1
|
Jungfleisch J, Gebauer F. RNA-binding proteins as therapeutic targets in cancer. RNA Biol 2025; 22:1-8. [PMID: 40016176 PMCID: PMC11869776 DOI: 10.1080/15476286.2025.2470511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/04/2025] [Accepted: 02/17/2025] [Indexed: 03/01/2025] Open
Abstract
RNA-binding proteins (RBPs) have emerged as critical regulators of cancer progression, influencing virtually all hallmarks of cancer. Their ability to modulate gene expression patterns that promote or inhibit tumorigenesis has positioned RBPs as promising targets for novel anti-cancer therapies. This mini-review summarizes the current state of RBP-targeted cancer treatments, focusing on five examples, eIF4F, FTO, SF3B1, RBM39 and nucleolin. We highlight the diversity of current targeting approaches and discuss ongoing challenges including the complexity of RBP regulatory networks, potential off-target effects and the need for more specific targeting methods. By assessing the future potential of novel therapeutic avenues, we provide insights into the evolving landscape of cancer treatment and the critical role RBPs may play in next-generation therapeutics.
Collapse
Affiliation(s)
- Jennifer Jungfleisch
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Fátima Gebauer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
2
|
Aborode AT, Abass OA, Nasiru S, Eigbobo MU, Nefishatu S, Idowu A, Tiamiyu Z, Awaji AA, Idowu N, Busayo BR, Mehmood Q, Onifade IA, Fakorede S, Akintola AA. RNA binding proteins (RBPs) on genetic stability and diseases. Glob Med Genet 2025; 12:100032. [PMID: 39925443 PMCID: PMC11803229 DOI: 10.1016/j.gmg.2024.100032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 02/11/2025] Open
Abstract
RNA-binding proteins (RBPs) are integral components of cellular machinery, playing crucial roles in the regulation of gene expression and maintaining genetic stability. Their interactions with RNA molecules govern critical processes such as mRNA splicing, stability, localization, and translation, which are essential for proper cellular function. These proteins interact with RNA molecules and other proteins to form ribonucleoprotein complexes (RNPs), hence controlling the fate of target RNAs. The interaction occurs via RNA recognition motif, the zinc finger domain, the KH domain and the double stranded RNA binding motif (all known as RNA-binding domains (RBDs). These domains are found within the coding sequences (intron and exon domains), 5' untranslated regions (5'UTR) and 3' untranslated regions (3'UTR). Dysregulation of RBPs can lead to genomic instability, contributing to various pathologies, including cancer neurodegenerative diseases, and metabolic disorders. This study comprehensively explores the multifaceted roles of RBPs in genetic stability, highlighting their involvement in maintaining genomic integrity through modulation of RNA processing and their implications in cellular signalling pathways. Furthermore, it discusses how aberrant RBP function can precipitate genetic instability and disease progression, emphasizing the therapeutic potential of targeting RBPs in restoring cellular homeostasis. Through an analysis of current literature, this study aims to delineate the critical role of RBPs in ensuring genetic stability and their promise as targets for innovative therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Shaibu Nasiru
- Department of Research and Development, Healthy Africans Platform, Ibadan, Nigeria
- Department of Biochemistry, Ambrose Alli University Ekpoma, Nigeria
| | | | - Sumana Nefishatu
- Department of Biochemistry, Ambrose Alli University Ekpoma, Nigeria
| | - Abdullahi Idowu
- Department of Biological Sciences, Purdue University Fort Wayne, USA
| | - Zainab Tiamiyu
- Department of Biochemistry and Cancer Biology, Medical College of Georgia, Augusta University, USA
| | - Aeshah A. Awaji
- Department of Biology, Faculty of Science, University College of Taymaa, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Nike Idowu
- Department of Chemistry, University of Nebraska-Lincoln, USA
| | | | - Qasim Mehmood
- Shifa Clinical Research Center, Shifa International Hospital, Islamabad, Pakistan
| | - Isreal Ayobami Onifade
- Department of Division of Family Health, Health Research Incorporated, New York State Department of Health, USA
| | - Sodiq Fakorede
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ashraf Akintayo Akintola
- Department of Biology Education, Teachers College & Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
3
|
Breunig K, Lei X, Montalbano M, Guardia GDA, Ostadrahimi S, Alers V, Kosti A, Chiou J, Klein N, Vinarov C, Wang L, Li M, Song W, Kraus WL, Libich DS, Tiziani S, Weintraub ST, Galante PAF, Penalva LO. SERBP1 interacts with PARP1 and is present in PARylation-dependent protein complexes regulating splicing, cell division, and ribosome biogenesis. eLife 2025; 13:RP98152. [PMID: 39937575 DOI: 10.7554/elife.98152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
RNA binding proteins (RBPs) containing intrinsically disordered regions (IDRs) are present in diverse molecular complexes where they function as dynamic regulators. Their characteristics promote liquid-liquid phase separation (LLPS) and the formation of membraneless organelles such as stress granules and nucleoli. IDR-RBPs are particularly relevant in the nervous system and their dysfunction is associated with neurodegenerative diseases and brain tumor development. Serpine1 mRNA-binding protein 1 (SERBP1) is a unique member of this group, being mostly disordered and lacking canonical RNA-binding domains. We defined SERBP1's interactome, uncovered novel roles in splicing, cell division and ribosomal biogenesis, and showed its participation in pathological stress granules and Tau aggregates in Alzheimer's brains. SERBP1 preferentially interacts with other G-quadruplex (G4) binders, implicated in different stages of gene expression, suggesting that G4 binding is a critical component of SERBP1 function in different settings. Similarly, we identified important associations between SERBP1 and PARP1/polyADP-ribosylation (PARylation). SERBP1 interacts with PARP1 and its associated factors and influences PARylation. Moreover, protein complexes in which SERBP1 participates contain mostly PARylated proteins and PAR binders. Based on these results, we propose a feedback regulatory model in which SERBP1 influences PARP1 function and PARylation, while PARylation modulates SERBP1 functions and participation in regulatory complexes.
Collapse
Affiliation(s)
- Kira Breunig
- Children's Cancer Research Institute, UT Health San Antonio, San Antonio, United States
| | - Xuifen Lei
- Children's Cancer Research Institute, UT Health San Antonio, San Antonio, United States
| | - Mauro Montalbano
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, United States
- Department of Neurology, University of Texas Medical Branch, Galveston, United States
| | | | - Shiva Ostadrahimi
- Children's Cancer Research Institute, UT Health San Antonio, San Antonio, United States
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, United States
| | - Victoria Alers
- Children's Cancer Research Institute, UT Health San Antonio, San Antonio, United States
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, United States
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, United States
| | - Adam Kosti
- Children's Cancer Research Institute, UT Health San Antonio, San Antonio, United States
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, United States
| | - Jennifer Chiou
- Department of Nutritional Sciences, College of Natural Sciences, University of Texas at Austin, Austin, United States
| | - Nicole Klein
- Children's Cancer Research Institute, UT Health San Antonio, San Antonio, United States
| | - Corina Vinarov
- Children's Cancer Research Institute, UT Health San Antonio, San Antonio, United States
| | - Lily Wang
- Children's Cancer Research Institute, UT Health San Antonio, San Antonio, United States
| | - Mujia Li
- Children's Cancer Research Institute, UT Health San Antonio, San Antonio, United States
| | - Weidan Song
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences,The University of Texas Southwestern Medical Center, Dallas, United States
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences,The University of Texas Southwestern Medical Center, Dallas, United States
| | - David S Libich
- Children's Cancer Research Institute, UT Health San Antonio, San Antonio, United States
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, United States
| | - Stefano Tiziani
- Department of Nutritional Sciences, College of Natural Sciences, University of Texas at Austin, Austin, United States
- Department of Pediatrics, Dell Medical School, University of Texas at Austin, Austin, United States
- Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, United States
| | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, United States
| | - Pedro A F Galante
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Luiz O Penalva
- Children's Cancer Research Institute, UT Health San Antonio, San Antonio, United States
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, United States
| |
Collapse
|
4
|
Csaholczi B, Csuth AR, Korponay-Szabó IR, Fésüs L, Király R. Transglutaminase 2 is an RNA-binding protein: experimental verification and characterisation of a novel transglutaminase feature. FEBS J 2025; 292:915-928. [PMID: 39716381 DOI: 10.1111/febs.17373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/19/2024] [Accepted: 12/13/2024] [Indexed: 12/25/2024]
Abstract
Transglutaminase 2 (TG2) is a uniquely versatile protein with diverse catalytic activities, such as transglutaminase, protein disulfide isomerase, GTPase and protein kinase, and participates in several biological processes. According to information available in the RBP2GO database, TG2 can act as an RNA-binding protein (RBP). RBPs participate in posttranscriptional gene expression regulation, therefore influencing the function of RNA, whereas RNA molecules can also modulate the biological activity of RBPs. The present study aimed to confirm this novel characteristic of TG2 in human umbilical cord vein endothelial cells (HUVEC), which physiologically express TG2. First, UV cross-linked RNA-protein complexes were isolated from immortalised HUVECs using orthogonal organic phase separation. Compared with the RBP2GO database, mass spectrometry identified 392 potential RBPs, including TG2 and 20 previously undescribed, endothelium-related RBPs. Recombinant human TG2 was also pulled down by magnetic bead-immobilised total RNA from HUVEC. Complex formation between TG2 and a 43-mer RNA molecule with a secondary structure as well as a homo-oligomeric single-stranded poly(dG), but not poly(dA), could be observed in magnetic RNA-protein pull-down experiments. Experiments with TG2 inhibitors NC9 and GTPγS, which stabilise its open and closed conformation, respectively, revealed that the open conformation of the enzyme favoured RNA-binding. Biolayer interferometry revealed a high binding affinity between TG2 and RNA with a KD value of 88 nm. Based on modelling and site-directed mutagenesis studies, we propose that superficial residues on the catalytic core domain (173-177 amino acids), present in a hidden position in the closed TG2 conformation, are involved in RNA binding. The present study demonstrates the previously uncharacterised RNA-binding ability of TG2, opening new avenues for understanding its multifunctionality.
Collapse
Affiliation(s)
- Bianka Csaholczi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Hungary
| | - Anna Renáta Csuth
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Hungary
| | | | - László Fésüs
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - Róbert Király
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Hungary
| |
Collapse
|
5
|
Gromiha MM, Harini K. Protein-nucleic acid complexes: Docking and binding affinity. Curr Opin Struct Biol 2025; 90:102955. [PMID: 39616716 DOI: 10.1016/j.sbi.2024.102955] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/02/2024] [Accepted: 11/04/2024] [Indexed: 02/05/2025]
Abstract
Protein-nucleic interactions play essential roles in several biological processes, such as gene regulation, replication, transcription, repair and packaging. The knowledge of three-dimensional structures of protein-nucleic acid complexes and their binding affinities helps to understand these functions. In this review, we focus on two major aspects namely, (i) deciphering the three-dimensional structures of protein-nucleic acid complexes and (ii) predicting their binding affinities. The first part is devoted to the state-of-the-art methods for predicting the native structures and their performances including recent CASP targets. The second part is focused on different aspects of investigating the binding affinity of protein-nucleic acid complexes: (i) databases for thermodynamic parameters to understand the binding affinity, (ii) important features determining protein-nucleic acid binding affinity, (iii) predicting the binding affinity of protein-nucleic acid complexes using sequence and structure-based parameters and (iv) change in binding affinity upon mutation. It includes the latest developments in protein-nucleic acid docking algorithms and binding affinity predictions along with a list of computational resources for understanding protein-DNA and protein-RNA interactions.
