1
|
Patrón-Rivero C, Osorio-Olvera L, Rojas-Soto O, Chiappa-Carrara X, Villalobos F, Bessesen B, López-Reyes K, Yañez-Arenas C. Global analysis of the influence of environmental variables to explain ecological niches and realized thermal niche boundaries of sea snakes. PLoS One 2024; 19:e0310456. [PMID: 39636927 PMCID: PMC11620380 DOI: 10.1371/journal.pone.0310456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/02/2024] [Indexed: 12/07/2024] Open
Abstract
Understanding the factors affecting species distributions is a central topic in ecology and biogeography. However, most research on this topic has focused on species inhabiting terrestrial environments. At broad scales, abiotic variables consistently serve as primary determinants of species' distributions. In this study, we investigated the explanatory power of different abiotic variables in determining the distribution patterns of sea snakes on a global scale. Additionally, as the boundaries of realized thermal niches have significant implications for the ecology of species and their geographic distributions, we evaluated the asymmetry of realized thermal limits (i.e., differences in variances between the upper and lower limits of the realized thermal niche). We obtained 10 marine environmental variables from global databases along with >5000 occurrence records for 51 sea snake species in 4 genera across the group's entire known geographic range. Using these data, we employed correlative ecological niche modeling to analyze the influence of the individual variables in explaining species' distributions. To estimate the realized thermal limits of each species, we extracted the mean, minimum, and maximum temperature values at four depths (superficial, mean benthic, minimum benthic, and maximum benthic) for each occurrence record of the species. We then evaluated the asymmetry of the realized thermal niche by measuring and comparing the variances in the upper and lower limits. Both analyses (the importance of variables and realized thermal limit asymmetry) were performed at three taxonomic levels (sea snakes as a lineage of marine-adapted elapids [true sea snakes + sea kraits], subfamily, and genus) and two spatial resolutions. Overall, we found that temperature, silicate, nitrate, salinity, and phosphate concentrations were the most influential factors in explaining the spatial distribution patterns of sea snakes, regardless of taxonomic level or spatial resolution. Similarly, we observed that the realized thermal limits were asymmetric, with a higher variance in the lower limits, and that asymmetry decreased as the taxonomic level and spatial resolution increased.
Collapse
Affiliation(s)
- Carlos Patrón-Rivero
- Laboratorio de Ecología Geográfica, Unidad de Conservación de la Biodiversidad, UMDI-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Sierra Papacal, Yucatán, Mexico
| | - Luis Osorio-Olvera
- Laboratorio de Ecoinformática de la Biodiversidad, Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior s/n Anexo al Jardín Botánico, Ciudad Universitaria, Coyoacán, Ciudad de México, México
| | - Octavio Rojas-Soto
- Laboratorio de Bioclimatología, Red de Biología Evolutiva, Instituto de Ecología A.C., Xalapa, Veracruz, México
| | - Xavier Chiappa-Carrara
- Departamento de Sistemas y Procesos Naturales, Escuela Nacional de Estudios Superiores Unidad Mérida, Universidad Nacional Autónoma de Mexico, Ucú, Yucatán, Mexico
| | - Fabricio Villalobos
- Laboratorio de Macroecología Evolutiva Red de Biología Evolutiva, Instituto de Ecología, A.C, Xalapa, Veracruz, México
| | - Brooke Bessesen
- Department of Ecology and Evolutionary Biology, University of Reading, Reading, United Kingdom
| | - Kevin López-Reyes
- Laboratorio de Ecología Geográfica, Unidad de Conservación de la Biodiversidad, UMDI-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Sierra Papacal, Yucatán, Mexico
| | - Carlos Yañez-Arenas
- Laboratorio de Ecología Geográfica, Unidad de Conservación de la Biodiversidad, UMDI-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Sierra Papacal, Yucatán, Mexico
| |
Collapse
|
2
|
Crowe-Riddell JM, Zdenek CN, Sanders KL, Rasmussen AR. Sea snakes. Curr Biol 2024; 34:R806-R807. [PMID: 39255759 DOI: 10.1016/j.cub.2024.07.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Jenna Crowe-Riddell and colleagues introduce sea snakes.
Collapse
Affiliation(s)
- Jenna M Crowe-Riddell
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia.
| | | | - Kate L Sanders
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Arne R Rasmussen
- Institute of Conservation, The Royal Danish Academy, Copenhagen, Denmark
| |
Collapse
|
3
|
Rossetto IH, Ludington AJ, Simões BF, Van Cao N, Sanders KL. Dynamic Expansions and Retinal Expression of Spectrally Distinct Short-Wavelength Opsin Genes in Sea Snakes. Genome Biol Evol 2024; 16:evae150. [PMID: 38985750 PMCID: PMC11316226 DOI: 10.1093/gbe/evae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024] Open
Abstract
The photopigment-encoding visual opsin genes that mediate color perception show great variation in copy number and adaptive function across vertebrates. An open question is how this variation has been shaped by the interaction of lineage-specific structural genomic architecture and ecological selection pressures. We contribute to this issue by investigating the expansion dynamics and expression of the duplicated Short-Wavelength-Sensitive-1 opsin (SWS1) in sea snakes (Elapidae). We generated one new genome, 45 resequencing datasets, 10 retinal transcriptomes, and 81 SWS1 exon sequences for sea snakes, and analyzed these alongside 16 existing genomes for sea snakes and their terrestrial relatives. Our analyses revealed multiple independent transitions in SWS1 copy number in the marine Hydrophis clade, with at least three lineages having multiple intact SWS1 genes: the previously studied Hydrophis cyanocinctus and at least two close relatives of this species; Hydrophis atriceps and Hydrophis fasciatus; and an individual Hydrophis curtus. In each lineage, gene copy divergence at a key spectral tuning site resulted in distinct UV and Violet/Blue-sensitive SWS1 subtypes. Both spectral variants were simultaneously expressed in the retinae of H. cyanocinctus and H. atriceps, providing the first evidence that these SWS1 expansions confer novel phenotypes. Finally, chromosome annotation for nine species revealed shared structural features in proximity to SWS1 regardless of copy number. If these features are associated with SWS1 duplication, expanded opsin complements could be more common in snakes than is currently recognized. Alternatively, selection pressures specific to aquatic environments could favor improved chromatic distinction in just some lineages.
