1
|
Penna C, Pagliaro P. Endothelial Dysfunction: Redox Imbalance, NLRP3 Inflammasome, and Inflammatory Responses in Cardiovascular Diseases. Antioxidants (Basel) 2025; 14:256. [PMID: 40227195 PMCID: PMC11939635 DOI: 10.3390/antiox14030256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 04/15/2025] Open
Abstract
Endothelial dysfunction (ED) is characterized by an imbalance between vasodilatory and vasoconstrictive factors, leading to impaired vascular tone, thrombosis, and inflammation. These processes are critical in the development of cardiovascular diseases (CVDs) such as atherosclerosis, hypertension and ischemia/reperfusion injury (IRI). Reduced nitric oxide (NO) production and increased oxidative stress are key contributors to ED. Aging further exacerbates ED through mitochondrial dysfunction and increased oxidative/nitrosative stress, heightening CVD risk. Antioxidant systems like superoxide-dismutase (SOD), glutathione-peroxidase (GPx), and thioredoxin/thioredoxin-reductase (Trx/TXNRD) pathways protect against oxidative stress. However, their reduced activity promotes ED, atherosclerosis, and vulnerability to IRI. Metabolic syndrome, comprising insulin resistance, obesity, and hypertension, is often accompanied by ED. Specifically, hyperglycemia worsens endothelial damage by promoting oxidative stress and inflammation. Obesity leads to chronic inflammation and changes in perivascular adipose tissue, while hypertension is associated with an increase in oxidative stress. The NLRP3 inflammasome plays a significant role in ED, being triggered by factors such as reactive oxygen and nitrogen species, ischemia, and high glucose, which contribute to inflammation, endothelial injury, and exacerbation of IRI. Treatments, such as N-acetyl-L-cysteine, SGLT2 or NLRP3 inhibitors, show promise in improving endothelial function. Yet the complexity of ED suggests that multi-targeted therapies addressing oxidative stress, inflammation, and metabolic disturbances are essential for managing CVDs associated with metabolic syndrome.
Collapse
Affiliation(s)
- Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy;
- National Institute for Cardiovascular Research (INRC), 40126 Bologna, Italy
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy;
- National Institute for Cardiovascular Research (INRC), 40126 Bologna, Italy
| |
Collapse
|
2
|
Sun Y, Song X, Jin C, Peng Y, Zhou J, Zheng X. Cerebral Small Vessel Disease: Current and Emerging Therapeutic Strategies. Aging Dis 2025:AD.2024.1515. [PMID: 39965248 DOI: 10.14336/ad.2024.1515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/03/2025] [Indexed: 02/20/2025] Open
Abstract
Cerebral small vessel disease (CSVD) is a common disease in older people, characterized by damage to intracranial microvessels, leading to cognitive decline, increased risk of stroke, and dementia. This review reviews the current therapeutic approaches for CSVD and the latest research advances, encompassing traditional pharmacological therapies, emerging targeted interventions grounded in pathophysiology, exploratory immune-related treatments, and advances in genetic research. In addition, the role of lifestyle modifications in disease management is discussed. The review emphasizes the importance of a holistic, personalized treatment strategy to improve outcomes. More clinical trials are needed to validate these treatments and optimize individualized treatment options for CSVD patients.
Collapse
|
3
|
Perepletchikova D, Malashicheva A. Communication between endothelial cells and osteoblasts in regulation of bone homeostasis: Notch players. Stem Cell Res Ther 2025; 16:56. [PMID: 39920854 PMCID: PMC11806792 DOI: 10.1186/s13287-025-04176-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/23/2025] [Indexed: 02/09/2025] Open
Abstract
Endothelial cells coat blood vessels and release molecular signals to affect the fate of other cells. Endothelial cells can adjust their behavior in response to the changing microenvironmental conditions. During bone regeneration, bone tissue cells release factors that promote blood vessel growth. Notch is a key signaling that regulates cell fate decisions in many tissues and plays an important role in bone tissue development and homeostasis. Understanding the interplay between angiogenesis and osteogenesis is currently a focus of research efforts in order to facilitate and improve osteogenesis when needed. Our review explores the cellular and molecular mechanisms including Notch-dependent endothelial-MSC communication that drive osteogenesis-angiogenesis processes and their effects on bone remodeling and repair.
Collapse
Affiliation(s)
| | - Anna Malashicheva
- Institute of Cytology Russian Academy of Science, St. Petersburg, Russia, 194064.
| |
Collapse
|
4
|
Bonadeo N, Chimento A, Mejía ME, Dallard BE, Sorianello E, Becu-Villalobos D, Lacau-Mengido I, Cristina C. NOTCH and IGF1 signaling systems are involved in the effects exerted by anthelminthic treatment of heifers on the bovine mammary gland. Vet Parasitol 2025; 334:110390. [PMID: 39798247 DOI: 10.1016/j.vetpar.2025.110390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/03/2025] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
Dairy heifers with gastrointestinal nematodes have reduced growth rates, and delayed age at puberty and milk production onset related to late mammary gland development. IGF1 and Notch signaling systems are important in this process, and an altered profile of serum IGF1 has been associated with the detrimental effect of the nematodes on parenchymal development. In this context, we aimed to study the molecular mechanisms involved in bovine mammary gland development around pre and postpuberty, focusing on proliferative and angiogenic processes that involve the Notch and IGF1 pathways. We used mammary tissue samples from pre and pubertal heifers, treated or untreated with anthelmintics, and MAC-T bovine mammary epithelial cells in vitro. Anthelminthic treatment effectively lowered EPG in feces. Mammary glands from treated heifers had increased proliferation rate (measured by PCNA) and angiogenic marker expression (VEGF and CD34), as well as increased αSMA area compared to age-matched control parasitized heifers. These changes were preceded by increased expression of Notch targets at 20 wk of age (HES1, HEY2, and HEY1), indicating a possible interaction. Similarly, IGF1R expression was increased at 30 weeks of age. To study the crosstalk between systems, bovine MAC-T cells were treated with DAPT (50 μM) to inhibit Notch signaling. DAPT decreased the proliferation of cells as evidenced by a decrease in PCNA, pERK, CYCYLIN D1; and the wound healing capacity of HMEC cells was impaired in the presence of the supernatants of DAPT-treated cells. Furthermore, DAPT decreased IGF1 and increased IGF1R mRNA levels in MAC-T cells. On the other hand, cells treated with 10 ng/mL IGF1 Increased their proliferation (MTS assay), and induced a strong tendency to increase Notch target genes (HEY1, and HES1). Furthermore, IGF1 treatment tampered the decrease in the proliferation rate induced by DAPT. Finally, a positive correlation between the IGF1R and Notch target genes (HEY1, and HES1) further suggested a relation between these two signaling systems in the bovine mammary gland. In conclusion, pubertal delay related to parasitosis is counteracted by anthelminthic treatments, which increase serum IGF1, mammary cell proliferation, and angiogenesis. We postulate the Notch pathway, mainly through the HEY1 target gene, which is modulated by the IGF1 system, may regulate both proliferative and angiogenic processes favoring normal development of the bovine mammary gland during puberty. In addition, we demonstrate that the interaction between the Notch and the IGF1 pathways may affect cell proliferation.
Collapse
Affiliation(s)
- Nadia Bonadeo
- Centro de Investigaciones Básicas y Aplicadas, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín, Buenos Aires 6000, Argentina; Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires, CITNOBA, UNNOBA - UNSAdA - CONICET, Monteagudo 2772, Pergamino, Buenos Aires 2700, Argentina
| | - Agustina Chimento
- Centro de Investigaciones Básicas y Aplicadas, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín, Buenos Aires 6000, Argentina; Comisión de Investigaciones Científicas, CIC, La Plata, Buenos Aires 1900, Argentina
| | - Miguel E Mejía
- Instituto de Biología y Medicina Experimental, IBYME-CONICET, Vuelta de Obligado 2490, CABA 1428, Argentina
| | - Bibiana E Dallard
- Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Tecnológicas, (UNL-CONICET), Argentina; Laboratorio de Biología Celular y Molecular Aplicada, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina, Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Cientí∼ficas y Tecnoló∼gicas, (UNL-CONICET), Argentina
| | - Eleonora Sorianello
- Instituto de Biología y Medicina Experimental, IBYME-CONICET, Vuelta de Obligado 2490, CABA 1428, Argentina
| | - Damasia Becu-Villalobos
- Instituto de Biología y Medicina Experimental, IBYME-CONICET, Vuelta de Obligado 2490, CABA 1428, Argentina
| | - Isabel Lacau-Mengido
- Instituto de Biología y Medicina Experimental, IBYME-CONICET, Vuelta de Obligado 2490, CABA 1428, Argentina
| | - Carolina Cristina
- Centro de Investigaciones Básicas y Aplicadas, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín, Buenos Aires 6000, Argentina; Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires, CITNOBA, UNNOBA - UNSAdA - CONICET, Monteagudo 2772, Pergamino, Buenos Aires 2700, Argentina.