Collapse
Affiliation(s)
- M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| | - K Harini
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
6
|
Harini K, Sekijima M, Gromiha MM. Bioinformatics Approaches for Understanding the Binding Affinity of Protein-Nucleic Acid Complexes. Methods Mol Biol 2025; 2867:315-330. [PMID: 39576589 DOI: 10.1007/978-1-0716-4196-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Protein-nucleic acid interactions are involved in various biological processes such as gene expression, replication, transcription, translation, and packaging. Understanding the recognition mechanism of the protein-nucleic acid complexes has been investigated from different perspectives, including the binding affinities of protein-DNA and protein-RNA complexes. Experimentally, protein-nucleic acid interactions are analyzed using X-ray crystallography, Isothermal Titration Calorimetry (ITC), DNA/RNA pull-down assays, DNA/RNA footprinting, and systematic evolution of ligands by exponential enrichment (SELEX). On the other hand, numerous databases and computational tools have been developed to study protein-nucleic acid complexes based on their binding sites, specific interactions between them, and binding affinity. In this chapter, we discuss various databases for protein-nucleic acid complex structures and the tools available to extract features from them. Further, we provide details on databases and prediction methods reported for exploring the binding affinity of protein-nucleic acid complexes along with important structure-based parameters, which govern the binding affinity.
Collapse
Affiliation(s)
- K Harini
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Masakazu Sekijima
- Department of Computer Science, Tokyo Institute of Technology, Yokohama, Japan
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.
- International Research Frontiers Initiative, School of Computing, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
7
|
Jarnot P. Challenges in adjusting scoring matrices when comparing functional motifs with non-standard compositions. Sci Rep 2024; 14:31777. [PMID: 39738463 PMCID: PMC11685636 DOI: 10.1038/s41598-024-82548-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/05/2024] [Indexed: 01/02/2025] Open
Abstract
Methods for scoring matrix adjustment decrease the significance of biased residues to better detect homology between protein sequences. This is because non-homologous proteins often contain fragments with non-standard compositions that are strikingly similar to each other. However, these fragments are also functionally important in proteins and are receiving an increasing attention from the scientific community. In this study, we described why the gold standard method for scoring matrix adjustment is unable to emphasise frequent amino acids. Further, we used BLAST to align collagen-like domains with and without the scoring matrix adjustment and compared the results. We found that the scoring matrices were adjusted in the opposite direction to the optimal state. Therefore, turning off the adjustment improved alignment quality of collagen-like domains, but scoring matrices still need refinement. This study provides a detailed analysis of why the gold standard method fails, and opens doors for new methods to adjust scoring matrices for functional motifs with non-standard compositions.
Collapse
Affiliation(s)
- Patryk Jarnot
- Department of Computer Networks and Systems, Silesian University of Technology, 44-100, Gliwice, Poland.
| |
Collapse
|
8
|
Mitra R, Usher ET, Dedeoğlu S, Crotteau MJ, Fraser OA, Yennawar NH, Gadkari VV, Ruotolo BT, Holehouse AS, Salmon L, Showalter SA, Bardwell JCA. Molecular insights into the interaction between a disordered protein and a folded RNA. Proc Natl Acad Sci U S A 2024; 121:e2409139121. [PMID: 39589885 PMCID: PMC11626198 DOI: 10.1073/pnas.2409139121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024] Open
Abstract
Intrinsically disordered protein regions (IDRs) are well established as contributors to intermolecular interactions and the formation of biomolecular condensates. In particular, RNA-binding proteins (RBPs) often harbor IDRs in addition to folded RNA-binding domains that contribute to RBP function. To understand the dynamic interactions of an IDR-RNA complex, we characterized the RNA-binding features of a small (68 residues), positively charged IDR-containing protein, Small ERDK-Rich Factor (SERF). At high concentrations, SERF and RNA undergo charge-driven associative phase separation to form a protein- and RNA-rich dense phase. A key advantage of this model system is that this threshold for demixing is sufficiently high that we could use solution-state biophysical methods to interrogate the stoichiometric complexes of SERF with RNA in the one-phase regime. Herein, we describe our comprehensive characterization of SERF alone and in complex with a small fragment of the HIV-1 Trans-Activation Response (TAR) RNA with complementary biophysical methods and molecular simulations. We find that this binding event is not accompanied by the acquisition of structure by either molecule; however, we see evidence for a modest global compaction of the SERF ensemble when bound to RNA. This behavior likely reflects attenuated charge repulsion within SERF via binding to the polyanionic RNA and provides a rationale for the higher-order assembly of SERF in the context of RNA. We envision that the SERF-RNA system will lower the barrier to accessing the details that support IDR-RNA interactions and likewise deepen our understanding of the role of IDR-RNA contacts in complex formation and liquid-liquid phase separation.
Collapse
Affiliation(s)
- Rishav Mitra
- HHMI, University of Michigan, Ann Arbor, MI48109
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| | - Emery T. Usher
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO63110
| | - Selin Dedeoğlu
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, UMR 5082, CNRS, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Villeurbanne69100, France
| | - Matthew J. Crotteau
- HHMI, University of Michigan, Ann Arbor, MI48109
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| | - Olivia A. Fraser
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA16802
| | - Neela H. Yennawar
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA16802
| | - Varun V. Gadkari
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | | | - Alex S. Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO63110
| | - Loïc Salmon
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, UMR 5082, CNRS, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Villeurbanne69100, France
| | - Scott A. Showalter
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA16802
- Department of Chemistry, The Pennsylvania State University, University Park, PA16802
| | - James C. A. Bardwell
- HHMI, University of Michigan, Ann Arbor, MI48109
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| |
Collapse
|
9
|
Zigdon I, Carmi M, Brodsky S, Rosenwaser Z, Barkai N, Jonas F. Beyond RNA-binding domains: determinants of protein-RNA binding. RNA (NEW YORK, N.Y.) 2024; 30:1620-1633. [PMID: 39353735 PMCID: PMC11571813 DOI: 10.1261/rna.080026.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024]
Abstract
RNA-binding proteins (RBPs) are composed of RNA-binding domains (RBDs) often linked via intrinsically disordered regions (IDRs). Structural and biochemical analyses have shown that disordered linkers contribute to RNA binding by orienting the adjacent RBDs and also characterized certain disordered repeats that directly contact the RNA. However, the relative contribution of IDRs and predicted RBDs to the in vivo binding pattern is poorly explored. Here, we upscaled the RNA-tagging method to map the transcriptome-wide binding of 16 RBPs in budding yeast. We then performed extensive sequence mutations to distinguish binding determinants within predicted RBDs and the surrounding IDRs in eight of these. The majority of the predicted RBDs tested were not individually essential for mRNA binding. However, multiple IDRs that lacked predicted RNA-binding potential appeared essential for binding affinity or specificity. Our results provide new insights into the function of poorly studied RBPs and emphasize the complex and distributed encoding of RBP-RNA interaction in vivo.
Collapse
Affiliation(s)
- Inbal Zigdon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Miri Carmi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sagie Brodsky
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Zohar Rosenwaser
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Felix Jonas
- School of Science, Constructor University, 28759 Bremen, Germany
| |
Collapse
|
10
|
Schubert K, Braly M, Zhang J, Muscolo ME, Lam HN, Hug K, Moore H, McCausland JW, Terciano D, Lowe T, Lesser CF, Jacobs-Wagner C, Wang H, Auerbuch V. The polyadenylase PAPI is required for virulence plasmid maintenance in pathogenic bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617751. [PMID: 39416138 PMCID: PMC11482874 DOI: 10.1101/2024.10.11.617751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Many species of pathogenic bacteria harbor critical plasmid-encoded virulence factors, and yet the regulation of plasmid replication is often poorly understood despite playing a critical role in plasmid-encoded gene expression. Human pathogenic Yersinia, including the plague agent Y. pestis and its close relative Y. pseudotuberculosis, require the type III secretion system (T3SS) virulence factor to subvert host defense mechanisms and colonize host tissues. The Yersinia T3SS is encoded on the IncFII plasmid for Y ersinia virulence (pYV). Several layers of gene regulation enables a large increase in expression of Yersinia T3SS genes at mammalian body temperature. Surprisingly, T3SS expression is also controlled at the level of gene dosage. The number of pYV molecules relative to the number of chromosomes per cell, referred to as plasmid copy number, increases with temperature. The ability to increase and maintain elevated pYV plasmid copy number, and therefore T3SS gene dosage, at 37°C is important for Yersinia virulence. In addition, pYV is highly stable in Yersinia at all temperatures, despite being dispensable for growth outside the host. Yet how Yersinia reinforces elevated plasmid replication and plasmid stability remains unclear. In this study, we show that the chromosomal gene pcnB encoding the polyadenylase PAP I is required for regulation of pYV plasmid copy number (PCN), maintenance of pYV in the bacterial population outside the host, robust T3SS activity, and Yersinia virulence in a mouse infection model. Likewise, pcnB/PAP I is also required for robust expression of the Shigella flexneri virulence plasmid-encoded T3SS. Furthermore, Yersinia and Shigella pcnB/PAP I is required for maintaining normal PCN of model antimicrobial resistance (AMR) plasmids whose replication is regulated by sRNA, thereby increasing antibiotic resistance by ten-fold. These data suggest that pcnB/PAP I contributes to the spread and stabilization of virulence and AMR plasmids in bacterial pathogens, and is essential in maintaining the gene dosage required to mediate plasmid-encoded traits. Importantly pcnB/PAP I has been bioinformatically identified in many species of bacteria despite being studied in only a few species to date. Our work highlights the potential importance of pcnB/PAP I in antibiotic resistance, and shows for the first time that pcnB/PAP I reinforces PCN and virulence plasmid stability in natural pathogenic hosts with a direct impact on bacterial virulence.