Collapse
Affiliation(s)
- Isaac H Rossetto
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Alastair J Ludington
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Bruno F Simões
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Nguyen Van Cao
- Department of Aquaculture Biotechnology, Vietnamese Academy of Science and Technology, Institute of Oceanography, Nha Trang, Khánh Hòa, Vietnam
| | - Kate L Sanders
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
4
|
Tingle JL, Garner KL, Astley HC. Functional diversity of snake locomotor behaviors: A review of the biological literature for bioinspiration. Ann N Y Acad Sci 2024; 1533:16-37. [PMID: 38367220 DOI: 10.1111/nyas.15109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Organismal solutions to natural challenges can spark creative engineering applications. However, most engineers are not experts in organismal biology, creating a potential barrier to maximally effective bioinspired design. In this review, we aim to reduce that barrier with respect to a group of organisms that hold particular promise for a variety of applications: snakes. Representing >10% of tetrapod vertebrates, snakes inhabit nearly every imaginable terrestrial environment, moving with ease under many conditions that would thwart other animals. To do so, they employ over a dozen different types of locomotion (perhaps well over). Lacking limbs, they have evolved axial musculoskeletal features that enable their vast functional diversity, which can vary across species. Different species also have various skin features that provide numerous functional benefits, including frictional anisotropy or isotropy (as their locomotor habits demand), waterproofing, dirt shedding, antimicrobial properties, structural colors, and wear resistance. Snakes clearly have much to offer to the fields of robotics and materials science. We aim for this review to increase knowledge of snake functional diversity by facilitating access to the relevant literature.
Collapse
Affiliation(s)
| | - Kelsey L Garner
- Department of Biology, University of Akron, Akron, Ohio, USA
| | - Henry C Astley
- Department of Biology, University of Akron, Akron, Ohio, USA
| |
Collapse
|
5
|
Shine R, Meiri S, Shine TG, Brown GP, Goiran C. The adaptive significance of large size at birth in marine snakes. ROYAL SOCIETY OPEN SCIENCE 2023; 10:231429. [PMID: 38094277 PMCID: PMC10716650 DOI: 10.1098/rsos.231429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/23/2023] [Indexed: 01/11/2024]
Abstract
Evolutionary shifts from one habitat type to another can clarify selective forces that affect life-history attributes. Four lineages of snakes (acrochordids and three clades within the Elapidae) have invaded marine habitats, and all have larger offspring than do terrestrial snakes. Predation by fishes on small neonates offers a plausible selective mechanism for that shift, because ascending to breathe at the ocean surface exposes a marine snake to midwater predation whereas juvenile snakes in terrestrial habitats can remain hidden. Consistent with this hypothesis, snake-shaped models moving through a coral-reef habitat in New Caledonia attracted high rates of attack by predatory fishes, and small models (the size of neonatal terrestrial snakes) were attacked more frequently than were large models (the size of neonatal sea snakes). Vulnerability to predatory fishes may have imposed strong selection for increased offspring size in marine snakes.
Collapse
Affiliation(s)
- Richard Shine
- School of Natural Sciences, Macquarie University, New South Wales 2109, Australia
| | - Shai Meiri
- School of Zoology, Tel-Aviv University, 6997801 Tel Aviv, Israel
- The Steinhardt Museum of Natural History, Tel-Aviv University, 6997801 Tel Aviv, Israel
| | - Terri G. Shine
- School of Natural Sciences, Macquarie University, New South Wales 2109, Australia
| | - Gregory P. Brown
- School of Natural Sciences, Macquarie University, New South Wales 2109, Australia
| | - Claire Goiran
- LabEx Corail & ISEA, Université de la Nouvelle-Calédonie, BP R4, 98851 Nouméa cedex, New Caledonia
| |
Collapse
|
6
|
Martin SB, De Silva MLI, Pathirana E, Rajapakse RPVJ. Polyphyly of the Dinurinae Looss, 1907 (Digenea: Hemiuridae) and resurrection of the Mecoderinae Skrjabin & Guschanskaja, 1954 based on novel collection of Tubulovesicula laticaudi Parukhin, 1969 from marine elapid snakes in Sri Lanka. Parasitol Int 2023; 97:102776. [PMID: 37437775 DOI: 10.1016/j.parint.2023.102776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
With one exception, the only known hemiurid trematodes that do not use teleost fishes as definitive hosts instead occur in marine elapid snakes. These comprise six species across four genera and three subfamilies, and so presumably indicate at least three independent invasions of marine snakes from teleost fishes. Here, one of these taxa, Tubulovesicula laticaudi Parukhin, 1969 (= T. orientalis Chattopadhyaya, 1970 n. syn.) is reported from Sri Lanka, collected from Shaw's sea snake Hydrophis curtus (Shaw) (Elapidae: Hydrophiinae: Hydrophinii), the annulated sea snake H. cyanocinctus Daudin and the yellow sea snake H. spiralis (Shaw) off Nayaru in the Bay of Bengal, and from H. spiralis in Portugal Bay, Gulf of Mannar. Novel molecular data, for COI mtDNA and ITS2 and 28S rDNA, are the first for a species of Tubulovesicula Yamaguti, 1934. Nominally, Tubulovesicula belongs in the Dinurinae Looss, 1907, but in phylogenetic analyses based on 28S rDNA, our sequences for T. laticaudi resolved relatively distant from that for representatives of Dinurus Looss, 1907, the type-genus, rendering the subfamily polyphyletic. Tubulovesicula laticaudi resolved closest to data for the type-species of the Plerurinae Gibson & Bray, 1979, but that subfamily is also polyphyletic. These findings lead us to re-evaluate an alternative classification considered by Gibson & Bray (1979). We propose restricting the Dinurinae for forms with a permanent sinus-organ (Dinurus, Ectenurus Looss, 1907; Erilepturus Woolcock, 1935; Paradinurus Vigueras, 1958; Qadriana Bilqees, 1971) and resurrect the Mecoderinae Skrjabin & Guschanskaja, 1954 for forms with a temporary sinus-organ (Mecoderus Manter, 1940, Allostomachicola Yamaguti, 1958, Stomachicola Yamaguti, 1934 and Tubulovesicula).