| |
Collapse
|
5
|
Jiao J, Shao K, Liu Z, Liu L, Nie Z, Wu J, Shi X, Wang R, Qian Z, Yang A, Lv Z. Epigenetic activation of JAG1 by AID contributes to metastasis of hepatocellular carcinoma. J Biol Chem 2025; 301:108078. [PMID: 39675704 PMCID: PMC11758938 DOI: 10.1016/j.jbc.2024.108078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 11/22/2024] [Accepted: 11/30/2024] [Indexed: 12/17/2024] Open
Abstract
Metastasis is a major cause of fatality in hepatocellular carcinoma (HCC), although the precise mechanisms driving the metastatic process remain incompletely understood. In this study, we have made several important findings. Firstly, we have discovered that elevated activation-induced cytidine deaminase (AID) expression is positively correlated with Jagged 1 (JAG1) levels in clinically metastatic HCC patients. Moreover, we observed that depletion of either AID or JAG1 leads to a reduction in HCC metastasis. Secondly, we have identified AID acts as a transcriptional regulator that regulates JAG1 transcription by interacting with histone acetyltransferase 1 (HAT1) in metastatic HCC cells. Furthermore, our results demonstrate that any domains of AID can cooperate with HAT1 to enhance JAG1 transcription. Importantly, we have determined that the AID/HAT1 complex directly binds to specific regions within the JAG1 gene body, specifically -1.504 kb to -1.104 kb region, thereby influencing the epigenetic state of the JAG1 promoter through modulating histone methylation, histone acetylation, and DNA methylation. Furthermore, we have elucidated that the AID-JAG1/NOTCH-c-FOS axis plays a pivotal role in facilitating HCC metastasis. Consequently, the inhibitory effects of MG149 on both AID and JAG1 significantly mitigate the progression of HCC. This investigation uncovers a heretofore unappreciated function of AID as a transcriptional regulator in the metastasis of HCC, heralding a promising therapeutic approach.
Collapse
Affiliation(s)
- Junna Jiao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, China
| | - Kun Shao
- Department of Pathology, Xinxiang Central Hospital, Xinxiang, Henan, China
| | - Zixian Liu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Lulu Liu
- JunJi College, Xinxiang Medical University, Xinxiang, Henan, China
| | - Ziru Nie
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jinhua Wu
- JunJi College, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiaoyu Shi
- JunJi College, Xinxiang Medical University, Xinxiang, Henan, China
| | - Ruihan Wang
- JunJi College, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhuang Qian
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, Henan, China
| | - Angang Yang
- The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China; Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China.
| | - Zhuangwei Lv
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, China.
| |
Collapse
|
6
|
Yuan L, Chen X, Jankovic J, Deng H. CADASIL: A NOTCH3-associated cerebral small vessel disease. J Adv Res 2024; 66:223-235. [PMID: 38176524 PMCID: PMC11674792 DOI: 10.1016/j.jare.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/16/2023] [Accepted: 01/01/2024] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most common hereditary cerebral small vessel disease (CSVD), pathologically characterized by a non-atherosclerotic and non-amyloid diffuse angiopathy primarily involving small to medium-sized penetrating arteries and leptomeningeal arteries. In 1996, mutation in the notch receptor 3 gene (NOTCH3) was identified as the cause of CADASIL. However, since that time other genetic CSVDs have been described, including the HtrA serine peptidase 1 gene-associated CSVD and the cathepsin A gene-associated CSVD, that clinically mimic the original phenotype. Though NOTCH3-associated CSVD is now a well-recognized hereditary disorder and the number of studies investigating this disease is increasing, the role of NOTCH3 in the pathogenesis of CADASIL remains elusive. AIM OF REVIEW This review aims to provide insights into the pathogenesis and the diagnosis of hereditary CSVDs, as well as personalized therapy, predictive approach, and targeted prevention. In this review, we summarize the current progress in CADASIL, including the clinical, neuroimaging, pathological, genetic, diagnostic, and therapeutic aspects, as well as differential diagnosis, in which the role of NOTCH3 mutations is highlighted. KEY SCIENTIFIC CONCEPTS OF REVIEW In this review, CADASIL is revisited as a NOTCH3-associated CSVD along with other hereditary CSVDs.
Collapse
Affiliation(s)
- Lamei Yuan
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, China; Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China; Disease Genome Research Center, Central South University, Changsha, China; Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiangyu Chen
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China; Disease Genome Research Center, Central South University, Changsha, China; Department of Pathology, Changsha Maternal and Child Health Care Hospital, Changsha, China
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Hao Deng
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, China; Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China; Disease Genome Research Center, Central South University, Changsha, China; Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
7
|
Hao Z, Huo Z, Aixin-Jueluo Q, Wu T, Chen Y. Overexpression of EGFL7 promotes angiogenesis and nerve regeneration in peripheral nerve injury. Cell Biol Int 2024; 48:1698-1713. [PMID: 39080995 DOI: 10.1002/cbin.12221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 06/24/2024] [Accepted: 07/04/2024] [Indexed: 10/16/2024]
Abstract
Peripheral nerve injury (PNI) often leads to significant functional impairment. Here, we investigated the impact of epidermal growth factor-like domain-containing protein 7 (EGFL7) on angiogenesis and nerve regeneration following PNI. Using a sciatic nerve injury model, we assessed nerve function using the sciatic nerve function index. We analyzed the expression levels of EGFL7, forkhead box proteins A1 (FOXA1), nerve growth factor (NGF), brain-derived neurotrophic factors (BDNF), Neurofilament 200 (NF200), myelin protein zero (P0), cell adhesion molecule 1 (CD31), vascular endothelial growth factor (VEGF), and NOTCH-related proteins in tissues and cells. Cell proliferation, migration, and angiogenesis were evaluated through cell counting kit assays, 5-ethynyl-2'deoxyuridine staining, and Transwell assays. We investigated the binding of FOXA1 to the EGFL7 promoter using dual-luciferase assays and chromatin immunoprecipitation. We observed decreased EGFL7 expression and increased FOXA1 expression in PNI, and EGFL7 overexpression alleviated gastrocnemius muscle atrophy, increased muscle weight, and improved motor function. Additionally, EGFL7 overexpression enhanced Schwann cell and endothelial cell proliferation and migration, promoted tube formation, and upregulated NGF, BDNF, NF200, P0, CD31, and VEGF expression. FOXA1 was found to bind to the EGFL7 promoter region, inhibiting EGFL7 expression and activating the NOTCH signaling pathway. Notably, FOXA1 overexpression counteracted the effects of EGFL7 on Schwann cells and endothelial cells. In conclusion, EGFL7 holds promise as a therapeutic molecule for treating sciatic nerve injury.
Collapse
Affiliation(s)
- Zengtao Hao
- Area A, Hand-Foot Microsurgery Center, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Zhiqi Huo
- Area A, Hand-Foot Microsurgery Center, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Qicheng Aixin-Jueluo
- Area A, Hand-Foot Microsurgery Center, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Tao Wu
- Area A, Hand-Foot Microsurgery Center, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yihong Chen
- Area A, Hand-Foot Microsurgery Center, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
8
|
Shah FH, Lee HW. Endothelial and macrophage interactions in the angiogenic niche. Cytokine Growth Factor Rev 2024; 78:64-76. [PMID: 39019663 DOI: 10.1016/j.cytogfr.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
The interactions between vascular cells, especially endothelial cells, and macrophages play a pivotal role in maintaining the subtle balance of vascular biology, which is crucial for angiogenesis in both healthy and diseased states. These cells are central to ensuring a harmonious balance between tissue repair and preventing excessive angiogenic activity, which could lead to pathological conditions. Recent advances in sophisticated genetic engineering vivo models and novel sequencing approaches, such as single-cell RNA-sequencing, in immunobiology have significantly enhanced our understanding of the gene expression and behavior of macrophages. These insights offer new perspectives on the role macrophages play not only in development but also across various health conditions. In this review, we explore the complex interactions between multiple types of macrophages and endothelium, focusing on their impact on new blood vessel formation. By understanding these intricate interactions, we aim to provide insights into new methods for managing angiogenesis in various diseases, thereby offering hope for the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Fahad Hassan Shah
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Heon-Woo Lee
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea.