Collapse
Affiliation(s)
- Katherine Schubert
- Department of Molecular, Cell, and Developmental Biology, UC Santa Cruz, Santa Cruz, CA 95064, United States
| | - Micah Braly
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, CA 95064, United States
| | - Jessica Zhang
- Department of Biology, Stanford University, Stanford, CA 94305, United States
| | - Michele E Muscolo
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, MA 02115, United States
| | - Hanh N Lam
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, CA 95064, United States
| | - Karen Hug
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, CA 95064, United States
| | - Henry Moore
- Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, CA 95064, United States
| | - Joshua W McCausland
- Department of Biology, Stanford University, Stanford, CA 94305, United States
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA 94305, United States
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Derfel Terciano
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, CA 95064, United States
| | - Todd Lowe
- Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, CA 95064, United States
| | - Cammie F Lesser
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, MA 02115, United States
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, United States
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States
| | - Christine Jacobs-Wagner
- Department of Biology, Stanford University, Stanford, CA 94305, United States
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA 94305, United States
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Helen Wang
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden
| | - Victoria Auerbuch
- Department of Microbiology and Environmental Toxicology, UC Santa Cruz, Santa Cruz, CA 95064, United States
| |
Collapse
|
11
|
Pérez-Ropero G, Pérez-Ràfols A, Martelli T, Danielson UH, Buijs J. Unraveling the Bivalent and Rapid Interactions Between a Multivalent RNA Recognition Motif and RNA: A Kinetic Approach. Biochemistry 2024; 63:2816-2829. [PMID: 39397705 PMCID: PMC11542179 DOI: 10.1021/acs.biochem.4c00301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024]
Abstract
The kinetics of the interaction between Musashi-1 (MSI1) and RNA have been characterized using surface plasmon resonance biosensor analysis. Truncated variants of human MSI1 encompassing the two homologous RNA recognition motifs (RRM1 and RRM2) in tandem (aa 1-200), and the two RRMs in isolation (aa 1-103 and aa 104-200, respectively) were produced. The proteins were injected over sensor surfaces with immobilized RNA, varying in sequence and length, and with one or two RRM binding motifs. The interactions of the individual RRMs with all RNA variants were well described by a 1:1 interaction model. The interaction between the MSI1 variant encompassing both RRM motifs was bivalent and rapid for all RNA variants. Due to difficulties in fitting this complex data using standard procedures, we devised a new method to quantify the interactions. It revealed that two RRMs in tandem resulted in a significantly longer residence time than a single RRM. It also showed that RNA with double UAG binding motifs and potential hairpin structures forms less stable bivalent complexes with MSI1 than the single UAG motif containing linear RNA. Substituting the UAG binding motif with a CAG sequence resulted in a reduction of the affinity of the individual RRMs, but for MSI1, this reduction was strongly enhanced, demonstrating the importance of bivalency for specificity. This study has provided new insights into the interaction between MSI1 and RNA and an understanding of how individual domains contribute to the overall interaction. It provides an explanation for why many RNA-binding proteins contain dual RRMs.
Collapse
Affiliation(s)
- Guillermo Pérez-Ropero
- Department
of Chemistry − BMC, Uppsala University, Uppsala SE 751 23, Sweden
- Ridgeview
Instruments AB, Uppsala SE 752 37, Sweden
| | - Anna Pérez-Ràfols
- Department
of Chemistry “Ugo Schiff″, Magnetic Resonance Center
(CERM), University of Florence, Florence 50019, Italy
- Giotto
Biotech s.r.l, Sesto Fiorentino, Florence 50019, Italy
- MRC
Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, Scotland DD1 5EH, U.K.
| | - Tommasso Martelli
- Department
of Chemistry “Ugo Schiff″, Magnetic Resonance Center
(CERM), University of Florence, Florence 50019, Italy
- Giotto
Biotech s.r.l, Sesto Fiorentino, Florence 50019, Italy
| | - U. Helena Danielson
- Department
of Chemistry − BMC, Uppsala University, Uppsala SE 751 23, Sweden
- Science for
Life Laboratory, Drug Discovery & Development Platform, Uppsala University, Uppsala SE 751 23, Sweden
| | - Jos Buijs
- Ridgeview
Instruments AB, Uppsala SE 752 37, Sweden
- Department
of Immunology, Genetics and Pathology, Uppsala
University, Uppsala SE 751 85, Sweden
| |
Collapse
|
12
|
Chow CFW, Ghosh S, Hadarovich A, Toth-Petroczy A. SHARK enables sensitive detection of evolutionary homologs and functional analogs in unalignable and disordered sequences. Proc Natl Acad Sci U S A 2024; 121:e2401622121. [PMID: 39383002 PMCID: PMC11494347 DOI: 10.1073/pnas.2401622121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/30/2024] [Indexed: 10/11/2024] Open
Abstract
Intrinsically disordered regions (IDRs) are structurally flexible protein segments with regulatory functions in multiple contexts, such as in the assembly of biomolecular condensates. Since IDRs undergo more rapid evolution than ordered regions, identifying homology of such poorly conserved regions remains challenging for state-of-the-art alignment-based methods that rely on position-specific conservation of residues. Thus, systematic functional annotation and evolutionary analysis of IDRs have been limited, despite them comprising ~21% of proteins. To accurately assess homology between unalignable sequences, we developed an alignment-free sequence comparison algorithm, SHARK (Similarity/Homology Assessment by Relating K-mers). We trained SHARK-dive, a machine learning homology classifier, which achieved superior performance to standard alignment-based approaches in assessing evolutionary homology in unalignable sequences. Furthermore, it correctly identified dissimilar but functionally analogous IDRs in IDR-replacement experiments reported in the literature, whereas alignment-based tools were incapable of detecting such functional relationships. SHARK-dive not only predicts functionally similar IDRs at a proteome-wide scale but also identifies cryptic sequence properties and motifs that drive remote homology and analogy, thereby providing interpretable and experimentally verifiable hypotheses of the sequence determinants that underlie such relationships. SHARK-dive acts as an alternative to alignment to facilitate systematic analysis and functional annotation of the unalignable protein universe.
Collapse
Affiliation(s)
- Chi Fung Willis Chow
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden01307, Germany
- Center for Systems Biology Dresden, Dresden01307, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden01062, Germany
| | - Soumyadeep Ghosh
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden01307, Germany
- Center for Systems Biology Dresden, Dresden01307, Germany
| | - Anna Hadarovich
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden01307, Germany
- Center for Systems Biology Dresden, Dresden01307, Germany
| | - Agnes Toth-Petroczy
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden01307, Germany
- Center for Systems Biology Dresden, Dresden01307, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden01062, Germany
| |
Collapse
|
13
|
Breunig K, Lei X, Montalbano M, Guardia GDA, Ostadrahimi S, Alers V, Kosti A, Chiou J, Klein N, Vinarov C, Wang L, Li M, Song W, Kraus WL, Libich DS, Tiziani S, Weintraub ST, Galante PAF, Penalva LOF. SERBP1 interacts with PARP1 and is present in PARylation-dependent protein complexes regulating splicing, cell division, and ribosome biogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586270. [PMID: 38585848 PMCID: PMC10996453 DOI: 10.1101/2024.03.22.586270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
RNA binding proteins (RBPs) containing intrinsically disordered regions (IDRs) are present in diverse molecular complexes where they function as dynamic regulators. Their characteristics promote liquid-liquid phase separation (LLPS) and the formation of membraneless organelles such as stress granules and nucleoli. IDR-RBPs are particularly relevant in the nervous system and their dysfunction is associated with neurodegenerative diseases and brain tumor development. Serpine1 mRNA-binding protein 1 (SERBP1) is a unique member of this group, being mostly disordered and lacking canonical RNA-binding domains. We defined SERBP1's interactome, uncovered novel roles in splicing, cell division and ribosomal biogenesis, and showed its participation in pathological stress granules and Tau aggregates in Alzheimer's brains. SERBP1 preferentially interacts with other G-quadruplex (G4) binders, implicated in different stages of gene expression, suggesting that G4 binding is a critical component of SERBP1 function in different settings. Similarly, we identified important associations between SERBP1 and PARP1/polyADP-ribosylation (PARylation). SERBP1 interacts with PARP1 and its associated factors and influences PARylation. Moreover, protein complexes in which SERBP1 participates contain mostly PARylated proteins and PAR binders. Based on these results, we propose a feedback regulatory model in which SERBP1 influences PARP1 function and PARylation, while PARylation modulates SERBP1 functions and participation in regulatory complexes.
Collapse
|
14
|
Neiman AM. Membrane and organelle rearrangement during ascospore formation in budding yeast. Microbiol Mol Biol Rev 2024; 88:e0001324. [PMID: 38899894 PMCID: PMC11426023 DOI: 10.1128/mmbr.00013-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
SUMMARYIn ascomycete fungi, sexual spores, termed ascospores, are formed after meiosis. Ascospore formation is an unusual cell division in which daughter cells are created within the cytoplasm of the mother cell by de novo generation of membranes that encapsulate each of the haploid chromosome sets created by meiosis. This review describes the molecular events underlying the creation, expansion, and closure of these membranes in the budding yeast, Saccharomyces cerevisiae. Recent advances in our understanding of the regulation of gene expression and the dynamic behavior of different membrane-bound organelles during this process are detailed. While less is known about ascospore formation in other systems, comparison to the distantly related fission yeast suggests that the molecular events will be broadly similar throughout the ascomycetes.
Collapse
Affiliation(s)
- Aaron M Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
15
|
Wu Y, Ma B, Liu C, Li D, Sui G. Pathological Involvement of Protein Phase Separation and Aggregation in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:10187. [PMID: 39337671 PMCID: PMC11432175 DOI: 10.3390/ijms251810187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Neurodegenerative diseases are the leading cause of human disability and immensely reduce patients' life span and quality. The diseases are characterized by the functional loss of neuronal cells and share several common pathogenic mechanisms involving the malfunction, structural distortion, or aggregation of multiple key regulatory proteins. Cellular phase separation is the formation of biomolecular condensates that regulate numerous biological processes, including neuronal development and synaptic signaling transduction. Aberrant phase separation may cause protein aggregation that is a general phenomenon in the neuronal cells of patients suffering neurodegenerative diseases. In this review, we summarize the pathological causes of common neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, among others. We discuss the regulation of key amyloidogenic proteins with an emphasis of their aberrant phase separation and aggregation. We also introduce the approaches as potential therapeutic strategies to ameliorate neurodegenerative diseases through intervening protein aggregation. Overall, this review consolidates the research findings of phase separation and aggregation caused by misfolded proteins in a context of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yinuo Wu
- Aulin College, Northeast Forestry University, Harbin 150040, China;
| | - Biao Ma
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (B.M.); (C.L.)
| | - Chang Liu
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (B.M.); (C.L.)
| | - Dangdang Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (B.M.); (C.L.)
| | - Guangchao Sui
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (B.M.); (C.L.)
| |
Collapse
|
16
|
Moreira S, Chyou TY, Wade J, Brown C. Diversification of the Rho transcription termination factor in bacteria. Nucleic Acids Res 2024; 52:8979-8997. [PMID: 38966992 PMCID: PMC11347177 DOI: 10.1093/nar/gkae582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024] Open
Abstract
Correct termination of transcription is essential for gene expression. In bacteria, factor-dependent termination relies on the Rho factor, that classically has three conserved domains. Some bacteria also have a functional insertion region. However, the variation in Rho structure among bacteria has not been analyzed in detail. This study determines the distribution, sequence conservation, and predicted features of Rho factors with diverse domain architectures by analyzing 2730 bacterial genomes. About half (49.8%) of the species analyzed have the typical Escherichia coli like Rho while most of the other species (39.8%) have diverse, atypical forms of Rho. Besides conservation of the main domains, we describe a duplicated RNA-binding domain present in specific species and novel variations in the bicyclomycin binding pocket. The additional regions observed in Rho proteins exhibit remarkable diversity. Commonly, however, they have exceptional amino acid compositions and are predicted to be intrinsically disordered, to undergo phase separation, or have prion-like behavior. Phase separation has recently been shown to play roles in Rho function and bacterial fitness during harsh conditions in one species and this study suggests a more widespread role. In conclusion, diverse atypical Rho factors are broadly distributed among bacteria, suggesting additional cellular roles.