Collapse
Affiliation(s)
- Storm Blas Martin
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, Western Australia 6150, Australia.
| | - M L I De Silva
- Divsion of Parasitology, Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Sri Lanka; Department of Aquatic Bioresources, Faculty of Urban and Aquatic Bioresources, University of Sri Jayawardenepura, Gangodawila, Nugegoda, Sri Lanka.
| | - Erandi Pathirana
- Department of Aquatic Bioresources, Faculty of Urban and Aquatic Bioresources, University of Sri Jayawardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - R P V J Rajapakse
- Divsion of Parasitology, Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Sri Lanka
| |
Collapse
|
7
|
Shine R, Shine TG, Brown GP, Udyawer V. Sexual dimorphism in aipysurine sea snakes (Elapidae, Hydrophiinae). ROYAL SOCIETY OPEN SCIENCE 2023; 10:231261. [PMID: 38094274 PMCID: PMC10716647 DOI: 10.1098/rsos.231261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/20/2023] [Indexed: 01/11/2024]
Abstract
The transition from terrestrial to aquatic life by hydrophiine elapid snakes modified targets of natural selection and likely affected sexual selection also. Thus, the shift to marine life also might have affected sexual dimorphism. Our measurements of 419 preserved specimens of six species of aipysurine snakes (genera Emydocephalus and Aipysurus) revealed sexual dimorphism in mean adult snout-vent length (SVL), body width relative to SVL, lengths and widths of heads and tails relative to SVL, and eye diameter relative to head length. Females averaged larger than males in all taxa, and generally were wider-bodied with shorter and wider tails and smaller eyes. For other traits, sexual dimorphism varied among species: for example, relative head length ranged from male-biased to female-biased, and head shape (width relative to length) was highly dimorphic only in A. laevis. The transition to marine life may have eliminated male-male combat (reducing selection for large males) and favoured visual rather than pheromone-based mate-searching (favouring larger eyes in males). Variation in head-size dimorphism may reflect intersexual niche partitioning, with different taxa following different trajectories. Repeated evolutionary transitions from terrestrial to aquatic life in snakes provide a powerful opportunity to explore selective forces on sexually dimorphic traits.
Collapse
Affiliation(s)
- R. Shine
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - T. G. Shine
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - G. P. Brown
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - V. Udyawer
- Australian Institute of Marine Science, Darwin, Northern Territory 0810, Australia
| |
Collapse
|
8
|
Deepak V, Gower DJ, Cooper N. Diet and habit explain head-shape convergences in natricine snakes. J Evol Biol 2023; 36:399-411. [PMID: 36511814 DOI: 10.1111/jeb.14139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/24/2022] [Accepted: 11/14/2022] [Indexed: 12/15/2022]
Abstract
The concept of ecomorphs, whereby species with similar ecologies have similar phenotypes regardless of their phylogenetic relatedness, is often central to discussions regarding the relationship between ecology and phenotype. However, some aspects of the concept have been questioned, and sometimes species have been grouped as ecomorphs based on phenotypic similarity without demonstrating ecological similarity. Within snakes, similar head shapes have convergently evolved in species living in comparable environments and/or with similar diets. Therefore, ecomorphs could exist in some snake lineages, but this assertion has rarely been tested for a wide-ranging group within a single framework. Natricine snakes (Natricinae) are ecomorphologically diverse and currently distributed in Asia, Africa, Europe and north-central America. They are primarily semiaquatic or ground-dwelling terrestrial snakes, but some are aquatic, burrowing or aquatic and burrowing in habit and may be generalist or specialist in diet. Thus, natricines present an interesting system to test whether snakes from different major habit categories represent ecomorphs. We quantify morphological similarity and disparity in head shape among 191 of the ca. 250 currently recognized natricine species and apply phylogenetic comparative methods to test for convergence. Natricine head shape is largely correlated with habit, but in some burrowers is better explained by dietary specialism. Convergence in head shape is especially strong for aquatic burrowing, semiaquatic and terrestrial ecomorphs and less strong for aquatic and burrowing ecomorphs. The ecomorph concept is useful for understanding natricine diversity and evolution, though would benefit from further refinement, especially for aquatic and burrowing taxa.
Collapse
Affiliation(s)
- V Deepak
- Science Group, Natural History Museum London, London, UK.,Senckenberg Dresden, Museum of Zoology (Museum für Tierkunde), Dresden, Germany
| | - David J Gower
- Science Group, Natural History Museum London, London, UK
| | - Natalie Cooper
- Science Group, Natural History Museum London, London, UK
| |
Collapse
|
9
|
Sherratt E, Nash-Hahn T, Nankivell JH, Rasmussen AR, Hampton PM, Sanders KL. Macroevolution in axial morphospace: innovations accompanying the transition to marine environments in elapid snakes. ROYAL SOCIETY OPEN SCIENCE 2022; 9:221087. [PMID: 36569233 PMCID: PMC9768463 DOI: 10.1098/rsos.221087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Sea snakes in the Hydrophis-Microcephalophis clade (Elapidae) show exceptional body shape variation along a continuum from similar forebody and hindbody girths, to dramatically reduced girths of the forebody relative to hindbody. The latter is associated with specializations on burrowing prey. This variation underpins high sympatric diversity and species richness and is not shared by other marine (or terrestrial) snakes. Here, we examined a hypothesis that macroevolutionary changes in axial development contribute to the propensity, at clade level, for body shape change. We quantified variation in the number and size of vertebrae in two body regions (pre- and post-apex of the heart) for approximately 94 terrestrial and marine elapids. We found Hydrophis-Microcephalophis exhibit increased rates of vertebral evolution in the pre- versus post-apex regions compared to all other Australasian elapids. Unlike other marine and terrestrial elapids, axial elongation in Hydrophis-Microcephalophis occurs via the preferential addition of vertebrae pre-heart apex, which is the region that undergoes concomitant shifts in vertebral number and size during transitions along the relative fore- to hindbody girth axis. We suggest that this macroevolutionary developmental change has potentially acted as a key innovation in Hydrophis-Microcephalophis by facilitating novel (especially burrowing) prey specializations that are not shared with other marine snakes.