| |
Collapse
|
9
|
Acosta-Iborra B, Gil-Acero AI, Sanz-Gómez M, Berrouayel Y, Puente-Santamaría L, Alieva M, del Peso L, Jiménez B. Bhlhe40 Regulates Proliferation and Angiogenesis in Mouse Embryoid Bodies under Hypoxia. Int J Mol Sci 2024; 25:7669. [PMID: 39062912 PMCID: PMC11277088 DOI: 10.3390/ijms25147669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Knowledge of the molecular mechanisms that underlie the regulation of major adaptive responses to an unbalanced oxygen tension is central to understanding tissue homeostasis and disease. Hypoxia-inducible transcription factors (HIFs) coordinate changes in the transcriptome that control these adaptive responses. Here, we focused on the functional role of the transcriptional repressor basic-helix-loop-helix family member e40 (Bhlhe40), which we previously identified in a meta-analysis as one of the most consistently upregulated genes in response to hypoxia across various cell types. We investigated the role of Bhlhe40 in controlling proliferation and angiogenesis using a gene editing strategy in mouse embryonic stem cells (mESCs) that we differentiated in embryoid bodies (EBs). We observed that hypoxia-induced Bhlhe40 expression was compatible with the rapid proliferation of pluripotent mESCs under low oxygen tension. However, in EBs, hypoxia triggered a Bhlhe40-dependent cell cycle arrest in most progenitor cells and endothelial cells within vascular structures. Furthermore, Bhlhe40 knockout increased the basal vascularization of the EBs in normoxia and exacerbated the hypoxia-induced vascularization, supporting a novel role for Bhlhe40 as a negative regulator of blood vessel formation. Our findings implicate Bhlhe40 in mediating key functional adaptive responses to hypoxia, such as proliferation arrest and angiogenesis.
Collapse
Affiliation(s)
- Bárbara Acosta-Iborra
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Arturo Duperier, 4, 28029 Madrid, Spain
| | - Ana Isabel Gil-Acero
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Arturo Duperier, 4, 28029 Madrid, Spain
| | - Marta Sanz-Gómez
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Arturo Duperier, 4, 28029 Madrid, Spain
| | - Yosra Berrouayel
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Arturo Duperier, 4, 28029 Madrid, Spain
| | - Laura Puente-Santamaría
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Arturo Duperier, 4, 28029 Madrid, Spain
- Biocomputing Unit, Instituto Aragonés de Ciencias de la Salud, San Juan Bosco, 50009 Zaragoza, Spain
| | - Maria Alieva
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Arturo Duperier, 4, 28029 Madrid, Spain
| | - Luis del Peso
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Arturo Duperier, 4, 28029 Madrid, Spain
- IdiPaz, Instituto de Investigación Sanitaria del Hospital Universitario La Paz, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unidad Asociada de Biomedicina CSIC-UCLM, 02006 Albacete, Spain
| | - Benilde Jiménez
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Arturo Duperier, 4, 28029 Madrid, Spain
- IdiPaz, Instituto de Investigación Sanitaria del Hospital Universitario La Paz, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unidad Asociada de Biomedicina CSIC-UCLM, 02006 Albacete, Spain
| |
Collapse
|
10
|
Tasharrofi B, Najafi A, Pourbakhtyaran E, Amirsalari S, Khan GS, Ashrafi MR, Tavasoli AR, Keramatipour M, Heidari M. Distinct neurological phenotypes associated with biallelic loss of NOTCH3 function: evidence for recessive inheritance. Mol Biol Rep 2024; 51:714. [PMID: 38824264 DOI: 10.1007/s11033-024-09560-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/16/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND NOTCH3 variants are known to be linked to cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). However, some null NOTCH3 variants with homozygous inheritance cause neurological symptoms distinct from CADASIL. The aim of this study was to expand the clinical spectrum of this distinct condition and provide further evidence of its autosomal recessive inheritance. METHODS AND RESULTS Whole exome sequencing (WES) was performed on a proband who exhibited livedo racemosa, ataxia, cognitive decline, seizures, and MRI white matter abnormalities without anterior temporal pole lesions. Segregation analysis was conducted with Sanger sequencing. WES of the proband identified a novel homozygous NOTCH3 null variant (c.2984delC). The consanguineous parents were confirmed as heterozygous variant carriers. In addition, three heterozygous NOTCH3 null variants were reported as incidental findings in three unrelated cases analyzed in our center. CONCLUSION The findings of this study suggest an autosomal recessive inheritance pattern in this early-onset leukoencephalopathy, in contrast to CADASIL's dominant gain-of-function mechanism; which is a clear example of genotype-phenotype correlation. Comprehensive genetic analysis provides valuable insights into disease mechanisms and facilitates diagnosis and family planning for NOTCH3-associated neurological disorders.
Collapse
Affiliation(s)
- Behnoosh Tasharrofi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Najafi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Pourbakhtyaran
- Department of Pediatrics, Division of Pediatric Neurology, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Susan Amirsalari
- Pediatric Neurology Department, New Hearing Technologies Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Golazin Shahbodagh Khan
- Department of Pediatrics, Division of Pediatric Neurology, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Reza Ashrafi
- Department of Pediatrics, Division of Pediatric Neurology, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Reza Tavasoli
- Department of Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Pediatric Neurology Division, Pediatrics Center of Excellence, Myelin Disorders Clinic, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Morteza Heidari
- Department of Pediatrics, Division of Pediatric Neurology, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Pediatric Neurology Division, Pediatrics Center of Excellence, Myelin Disorders Clinic, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Satish KS, Saraswathy GR, Ritesh G, Saravanan KS, Krishnan A, Bhargava J, Ushnaa K, Dsouza PL. Exploring cutting-edge strategies for drug repurposing in female cancers - An insight into the tools of the trade. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 207:355-415. [PMID: 38942544 DOI: 10.1016/bs.pmbts.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Female cancers, which include breast and gynaecological cancers, represent a significant global health burden for women. Despite advancements in research pertinent to unearthing crucial pathological characteristics of these cancers, challenges persist in discovering potential therapeutic strategies. This is further exacerbated by economic burdens associated with de novo drug discovery and clinical intricacies such as development of drug resistance and metastasis. Drug repurposing, an innovative approach leveraging existing FDA-approved drugs for new indications, presents a promising avenue to expedite therapeutic development. Computational techniques, including virtual screening and analysis of drug-target-disease relationships, enable the identification of potential candidate drugs. Integration of diverse data types, such as omics and clinical information, enhances the precision and efficacy of drug repurposing strategies. Experimental approaches, including high-throughput screening assays, in vitro, and in vivo models, complement computational methods, facilitating the validation of repurposed drugs. This review highlights various target mining strategies based on analysis of differential gene expression, weighted gene co-expression, protein-protein interaction network, and host-pathogen interaction, among others. To unearth drug candidates, the technicalities of leveraging information from databases such as DrugBank, STITCH, LINCS, and ChEMBL, among others are discussed. Further in silico validation techniques encompassing molecular docking, pharmacophore modelling, molecular dynamic simulations, and ADMET analysis are elaborated. Overall, this review delves into the exploration of individual case studies to offer a wide perspective of the ever-evolving field of drug repurposing, emphasizing the multifaceted approaches and methodologies employed for the same to confront female cancers.
Collapse
Affiliation(s)
- Kshreeraja S Satish
- Department of Pharmacy Practice, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India
| | - Ganesan Rajalekshmi Saraswathy
- Department of Pharmacy Practice, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India.
| | - Giri Ritesh
- Department of Pharmacy Practice, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India
| | - Kamatchi Sundara Saravanan
- Department of Pharmacognosy, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India
| | - Aarti Krishnan
- Department of Pharmacy Practice, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India
| | - Janhavi Bhargava
- Department of Pharmacy Practice, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India
| | - Kuri Ushnaa
- Department of Pharmacy Practice, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India
| | - Prizvan Lawrence Dsouza
- Department of Pharmacy Practice, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India
| |
Collapse
|
12
|
Parambath S, Selvraj NR, Venugopal P, Aradhya R. Notch Signaling: An Emerging Paradigm in the Pathogenesis of Reproductive Disorders and Diverse Pathological Conditions. Int J Mol Sci 2024; 25:5423. [PMID: 38791461 PMCID: PMC11121885 DOI: 10.3390/ijms25105423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/27/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024] Open
Abstract
The highly conserved Notch pathway, a pillar of juxtacrine signaling, orchestrates intricate intercellular communication, governing diverse developmental and homeostatic processes through a tightly regulated cascade of proteolytic cleavages. This pathway, culminating in the migration of the Notch intracellular domain (NICD) to the nucleus and the subsequent activation of downstream target genes, exerts a profound influence on a plethora of molecular processes, including cell cycle progression, lineage specification, cell-cell adhesion, and fate determination. Accumulating evidence underscores the pivotal role of Notch dysregulation, encompassing both gain and loss-of-function mutations, in the pathogenesis of numerous human diseases. This review delves deep into the multifaceted roles of Notch signaling in cellular dynamics, encompassing proliferation, differentiation, polarity maintenance, epithelial-mesenchymal transition (EMT), tissue regeneration/remodeling, and its intricate interplay with other signaling pathways. We then focus on the emerging landscape of Notch aberrations in gynecological pathologies predisposing individuals to infertility. By highlighting the exquisite conservation of Notch signaling in Drosophila and its power as a model organism, we pave the way for further dissection of disease mechanisms and potential therapeutic interventions through targeted modulation of this master regulatory pathway.