Collapse
Affiliation(s)
- Sofia M Moreira
- Department of Biochemistry, University of Otago, Dunedin, Otago 9054, New Zealand
| | - Te-yuan Chyou
- Department of Biochemistry, University of Otago, Dunedin, Otago 9054, New Zealand
| | - Joseph T Wade
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY 12222, USA
| | - Chris M Brown
- Department of Biochemistry, University of Otago, Dunedin, Otago 9054, New Zealand
- Genetics Otago, University of Otago, Dunedin, Otago 9054, New Zealand
| |
Collapse
|
17
|
Thurm AR, Finkel Y, Andrews C, Cai XS, Benko C, Bintu L. High-throughput discovery of regulatory effector domains in human RNA-binding proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604317. [PMID: 39071298 PMCID: PMC11275849 DOI: 10.1101/2024.07.19.604317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
RNA regulation plays an integral role in tuning gene expression and is controlled by thousands of RNA-binding proteins (RBPs). We develop and use a high-throughput recruitment assay (HT-RNA-Recruit) to identify regulatory domains within human RBPs by recruiting over 30,000 protein tiles from 367 RBPs to a reporter mRNA. We discover over 100 unique RNA-regulatory effectors in 86 distinct RBPs, presenting evidence that RBPs contain functionally separable domains that dictate their post-transcriptional control of gene expression, and identify some with unique activity at 5' or 3'UTRs. We identify some domains that downregulate gene expression both when recruited to DNA and RNA, and dissect their mechanisms of regulation. Finally, we build a synthetic RNA regulator that can stably maintain gene expression at desired levels that are predictable by a mathematical model. This work serves as a resource for human RNA-regulatory effectors and expands the synthetic repertoire of RNA-based genetic control tools. Highlights HT-RNA-Recruit identifies hundreds of RNA-regulatory effectors in human proteins.Recruitment to 5' and 3' UTRs identifies regulatory domains unique to each position.Some protein domains have both transcriptional and post-transcriptional regulatory activity.We develop a synthetic RNA regulator and a mathematical model to describe its behavior.
Collapse
|
18
|
Modic M, Adamek M, Ule J. The impact of IDR phosphorylation on the RNA binding profiles of proteins. Trends Genet 2024; 40:580-586. [PMID: 38705823 PMCID: PMC7616821 DOI: 10.1016/j.tig.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024]
Abstract
Due to their capacity to mediate repetitive protein interactions, intrinsically disordered regions (IDRs) are crucial for the formation of various types of protein-RNA complexes. The functions of IDRs are strongly modulated by post-translational modifications (PTMs). Phosphorylation is the most common and well-studied modification of IDRs, which can alter homomeric or heteromeric interactions of proteins and impact their ability to phase separate. Moreover, phosphorylation can influence the RNA-binding properties of proteins, and recent studies demonstrated its selective impact on the global profiles of protein-RNA binding and regulation. These findings highlight the need for further integrative approaches to understand how signalling remodels protein-RNA networks in cells.
Collapse
Affiliation(s)
- Miha Modic
- National Institute of Chemistry, Ljubljana, Slovenia; The Francis Crick Institute, London, UK; UK Dementia Research Institute at King's College London, London, UK.
| | - Maksimiljan Adamek
- National Institute of Chemistry, Ljubljana, Slovenia; PhD Program 'Biosciences', Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Ule
- National Institute of Chemistry, Ljubljana, Slovenia; The Francis Crick Institute, London, UK; UK Dementia Research Institute at King's College London, London, UK.
| |
Collapse
|
19
|
Mitra R, Usher ET, Dedeoğlu S, Crotteau MJ, Fraser OA, Yennawar NH, Gadkari VV, Ruotolo BT, Holehouse AS, Salmon L, Showalter SA, Bardwell JCA. Molecular insights into the interaction between a disordered protein and a folded RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598678. [PMID: 38915483 PMCID: PMC11195163 DOI: 10.1101/2024.06.12.598678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Intrinsically disordered protein regions (IDRs) are well-established as contributors to intermolecular interactions and the formation of biomolecular condensates. In particular, RNA-binding proteins (RBPs) often harbor IDRs in addition to folded RNA-binding domains that contribute to RBP function. To understand the dynamic interactions of an IDR-RNA complex, we characterized the RNA-binding features of a small (68 residues), positively charged IDR-containing protein, SERF. At high concentrations, SERF and RNA undergo charge-driven associative phase separation to form a protein- and RNA-rich dense phase. A key advantage of this model system is that this threshold for demixing is sufficiently high that we could use solution-state biophysical methods to interrogate the stoichiometric complexes of SERF with RNA in the one-phase regime. Herein, we describe our comprehensive characterization of SERF alone and in complex with a small fragment of the HIV-1 TAR RNA (TAR) with complementary biophysical methods and molecular simulations. We find that this binding event is not accompanied by the acquisition of structure by either molecule; however, we see evidence for a modest global compaction of the SERF ensemble when bound to RNA. This behavior likely reflects attenuated charge repulsion within SERF via binding to the polyanionic RNA and provides a rationale for the higher-order assembly of SERF in the context of RNA. We envision that the SERF-RNA system will lower the barrier to accessing the details that support IDR-RNA interactions and likewise deepen our understanding of the role of IDR-RNA contacts in complex formation and liquid-liquid phase separation.
Collapse
Affiliation(s)
- Rishav Mitra
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emery T. Usher
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO, USA
| | - Selin Dedeoğlu
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, (CRMN), UMR 5082, CNRS, ENS Lyon, UCBL, Université de Lyon, 69100 Villeurbanne, France
| | - Matthew J. Crotteau
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Olivia A. Fraser
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Neela H. Yennawar
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Varun V. Gadkari
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brandon T. Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alex S. Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO, USA
| | - Loïc Salmon
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, (CRMN), UMR 5082, CNRS, ENS Lyon, UCBL, Université de Lyon, 69100 Villeurbanne, France
| | - Scott A. Showalter
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - James C. A. Bardwell
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
20
|
Wang P, Lin J, Zheng X, Xu X. RNase P: Beyond Precursor tRNA Processing. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae016. [PMID: 38862431 PMCID: PMC12016569 DOI: 10.1093/gpbjnl/qzae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 09/18/2023] [Accepted: 10/11/2023] [Indexed: 06/13/2024]
Abstract
Ribonuclease P (RNase P) was first described in the 1970's as an endoribonuclease acting in the maturation of precursor transfer RNAs (tRNAs). More recent studies, however, have uncovered non-canonical roles for RNase P and its components. Here, we review the recent progress of its involvement in chromatin assembly, DNA damage response, and maintenance of genome stability with implications in tumorigenesis. The possibility of RNase P as a therapeutic target in cancer is also discussed.
Collapse
Affiliation(s)
- Peipei Wang
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Juntao Lin
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Xiangyang Zheng
- Shenzhen University General Hospital-Dehua Hospital Joint Research Center on Precision Medicine, Dehua Hospital, Dehua 362500, China
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
21
|
Díez Pérez T, Tafoya AN, Peabody DS, Lakin MR, Hurwitz I, Carroll NJ, López GP. Isolation of nucleic acids using liquid-liquid phase separation of pH-sensitive elastin-like polypeptides. Sci Rep 2024; 14:10157. [PMID: 38698072 PMCID: PMC11065875 DOI: 10.1038/s41598-024-60648-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 04/25/2024] [Indexed: 05/05/2024] Open
Abstract
Extraction of nucleic acids (NAs) is critical for many methods in molecular biology and bioanalytical chemistry. NA extraction has been extensively studied and optimized for a wide range of applications and its importance to society has significantly increased. The COVID-19 pandemic highlighted the importance of early and efficient NA testing, for which NA extraction is a critical analytical step prior to the detection by methods like polymerase chain reaction. This study explores simple, new approaches to extraction using engineered smart nanomaterials, namely NA-binding, intrinsically disordered proteins (IDPs), that undergo triggered liquid-liquid phase separation (LLPS). Two types of NA-binding IDPs are studied, both based on genetically engineered elastin-like polypeptides (ELPs), model IDPs that exhibit a lower critical solution temperature in water and can be designed to exhibit LLPS at desired temperatures in a variety of biological solutions. We show that ELP fusion proteins with natural NA-binding domains can be used to extract DNA and RNA from physiologically relevant solutions. We further show that LLPS of pH responsive ELPs that incorporate histidine in their sequences can be used for both binding, extraction and release of NAs from biological solutions, and can be used to detect SARS-CoV-2 RNA in samples from COVID-positive patients.
Collapse
Affiliation(s)
- Telmo Díez Pérez
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM, 87131, USA
- Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM, 87131, USA
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Ashley N Tafoya
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM, 87131, USA
- Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM, 87131, USA
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, 87131, USA
| | - David S Peabody
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Matthew R Lakin
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM, 87131, USA
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, 87131, USA
- Department of Computer Science, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Ivy Hurwitz
- Department of Internal Medicine, Center for Global Health, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Nick J Carroll
- Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM, 87131, USA
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Gabriel P López
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM, 87131, USA.
- Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM, 87131, USA.
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|
22
|
Lin P, Cao W, Chen X, Zhang N, Xing Y, Yang N. Role of mRNA-binding proteins in retinal neovascularization. Exp Eye Res 2024; 242:109870. [PMID: 38514023 DOI: 10.1016/j.exer.2024.109870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Retinal neovascularization (RNV) is a pathological process that primarily occurs in diabetic retinopathy, retinopathy of prematurity, and retinal vein occlusion. It is a common yet debilitating clinical condition that culminates in blindness. Urgent efforts are required to explore more efficient and less limiting therapeutic strategies. Key RNA-binding proteins (RBPs), crucial for post-transcriptional regulation of gene expression by binding to RNAs, are closely correlated with RNV development. RBP-RNA interactions are altered during RNV. Here, we briefly review the characteristics and functions of RBPs, and the mechanism of RNV. Then, we present insights into the role of the regulatory network of RBPs in RNV. HuR, eIF4E, LIN28B, SRSF1, METTL3, YTHDF1, Gal-1, HIWI1, and ZFR accelerate RNV progression, whereas YTHDF2 and hnRNPA2B1 hinder it. The mechanisms elucidated in this review provide a reference to guide the design of therapeutic strategies to reverse abnormal processes.