Collapse
Affiliation(s)
- Emma Sherratt
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
- South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
| | - Tamika Nash-Hahn
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - James H. Nankivell
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
- South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
| | - Arne R. Rasmussen
- The Royal Danish Academy, Institute of Conservation, 1435 Copenhagen, Denmark
| | - Paul M. Hampton
- Department of Biology, Colorado Mesa University, Grand Junction, CO 81501, USA
| | - Kate L. Sanders
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
- South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
| |
Collapse
|
10
|
Fujishima K, Sasai T, Hibino Y, Nishizawa H. Morphology, Diet, and Reproduction of Coastal Hydrophis Sea Snakes (Elapidae: Hydrophiinae) at Their Northern Distribution Limit. Zoolog Sci 2021; 38:405-415. [PMID: 34664915 DOI: 10.2108/zs210010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/31/2021] [Indexed: 11/17/2022]
Abstract
The Ryukyu Archipelago represents the northern distribution limit for hydrophiine sea snakes, the largest group of marine reptiles. Ryukyuan sea snakes may have developed distinct local adaptations in morphology and ecology, but they have been poorly studied. We examined preserved specimens of 111 Hydrophismelanocephalusand 61 Hydrophis ornatusfrom the Ryukyu Archipelago to obtain data on morphology, diet, and reproduction. Sexual size dimorphism was detected in H. melanocephalus (mean ± standard deviation of adult snout-vent length: SVL, females 1062 ± 141 mm vs. males 959 ± 96 mm) but not in H. ornatus. Female H. melanocephalus had larger head widths and shorter tail lengths relative to SVL compared to males. Relative girth was low in neonates of both species (1.0-1.3), but increased in adults to about 1.7-2.6 in H. melanocephalus and 1.3-1.8 in female H. ornatus. Stomach contents of H. melanocephalus consisted of ophichthid and congrid eels, a sand diver, and gobies, whereas in H. ornatus, gobies and a goat fish were found. Litter size of three reproductive H. melanocephalus ranged from five to seven, and parturition seems to occur from August to October. Litter size of six H. ornatus ranged from two to seven, and was correlated with maternal SVL. Parturition in H. ornatus probably occurs around November. Different selective forces related to locomotion, feeding and predation risk, which influence the pregnant mother and neonates, may have resulted in having few, long but slender offspring that show positive allometric growth in hind-body girth.
Collapse
Affiliation(s)
- Kanta Fujishima
- Graduate School of Informatics, Kyoto University, Yoshida Hommachi, Kyoto 606-8501, Japan,
| | - Takahide Sasai
- Graduate School of Engineering and Science, University of the Ryukyus, Nishihara-cho, Okinawa 903-0213, Japan.,Okinawa Churashima Foundation, Motobu-cho, Okinawa 905-0206, Japan
| | - Yusuke Hibino
- Kitakyushu Museum of Natural History and Human History, Kitakyushu, Fukuoka 805-0071, Japan
| | - Hideaki Nishizawa
- Graduate School of Informatics, Kyoto University, Yoshida Hommachi, Kyoto 606-8501, Japan
| |
Collapse
|
11
|
Shine R, Brown GP, Goiran C. Population dynamics of the sea snake Emydocephalus annulatus (Elapidae, Hydrophiinae). Sci Rep 2021; 11:20701. [PMID: 34667211 PMCID: PMC8526600 DOI: 10.1038/s41598-021-00245-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 10/08/2021] [Indexed: 11/15/2022] Open
Abstract
For sea snakes as for many types of animals, long-term studies on population biology are rare and hence, we do not understand the degree to which annual variation in population sizes is driven by density-dependent regulation versus by stochastic abiotic factors. We monitored three populations of turtle-headed sea snakes (Emydocephalus annulatus) in New Caledonia over an 18-year period. Annual recruitment (% change in numbers) showed negative density-dependence: that is, recruitment increased when population densities were low, and decreased when densities were high. Windy weather during winter increased survival of neonates, perhaps by shielding them from predation; but those same weather conditions reduced body condition and the reproductive output of adult snakes. The role for density-dependence in annual dynamics of these populations is consistent with the slow, K-selected life-history attributes of the species; and the influence of weather conditions on reproductive output suggests that females adjust their allocation to reproduction based on food availability during vitellogenesis.
Collapse
Affiliation(s)
- Richard Shine
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia. .,School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia.
| | - Gregory P Brown
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Claire Goiran
- LabEx Corail and ISEA, Université de la Nouvelle-Calédonie, BP R4, 98851, Nouméa cedex, New Caledonia
| |
Collapse
|
12
|
Sexual dimorphism in size and shape of the head in the sea snake Emydocephalus annulatus (Hydrophiinae, Elapidae). Sci Rep 2021; 11:20026. [PMID: 34625587 PMCID: PMC8501056 DOI: 10.1038/s41598-021-99113-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/07/2021] [Indexed: 11/17/2022] Open
Abstract
In snakes, divergence in head size between the sexes has been interpreted as an adaptation to intersexual niche divergence. By overcoming gape-limitation, a larger head enables snakes of one sex to ingest larger prey items. Under this hypothesis, we do not expect a species that consumes only tiny prey items to exhibit sex differences in relative head size, or to show empirical links between relative head size and fitness-relevant traits such as growth and fecundity. Our field studies on the sea snake Emydocephalus annulatus falsify these predictions. Although these snakes feed exclusively on fish eggs, the heads of female snakes are longer and wider than those of males at the same body length. Individuals with wider heads grew more rapidly, reproduced more often, and produced larger litters. Thus, head shape can affect fitness and can diverge between the sexes even without gape-limitation. Head size and shape may facilitate other aspects of feeding (such as the ability to scrape eggs off coral) and locomotion (hydrodynamics); and a smaller head may advantage the sex that is more mobile, and that obtains its prey in narrow crevices rather than in more exposed situations (i.e., males).
Collapse
|
13
|
Lynch TP, Alford RA, Shine R. Mistaken identity may explain why male sea snakes (Aipysurus laevis, Elapidae, Hydrophiinae) "attack" scuba divers. Sci Rep 2021; 11:15267. [PMID: 34413322 PMCID: PMC8376876 DOI: 10.1038/s41598-021-94728-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/15/2021] [Indexed: 11/09/2022] Open
Abstract
Scuba-divers on tropical coral-reefs often report unprovoked "attacks" by highly venomous Olive sea snakes (Aipysurus laevis). Snakes swim directly towards divers, sometimes wrapping coils around the diver's limbs and biting. Based on a focal animal observation study of free-ranging Olive sea snakes in the southern Great Barrier Reef, we suggest that these "attacks" are misdirected courtship responses. Approaches to divers were most common during the breeding season (winter) and were by males rather than by female snakes. Males also made repeated approaches, spent more time with the diver, and exhibited behaviours (such as coiling around a limb) also seen during courtship. Agitated rapid approaches by males, easily interpreted as "attacks", often occurred after a courting male lost contact with a female he was pursuing, after interactions between rival males, or when a diver tried to flee from a male. These patterns suggest that "attacks" by sea snakes on humans result from mistaken identity during sexual interactions. Rapid approaches by females occurred when they were being chased by males. Divers that flee from snakes may inadvertently mimic the responses of female snakes to courtship, encouraging males to give chase. To prevent escalation of encounters, divers should keep still and avoid retaliation.
