014.02.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 02/21/2014] [Accepted: 02/22/2014] [Indexed: 12/15/2022]
Abstract
Mitochondria are vital organelles of the aerobic eukaryotic cell. Their dysfunction associates with aging and widespread age-related diseases. To sustain mitochondrial integrity, the cell executes a distinct set of stress-induced protective responses. The mitochondrial unfolded protein response (UPR(mt)) is a response of the cell to mitochondrial damage. The transcription factor ATFS-1 triggers UPR(mt) effector gene expression in the nucleus. The selective exclusion of ATFS-1 from mitochondrial import by stress-induced alterations of the mitochondrial membrane potential is currently discussed as key activation mechanism. Surprisingly, UPR(mt) activation often coincides with a lifespan extension in Caenorhabditis elegans and the same has recently been reported for mammalian cells. This review summarizes the current model of the UPR(mt), its inducers, and its crosstalk with other cellular stress responses. It focuses on the role of mitochondrial function as a regulator of aging and longevity.
Collapse
Affiliation(s)
- Eva Diana Runkel
- Faculty of Biology, Institute of Biology III, Germany; BIOSS Centre for Biological Signalling Studies, Germany; Spemann Graduate School of Biology and Medicine, Germany
| | - Ralf Baumeister
- Faculty of Biology, Institute of Biology III, Germany; Faculty of Medicine, ZBMZ Center of Biochemistry and Molecular Cell Research, Germany; BIOSS Centre for Biological Signalling Studies, Germany; Spemann Graduate School of Biology and Medicine, Germany
| | - Ekkehard Schulze
- Faculty of Biology, Institute of Biology III, Germany; BIOSS Centre for Biological Signalling Studies, Germany.
| |
Collapse
|