Collapse
Affiliation(s)
- Pei Lin
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China.
| | - Wenye Cao
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China.
| | - Xuemei Chen
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China.
| | - Ningzhi Zhang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China.
| | - Yiqiao Xing
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China; Department of Ophthalmology, Aier Eye Hospital of Wuhan University, Hubei, China.
| | - Ning Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Jiefang Road #238, Wuhan, 430060, Hubei, China.
| |
Collapse
|
23
|
Park SG, Keller A, Kaiser NK, Bruce JE. Interactome dynamics during heat stress signal transmission and reception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591712. [PMID: 38746244 PMCID: PMC11092488 DOI: 10.1101/2024.04.29.591712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Among evolved molecular mechanisms, cellular stress response to altered environmental conditions to promote survival is among the most fundamental. The presence of stress-induced unfolded or misfolded proteins and molecular registration of these events constitute early steps in cellular stress response. However, what stress-induced changes in protein conformations and protein-protein interactions within cells initiate stress response and how these features are recognized by cellular systems are questions that have remained difficult to answer, requiring new approaches. Quantitative in vivo chemical cross-linking coupled with mass spectrometry (qXL-MS) is an emerging technology that provides new insight on protein conformations, protein-protein interactions and how the interactome changes during perturbation within cells, organelles, and even tissues. In this work, qXL-MS and quantitative proteome analyses were applied to identify significant time-dependent interactome changes that occur prior to large-scale proteome abundance remodeling within cells subjected to heat stress. Interactome changes were identified within minutes of applied heat stress, including stress-induced changes in chaperone systems as expected due to altered functional demand. However, global analysis of all interactome changes revealed the largest significant enrichment in the gene ontology molecular function term of RNA binding. This group included more than 100 proteins among multiple components of protein synthesis machinery, including mRNA binding, spliceosomes, and ribosomes. These interactome data provide new conformational insight on the complex relationship that exists between transcription, translation and cellular stress response mechanisms. Moreover, stress-dependent interactome changes suggest that in addition to conformational stabilization of RNA-binding proteins, adaptation of RNA as interacting ligands offers an additional fitness benefit resultant from generally lower RNA thermal stability. As such, RNA ligands also serve as fundamental temperature sensors that signal stress through decreased conformational regulation of their protein partners as was observed in these interactome dynamics.
Collapse
|
24
|
Bano Z, Westhoff P. A K homology (KH) domain protein identified by a forward genetic screen affects bundle sheath anatomy in Arabidopsis thaliana. PLANT DIRECT 2024; 8:e577. [PMID: 38576996 PMCID: PMC10990680 DOI: 10.1002/pld3.577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 04/06/2024]
Abstract
Because of their photosynthetic capacity, leaves function as solar panels providing the basis for the growth of the entire plant. Although the molecular mechanisms of leaf development have been well studied in model dicot and monocot species, a lot of information is still needed about the interplay of the genes that regulate cell division and differentiation and thereby affect the photosynthetic performance of the leaf. We were specifically interested in understanding the differentiation of mesophyll and bundle sheath cells in Arabidopsis thaliana and aimed to identify genes that are involved in determining bundle sheath anatomy. To this end, we established a forward genetic screen by using ethyl methanesulfonate (EMS) for mutagenizing a reporter line expressing a chloroplast-targeted green fluorescent protein (sGFP) under the control of a bundle sheath-specific promoter. Based on the GFP fluorescence phenotype, numerous mutants were produced, and by pursuing a mapping-by-sequencing approach, the genomic segments containing mutated candidate genes were identified. One of the lines with an enhanced GFP fluorescence phenotype (named ELEVATED BUNDLE SHEATH CELLS SIGNAL 1 [ebss1]) was selected for further study, and the responsible gene was verified by CRISPR/Cas9-based mutagenesis of candidate genes located in the mapped genomic segment. The verified gene, At2g25970, encodes a K homology (KH) domain-containing protein.
Collapse
Affiliation(s)
- Zahida Bano
- Institute of Plant Molecular and Developmental BiologyHeinrich‐Heine‐UniversityDüsseldorfGermany
| | - Peter Westhoff
- Institute of Plant Molecular and Developmental BiologyHeinrich‐Heine‐UniversityDüsseldorfGermany
| |
Collapse
|
25
|
Friedman MJ, Wagner T, Lee H, Rosenfeld MG, Oh S. Enhancer-promoter specificity in gene transcription: molecular mechanisms and disease associations. Exp Mol Med 2024; 56:772-787. [PMID: 38658702 PMCID: PMC11058250 DOI: 10.1038/s12276-024-01233-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 04/26/2024] Open
Abstract
Although often located at a distance from their target gene promoters, enhancers are the primary genomic determinants of temporal and spatial transcriptional specificity in metazoans. Since the discovery of the first enhancer element in simian virus 40, there has been substantial interest in unraveling the mechanism(s) by which enhancers communicate with their partner promoters to ensure proper gene expression. These research efforts have benefited considerably from the application of increasingly sophisticated sequencing- and imaging-based approaches in conjunction with innovative (epi)genome-editing technologies; however, despite various proposed models, the principles of enhancer-promoter interaction have still not been fully elucidated. In this review, we provide an overview of recent progress in the eukaryotic gene transcription field pertaining to enhancer-promoter specificity. A better understanding of the mechanistic basis of lineage- and context-dependent enhancer-promoter engagement, along with the continued identification of functional enhancers, will provide key insights into the spatiotemporal control of gene expression that can reveal therapeutic opportunities for a range of enhancer-related diseases.
Collapse
Affiliation(s)
- Meyer J Friedman
- Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Tobias Wagner
- Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Haram Lee
- College of Pharmacy Korea University, 2511 Sejong-ro, Sejong, 30019, Republic of Korea
| | - Michael G Rosenfeld
- Department and School of Medicine, University of California, San Diego, La Jolla, CA, USA.
| | - Soohwan Oh
- College of Pharmacy Korea University, 2511 Sejong-ro, Sejong, 30019, Republic of Korea.
| |
Collapse
|
26
|
Wu J, Niu L, Yang K, Xu J, Zhang D, Ling J, Xia P, Wu Y, Liu X, Liu J, Zhang J, Yu P. The role and mechanism of RNA-binding proteins in bone metabolism and osteoporosis. Ageing Res Rev 2024; 96:102234. [PMID: 38367813 DOI: 10.1016/j.arr.2024.102234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Osteoporosis is a prevalent chronic metabolic bone disease that poses a significant risk of fractures or mortality in elderly individuals. Its pathophysiological basis is often attributed to postmenopausal estrogen deficiency and natural aging, making the progression of primary osteoporosis among elderly people, especially older women, seemingly inevitable. The treatment and prevention of osteoporosis progression have been extensively discussed. Recently, as researchers delve deeper into the molecular biological mechanisms of bone remodeling, they have come to realize the crucial role of posttranscriptional gene control in bone metabolism homeostasis. RNA-binding proteins, as essential actors in posttranscriptional activities, may exert influence on osteoporosis progression by regulating the RNA life cycle. This review compiles recent findings on the involvement of RNA-binding proteins in abnormal bone metabolism in osteoporosis and describes the impact of some key RNA-binding proteins on bone metabolism regulation. Additionally, we explore the potential and rationale for modulating RNA-binding proteins as a means of treating osteoporosis, with an overview of drugs that target these proteins.
Collapse
Affiliation(s)
- Jiaqiang Wu
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332000, China; The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Department of General Surgery, First Medical Center of the Chinese PLA General Hospital, Beijing, China
| | - Liyan Niu
- HuanKui College of Nanchang University, Nanchang 330006, China
| | - Kangping Yang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Jingdong Xu
- Queen Mary College of Nanchang University, Nanchang 330006, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, 999077, Hong Kong, China
| | - Jitao Ling
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Donghu District, Nanchang 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
| | - Panpan Xia
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Donghu District, Nanchang 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
| | - Yuting Wu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Donghu District, Nanchang 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
| | - Xiao Liu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianping Liu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Donghu District, Nanchang 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
| | - Jing Zhang
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332000, China; Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Peng Yu
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, 332000, China; Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Donghu District, Nanchang 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China.
| |
Collapse
|
27
|
Zhang J, Chen Q, Liu B. iNucRes-ASSH: Identifying nucleic acid-binding residues in proteins by using self-attention-based structure-sequence hybrid neural network. Proteins 2024; 92:395-410. [PMID: 37915276 DOI: 10.1002/prot.26626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/27/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023]
Abstract
Interaction between proteins and nucleic acids is crucial to many cellular activities. Accurately detecting nucleic acid-binding residues (NABRs) in proteins can help researchers better understand the interaction mechanism between proteins and nucleic acids. Structure-based methods can generally make more accurate predictions than sequence-based methods. However, the existing structure-based methods are sensitive to protein conformational changes, causing limited generalizability. More effective and robust approaches should be further explored. In this study, we propose iNucRes-ASSH to identify nucleic acid-binding residues with a self-attention-based structure-sequence hybrid neural network. It improves the generalizability and robustness of NABR prediction from two levels: residue representation and prediction model. Experimental results show that iNucRes-ASSH can predict the nucleic acid-binding residues even when the experimentally validated structures are unavailable and outperforms five competing methods on a recent benchmark dataset and a widely used test dataset.
Collapse
Affiliation(s)
- Jun Zhang
- National Engineering Laboratory for Big Data System Computing Technology, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, Guangdong, China
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong, China
| | - Qingcai Chen
- School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Guangdong, China
| | - Bin Liu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
28
|
Seigneurin-Berny D, Karczewski C, Delaforge E, Yaacoub K, Gaspar Litholdo C, Favory JJ, Ringkjøbing Jensen M, Bousquet-Antonelli C, Verdel A. ECT2 peptide sequences outside the YTH domain regulate its m 6A-RNA binding. RNA Biol 2024; 21:1-13. [PMID: 39267376 PMCID: PMC11404569 DOI: 10.1080/15476286.2024.2399914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/16/2024] [Accepted: 08/28/2024] [Indexed: 09/17/2024] Open
Abstract
The m6A epitranscriptomic mark is the most abundant and widespread internal RNA chemical modification, which through the control of RNA acts as an important factor of eukaryote reproduction, growth, morphogenesis and stress response. The main m6A readers constitute a super family of proteins with hundreds of members that share a so-called YTH RNA binding domain. The majority of YTH proteins carry no obvious additional domain except for an Intrinsically Disordered Region (IDR). In Arabidopsis thaliana IDRs are important for the functional specialization among the different YTH proteins, known as Evolutionarily Conserved C-Terminal region, ECT 1 to 12. Here by studying the ECT2 protein and using an in vitro biochemical characterization, we show that full-length ECT2 and its YTH domain alone have a distinct ability to bind m6A, conversely to previously characterized YTH readers. We identify peptide regions outside of ECT2 YTH domain, in the N-terminal IDR, that regulate its binding to m6A-methylated RNA. Furthermore, we show that the selectivity of ECT2 binding for m6A is enhanced by a high uridine content within its neighbouring sequence, where ECT2 N-terminal IDR is believed to contact the target RNA in vivo. Finally, we also identify small structural elements, located next to ECT2 YTH domain and conserved in a large set of YTH proteins, that enhance its binding to m6A-methylated RNA. We propose from these findings that some of these regulatory regions are not limited to ECT2 or YTH readers of flowering plants but may be widespread among eukaryotic YTH readers.