Collapse
Affiliation(s)
| | | | | | - Rajaguru Aradhya
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India; (S.P.); (N.R.S.); (P.V.)
| |
Collapse
|
13
|
Xin Y, Zhang Z, Lv S, Xu S, Liu A, Li H, Li P, Han H, Liu Y. Elucidating VSMC phenotypic transition mechanisms to bridge insights into cardiovascular disease implications. Front Cardiovasc Med 2024; 11:1400780. [PMID: 38803664 PMCID: PMC11128571 DOI: 10.3389/fcvm.2024.1400780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/01/2024] [Indexed: 05/29/2024] Open
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide, despite advances in understanding cardiovascular health. Significant barriers still exist in effectively preventing and managing these diseases. Vascular smooth muscle cells (VSMCs) are crucial for maintaining vascular integrity and can switch between contractile and synthetic functions in response to stimuli such as hypoxia and inflammation. These transformations play a pivotal role in the progression of cardiovascular diseases, facilitating vascular modifications and disease advancement. This article synthesizes the current understanding of the mechanisms and signaling pathways regulating VSMC phenotypic transitions, highlighting their potential as therapeutic targets in cardiovascular disease interventions.
Collapse
Affiliation(s)
- Yuning Xin
- Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zipei Zhang
- Traditional Chinese Medicine, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Shan Lv
- Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Shan Xu
- Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Aidong Liu
- Traditional Chinese Medicine, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Hongyu Li
- Traditional Chinese Medicine, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Pengfei Li
- Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Huize Han
- Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yinghui Liu
- Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
14
|
Yin Z, Zhu Y, Shi J, He Y, Zhang F. The role of the Notch signaling pathway in bacterial infectious diseases. Microb Pathog 2024; 188:106557. [PMID: 38272330 DOI: 10.1016/j.micpath.2024.106557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
The Notch signaling pathway is the most crucial link in the normal operation and maintenance of physiological functions of mammalian life processes. Notch receptors interact with ligands and this leads to three cleavages and goes on to enter the nucleus to initiate the transcription of target genes. The Notch signaling pathway deeply participates in the differentiation and function of various cells, including immune cells. Recent studies indicate that the outcomes of Notch signaling are changeable and highly dependent on different bacterial infection. The Notch signaling pathway plays a different role in promoting and inhibiting bacterial infection. In this review, we focus on the latest research findings of the Notch signaling pathway in bacterial infectious diseases. The Notch signaling pathway is critically involved in a variety of development processes of immunosuppression of different APCs. The Notch signaling pathway leads to functional changes in epithelial cells to aggravate tissue damage. Specifically, we illustrate the regulatory mechanism of the Notch signaling pathway in various bacterial infections, such as Mycobacterium tuberculosis, Mycobacterium avium paratuberculosis, Mycobacterium leprae, Helicobacter pylori, Klebsiella pneumoniae, Bacillus subtilis, Staphylococcus aureus, Ehrlichia chaffeensis and sepsis. Collectively, this review will not only help beginners intuitively and systematically understand the Notch signaling pathway in bacterial infectious diseases but also help experts to generate fresh insight in this field.
Collapse
Affiliation(s)
- Zhengwei Yin
- The First Affiliated Hospital of Xinjiang Medical University, No. 393, Xinyi Road, Urumqi, 830011, Xinjiang, China
| | - Yuejie Zhu
- Reproductive Fertility Assistance Center, First Affiliated Hospital of Xinjiang Medical University, China
| | - Juan Shi
- The First Affiliated Hospital of Xinjiang Medical University, No. 393, Xinyi Road, Urumqi, 830011, Xinjiang, China
| | - Yueyue He
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, No. 393, Xinyi Road, Urumqi, 830011, Xinjiang, China
| | - Fengbo Zhang
- The First Affiliated Hospital of Xinjiang Medical University, No. 393, Xinyi Road, Urumqi, 830011, Xinjiang, China.
| |
Collapse
|
15
|
Xu C, Zhang N, Yuan H, Wang L, Li Y. Sacubitril/valsartan inhibits the proliferation of vascular smooth muscle cells through notch signaling and ERK1/2 pathway. BMC Cardiovasc Disord 2024; 24:106. [PMID: 38355423 PMCID: PMC10865611 DOI: 10.1186/s12872-024-03764-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/03/2024] [Indexed: 02/16/2024] Open
Abstract
AIMS To explore the role and mechanism of Notch signaling and ERK1/2 pathway in the inhibitory effect of sacubitril/valsartan on the proliferation of vascular smooth muscle cells (VSMCs). MAIN METHODS Human aortic vascular smooth muscle cells (HA-VSMCs) were cultured in vitro. The proliferating VSMCs were divided into three groups as control group, Ang II group and Ang II + sacubitril/valsartan group. Cell proliferation and migration were detected by CCK8 and scratch test respectively. The mRNA and protein expression of PCNA, MMP-9, Notch1 and Jagged-1 were detected by qRT-PCR and Western blot respectively. The p-ERK1/2 expression was detected by Western blot. KEY FINDINGS Compared with the control group, proliferation and migration of VSMCs and the expression of PCNA, MMP-9, Notch1, Jagged-1 and p-ERK1/2 was increased in Ang II group. Sacubitril/valsartan significantly reduced the proliferation and migration. Additionally, pretreatment with sacubitril/valsartan reduced the PCNA, MMP-9, Notch1, Jagged-1 and p-ERK1/2 expression.
Collapse
Affiliation(s)
- Congfeng Xu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266000, China
| | - Ning Zhang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266000, China
| | - Hong Yuan
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266000, China
| | - Liren Wang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266000, China
| | - Yonghong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao, 266000, China.
| |
Collapse
|
16
|
Mašek J, Andersson ER. Jagged-mediated development and disease: Mechanistic insights and therapeutic implications for Alagille syndrome. Curr Opin Cell Biol 2024; 86:102302. [PMID: 38194749 DOI: 10.1016/j.ceb.2023.102302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 01/11/2024]
Abstract
Notch signaling controls multiple aspects of embryonic development and adult homeostasis. Alagille syndrome is usually caused by a single mutation in the jagged canonical Notch ligand 1 (JAG1), and manifests with liver disease and cardiovascular symptoms that are a direct consequence of JAG1 haploinsufficiency. Recent insights into Jag1/Notch-controlled developmental and homeostatic processes explain how pathology develops in the hepatic and cardiovascular systems and, together with recent elucidation of mechanisms modulating liver regeneration, provide a basis for therapeutic efforts. Importantly, disease presentation can be regulated by genetic modifiers, that may also be therapeutically leverageable. Here, we summarize recent insights into how Jag1 controls processes of relevance to Alagille syndrome, focused on Jag1/Notch functions in hepatic and cardiovascular development and homeostasis.
Collapse
Affiliation(s)
- Jan Mašek
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic. https://twitter.com/JanMasekLab
| | - Emma R Andersson
- Dept of Cell and Molecular Biology, Karolinska Institutet, Sweden.
| |
Collapse
|
17
|
Kondelaji MHR, Sharma GP, Jagtap J, Shafiee S, Hansen C, Gasperetti T, Frei A, Veley D, Narayanan J, Fish BL, Parchur AK, Ibrahim ESH, Medhora M, Himburg HA, Joshi A. 2 nd Window NIR Imaging of Radiation Injury Mitigation Provided by Reduced Notch-Dll4 Expression on Vasculature. Mol Imaging Biol 2024; 26:124-137. [PMID: 37530966 PMCID: PMC11188939 DOI: 10.1007/s11307-023-01840-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 08/03/2023]
Abstract
PURPOSE Vascular endothelium plays a central role in the pathogenesis of acute and chronic radiation injuries, yet the mechanisms which promote sustained endothelial dysfunction and contribute to late responding organ failure are unclear. We employed 2nd window (> 1100 nm emission) Near-Infrared (NIR) imaging using indocyanine green (ICG) to track and define the role of the notch ligand Delta-like ligand 4 (Dll4) in mediating vascular injury in two late-responding radiosensitive organs: the lung and kidney. PROCEDURES Consomic strains of female Salt Sensitive or SS (Dll4-high) and SS with 3rd chromosome inherited from Brown Norway, SS.BN3 (Dll4-low) rats at ages 11-12 weeks were used to demonstrate the impact of reduced Dll4 expression on long-term vascular integrity, renal function, and survival following high-dose 13 Gy partial body irradiation at 42- and 90 days post-radiation. 2nd window dynamic NIR fluorescence imaging with ICG was analyzed with physiology-based pharmacokinetic modeling and confirmed with assays of endothelial Dll4 expression to assess the role of endogenous Dll4 expression on radiation injury protection. RESULTS We show that SS.BN3 (Dll4-low) rats are relatively protected from vascular permeability disruption compared to the SS (Dll4-high) strain. We further demonstrated that SS.BN3 (Dll4-low) rats have reduced radiation induced loss of CD31+ vascular endothelial cells, and increased Dll4 vascular expression is correlated with vascular dysfunction. CONCLUSIONS Together, these data suggest Dll4 plays a key role in pathogenesis of radiation-induced vascular injury to the lung and kidney.