Collapse
Affiliation(s)
- Tim P Lynch
- CSIRO, Castray Esplanade, Hobart, TAS, 7000, Australia
| | - Ross A Alford
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Richard Shine
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia.
| |
Collapse
|
14
|
Borczyk B, Paśko Ł, Kusznierz J, Bury S. Sexual dimorphism and skull size and shape in the highly specialized snake species, Aipysurus eydouxii (Elapidae: Hydrophiinae). PeerJ 2021; 9:e11311. [PMID: 33976986 PMCID: PMC8063874 DOI: 10.7717/peerj.11311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 03/29/2021] [Indexed: 11/25/2022] Open
Abstract
Background Snakes exhibit sexual dimorphism in both head size and shape. Such differences are often attributed to different reproductive roles and feeding habits. We aim to investigate how sexual dimorphism is displayed in the highly specialised fish-egg-eating snake, Aipysurus eydouxii, by analysing two complementary features: body size and skull morphology. Methods We used data on body length, weight, and skull shape from 27 measurements of 116 males and females of A. eydouxii. We investigated both sexual dimorphism and allometric (multivariate and bi-variate) properties of skull growth in the analysed data set. Results We found that although there was female-biased sexual size dimorphism in body length, females were not heavier than males, contrary to what is commonly observed pattern among snakes. Moreover, females tend to possess relatively smaller heads than males. However, we only found very subtle differences in skull shape reflected in nasal width, mandibular fossa, quadrate crest and quadrate length. Discussion We suggest that the feeding specialisation in A. eydouxii does not allow for an increase in body thickness and the size of the head above a certain threshold. Our results may be interpreted as support for prey-size divergence as a factor driving skull dimorphism since such species in which the sexes do not differ in prey size also shows very subtle or no differences in skull morphology.
Collapse
Affiliation(s)
- Bartosz Borczyk
- Department of Evolutionary Biology and Conservation of Vertebrates, University of Wroclaw, Wrocław, Poland
| | - Łukasz Paśko
- Department of Evolutionary Biology and Conservation of Vertebrates, University of Wroclaw, Wrocław, Poland
| | - Jan Kusznierz
- Department of Evolutionary Biology and Conservation of Vertebrates, University of Wroclaw, Wrocław, Poland
| | - Stanisław Bury
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| |
Collapse
|
15
|
Galbraith JD, Ludington AJ, Suh A, Sanders KL, Adelson DL. New Environment, New Invaders-Repeated Horizontal Transfer of LINEs to Sea Snakes. Genome Biol Evol 2020; 12:2370-2383. [PMID: 33022046 PMCID: PMC7846101 DOI: 10.1093/gbe/evaa208] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Although numerous studies have found horizontal transposon transfer (HTT) to be widespread across metazoans, few have focused on HTT in marine ecosystems. To investigate potential recent HTTs into marine species, we searched for novel repetitive elements in sea snakes, a group of elapids which transitioned to a marine habitat at most 18 Ma. Our analysis uncovered repeated HTTs into sea snakes following their marine transition. The seven subfamilies of horizontally transferred LINE retrotransposons we identified in the olive sea snake (Aipysurus laevis) are transcribed, and hence are likely still active and expanding across the genome. A search of 600 metazoan genomes found all seven were absent from other amniotes, including terrestrial elapids, with the most similar LINEs present in fish and marine invertebrates. The one exception was a similar LINE found in sea kraits, a lineage of amphibious elapids which independently transitioned to a marine environment 25 Ma. Our finding of repeated horizontal transfer events into marine snakes greatly expands past findings that the marine environment promotes the transfer of transposons. Transposons are drivers of evolution as sources of genomic sequence and hence genomic novelty. We identified 13 candidate genes for HTT-induced adaptive change based on internal or neighboring HTT LINE insertions. One of these, ADCY4, is of particular interest as a part of the KEGG adaptation pathway “Circadian Entrainment.” This provides evidence of the ecological interactions between species influencing evolution of metazoans not only through specific selection pressures, but also by contributing novel genomic material.
Collapse
Affiliation(s)
| | | | - Alexander Suh
- Department of Ecology and Genetics-Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Sweden.,Department of Organismal Biology-Systematic Biology, Evolutionary Biology Centre, Uppsala University, Sweden.,School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Kate L Sanders
- School of Biological Sciences, University of Adelaide, Australia
| | - David L Adelson
- School of Biological Sciences, University of Adelaide, Australia
| |
Collapse
|
16
|
Segall M, Cornette R, Godoy‐Diana R, Herrel A. Exploring the functional meaning of head shape disparity in aquatic snakes. Ecol Evol 2020; 10:6993-7005. [PMID: 32760507 PMCID: PMC7391336 DOI: 10.1002/ece3.6380] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/30/2020] [Accepted: 04/22/2020] [Indexed: 12/26/2022] Open
Abstract
Phenotypic diversity, or disparity, can be explained by simple genetic drift or, if functional constraints are strong, by selection for ecologically relevant phenotypes. We here studied phenotypic disparity in head shape in aquatic snakes. We investigated whether conflicting selective pressures related to different functions have driven shape diversity and explore whether similar phenotypes may give rise to the same functional output (i.e., many-to-one mapping of form to function). We focused on the head shape of aquatically foraging snakes as they fulfill several fitness-relevant functions and show a large amount of morphological variability. We used 3D surface scanning and 3D geometric morphometrics to compare the head shape of 62 species in a phylogenetic context. We first tested whether diet specialization and size are drivers of head shape diversification. Next, we tested for many-to-one mapping by comparing the hydrodynamic efficiency of head shape characteristic of the main axes of variation in the dataset. We 3D printed these shapes and measured the forces at play during a frontal strike. Our results show that diet and size explain only a small amount of shape variation. Shapes did not fully functionally converge as more specialized aquatic species evolved a more efficient head shape than others. The shape disparity observed could thus reflect a process of niche specialization.