Collapse
Affiliation(s)
- Daphné Seigneurin-Berny
- Université Grenoble Alpes, INSERM U 1209, CNRS UMR 5309, Institut pour l’Avancée des Biosciences, Grenoble, France
| | - Claire Karczewski
- Université Grenoble Alpes, INSERM U 1209, CNRS UMR 5309, Institut pour l’Avancée des Biosciences, Grenoble, France
| | - Elise Delaforge
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | - Karen Yaacoub
- Université Grenoble Alpes, INSERM U 1209, CNRS UMR 5309, Institut pour l’Avancée des Biosciences, Grenoble, France
| | - Celso Gaspar Litholdo
- CNRS-LGDP-UMR5096, Université de Perpignan, Perpignan, France
- Université de Perpignan Via Domitia, Perpignan, France
| | - Jean-Jacques Favory
- CNRS-LGDP-UMR5096, Université de Perpignan, Perpignan, France
- Université de Perpignan Via Domitia, Perpignan, France
| | | | - Cécile Bousquet-Antonelli
- CNRS-LGDP-UMR5096, Université de Perpignan, Perpignan, France
- Université de Perpignan Via Domitia, Perpignan, France
| | - André Verdel
- Université Grenoble Alpes, INSERM U 1209, CNRS UMR 5309, Institut pour l’Avancée des Biosciences, Grenoble, France
| |
Collapse
|
29
|
Sofi S, Coverley D. CIZ1 in Xist seeded assemblies at the inactive X chromosome. Front Cell Dev Biol 2023; 11:1296600. [PMID: 38155839 PMCID: PMC10753822 DOI: 10.3389/fcell.2023.1296600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023] Open
Abstract
There is growing evidence that X-chromosome inactivation is driven by phase-separated supramolecular assemblies. However, among the many proteins recruited to the inactive X chromosome by Xist long non-coding RNA, so far only a minority (CIZ1, CELF1, SPEN, TDP-43, MATR3, PTBP1, PCGF5) have been shown to form Xist-seeded protein assemblies, and of these most have not been analyzed in detail. With focus on CIZ1, here we describe 1) the contribution of intrinsically disordered regions in RNA-dependent protein assembly formation at the inactive X chromosome, and 2) enrichment, distribution, and function of proteins within Xist-seeded assemblies.
Collapse
Affiliation(s)
- Sajad Sofi
- Department of Biology, University of York, York, United Kingdom
| | - Dawn Coverley
- Department of Biology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| |
Collapse
|
30
|
Ottoz DSM, Tang LC, Dyatel AE, Jovanovic M, Berchowitz LE. Assembly and function of the amyloid-like translational repressor Rim4 is coupled with nutrient conditions. EMBO J 2023; 42:e113332. [PMID: 37921330 PMCID: PMC10690475 DOI: 10.15252/embj.2022113332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 11/04/2023] Open
Abstract
Amyloid-like protein assemblies have been associated with toxic phenotypes because of their repetitive and stable structure. However, evidence that cells exploit these structures to control function and activity of some proteins in response to stimuli has questioned this paradigm. How amyloid-like assembly can confer emergent functions and how cells couple assembly with environmental conditions remains unclear. Here, we study Rim4, an RNA-binding protein that forms translation-repressing assemblies during yeast meiosis. We demonstrate that in its assembled and repressive state, Rim4 binds RNA more efficiently than in its monomeric and idle state, revealing a causal connection between assembly and function. The Rim4-binding site location within the transcript dictates whether the assemblies can repress translation, underscoring the importance of the architecture of this RNA-protein structure for function. Rim4 assembly depends exclusively on its intrinsically disordered region and is prevented by the Ras/protein kinase A signaling pathway, which promotes growth and suppresses meiotic entry in yeast. Our results suggest a mechanism whereby cells couple a functional protein assembly with a stimulus to enforce a cell fate decision.
Collapse
Affiliation(s)
- Diana SM Ottoz
- Department of Genetics and Development, Hammer Health Sciences CenterColumbia University Irving Medical CenterNew YorkNYUSA
| | - Lauren C Tang
- Department of Biological SciencesColumbia UniversityNew YorkNYUSA
| | - Annie E Dyatel
- Department of Genetics and Development, Hammer Health Sciences CenterColumbia University Irving Medical CenterNew YorkNYUSA
| | - Marko Jovanovic
- Department of Biological SciencesColumbia UniversityNew YorkNYUSA
| | - Luke E Berchowitz
- Department of Genetics and Development, Hammer Health Sciences CenterColumbia University Irving Medical CenterNew YorkNYUSA
- Taub Institute for Research on Alzheimer's and the Aging BrainNew YorkNYUSA
| |
Collapse
|
31
|
Qiu C, Zhang Z, Wine RN, Campbell ZT, Zhang J, Hall TMT. Intra- and inter-molecular regulation by intrinsically-disordered regions governs PUF protein RNA binding. Nat Commun 2023; 14:7323. [PMID: 37953271 PMCID: PMC10641069 DOI: 10.1038/s41467-023-43098-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023] Open
Abstract
PUF proteins are characterized by globular RNA-binding domains. They also interact with partner proteins that modulate their RNA-binding activities. Caenorhabditis elegans PUF protein fem-3 binding factor-2 (FBF-2) partners with intrinsically disordered Lateral Signaling Target-1 (LST-1) to regulate target mRNAs in germline stem cells. Here, we report that an intrinsically disordered region (IDR) at the C-terminus of FBF-2 autoinhibits its RNA-binding affinity by increasing the off rate for RNA binding. Moreover, the FBF-2 C-terminal region interacts with its globular RNA-binding domain at the same site where LST-1 binds. This intramolecular interaction restrains an electronegative cluster of amino acid residues near the 5' end of the bound RNA to inhibit RNA binding. LST-1 binding in place of the FBF-2 C-terminus therefore releases autoinhibition and increases RNA-binding affinity. This regulatory mechanism, driven by IDRs, provides a biochemical and biophysical explanation for the interdependence of FBF-2 and LST-1 in germline stem cell self-renewal.
Collapse
Affiliation(s)
- Chen Qiu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Zihan Zhang
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert N Wine
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Zachary T Campbell
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jun Zhang
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Traci M Tanaka Hall
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| |
Collapse
|
32
|
Zhang R, Feng W, Qian S, Wang F. Autophagy-mediated surveillance of Rim4-mRNA interaction safeguards programmed meiotic translation. Cell Rep 2023; 42:113051. [PMID: 37659076 PMCID: PMC10591816 DOI: 10.1016/j.celrep.2023.113051] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 07/13/2023] [Accepted: 08/15/2023] [Indexed: 09/04/2023] Open
Abstract
In yeast meiosis, autophagy is active and essential. Here, we investigate the fate of Rim4, a meiosis-specific RNA-binding protein (RBP), and its associated transcripts during meiotic autophagy. We demonstrate that Rim4 employs a nuclear localization signal (NLS) to enter the nucleus, where it loads its mRNA substrates before nuclear export. Upon reaching the cytoplasm, active autophagy selectively spares the Rim4-mRNA complex. During meiotic divisions, autophagy preferentially degrades Rim4 in an Atg11-dependent manner, coinciding with the release of Rim4-bound mRNAs for translation. Intriguingly, these released mRNAs also become vulnerable to autophagy. In vitro, purified Rim4 and its RRM-motif-containing variants activate Atg1 kinase in meiotic cell lysates and in immunoprecipitated (IP) Atg1 complexes. This suggests that the conserved RNA recognition motifs (RRMs) of Rim4 are involved in stimulating Atg1 and thereby facilitating selective autophagy. Taken together, our findings indicate that autophagy surveils Rim4-mRNA interaction to ensure stage-specific translation during meiosis.
Collapse
Affiliation(s)
- Rudian Zhang
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wenzhi Feng
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Suhong Qian
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Fei Wang
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
33
|
Li Q, Kang C. Targeting RNA-binding proteins with small molecules: Perspectives, pitfalls and bifunctional molecules. FEBS Lett 2023; 597:2031-2047. [PMID: 37519019 DOI: 10.1002/1873-3468.14710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
RNA-binding proteins (RBPs) play vital roles in organisms through binding with RNAs to regulate their functions. Small molecules affecting the function of RBPs have been developed, providing new avenues for drug discovery. Herein, we describe the perspectives on developing small molecule regulators of RBPs. The following types of small molecule modulators are of great interest in drug discovery: small molecules binding to RBPs to affect interactions with RNA molecules, bifunctional molecules binding to RNA or RBP to influence their interactions, and other types of molecules that affect the stability of RNA or RBPs. Moreover, we emphasize that the bifunctional molecules may play important roles in small molecule development to overcome the challenges encountered in the process of drug discovery.
Collapse
Affiliation(s)
- Qingxin Li
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Congbao Kang
- Experimental Drug Development Centre, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
34
|
Klein T, Funke F, Rossbach O, Lehmann G, Vockenhuber M, Medenbach J, Suess B, Meister G, Babinger P. Investigating the Prevalence of RNA-Binding Metabolic Enzymes in E. coli. Int J Mol Sci 2023; 24:11536. [PMID: 37511294 PMCID: PMC10380284 DOI: 10.3390/ijms241411536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
An open research field in cellular regulation is the assumed crosstalk between RNAs, metabolic enzymes, and metabolites, also known as the REM hypothesis. High-throughput assays have produced extensive interactome data with metabolic enzymes frequently found as hits, but only a few examples have been biochemically validated, with deficits especially in prokaryotes. Therefore, we rationally selected nineteen Escherichia coli enzymes from such datasets and examined their ability to bind RNAs using two complementary methods, iCLIP and SELEX. Found interactions were validated by EMSA and other methods. For most of the candidates, we observed no RNA binding (12/19) or a rather unspecific binding (5/19). Two of the candidates, namely glutamate-5-kinase (ProB) and quinone oxidoreductase (QorA), displayed specific and previously unknown binding to distinct RNAs. We concentrated on the interaction of QorA to the mRNA of yffO, a grounded prophage gene, which could be validated by EMSA and MST. Because the physiological function of both partners is not known, the biological relevance of this interaction remains elusive. Furthermore, we found novel RNA targets for the MS2 phage coat protein that served us as control. Our results indicate that RNA binding of metabolic enzymes in procaryotes is less frequent than suggested by the results of high-throughput studies, but does occur.