Collapse
Affiliation(s)
| | - Guru Prasad Sharma
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jaidip Jagtap
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Shayan Shafiee
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Christopher Hansen
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Tracy Gasperetti
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Anne Frei
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Dana Veley
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jayashree Narayanan
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian L Fish
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Abdul K Parchur
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - El-Sayed H Ibrahim
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Meetha Medhora
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Heather A Himburg
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Amit Joshi
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
18
|
Payne S, Neal A, De Val S. Transcription factors regulating vasculogenesis and angiogenesis. Dev Dyn 2024; 253:28-58. [PMID: 36795082 PMCID: PMC10952167 DOI: 10.1002/dvdy.575] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Transcription factors (TFs) play a crucial role in regulating the dynamic and precise patterns of gene expression required for the initial specification of endothelial cells (ECs), and during endothelial growth and differentiation. While sharing many core features, ECs can be highly heterogeneous. Differential gene expression between ECs is essential to pattern the hierarchical vascular network into arteries, veins and capillaries, to drive angiogenic growth of new vessels, and to direct specialization in response to local signals. Unlike many other cell types, ECs have no single master regulator, instead relying on differing combinations of a necessarily limited repertoire of TFs to achieve tight spatial and temporal activation and repression of gene expression. Here, we will discuss the cohort of TFs known to be involved in directing gene expression during different stages of mammalian vasculogenesis and angiogenesis, with a primary focus on development.
Collapse
Affiliation(s)
- Sophie Payne
- Department of Physiology, Anatomy and GeneticsInstitute of Developmental and Regenerative Medicine, University of OxfordOxfordUK
| | - Alice Neal
- Department of Physiology, Anatomy and GeneticsInstitute of Developmental and Regenerative Medicine, University of OxfordOxfordUK
| | - Sarah De Val
- Department of Physiology, Anatomy and GeneticsInstitute of Developmental and Regenerative Medicine, University of OxfordOxfordUK
| |
Collapse
|
19
|
Yu X, Xu B, Gao T, Fu X, Jiang B, Zhou N, Gao W, Wu T, Shen C, Huang X, Wu Y, Zheng B. E3 ubiquitin ligase RNF187 promotes growth of spermatogonia via lysine 48-linked polyubiquitination-mediated degradation of KRT36/KRT84. FASEB J 2023; 37:e23217. [PMID: 37738023 DOI: 10.1096/fj.202301120r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/25/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023]
Abstract
Ubiquitination is the most common post-translational modification and is essential for various cellular regulatory processes. RNF187, which is known as RING domain AP1 coactivator-1, is a member of the RING finger family. RNF187 can promote the proliferation and migration of various tumor cells. However, whether it has a similar role in regulating spermatogonia is not clear. This study explored the role and molecular mechanism of RNF187 in a mouse spermatogonia cell line (GC-1). We found that RNF187 knockdown reduced the proliferation and migration of GC-1 cells and promoted their apoptosis. RNF187 overexpression significantly increased the proliferation and migration of GC-1 cells. In addition, we identified Keratin36/Keratin84 (KRT36/KRT84) as interactors with RNF187 by co-immunoprecipitation and mass spectrometry analyses. RNF187 promoted GC-1 cell growth by degrading KRT36/KRT84 via lysine 48-linked polyubiquitination. Subsequently, we found that KRT36 or KRT84 overexpression significantly attenuated proliferation and migration of RNF187-overexpressing GC-1 cells. In summary, our study explored the involvement of RNF187 in regulating the growth of spermatogonia via lysine 48-linked polyubiquitination-mediated degradation of KRT36/KRT84. This may provide a promising new strategy for treating infertility caused by abnormal spermatogonia development.
Collapse
Affiliation(s)
- Xiangling Yu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Bingya Xu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Tingting Gao
- Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Xu Fu
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| | - Bing Jiang
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Nianchao Zhou
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Wenxin Gao
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Tiantian Wu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Cong Shen
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| | - Xiaoyan Huang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yibo Wu
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Bo Zheng
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| |
Collapse
|
20
|
Chen C, Wang J, Liu C, Hu J, Liu L. Pioneering therapies for post-infarction angiogenesis: Insight into molecular mechanisms and preclinical studies. Biomed Pharmacother 2023; 166:115306. [PMID: 37572633 DOI: 10.1016/j.biopha.2023.115306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023] Open
Abstract
Acute myocardial infarction (MI), despite significant progress in its treatment, remains a leading cause of chronic heart failure and cardiovascular events such as cardiac arrest. Promoting angiogenesis in the myocardial tissue after MI to restore blood flow in the ischemic and hypoxic tissue is considered an effective treatment strategy. The repair of the myocardial tissue post-MI involves a robust angiogenic response, with mechanisms involved including endothelial cell proliferation and migration, capillary growth, changes in the extracellular matrix, and stabilization of pericytes for neovascularization. In this review, we provide a detailed overview of six key pathways in angiogenesis post-MI: the PI3K/Akt/mTOR signaling pathway, the Notch signaling pathway, the Wnt/β-catenin signaling pathway, the Hippo signaling pathway, the Sonic Hedgehog signaling pathway, and the JAK/STAT signaling pathway. We also discuss novel therapeutic approaches targeting these pathways, including drug therapy, gene therapy, protein therapy, cell therapy, and extracellular vesicle therapy. A comprehensive understanding of these key pathways and their targeted therapies will aid in our understanding of the pathological and physiological mechanisms of angiogenesis after MI and the development and application of new treatment strategies.
Collapse
Affiliation(s)
- Cong Chen
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Jie Wang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China.
| | - Chao Liu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Jun Hu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Lanchun Liu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| |
Collapse
|
21
|
Del Gaudio F, Liu D, Andaloussi Mäe M, Braune EB, Hansson EM, Wang QD, Betsholtz C, Lendahl U. Left ventricular hypertrophy and metabolic resetting in the Notch3-deficient adult mouse heart. Sci Rep 2023; 13:15022. [PMID: 37699967 PMCID: PMC10497627 DOI: 10.1038/s41598-023-42010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/04/2023] [Indexed: 09/14/2023] Open
Abstract
The heart depends on a functional vasculature for oxygenation and transport of nutrients, and it is of interest to learn how primary impairment of the vasculature can indirectly affect cardiac function and heart morphology. Notch3-deficiency causes vascular smooth muscle cell (VSMC) loss in the vasculature but the consequences for the heart remain largely elusive. Here, we demonstrate that Notch3-/- mice have enlarged hearts with left ventricular hypertrophy and mild fibrosis. Cardiomyocytes were hypertrophic but not hyperproliferative, and the expression of several cardiomyocyte markers, including Tnt2, Myh6, Myh7 and Actn2, was altered. Furthermore, expression of genes regulating the metabolic status of the heart was affected: both Pdk4 and Cd36 were downregulated, indicating a metabolic switch from fatty acid oxidation to glucose consumption. Notch3-/- mice furthermore showed lower liver lipid content. Notch3 was expressed in heart VSMC and pericytes but not in cardiomyocytes, suggesting that a perturbation of Notch signalling in VSMC and pericytes indirectly impairs the cardiomyocytes. In keeping with this, Pdgfbret/ret mice, characterized by reduced numbers of VSMC and pericytes, showed left ventricular and cardiomyocyte hypertrophy. In conclusion, we demonstrate that reduced Notch3 or PDGFB signalling in vascular mural cells leads to cardiomyocyte dysfunction.