Collapse
Affiliation(s)
- Marion Segall
- Department of HerpetologyAmerican Museum of Natural HistoryNew YorkNYUSA
- UMR CNRS/MNHN 7179Mécanismes adaptatifs et EvolutionParisFrance
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMHUMR 7636)CNRSESPCI Paris–PSL Research UniversityUniversité Paris DiderotSorbonne UniversitéParisFrance
| | | | - Ramiro Godoy‐Diana
- Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMHUMR 7636)CNRSESPCI Paris–PSL Research UniversityUniversité Paris DiderotSorbonne UniversitéParisFrance
| | - Anthony Herrel
- UMR CNRS/MNHN 7179Mécanismes adaptatifs et EvolutionParisFrance
- Evolutionary Morphology of VertebratesGhent UniversityGhentBelgium
| |
Collapse
|
17
|
Sherratt E, Sanders KL. Patterns of intracolumnar size variation inform the heterochronic mechanisms underlying extreme body shape divergence in microcephalic sea snakes. Evol Dev 2019; 22:283-290. [PMID: 31730744 DOI: 10.1111/ede.12328] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sea snakes (Hydrophiinae) that specialize on burrowing eel prey have repeatedly evolved tiny heads and reduced forebody relative to hindbody girths. Previous research has found that these "microcephalic" forms have higher counts of precaudal vertebrae, and postnatal ontogenetic changes cause their hindbodies to reach greater girths relative to their forebodies. We examine variation in vertebral size along the precaudal axis of neonates and adults of three species. In the nonmicrocephalic Hydrophis curtus, these intracolumnar patterns take the form of symmetrical curved profiles, with longer vertebrae in the midbody (50% of body length) relative to distal regions. In contrast, intracolumnar profiles in the microcephalic H. macdowelli and H. obscurus are strongly asymmetrical curves (negative skewness) due to the presence of numerous, smaller-sized vertebrate in the forebody (anterior to the heart). Neonate and adult H. macdowelli and H. obscurus specimens all exhibit this pattern, implying an onset of fore- versus hindbody decoupling in the embryo stage. Based on this, we suggest plausible developmental mechanisms involving the presence and positioning of Hox boundaries and heterochronic changes in segmentation. Tests of our hypotheses would give new insights into the drivers of rapid convergent shifts in evolution, but will ultimately require studies of gene expression in the embryos of relevant taxa.
Collapse
Affiliation(s)
- Emma Sherratt
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kate L Sanders
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
18
|
Hampton PM. Foraging ecology influences the number of vertebrae in hydrophiine sea snakes. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
The number of vertebrae in snakes is highly variable both within and among species. Across ophidian taxa, the number of vertebrae has been linked to many aspects of ecology and performance. Herein, I test the hypothesis that variation in the number of vertebrae and the length of the anterior region of sea snakes are associated with foraging ecology. I predicted that sea snakes that invade burrows and crevices for prey would have relatively longer anterior regions as a result of a greater number of vertebrae. Using radiographs, I counted the number of vertebrae between the head and atria and between the atria and cloaca for 22 species of hydrophiine sea snakes. The length between the cranium and atria was positively associated with the frequency of burrowing prey consumed. The number of vertebrae in the pre-atrial region showed a positive association with diet, although the analysis only approached statistical significance. No association was observed between diet and the number of vertebrae between the atria and cloaca, indicating that heart position is constrained with respect to the cloaca. These data indicate that sea snakes specializing on burrowing prey have adapted elongated, anterior regions of the body through an increased number of vertebrae.
Collapse
Affiliation(s)
- Paul M Hampton
- Department of Biology, Colorado Mesa University, Grand Junction, CO, USA
| |
Collapse
|
19
|
Hampton PM. Interspecific variation in organ position in hydrophiine snakes is explained by modifications to the vertebral column. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Interspecific disparities in the position of the internal organs of snakes have been associated with evolutionary history and cardiovascular performance, as influenced by habitat use. For snakes, the positions of internal organs are typically determined as a linear measurement relative to body length. Therefore, interspecific variation in organ position could be explained either as heterotopic shifts in organ position or by modifications to the vertebral column. Using vertebral counts from radiographs, I determined the positions of the atria and pyloric sphincter relative to the cloaca in hydrophiine sea snakes. I found interspecific variation in the number of pre-atrial vertebrae to be labile, whereas the number of vertebrae in the atria to pyloric sphincter region and in the pyloric sphincter to cloaca region was relatively constrained. Furthermore, the number of pre-atrial vertebrae was dissociated from the number of vertebrae between the atria and cloaca, indicating that these two regions of the vertebral column can evolve independently. I conclude that variation in organ position among hydrophiine sea snake species is attributable, in part, to differences in the number of vertebrae among regions of the vertebral column rather than to heterotopic shifts in the positions of the internal organs.
Collapse
Affiliation(s)
- Paul M Hampton
- Department of Biology, Colorado Mesa University, Grand Junction, CO, USA
| |
Collapse
|
20
|
The life aquatic: an association between habitat type and skin thickness in snakes. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
An aquatic animal faces challenges not encountered by its terrestrial counterparts, promoting adaptive responses in multiple traits. For example, a thicker dermis might protect snakes when they are pushed against sharp objects by water currents, and might enable a snake to shed fouling organisms attached to its skin. We thus predicted that marine snakes should have thicker skin than terrestrial species, and that smaller sea snakes should have relatively thicker skin (because absolute, not relative, thickness determines vulnerability to fouling). Measurements of 192 snakes of 44 species supported those predictions. Many (but not all) sea snakes have skins 50% thicker than those of terrestrial and amphibious snake species, representing multiple independent evolutionary origins of thicker skin (in acrochordids, Laticauda sea kraits and both main clades of hydrophiine sea snakes). Marine snakes showed different allometries of skin thickness compared with their terrestrial counterparts; larger snakes had thicker skin within and among species of amphibious and terrestrial snakes, but larger aquatic snake species had thinner skin compared with smaller taxa. Interspecific variation in skin thickness was primarily due to increased collagen in the deep dermis, a physical barrier well suited to protecting against physical injury and to resisting penetration by epibionts.
Collapse
|
21
|
Palci A, Seymour RS, Van Nguyen C, Hutchinson MN, Lee MSY, Sanders KL. Novel vascular plexus in the head of a sea snake (Elapidae, Hydrophiinae) revealed by high-resolution computed tomography and histology. ROYAL SOCIETY OPEN SCIENCE 2019; 6:191099. [PMID: 31598325 PMCID: PMC6774945 DOI: 10.1098/rsos.191099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/01/2019] [Indexed: 05/03/2023]
Abstract
Novel phenotypes are often linked to major ecological transitions during evolution. Here, we describe for the first time an unusual network of large blood vessels in the head of the sea snake Hydrophis cyanocinctus. MicroCT imaging and histology reveal an intricate modified cephalic vascular network (MCVN) that underlies a broad area of skin between the snout and the roof of the head. It is mostly composed of large veins and sinuses and converges posterodorsally into a large vein (sometimes paired) that penetrates the skull through the parietal bone. Endocranially, this blood vessel leads into the dorsal cerebral sinus, and from there, a pair of large veins depart ventrally to enter the brain. We compare the condition observed in H. cyanocinctus with that of other elapids and discuss the possible functions of this unusual vascular network. Sea snakes have low oxygen partial pressure in their arterial blood that facilitates cutaneous respiration, potentially limiting the availability of oxygen to the brain. We conclude that this novel vascular structure draining directly to the brain is a further elaboration of the sea snakes' cutaneous respiratory anatomy, the most likely function of which is to provide the brain with an additional supply of oxygen.