Collapse
Affiliation(s)
- Thomas Klein
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Franziska Funke
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Oliver Rossbach
- Institute of Biochemistry, Faculty of Biology and Chemistry, University of Giessen, D-35392 Giessen, Germany
| | - Gerhard Lehmann
- Institute of Biochemistry, Genetics and Microbiology, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Michael Vockenhuber
- Centre for Synthetic Biology, Technical University of Darmstadt, D-64287 Darmstadt, Germany
| | - Jan Medenbach
- Institute of Biochemistry, Genetics and Microbiology, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Beatrix Suess
- Centre for Synthetic Biology, Technical University of Darmstadt, D-64287 Darmstadt, Germany
| | - Gunter Meister
- Institute of Biochemistry, Genetics and Microbiology, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| | - Patrick Babinger
- Institute of Biophysics and Physical Biochemistry, Regensburg Center for Biochemistry, University of Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|
35
|
Stitzinger SH, Sohrabi-Jahromi S, Söding J. Cooperativity boosts affinity and specificity of proteins with multiple RNA-binding domains. NAR Genom Bioinform 2023; 5:lqad057. [PMID: 37305168 PMCID: PMC10251633 DOI: 10.1093/nargab/lqad057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/24/2023] [Accepted: 05/24/2023] [Indexed: 06/13/2023] Open
Abstract
Numerous cellular processes rely on the binding of proteins with high affinity to specific sets of RNAs. Yet most RNA-binding domains display low specificity and affinity in comparison to DNA-binding domains. The best binding motif is typically only enriched by less than a factor 10 in high-throughput RNA SELEX or RNA bind-n-seq measurements. Here, we provide insight into how cooperative binding of multiple domains in RNA-binding proteins (RBPs) can boost their effective affinity and specificity orders of magnitude higher than their individual domains. We present a thermodynamic model to calculate the effective binding affinity (avidity) for idealized, sequence-specific RBPs with any number of RBDs given the affinities of their isolated domains. For seven proteins in which affinities for individual domains have been measured, the model predictions are in good agreement with measurements. The model also explains how a two-fold difference in binding site density on RNA can increase protein occupancy 10-fold. It is therefore rationalized that local clusters of binding motifs are the physiological binding targets of multi-domain RBPs.
Collapse
Affiliation(s)
- Simon H Stitzinger
- Quantitative and Computational Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Salma Sohrabi-Jahromi
- Quantitative and Computational Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Johannes Söding
- To whom correspondence should be addressed. Tel: +49 551 201 2890;
| |
Collapse
|
36
|
Gupta MN, Uversky VN. Moonlighting enzymes: when cellular context defines specificity. Cell Mol Life Sci 2023; 80:130. [PMID: 37093283 PMCID: PMC11073002 DOI: 10.1007/s00018-023-04781-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/13/2023] [Accepted: 04/15/2023] [Indexed: 04/25/2023]
Abstract
It is not often realized that the absolute protein specificity is an exception rather than a rule. Two major kinds of protein multi-specificities are promiscuity and moonlighting. This review discusses the idea of enzyme specificity and then focusses on moonlighting. Some important examples of protein moonlighting, such as crystallins, ceruloplasmin, metallothioniens, macrophage migration inhibitory factor, and enzymes of carbohydrate metabolism are discussed. How protein plasticity and intrinsic disorder enable the removing the distinction between enzymes and other biologically active proteins are outlined. Finally, information on important roles of moonlighting in human diseases is updated.
Collapse
Affiliation(s)
- Munishwar Nath Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC07, Tampa, FL, 33612-4799, USA.
| |
Collapse
|
37
|
Steinmetz B, Smok I, Bikaki M, Leitner A. Protein-RNA interactions: from mass spectrometry to drug discovery. Essays Biochem 2023; 67:175-186. [PMID: 36866608 PMCID: PMC10070478 DOI: 10.1042/ebc20220177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 03/04/2023]
Abstract
Proteins and RNAs are fundamental parts of biological systems, and their interactions affect many essential cellular processes. Therefore, it is crucial to understand at a molecular and at a systems level how proteins and RNAs form complexes and mutually affect their functions. In the present mini-review, we will first provide an overview of different mass spectrometry (MS)-based methods to study the RNA-binding proteome (RBPome), most of which are based on photochemical cross-linking. As we will show, some of these methods are also able to provide higher-resolution information about binding sites, which are important for the structural characterisation of protein-RNA interactions. In addition, classical structural biology techniques such as nuclear magnetic resonance (NMR) spectroscopy and biophysical methods such as electron paramagnetic resonance (EPR) spectroscopy and fluorescence-based methods contribute to a detailed understanding of the interactions between these two classes of biomolecules. We will discuss the relevance of such interactions in the context of the formation of membrane-less organelles (MLOs) by liquid-liquid phase separation (LLPS) processes and their emerging importance as targets for drug discovery.
Collapse
Affiliation(s)
- Benjamin Steinmetz
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093 Zurich, Switzerland
- RNA Biology PhD Program, University of Zurich and ETH Zürich, Zurich, Switzerland
| | - Izabela Smok
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093 Zurich, Switzerland
- RNA Biology PhD Program, University of Zurich and ETH Zürich, Zurich, Switzerland
| | - Maria Bikaki
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093 Zurich, Switzerland
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093 Zurich, Switzerland
| |
Collapse
|
38
|
Li Y, Chen T, You K, Peng T, Li T. Sequence determinants and solution conditions underlying liquid to solid phase transition. Am J Physiol Cell Physiol 2023; 324:C236-C246. [PMID: 36503242 DOI: 10.1152/ajpcell.00280.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Life consists of numberless functional biomolecules that exist in various states. Besides well-dissolved phases, biomolecules especially proteins and nucleic acids can form liquid droplets through liquid-liquid phase separation (LLPS). Stronger interactions promote a solid-like state of biomolecular condensates, which are also formerly referred to as detergent-insoluble aggregates. Solid-like condensates exist in vivo physiologically and pathologically, and their formation has not been fully understood. Recently, more and more research has proven that liquid to solid phase transition (LST) is an essential way to form solid condensates. In this review, we summarized the regions in the sequence that have different impacts on phase transition and emphasized that the LST is affected by its sequence characteristics. Moreover, increasing evidence unveiled that LST is affected by various solution conditions. We discussed solution conditions like protein concentration, pH, ATP, ions, and small molecules in a solution. Methods have been established to study these solid phase components. Here, we summarized low-throughput experimental techniques and high-throughput omics methods in the study of the LST.
Collapse
Affiliation(s)
- Yuxuan Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
| | - Taoyu Chen
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
| | - Kaiqing You
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Happy Life Technology, Beijing, China
| | - Tao Peng
- Happy Life Technology, Beijing, China
| | - Tingting Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Beijing, China
| |
Collapse
|
39
|
Malaney P, Benitez O, Zhang X, Post SM. Assessing the role of intrinsic disorder in RNA-binding protein function: hnRNP K as a case study. Methods 2022; 208:59-65. [DOI: 10.1016/j.ymeth.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/20/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
|
40
|
Sarni SH, Roca J, Du C, Jia M, Li H, Damjanovic A, Małecka EM, Wysocki VH, Woodson SA. Intrinsically disordered interaction network in an RNA chaperone revealed by native mass spectrometry. Proc Natl Acad Sci U S A 2022; 119:e2208780119. [PMID: 36375072 PMCID: PMC9704730 DOI: 10.1073/pnas.2208780119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 10/14/2022] [Indexed: 11/15/2022] Open
Abstract
RNA-binding proteins contain intrinsically disordered regions whose functions in RNA recognition are poorly understood. The RNA chaperone Hfq is a homohexamer that contains six flexible C-terminal domains (CTDs). The effect of the CTDs on Hfq's integrity and RNA binding has been challenging to study because of their sequence identity and inherent disorder. We used native mass spectrometry coupled with surface-induced dissociation and molecular dynamics simulations to disentangle the arrangement of the CTDs and their impact on the stability of Escherichia coli Hfq with and without RNA. The results show that the CTDs stabilize the Hfq hexamer through multiple interactions with the core and between CTDs. RNA binding perturbs this network of CTD interactions, destabilizing the Hfq ring. This destabilization is partially compensated by binding of RNAs that contact multiple surfaces of Hfq. By contrast, binding of short RNAs that only contact one or two subunits results in net destabilization of the complex. Together, the results show that a network of intrinsically disordered interactions integrate RNA contacts with the six subunits of Hfq. We propose that this CTD network raises the selectivity of RNA binding.
Collapse
Affiliation(s)
- Samantha H. Sarni
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
| | - Jorjethe Roca
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218
| | - Chen Du
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
| | - Mengxuan Jia
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
| | - Hantian Li
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218
| | - Ana Damjanovic
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218
| | - Ewelina M. Małecka
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218
| | - Vicki H. Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
| | - Sarah A. Woodson
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
41
|
HIF1α-AS1 is a DNA:DNA:RNA triplex-forming lncRNA interacting with the HUSH complex. Nat Commun 2022; 13:6563. [PMID: 36323673 PMCID: PMC9630315 DOI: 10.1038/s41467-022-34252-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/19/2022] [Indexed: 11/07/2022] Open
Abstract
DNA:DNA:RNA triplexes that are formed through Hoogsteen base-pairing of the RNA in the major groove of the DNA duplex have been observed in vitro, but the extent to which these interactions occur in cells and how they impact cellular functions remains elusive. Using a combination of bioinformatic techniques, RNA/DNA pulldown and biophysical studies, we set out to identify functionally important DNA:DNA:RNA triplex-forming long non-coding RNAs (lncRNA) in human endothelial cells. The lncRNA HIF1α-AS1 was retrieved as a top hit. Endogenous HIF1α-AS1 reduces the expression of numerous genes, including EPH Receptor A2 and Adrenomedullin through DNA:DNA:RNA triplex formation by acting as an adapter for the repressive human silencing hub complex (HUSH). Moreover, the oxygen-sensitive HIF1α-AS1 is down-regulated in pulmonary hypertension and loss-of-function approaches not only result in gene de-repression but also enhance angiogenic capacity. As exemplified here with HIF1α-AS1, DNA:DNA:RNA triplex formation is a functionally important mechanism of trans-acting gene expression control.
Collapse
|
42
|
Bheemireddy S, Sandhya S, Srinivasan N, Sowdhamini R. Computational tools to study RNA-protein complexes. Front Mol Biosci 2022; 9:954926. [PMID: 36275618 PMCID: PMC9585174 DOI: 10.3389/fmolb.2022.954926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/20/2022] [Indexed: 11/19/2022] Open
Abstract
RNA is the key player in many cellular processes such as signal transduction, replication, transport, cell division, transcription, and translation. These diverse functions are accomplished through interactions of RNA with proteins. However, protein–RNA interactions are still poorly derstood in contrast to protein–protein and protein–DNA interactions. This knowledge gap can be attributed to the limited availability of protein-RNA structures along with the experimental difficulties in studying these complexes. Recent progress in computational resources has expanded the number of tools available for studying protein-RNA interactions at various molecular levels. These include tools for predicting interacting residues from primary sequences, modelling of protein-RNA complexes, predicting hotspots in these complexes and insights into derstanding in the dynamics of their interactions. Each of these tools has its strengths and limitations, which makes it significant to select an optimal approach for the question of interest. Here we present a mini review of computational tools to study different aspects of protein-RNA interactions, with focus on overall application, development of the field and the future perspectives.