Collapse
Affiliation(s)
- Francesca Del Gaudio
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Dongli Liu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatrics at the First Affiliated Hospital, Guangxi Medical University in Nanning, Guangxi, People's Republic of China
| | - Maarja Andaloussi Mäe
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Eike-Benjamin Braune
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Emil M Hansson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Qing-Dong Wang
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Christer Betsholtz
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
22
|
Huang L, Sun H, Liu Y, Xu L, Hu M, Yang Y, Wang N, Wu Y, Guo W. GNAQ R183Q somatic mutation contributes to aberrant arteriovenous specification in Sturge-Weber syndrome through Notch signaling. FASEB J 2023; 37:e23148. [PMID: 37606556 DOI: 10.1096/fj.202300608r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/08/2023] [Accepted: 08/04/2023] [Indexed: 08/23/2023]
Abstract
Episcleral vasculature malformation is a significant feature of Sturge-Weber syndrome (SWS) secondary glaucoma, the density and diameter of which are correlated with increased intraocular pressure. We previously reported that the GNAQ R183Q somatic mutation was located in the SWS episclera. However, the mechanism by which GNAQ R183Q leads to episcleral vascular malformation remains poorly understood. In this study, we investigated the correlation between GNAQ R183Q and episcleral vascular malformation via surgical specimens, human umbilical vein endothelial cells (HUVECs), and the HUVEC cell line EA.hy926. Our findings demonstrated a positive correlation between episcleral vessel diameter and the frequency of the GNAQ R183Q variant. Furthermore, the upregulation of genes from the Notch signaling pathway and abnormal coexpression of the arterial marker EphrinB2 and venous marker EphB4 were demonstrated in the scleral vasculature of SWS. Analysis of HUVECs overexpressing GNAQ R183Q in vitro confirmed the upregulation of Notch signaling and arterial markers. In addition, knocking down of Notch1 diminished the upregulation of arterial markers induced by GNAQ R183Q. Our findings strongly suggest that GNAQ R183Q leads to malformed episcleral vasculatures through Notch-induced aberrant arteriovenous specification. These insights into the molecular basis of episcleral vascular malformation will provide new pathways for the development of effective treatments for SWS secondary glaucoma.
Collapse
Affiliation(s)
- Lulu Huang
- Department of Ophthalmology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Hao Sun
- Department of Ophthalmology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yixin Liu
- Department of Ophthalmology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Li Xu
- Department of Ophthalmology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Menghan Hu
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, Shanghai, China
| | - Yijie Yang
- Department of Ophthalmology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Ning Wang
- Department of Ophthalmology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yue Wu
- Department of Ophthalmology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Wenyi Guo
- Department of Ophthalmology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
23
|
Ji G, Zhang M, Tu Y, Liu Y, Shan Y, Ju X, Zou J, Shu J, Sheng Z, Li H. Molecular Regulatory Mechanisms in Chicken Feather Follicle Morphogenesis. Genes (Basel) 2023; 14:1646. [PMID: 37628697 PMCID: PMC10454116 DOI: 10.3390/genes14081646] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
In China, the sale of freshly slaughtered chickens is becoming increasingly popular in comparison with that of live chickens, and due to this emerging trend, the skin and feather follicle traits of yellow-feathered broilers have attracted a great deal of research attention. The feather follicle originates from the interaction between the epidermis and dermis in the early embryonic stage. Feather follicle morphogenesis is regulated by the Wnt, ectodysplasin (Eda), epidermal growth factor (EGF), fibroblast growth factor (FGF), bone morphogenetic protein (BMP), sonic hedgehog (Shh), Notch, and other signaling pathways that exist in epithelial and mesenchymal cells. The Wnt pathway is essential for feather follicle and feather morphogenesis. Eda interacts with Wnt to induce FGF expression, which attracts mesenchymal cell movement and aggregates to form feather follicle primordia. BMP acts as an inhibitor of the above signaling pathways to limit the size of the feather tract and distance between neighboring feather primordia in a dose-dependent manner. The Notch/Delta pathway can interact with the FGF pathway to promote feather bud formation. While not a part of the early morphogenesis of feather follicles, Shh and BMP signaling are involved in late feather branching. This review summarizes the roles of miRNAs/lncRNA in the regulation of feather follicle and feather growth and development and suggests topics that need to be solved in a future study. This review focuses on the regulatory mechanisms involved in feather follicle morphogenesis and analyzes the impact of SNP sites on feather follicle traits in poultry. This work may help us to understand the molecular regulatory networks influencing feather follicle growth and provide basic data for poultry carcass quality.
Collapse
Affiliation(s)
- Gaige Ji
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Chinese Academy of Agricultural Science, Institute of Poultry Science, Yangzhou 225125, China
| | - Ming Zhang
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Chinese Academy of Agricultural Science, Institute of Poultry Science, Yangzhou 225125, China
| | - Yunjie Tu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Chinese Academy of Agricultural Science, Institute of Poultry Science, Yangzhou 225125, China
| | - Yifan Liu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Chinese Academy of Agricultural Science, Institute of Poultry Science, Yangzhou 225125, China
| | - Yanju Shan
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Chinese Academy of Agricultural Science, Institute of Poultry Science, Yangzhou 225125, China
| | - Xiaojun Ju
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Chinese Academy of Agricultural Science, Institute of Poultry Science, Yangzhou 225125, China
| | - Jianmin Zou
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Chinese Academy of Agricultural Science, Institute of Poultry Science, Yangzhou 225125, China
| | - Jingting Shu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Chinese Academy of Agricultural Science, Institute of Poultry Science, Yangzhou 225125, China
| | - Zhongwei Sheng
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Chinese Academy of Agricultural Science, Institute of Poultry Science, Yangzhou 225125, China
| | - Hua Li
- School of Life Science and Engineering, Foshan University, Foshan 528231, China
| |
Collapse
|
24
|
Nakisli S, Lagares A, Nielsen CM, Cuervo H. Pericytes and vascular smooth muscle cells in central nervous system arteriovenous malformations. Front Physiol 2023; 14:1210563. [PMID: 37601628 PMCID: PMC10437819 DOI: 10.3389/fphys.2023.1210563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/29/2023] [Indexed: 08/22/2023] Open
Abstract
Previously considered passive support cells, mural cells-pericytes and vascular smooth muscle cells-have started to garner more attention in disease research, as more subclassifications, based on morphology, gene expression, and function, have been discovered. Central nervous system (CNS) arteriovenous malformations (AVMs) represent a neurovascular disorder in which mural cells have been shown to be affected, both in animal models and in human patients. To study consequences to mural cells in the context of AVMs, various animal models have been developed to mimic and predict human AVM pathologies. A key takeaway from recently published work is that AVMs and mural cells are heterogeneous in their molecular, cellular, and functional characteristics. In this review, we summarize the observed perturbations to mural cells in human CNS AVM samples and CNS AVM animal models, and we discuss various potential mechanisms relating mural cell pathologies to AVMs.