Collapse
Affiliation(s)
- Alessandro Palci
- College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
- South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
| | - Roger S. Seymour
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Cao Van Nguyen
- Institute of Oceanography, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Mark N. Hutchinson
- College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
- South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
| | - Michael S. Y. Lee
- College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
- South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
| | - Kate L. Sanders
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
22
|
Chapuis L, Kerr CC, Collin SP, Hart NS, Sanders KL. Underwater hearing in sea snakes (Hydrophiinae): first evidence of auditory evoked potential thresholds. ACTA ACUST UNITED AC 2019; 222:222/14/jeb198184. [PMID: 31345949 DOI: 10.1242/jeb.198184] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/01/2019] [Indexed: 11/20/2022]
Abstract
The viviparous sea snakes (Hydrophiinae) are a secondarily aquatic radiation of more than 60 species that possess many phenotypic adaptations to marine life. However, virtually nothing is known of the role and sensitivity of hearing in sea snakes. This study investigated the hearing sensitivity of the fully marine sea snake Hydrophis stokesii by measuring auditory evoked potential (AEP) audiograms for two individuals. AEPs were recorded from 40 Hz (the lowest frequency tested) up to 600 Hz, with a peak in sensitivity identified at 60 Hz (163.5 dB re. 1 µPa or 123 dB re. 1 µm s-2). Our data suggest that sea snakes are sensitive to low-frequency sounds but have relatively low sensitivity compared with bony fishes and marine turtles. Additional studies are required to understand the role of sound in sea snake life history and further assess these species' vulnerability to anthropogenic noise.
Collapse
Affiliation(s)
- Lucille Chapuis
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK .,Oceans Graduate School and the UWA Oceans Institute, The University of Western Australia, Perth, WA 6009, Australia
| | - Caroline C Kerr
- Oceans Graduate School and the UWA Oceans Institute, The University of Western Australia, Perth, WA 6009, Australia
| | - Shaun P Collin
- Oceans Graduate School and the UWA Oceans Institute, The University of Western Australia, Perth, WA 6009, Australia.,School of Life Sciences, La Trobe University, Bundoora, VIC 3086, Australia
| | - Nathan S Hart
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Kate L Sanders
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
23
|
Sherratt E, Sanders KL, Watson A, Hutchinson MN, Lee MSY, Palci A. Heterochronic Shifts Mediate Ecomorphological Convergence in Skull Shape of Microcephalic Sea Snakes. Integr Comp Biol 2019; 59:616-624. [DOI: 10.1093/icb/icz033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Abstract
Morphological variation among the viviparous sea snakes (Hydrophiinae), a clade of fully aquatic elapid snakes, includes an extreme “microcephalic” ecomorph that has a very small head atop a narrow forebody, while the hind body is much thicker (up to three times the forebody girth). Previous research has demonstrated that this morphology has evolved at least nine times as a consequence of dietary specialization on burrowing eels, and has also examined morphological changes to the vertebral column underlying this body shape. The question addressed in this study is what happens to the skull during this extreme evolutionary change? Here we use X-ray micro-computed tomography and geometric morphometric methods to characterize cranial shape variation in 30 species of sea snakes. We investigate ontogenetic and evolutionary patterns of cranial shape diversity to understand whether cranial shape is predicted by dietary specialization, and examine whether cranial shape of microcephalic species may be a result of heterochronic processes. We show that the diminutive cranial size of microcephalic species has a convergent shape that is correlated with trophic specialization to burrowing prey. Furthermore, their cranial shape is predictable for their size and very similar to that of juvenile individuals of closely related but non-microcephalic sea snakes. Our findings suggest that heterochronic changes (resulting in pedomorphosis) have driven cranial shape convergence in response to dietary specializations in sea snakes.
Collapse
Affiliation(s)
- Emma Sherratt
- South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Kate L Sanders
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Amy Watson
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Mark N Hutchinson
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
- South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
- College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Michael S Y Lee
- South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
- College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Alessandro Palci
- South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
- College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| |
Collapse
|
24
|
Crowe-Riddell JM, Williams R, Chapuis L, Sanders KL. Ultrastructural evidence of a mechanosensory function of scale organs (sensilla) in sea snakes (Hydrophiinae). ROYAL SOCIETY OPEN SCIENCE 2019; 6:182022. [PMID: 31183131 PMCID: PMC6502359 DOI: 10.1098/rsos.182022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/15/2019] [Indexed: 05/19/2023]
Abstract
The evolution of epidermal scales was a major innovation in lepidosaurs, providing a barrier to dehydration and physical stress, while functioning as a sensitive interface for detecting mechanical stimuli in the environment. In snakes, mechanoreception involves tiny scale organs (sensilla) that are concentrated on the surface of the head. The fully marine sea snakes (Hydrophiinae) are closely related to terrestrial hydrophiine snakes but have substantially more protruding (dome-shaped) scale organs that often cover a larger portion of the scale surface. Various divergent selection pressures in the marine environment could account for this morphological variation relating to detection of mechanical stimuli from direct contact with stimuli and/or indirect contact via water motion (i.e. 'hydrodynamic reception'), or co-option for alternate sensory or non-sensory functions. We addressed these hypotheses using immunohistochemistry, and light and electron microscopy, to describe the cells and nerve connections underlying scale organs in two sea snakes, Aipysurus laevis and Hydrophis stokesii. Our results show ultrastructural features in the cephalic scale organs of both marine species that closely resemble the mechanosensitive Meissner-like corpuscles that underlie terrestrial snake scale organs. We conclude that the scale organs of marine hydrophiines have retained a mechanosensory function, but future studies are needed to examine whether they are sensitive to hydrodynamic stimuli.