Collapse
Affiliation(s)
- Sneha Bheemireddy
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Sankaran Sandhya
- Department of Biotechnology, Faculty of Life and Allied Health Sciences, M.S. Ramaiah University of Applied Sciences, Bengaluru, India
- *Correspondence: Sankaran Sandhya, ; Ramanathan Sowdhamini,
| | | | - Ramanathan Sowdhamini
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bangalore, India
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
- *Correspondence: Sankaran Sandhya, ; Ramanathan Sowdhamini,
| |
Collapse
|
43
|
Londoño Vélez V, Alquraish F, Tarbiyyah I, Rafique F, Mao D, Chodasiewicz M. Landscape of biomolecular condensates in heat stress responses. FRONTIERS IN PLANT SCIENCE 2022; 13:1032045. [PMID: 36311142 PMCID: PMC9601738 DOI: 10.3389/fpls.2022.1032045] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/21/2022] [Indexed: 06/06/2023]
Abstract
High temperature is one of the abiotic stresses that plants face and acts as a major constraint on crop production and food security. Plants have evolved several mechanisms to overcome challenging environments and respond to internal and external stimuli. One significant mechanism is the formation of biomolecular condensates driven by liquid-liquid phase separation. Biomolecular condensates have received much attention in the past decade, especially with regard to how plants perceive temperature fluctuations and their involvement in stress response and tolerance. In this review, we compile and discuss examples of plant biomolecular condensates regarding their composition, localization, and functions triggered by exposure to heat. Bioinformatic tools can be exploited to predict heat-induced biomolecular condensates. As the field of biomolecular condensates has emerged in the study of plants, many intriguing questions have arisen that have yet to be solved. Increased knowledge of biomolecular condensates will help in securing crop production and overcoming limitations caused by heat stress.
Collapse
|
44
|
Kapral TH, Farnhammer F, Zhao W, Lu ZJ, Zagrovic B. Widespread autogenous mRNA-protein interactions detected by CLIP-seq. Nucleic Acids Res 2022; 50:9984-9999. [PMID: 36107779 PMCID: PMC9508846 DOI: 10.1093/nar/gkac756] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 07/12/2022] [Accepted: 08/24/2022] [Indexed: 02/02/2023] Open
Abstract
Autogenous interactions between mRNAs and the proteins they encode are implicated in cellular feedback-loop regulation, but their extent and mechanistic foundation are unclear. It was recently hypothesized that such interactions may be common, reflecting the role of intrinsic nucleobase-amino acid affinities in shaping the genetic code's structure. Here we analyze a comprehensive set of CLIP-seq experiments involving multiple protocols and report on widespread autogenous interactions across different organisms. Specifically, 230 of 341 (67%) studied RNA-binding proteins (RBPs) interact with their own mRNAs, with a heavy enrichment among high-confidence hits and a preference for coding sequence binding. We account for different confounding variables, including physical (overexpression and proximity during translation), methodological (difference in CLIP protocols, peak callers and cell types) and statistical (treatment of null backgrounds). In particular, we demonstrate a high statistical significance of autogenous interactions by sampling null distributions of fixed-margin interaction matrices. Furthermore, we study the dependence of autogenous binding on the presence of RNA-binding motifs and structured domains in RBPs. Finally, we show that intrinsic nucleobase-amino acid affinities favor co-aligned binding between mRNA coding regions and the proteins they encode. Our results suggest a central role for autogenous interactions in RBP regulation and support the possibility of a fundamental connection between coding and binding.
Collapse
Affiliation(s)
- Thomas H Kapral
- Departmet of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, A-1030, Austria,Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, A-1030, Austria
| | - Fiona Farnhammer
- Departmet of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, A-1030, Austria,Division of Metabolism, University Children's Hospital Zurich and Children's Research Center, University of Zurich, Zurich, 8032, Switzerland,Division of Oncology, University Children's Hospital Zurich and Children's Research Center, University of Zurich, Zurich, 8032, Switzerland
| | - Weihao Zhao
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhi J Lu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Bojan Zagrovic
- To whom correspondence should be addressed. Tel: +43 1 4277 52271; Fax: +43 1 4277 9522;
| |
Collapse
|
45
|
Alvarado-Marchena L, Martínez-Pérez M, Aparicio F, Pallas V, Maumus F. Recent Acquisition of Functional m6A RNA Demethylase Domain in Orchid Ty3/Gypsy Elements. FRONTIERS IN PLANT SCIENCE 2022; 13:939843. [PMID: 35860540 PMCID: PMC9289625 DOI: 10.3389/fpls.2022.939843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Long terminal repeats (LTR) retrotransposons are transposable elements (TEs) representing major components of most plant genomes. The fixation of additional conserved protein domains in their genomes is considered a rare event in the course of their evolution. Such changes can bring novel functions and increase their fitness by playing a role in the regulation of their replicative cycle or by affecting their integration landscape so that the detection of new domains can in turn reveal important aspects of host-TE interactions. We have mined angiosperm genomes for the presence of additional domains in LTR retrotransposons. We report a lineage of large (25 kbp) Gypsy-type elements in the genomes of Phalaenopsis orchids that contain an additional open reading frame containing a 2-ODD domain with close similarity to those responsible for m6A RNA demethylase activity in AlkB proteins. By performing in vitro assays, we demonstrate the RNA binding capability and the demethylase activity of the Gypsy-encoded AlkB protein, suggesting it could be functional against cognate TE mRNA or any cellular RNA in planta. In line with recent literature, we propose that the fixation of an RNA demethylase in this lineage of LTR retrotransposons may reflect an important role for epitranscriptomic control in host surveillance against TEs.
Collapse
Affiliation(s)
- Luis Alvarado-Marchena
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas, Universitat Politècnica de València, Ingeniero Fausto Elio, Spain
| | - Mireya Martínez-Pérez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas, Universitat Politècnica de València, Ingeniero Fausto Elio, Spain
| | - Frederic Aparicio
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas, Universitat Politècnica de València, Ingeniero Fausto Elio, Spain
| | - Vicente Pallas
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas, Universitat Politècnica de València, Ingeniero Fausto Elio, Spain
| | - Florian Maumus
- INRAE, URGI, Université Paris-Saclay, Versailles, France
| |
Collapse
|
46
|
Williams ME, Cloete R. Molecular Modeling of Subtype-Specific Tat Protein Signatures to Predict Tat-TAR Interactions That May Be Involved in HIV-Associated Neurocognitive Disorders. Front Microbiol 2022; 13:866611. [PMID: 35464972 PMCID: PMC9021916 DOI: 10.3389/fmicb.2022.866611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/16/2022] [Indexed: 12/30/2022] Open
Abstract
HIV-1 is responsible for a spectrum of neurocognitive deficits defined as HIV-associated neurocognitive disorders (HAND). The HIV transactivator of transcription (Tat) protein plays a key role in the neuropathophysiology of HAND. The Tat protein functions by transactivation of viral genes through its interaction with the transactivation response (TAR) RNA element. Subtype-specific Tat protein signatures including C31S, R57S and Q63E present in Tat subtype C has previously been linked to a lowered neuropathophysiology compared to Tat subtype B. In this study, we attempted to understand the molecular mechanism by which Tat subtype-specific variation, particularly, C31S, R57S, and Q63E influence the Tat-TAR interaction. We performed molecular modeling to generate accurate three-dimensional protein structures of the HIV-1 Tat subtypes C and B using the Swiss model webserver. Thereafter, we performed a molecular docking of the TAR RNA element to each of the Tat subtypes B and C protein structures using the HDOCK webserver. Our findings indicate that Tat subtype B had a higher affinity for the TAR RNA element compared to Tat subtype C based on a higher docking score of −187.37, a higher binding free energy value of −9834.63 ± 216.17 kJ/mol, and a higher number of protein–nucleotide interactions of 26. Furthermore, Tat subtype B displayed more flexible regions when bound to the TAR element and this flexibility could account for the stronger affinity of Tat subtype B to TAR. From the Tat signatures linked to neuropathogenesis, only R57/R57S are involved in Tat-TAR interaction. Due to the lack of electrostatic interactions observed between Tat subtype C and TAR, weaker affinity is observed, and this may contribute to a lower level of neuropathophysiology observed in subtype C infection.
Collapse
Affiliation(s)
- Monray E. Williams
- Human Metabolomics, North-West University, Potchefstroom, South Africa
- *Correspondence: Monray E. Williams,
| | - Ruben Cloete
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
47
|
Gokhale NS, Smith JR, Van Gelder RD, Savan R. RNA regulatory mechanisms that control antiviral innate immunity. Immunol Rev 2021; 304:77-96. [PMID: 34405416 DOI: 10.1111/imr.13019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 12/21/2022]
Abstract
From the initial sensing of viral nucleotides by pattern recognition receptors, through the induction of type I and III interferons (IFN), upregulation of antiviral effector proteins, and resolution of the inflammatory response, each step of innate immune signaling is under tight control. Though innate immunity is often associated with broad regulation at the level of gene transcription, RNA-centric post-transcriptional processes have emerged as critical mechanisms for ensuring a proper antiviral response. Here, we explore the diverse RNA regulatory mechanisms that modulate the innate antiviral immune response, with a focus on RNA sensing by RIG-I-like receptors (RLR), interferon (IFN) and IFN signaling pathways, viral pathogenesis, and host genetic variation that contributes to these processes. We address the post-transcriptional interactions with RNA-binding proteins, non-coding RNAs, transcript elements, and modifications that control mRNA stability, as well as alternative splicing events that modulate the innate immune antiviral response.
Collapse
Affiliation(s)
- Nandan S Gokhale
- Department of Immunology, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Julian R Smith
- Department of Immunology, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Rachel D Van Gelder
- Department of Immunology, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Ram Savan
- Department of Immunology, School of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
48
|
Maran SR, Fleck K, Monteiro-Teles NM, Isebe T, Walrad P, Jeffers V, Cestari I, Vasconcelos EJR, Moretti N. Protein acetylation in the critical biological processes in protozoan parasites. Trends Parasitol 2021; 37:815-830. [PMID: 33994102 DOI: 10.1016/j.pt.2021.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 12/28/2022]
Abstract
Protein lysine acetylation has emerged as a major regulatory post-translational modification in different organisms, present not only on histone proteins affecting chromatin structure and gene expression but also on nonhistone proteins involved in several cellular processes. The same scenario was observed in protozoan parasites after the description of their acetylomes, indicating that acetylation might regulate crucial biological processes in these parasites. The demonstration that glycolytic enzymes are regulated by acetylation in protozoans shows that this modification might regulate several other processes implicated in parasite survival and adaptation during the life cycle, opening the chance to explore the regulatory acetylation machinery of these parasites as drug targets for new treatment development.
Collapse
Affiliation(s)
- Suellen Rodrigues Maran
- Laboratório de Biologia Molecular de Patógenos (LBMP) - Departamento Microbiologia, Imunologia e Parasitologia - Escola Paulista de Medicina - Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Krista Fleck
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | | | - Tony Isebe
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Pegine Walrad
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | - Victoria Jeffers
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Igor Cestari
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada; Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | | | - Nilmar Moretti
- Laboratório de Biologia Molecular de Patógenos (LBMP) - Departamento Microbiologia, Imunologia e Parasitologia - Escola Paulista de Medicina - Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.
| |
Collapse
|