Collapse
Affiliation(s)
- Sera Nakisli
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- Neuroscience Program, Ohio University, Athens, OH, United States
| | - Alfonso Lagares
- Department of Neurosurgery, University Hospital 12 de Octubre, Madrid, Spain
- Department of Surgery, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Imas12, Madrid, Spain
| | - Corinne M. Nielsen
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- Neuroscience Program, Ohio University, Athens, OH, United States
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States
| | - Henar Cuervo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (F.S.P), Madrid, Spain
| |
Collapse
|
25
|
Langa P, Shafaattalab S, Goldspink PH, Wolska BM, Fernandes AA, Tibbits GF, Solaro RJ. A perspective on Notch signalling in progression and arrhythmogenesis in familial hypertrophic and dilated cardiomyopathies. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220176. [PMID: 37122209 PMCID: PMC10150215 DOI: 10.1098/rstb.2022.0176] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/13/2022] [Indexed: 05/02/2023] Open
Abstract
In this perspective, we discussed emerging data indicating a role for Notch signalling in inherited disorders of the heart failure with focus on hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) linked to variants of genes encoding mutant proteins of the sarcomere. We recently reported an upregulation of elements in the Notch signalling cascade in cardiomyocytes derived from human inducible pluripotent stem cells expressing a TNNT2 variant encoding cardiac troponin T (cTnT-I79N+/-), which induces hypertrophy, remodelling, abnormalities in excitation-contraction coupling and electrical instabilities (Shafaattalab S et al. 2021 Front. Cell Dev. Biol. 9, 787581. (doi:10.3389/fcell.2021.787581)). Our search of the literature revealed the novelty of this finding and stimulated us to discuss potential connections between the Notch signalling pathway and familial cardiomyopathies. Our considerations focused on the potential role of these interactions in arrhythmias, microvascular ischaemia, and fibrosis. This finding underscored a need to consider the role of Notch signalling in familial cardiomyopathies which are trigged by sarcomere mutations engaging mechano-signalling pathways for which there is evidence of a role for Notch signalling with crosstalk with Hippo signalling. Our discussion included a role for both cardiac myocytes and non-cardiac myocytes in progression of HCM and DCM. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- Paulina Langa
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, Chicago, IL, 60612, USA
| | - Sanam Shafaattalab
- Molecular Biology and Biochemistry; BC Children’s Hospital Research Institute, Vancouver, BC, V5Z 4H4; Simon Fraser University Burnaby, British Columbia, V5A 4H4, Canada
| | - Paul H. Goldspink
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, Chicago, IL, 60612, USA
| | - Beata M. Wolska
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, Chicago, IL, 60612, USA
- Department of Medicine, Division of Cardiology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Aurelia A. Fernandes
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, Chicago, IL, 60612, USA
| | - Glen F. Tibbits
- Molecular Biology and Biochemistry; BC Children’s Hospital Research Institute, Vancouver, BC, V5Z 4H4; Simon Fraser University Burnaby, British Columbia, V5A 4H4, Canada
| | - R. John Solaro
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, Chicago, IL, 60612, USA
| |
Collapse
|
26
|
Wen T, Duan Y, Gao D, Zhang X, Zhang X, Liang L, Yang Z, Zhang P, Zhang J, Sun J, Feng Y, Zheng Q, Han H, Yan X. miR-342-5p promotes vascular smooth muscle cell phenotypic transition through a negative-feedback regulation of Notch signaling via targeting FOXO3. Life Sci 2023:121828. [PMID: 37270171 DOI: 10.1016/j.lfs.2023.121828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/05/2023]
Abstract
AIM Under various pathological conditions such as cancer, vascular smooth muscle cells (vSMCs) transit their contractile phenotype into phenotype(s) characterized by proliferation and secretion, a process called vSMC phenotypic transition (vSMC-PT). Notch signaling regulates vSMC development and vSMC-PT. This study aims to elucidate how the Notch signal is regulated. MAIN METHODS Gene-modified mice with a SM22α-CreERT2 transgene were generated to activate/block Notch signaling in vSMCs. Primary vSMCs and MOVAS cells were cultured in vitro. RNA-seq, qRT-PCR and Western blotting were used to evaluated gene expression level. EdU incorporation, Transwell and collagen gel contraction assays were conducted to determine the proliferation, migration and contraction, respectively. KEY FINDINGS Notch activation upregulated, while Notch blockade downregulated, miR-342-5p and its host gene Evl in vSMCs. However, miR-342-5p overexpression promoted vSMC-PT as shown by altered gene expression profile, increased migration and proliferation, and decreased contraction, while miR-342-5p blockade exhibited the opposite effects. Moreover, miR-342-5p overexpression significantly suppressed Notch signaling, and Notch activation partially abolished miR-342-5p-induced vSMC-PT. Mechanically, miR-342-5p directly targeted FOXO3, and FOXO3 overexpression rescued miR-342-5p-induced Notch repression and vSMC-PT. In a simulated tumor microenvironment, miR-342-5p was upregulated by tumor cell-derived conditional medium (TCM), and miR-342-5p blockade abrogated TCM-induced vSMC-PT. Meanwhile, conditional medium from miR-342-5p-overexpressing vSMCs significantly enhanced tumor cell proliferation, while miR-342-5p blockade had the opposite effects. Consistently, in a co-inoculation tumor model, miR-342-5p blockade in vSMCs significantly delayed tumor growth. SIGNIFICANCE miR-342-5p promotes vSMC-PT through a negative-feedback regulation of Notch signaling via downregulating FOXO3, which could be a potential target for cancer therapy.
Collapse
Affiliation(s)
- Ting Wen
- Faculty of Life Sciences, Northwest University, Xi'an 710069, China; State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Yanyan Duan
- Faculty of Life Sciences, Northwest University, Xi'an 710069, China; State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Dan Gao
- Faculty of Life Sciences, Northwest University, Xi'an 710069, China; State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Xinxin Zhang
- College of Pulmonary and Critical Care Medicine, The 8th Medical Centre of Chinese PLA General Hospital, Beijing 100091, China
| | - Xiaoyan Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Liang Liang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Ziyan Yang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Peiran Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Jiayulin Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Jiaxing Sun
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yixuan Feng
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Qijun Zheng
- Department of Cardiovascular Surgery, Shenzhen People's Hospital, Shenzhen 518020, China.
| | - Hua Han
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China; Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China.
| | - Xianchun Yan
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
27
|
Franco-Acevedo A, Comes J, Mack JJ, Valenzuela NM. New insights into maladaptive vascular responses to donor specific HLA antibodies in organ transplantation. FRONTIERS IN TRANSPLANTATION 2023; 2:1146040. [PMID: 38993843 PMCID: PMC11235244 DOI: 10.3389/frtra.2023.1146040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/03/2023] [Indexed: 07/13/2024]
Abstract
Transplant vasculopathy (TV) causes thickening of donor blood vessels in transplanted organs, and is a significant cause of graft loss and mortality in allograft recipients. It is known that patients with repeated acute rejection and/or donor specific antibodies are predisposed to TV. Nevertheless, the exact molecular mechanisms by which alloimmune injury culminates in this disease have not been fully delineated. As a result of this incomplete knowledge, there is currently a lack of effective therapies for this disease. The immediate intracellular signaling and the acute effects elicited by anti-donor HLA antibodies are well-described and continuing to be revealed in deeper detail. Further, advances in rejection diagnostics, including intragraft gene expression, provide clues to the inflammatory changes within allografts. However, mechanisms linking these events with long-term outcomes, particularly the maladaptive vascular remodeling seen in transplant vasculopathy, are still being delineated. New evidence demonstrates alterations in non-coding RNA profiles and the occurrence of endothelial to mesenchymal transition (EndMT) during acute antibody-mediated graft injury. EndMT is also readily apparent in numerous settings of non-transplant intimal hyperplasia, and lessons can be learned from advances in those fields. This review will provide an update on these recent developments and remaining questions in our understanding of HLA antibody-induced vascular damage, framed within a broader consideration of manifestations and implications across transplanted organ types.
Collapse
Affiliation(s)
- Adriana Franco-Acevedo
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, United States
| | - Johanna Comes
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Julia J Mack
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, CA, United States
| | - Nicole M Valenzuela
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, United States
| |
Collapse
|
28
|
Haffner C. The emerging role of the HTRA1 protease in brain microvascular disease. FRONTIERS IN DEMENTIA 2023; 2:1146055. [PMID: 39081996 PMCID: PMC11285548 DOI: 10.3389/frdem.2023.1146055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/10/2023] [Indexed: 08/02/2024]
Abstract
Pathologies of the brain microvasculature, often referred to as cerebral small-vessel disease, are important contributors to vascular dementia, the second most common form of dementia in aging societies. In addition to their role in acute ischemic and hemorrhagic stroke, they have emerged as major cause of age-related cognitive decline in asymptomatic individuals. A central histological finding in these pathologies is the disruption of the vessel architecture including thickening of the vessel wall, narrowing of the vessel lumen and massive expansion of the mural extracellular matrix. The underlying molecular mechanisms are largely unknown, but from the investigation of several disease forms with defined etiology, high temperature requirement protein A1 (HTRA1), a secreted serine protease degrading primarily matrisomal substrates, has emerged as critical factor and potential therapeutic target. A genetically induced loss of HTRA1 function in humans is associated with cerebral autosomal-recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL), a rare, hereditary form of brain microvascular disease. Recently, proteomic studies on cerebral amyloid angiopathy (CAA), a common cause of age-related dementia, and cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), the most prevalent monogenic small-vessel disease, have provided evidence for an impairment of HTRA1 activity through sequestration into pathological protein deposits, suggesting an alternative mechanism of HTRA1 inactivation and expanding the range of diseases with HTRA1 involvement. Further investigations of the mechanisms of HTRA1 regulation in the brain microvasculature might spawn novel strategies for the treatment of small-vessel pathologies.
Collapse
Affiliation(s)
- Christof Haffner
- Department of Psychiatry and Psychotherapy, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
29
|
Belyaeva E, Loginova N, Schroeder BA, Goldlust IS, Acharya A, Kumar S, Timashev P, Ulasov I. The spectrum of cell death in sarcoma. Biomed Pharmacother 2023; 162:114683. [PMID: 37031493 DOI: 10.1016/j.biopha.2023.114683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023] Open
Abstract
The balance between cell death and cell survival is a highly coordinated process by which cells break down and remove unnecessary or harmful materials in a controlled, highly regulated, and compartmentalized manner. Cell exposure to various stresses, such as oxygen starvation, a lack of nutrients, or exposure to radiation, can initiate autophagy. Autophagy is a carefully orchestrated process with multiple steps, each regulated by specific genes and proteins. Autophagy proteins impact cellular maintenance and cell fate in response to stress, and targeting this process is one of the most promising methods of anti-tumor therapy. It is currently not fully understood how autophagy affects different types of tumor cells, which makes it challenging to predict outcomes when this process is manipulated. In this review, we will explore the mechanisms of autophagy and investigate it as a potential and promising therapeutic target for aggressive sarcomas.