Collapse
Affiliation(s)
- Jenna M. Crowe-Riddell
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Ruth Williams
- Adelaide Microscopy, the Centre for Advanced Microscopy and Microanalysis, Adelaide, South Australia 5005, Australia
| | - Lucille Chapuis
- College of Life and Environmental Science, University of Exeter, Exeter EX4 4QD, UK
| | - Kate L. Sanders
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
25
|
Crowe-Riddell JM, D'Anastasi BR, Nankivell JH, Rasmussen AR, Sanders KL. First records of sea snakes (Elapidae: Hydrophiinae) diving to the mesopelagic zone (>200 m). AUSTRAL ECOL 2019. [DOI: 10.1111/aec.12717] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jenna M. Crowe-Riddell
- School of Biological Sciences; University of Adelaide; Darling Building Adelaide South Australia 5005 Australia
| | - Blanche R. D'Anastasi
- College of Science and Engineering; James Cook University; Townsville Queensland Australia
- AIMS@JCU; Australian Institute of Marine Science and James Cook University; Townsville Queensland Australia
| | - James H. Nankivell
- School of Biological Sciences; University of Adelaide; Darling Building Adelaide South Australia 5005 Australia
| | - Arne R. Rasmussen
- The Royal Danish Academy of Fine Arts, School of Architecture, Design and Conservation; Copenhagen K Denmark
| | - Kate L. Sanders
- School of Biological Sciences; University of Adelaide; Darling Building Adelaide South Australia 5005 Australia
| |
Collapse
|
26
|
Sherratt E, Coutts FJ, Rasmussen AR, Sanders KL. Vertebral evolution and ontogenetic allometry: The developmental basis of extreme body shape divergence in microcephalic sea snakes. Evol Dev 2019; 21:135-144. [DOI: 10.1111/ede.12284] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Emma Sherratt
- Department of Ecology and Evolutionary Biology School of Biological Sciences, The University of Adelaide Adelaide South Australia Australia
| | - Felicity J. Coutts
- Department of Ecology and Evolutionary Biology School of Biological Sciences, The University of Adelaide Adelaide South Australia Australia
- Earth Sciences Section, South Australian Museum Adelaide South Australia Australia
| | - Arne R. Rasmussen
- The Royal Danish Academy of Fine Arts, Schools of Architecture, Design and Conservation Copenhagen Denmark
| | - Kate L. Sanders
- Department of Ecology and Evolutionary Biology School of Biological Sciences, The University of Adelaide Adelaide South Australia Australia
| |
Collapse
|
27
|
Crowe-Riddell JM, Simões BF, Partridge JC, Hunt DM, Delean S, Schwerdt JG, Breen J, Ludington A, Gower DJ, Sanders KL. Phototactic tails: Evolution and molecular basis of a novel sensory trait in sea snakes. Mol Ecol 2019; 28:2013-2028. [PMID: 30767303 DOI: 10.1111/mec.15022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/20/2018] [Accepted: 12/27/2018] [Indexed: 12/11/2022]
Abstract
Dermal phototaxis has been reported in a few aquatic vertebrate lineages spanning fish, amphibians and reptiles. These taxa respond to light on the skin of their elongate hind-bodies and tails by withdrawing under cover to avoid detection by predators. Here, we investigated tail phototaxis in sea snakes (Hydrophiinae), the only reptiles reported to exhibit this sensory behaviour. We conducted behavioural tests in 17 wild-caught sea snakes of eight species by illuminating the dorsal surface of the tail and midbody skin using cold white, violet, blue, green and red light. Our results confirmed phototactic tail withdrawal in the previously studied Aipysurus laevis, revealed this trait for the first time in A. duboisii and A. tenuis, and suggested that tail photoreceptors have peak spectral sensitivities between blue and green light (457-514 nm). Based on these results, and an absence of photoresponses in five Aipysurus and Hydrophis species, we tentatively infer that tail phototaxis evolved in the ancestor of a clade of six Aipysurus species (comprising 10% of all sea snakes). Quantifying tail damage, we found that the probability of sustaining tail injuries was not influenced by tail phototactic ability in snakes. Gene profiling showed that transcriptomes of both tail skin and body skin lacked visual opsins but contained melanopsin (opn4x) in addition to key genes of the retinal regeneration and phototransduction cascades. This work suggests that a nonvisual photoreceptor (e.g., Gq rhabdomeric) signalling pathway underlies tail phototaxis, and provides candidate gene targets for future studies of this unusual sensory innovation in reptiles.
Collapse
Affiliation(s)
- Jenna M Crowe-Riddell
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia.,Department of Biology, University of Florida, Gainesville, Florida
| | - Bruno F Simões
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia.,School of Earth Sciences, University of Bristol, Bristol, UK
| | - Julian C Partridge
- School of Biological Sciences and Oceans Institute, University of Western Australia, Crawley, Western Australia, Australia
| | - David M Hunt
- School of Biological Sciences and Oceans Institute, University of Western Australia, Crawley, Western Australia, Australia.,Centre for Ophthalmology and Vision Science, Lions Eye Institute, University of Western Australia, Nedlands, Western Australia, Australia
| | - Steven Delean
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Julian G Schwerdt
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - James Breen
- Robinson Research Institute, University of Adelaide, North Adelaide, South Australia, Australia.,Bioinformatics Hub, University of Adelaide, Adelaide, South Australia, Australia.,South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Alastair Ludington
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia.,Bioinformatics Hub, University of Adelaide, Adelaide, South Australia, Australia
| | - David J Gower
- Department of Life Sciences, The Natural History Museum, London, UK
| | - Kate L Sanders
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
28
|
Nitschke CR, Hourston M, Udyawer V, Sanders KL. Rates of population differentiation and speciation are decoupled in sea snakes. Biol Lett 2018; 14:rsbl.2018.0563. [PMID: 30333264 DOI: 10.1098/rsbl.2018.0563] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/14/2018] [Indexed: 11/12/2022] Open
Abstract
Comparative phylogeography can inform many macroevolutionary questions, such as whether species diversification is limited by rates of geographical population differentiation. We examined the link between population genetic structure and species diversification in the fully aquatic sea snakes (Hydrophiinae) by comparing mitochondrial phylogeography across northern Australia in 16 species from two closely related clades that show contrasting diversification dynamics. Contrary to expectations from theory and several empirical studies, our results show that, at the geographical scale studied here, rates of population differentiation and speciation are not positively linked in sea snakes. The eight species sampled from the rapidly speciating Hydrophis clade have weak population differentiation that lacks geographical structure. By contrast, all eight sampled Aipysurus-Emydocephalus species show clear geographical patterns and many deep intraspecific splits, but have threefold slower speciation rates. Alternative factors, such as ecological specialization, species duration and geographical range size, may underlie rapid speciation in sea snakes.
Collapse
Affiliation(s)
- Charlotte R Nitschke
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Mathew Hourston
- The Department of Primary Industries and Regional Development, Perth, Western Australia, Australia
| | - Vinay Udyawer
- Australian Institute of Marine Science, Darwin, Northern Territory 0810, Australia
| | - Kate L Sanders
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|