Collapse
Affiliation(s)
- Elizaveta Belyaeva
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Nina Loginova
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Brett A Schroeder
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Ian S Goldlust
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Arbind Acharya
- Laboratory of Cancer Immunology, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Sandeep Kumar
- Laboratory of Cancer Immunology, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Peter Timashev
- World-Class Research Centre "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia.
| |
Collapse
|
30
|
Garrison AT, Bignold RE, Wu X, Johnson JR. Pericytes: The lung-forgotten cell type. Front Physiol 2023; 14:1150028. [PMID: 37035669 PMCID: PMC10076600 DOI: 10.3389/fphys.2023.1150028] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Pericytes are a heterogeneous population of mesenchymal cells located on the abluminal surface of microvessels, where they provide structural and biochemical support. Pericytes have been implicated in numerous lung diseases including pulmonary arterial hypertension (PAH) and allergic asthma due to their ability to differentiate into scar-forming myofibroblasts, leading to collagen deposition and matrix remodelling and thus driving tissue fibrosis. Pericyte-extracellular matrix interactions as well as other biochemical cues play crucial roles in these processes. In this review, we give an overview of lung pericytes, the key pro-fibrotic mediators they interact with, and detail recent advances in preclinical studies on how pericytes are disrupted and contribute to lung diseases including PAH, allergic asthma, and chronic obstructive pulmonary disease (COPD). Several recent studies using mouse models of PAH have demonstrated that pericytes contribute to these pathological events; efforts are currently underway to mitigate pericyte dysfunction in PAH by targeting the TGF-β, CXCR7, and CXCR4 signalling pathways. In allergic asthma, the dissociation of pericytes from the endothelium of blood vessels and their migration towards inflamed areas of the airway contribute to the characteristic airway remodelling observed in allergic asthma. Although several factors have been suggested to influence this migration such as TGF-β, IL-4, IL-13, and periostin, recent evidence points to the CXCL12/CXCR4 pathway as a potential therapeutic target. Pericytes might also play an essential role in lung dysfunction in response to ageing, as they are responsive to environmental risk factors such as cigarette smoke and air pollutants, which are the main drivers of COPD. However, there is currently no direct evidence delineating the contribution of pericytes to COPD pathology. Although there is a lack of human clinical data, the recent available evidence derived from in vitro and animal-based models shows that pericytes play important roles in the initiation and maintenance of chronic lung diseases and are amenable to pharmacological interventions. Therefore, further studies in this field are required to elucidate if targeting pericytes can treat lung diseases.
Collapse
Affiliation(s)
- Annelise T. Garrison
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Rebecca E. Bignold
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Xinhui Wu
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Jill R. Johnson
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| |
Collapse
|
31
|
Hashimoto D, Fujimoto K, Kim SW, Lee YS, Nakata M, Suzuki K, Wada Y, Asamura S, Yamada G. Emerging structural and pathological analyses on the erectile organ, corpus cavernous containing sinusoids. Reprod Med Biol 2023; 22:e12539. [PMID: 37663955 PMCID: PMC10472535 DOI: 10.1002/rmb2.12539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023] Open
Abstract
Background The corpus cavernosum (CC) containing sinusoids plays fundamental roles for erection. Analysis of pathological changes in the erectile system is studied by recent experimental systems. Various in vitro models utilizing genital mesenchymal-derived cells and explant culture systems are summarized. Methods 3D reconstruction of section images of murine CC was created. Ectopic chondrogenesis in aged mouse CC was shown by a gene expression study revealing the prominent expression of Sox9. Various experimental strategies utilizing mesenchyme-derived primary cells and tissue explants are introduced. Main Findings Possible roles of Sox9 in chondrogenesis and its regulation by several signals are suggested. The unique character of genital mesenchyme is shown by various analyses of external genitalia (ExG) derived cells and explant cultures. Such strategies are also applied to the analysis of erectile contraction/relaxation responses to many signals and aging process. Conclusion Erectile dysfunction (ED) is one of the essential topics for the modern aged society. More comprehensive studies are necessary to reveal the nature of the erectile system by combining multiple cell culture strategies.
Collapse
Affiliation(s)
- Daiki Hashimoto
- Department of Developmental Genetics, Institute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
- Department of Physiology and Regenerative Medicine, Faculty of MedicineKindai UniversityOsakaJapan
| | - Kota Fujimoto
- Department of Developmental Genetics, Institute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
- Department of Plastic and Reconstructive Surgery, Graduate School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Sang Woon Kim
- Department of Urology, Urological Science InstituteYonsei University College of MedicineSeoulSouth Korea
| | - Yong Seung Lee
- Department of Urology, Urological Science InstituteYonsei University College of MedicineSeoulSouth Korea
| | - Masanori Nakata
- Department of Physiology, Faculty of MedicineWakayama Medical UniversityWakayamaJapan
| | - Kentaro Suzuki
- Faculty of Life and Environmental SciencesUniversity of YamanashiYamanashiJapan
| | - Yoshitaka Wada
- Department of Plastic and Reconstructive Surgery, Graduate School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Shinichi Asamura
- Department of Plastic and Reconstructive Surgery, Graduate School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Gen Yamada
- Department of Developmental Genetics, Institute of Advanced MedicineWakayama Medical UniversityWakayamaJapan
- Department of Plastic and Reconstructive Surgery, Graduate School of MedicineWakayama Medical UniversityWakayamaJapan
| |
Collapse
|
32
|
Chen S, Zhang J, Li M, Zhou J, Zhang Y. Danhong injection combined with tPA protects the BBB through Notch-VEGF signaling pathway on long-term outcomes of thrombolytic therapy. Biomed Pharmacother 2022; 153:113288. [PMID: 35717787 DOI: 10.1016/j.biopha.2022.113288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022] Open
Abstract
Current therapy for ischemic stroke primarily relies on tissue plasminogen activator (tPA), but it is limited by narrow treatment time window, bleeding complications and neurotoxicity. The preliminary study of tPA plus Danhong injection (DHI) shows that it can significantly reduce the side effects of tPA and improve its thrombolytic effect, but the mechanism of this action has not been further studied. In this study, the rats were randomly divided into sham group, vehicle group, DHI group (4 mL/kg), tPA group (5 mg/kg) and DHI+tPA group (4 mL/kg+ 2.5 mg/kg), administered intravenously 4.5 h since focal embolic stroke modeling. After 3 days and 7 days of cerebral ischemia, the neurological function of each treatment group was significantly improved compared with the vehicle group. The combination of DHI and tPA significantly reduced Evans blue (EB) penetration as well as the expressions of the proteins MMP-9, PAI-1 and P-selectin, while upregulating the expressions of claudin-5, occludin, and ZO-1 mRNA. Furthermore, the effect of continuous 7-day treatment was more conspicuous than 3-day treatment. Then, it significantly reduced the expressions of the proteins DLL-4 and VEGFR-2, increased the expressions of Notch-1, HIF-1α and HES-1 mRNA, and promoted the expressions of VEGF/HIF-1α-positive cells at 14 days following stroke. Hematoxylin-eosin (HE) staining and transmission electron microscopy (TEM) also showed that it improved pathological changes of ischemic brain tissue and the cerebral cortex micro-structure. These indicate that DHI combined with tPA may significantly ameliorate blood-brain barrier (BBB) disruption by activating Notch-VEGF signaling pathway to promote angiogenesis for long-term outcomes.
Collapse
Affiliation(s)
- Simiao Chen
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China.
| | - Jinghui Zhang
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China.
| | - Min Li
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China.
| | - Jing Zhou
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China.
| | - Yuyan Zhang
- College of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China.
| |
Collapse
|
33
|
Roles of Notch Signaling in the Tumor Microenvironment. Int J Mol Sci 2022; 23:ijms23116241. [PMID: 35682918 PMCID: PMC9181414 DOI: 10.3390/ijms23116241] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
The Notch signaling pathway is an architecturally simple signaling mechanism, well known for its role in cell fate regulation during organ development and in tissue homeostasis. In keeping with its importance for normal development, dysregulation of Notch signaling is increasingly associated with different types of tumors, and proteins in the Notch signaling pathway can act as oncogenes or tumor suppressors, depending on the cellular context and tumor type. In addition to a role as a driver of tumor initiation and progression in the tumor cells carrying oncogenic mutations, it is an emerging realization that Notch signaling also plays a role in non-mutated cells in the tumor microenvironment. In this review, we discuss how aberrant Notch signaling can affect three types of cells in the tumor stroma-cancer-associated fibroblasts, immune cells and vascular cells-and how this influences their interactions with the tumor cells. Insights into the roles of Notch in cells of the tumor environment and the impact on tumor-stroma interactions will lead to a deeper understanding of Notch signaling in cancer and inspire new strategies for Notch-based tumor therapy.
Collapse
|